1,342 research outputs found

    Comparison of Boost-Based MPPT Topologies for Space Applications

    Full text link
    Several boost-derived topologies are analyzed and compared for an aerospace application that uses a 100 V voltage bus. All these topologies have been designed and optimized considering the electrical requirements and the reduced number of space-qualified components. The comparison evaluates the power losses, mass, and dynamic response. Special attention has been paid to those topologies that may cancel the inherent right half plane zero (RHP) zero of the boost topology. Experimental results of the less common topologies are presented

    Design Control and Power Management of Small Satellite Microgrids

    Get PDF

    A Comprehensive Review on Small Satellite Microgrids

    Get PDF

    Roach Infestation Optimization MPPT Algorithm of PV Systems for Adaptive to Fast-Changing Irradiation and Partial Shading Conditions

    Get PDF
    Of all the renewable energy sources, solar photovoltaic (PV) power is considered to be a popular source owing to several advantages such as its free availability, absence of rotating parts, integration to building such as roof tops and less maintenance cost. The nonlinear current–voltage (I–V) characteristics and power generated from a PV array primarily depends on solar insolation/irradiation and panel temperature. The power output depends on the accuracy with which the nonlinear power–voltage (P–V) characteristics curve is traced by the maximum power point tracking (MPPT) controller. A DC-DC converter is commonly used in PV systems as an interface between the PV panel and the load, allowing the follow-up of the maximum power point (MPP). The objective of an efficient MPPT controller is to meet the following characteristics such as accuracy, robustness and faster tracking speed under partial shading conditions (PSCs) and climatic variations. To realize these objectives, numerous traditional techniques to artificial intelligence and bio-inspired techniques/algorithms have been recommended. Each technique has its own advantage and disadvantage. In view of that, in this thesis, a bio-inspired roach infestation optimization (RIO) algorithm is proposed to extract the maximum power from the PV system (PVS). In addition, the mathematical formulations and operation of the boost converter is investigated. To validate the effectiveness of the proposed RIO MPPT algorithm, MATLAB/Simulink simulations are carried out under varying environmental conditions, for example step changes in solar irradiance, and partial shading of the PV array. The obtained results are examined and compared with the particle swam optimization (PSO). The results demonstrated that the RIO MPPT performs remarkably in tracking with high accuracy as PSO based MPPT. Last but not the least, I am very grateful to the Arctic Centre for Sustainable Energy (ARC), UiT The Arctic University of Norway, Norway for providing an environment to d

    Survey on Photo-Voltaic Powered Interleaved Converter System

    Get PDF
    Renewable energy is the best solution to meet the growing demand for energy in the country. The solar energy is considered as the most promising energy by the researchers due to its abundant availability, eco-friendly nature, long lasting nature, wide range of application and above all it is a maintenance free system. The energy absorbed by the earth can satisfy 15000 times of today’s total energy demand and its hundred times more than that our conventional energy like coal and other fossil fuels. Though, there are overwhelming advantages in solar energy, It has few drawbacks as well such as its low conversion ratio, inconsistent supply of energy due to variation in the sun light, less efficiency due to ripples in the converter, time dependent and, above all, high capitation cost. These aforementioned flaws have been addressed by the researchers in order to extract maximum energy and attain hundred percentage benefits of this heavenly resource. So, this chapter presents a comprehensive investigation based on photo voltaic (PV) system requirements with the following constraints such as system efficiency, system gain, dynamic response, switching losses are investigated. The overview exhibits and identifies the requirements of a best PV power generation system

    Proposal of a Sizing Algorithm for an Optimal Design of DC/DC Converters Used in Photovoltaic Conversion

    Get PDF
    The solar energy is converted to electrical energy by means of semiconductor materials called solar panels. However, the conversion efficiency is low, and hence the need to harvest the maximum power to optimize the photovoltaic conversion, for that the MPPT (Maximum Power Point Tracker) technique is used to maximize the power delivered by the solar panel (PV); this power is very fluctuating because it depends on the lightning and the temperature, the maximum power point is acquired by a DC / DC converter connected to the closed loop MPPT algorithm. The design of the circuit (the closed loop) must be robust in the face of changes in operating points caused by variations in meteorological conditions (temperature and lighting) and must always maintain certain performances such as stability, a fast and well-damped transient system, precision. In this paper, we presented a study of closed loop, for that, we established the average small signal model of the different topologies of the converters (boost; buck, buck-boost) to have a linear model. A comparative study between the three topologies has been established, to make an optimal choice of the circuit parameters

    Model Predictive Control Technique of Multilevel Inverter for PV Applications

    Get PDF
    Renewable energy sources, such as solar, wind, hydro, and biofuels, continue to gain popularity as alternatives to the conventional generation system. The main unit in the renewable energy system is the power conditioning system (PCS). It is highly desirable to obtain higher efficiency, lower component cost, and high reliability for the PCS to decrease the levelized cost of energy. This suggests a need for new inverter configurations and controls optimization, which can achieve the aforementioned needs. To achieve these goals, this dissertation presents a modified multilevel inverter topology for grid-tied photovoltaic (PV) system to achieve a lower cost and higher efficiency comparing with the existing system. In addition, this dissertation will also focus on model predictive control (MPC) which controls the modified multilevel topology to regulate the injected power to the grid. A major requirement for the PCS is harvesting the maximum power from the PV. By incorporating MPC, the performance of the maximum power point tracking (MPPT) algorithm to accurately extract the maximum power is improved for multilevel DC-DC converter. Finally, this control technique is developed for the quasi-z-source inverter (qZSI) to accurately control the DC link voltage, input current, and produce a high quality grid injected current waveform compared with the conventional techniques. This dissertation presents a modified symmetrical and asymmetrical multilevel DC-link inverter (MLDCLI) topology with less power switches and gate drivers. In addition, the MPC technique is used to drive the modified and grid connected MLDCLI. The performance of the proposed topology with finite control set model predictive control (FCS-MPC) is verified by simulation and experimentally. Moreover, this dissertation introduces predictive control to achieve maximum power point for grid-tied PV system to quicken the response by predicting the error before the switching signal is applied to the converter. Using the modified technique ensures the iii system operates at maximum power point which is more economical. Thus, the proposed MPPT technique can extract more energy compared to the conventional MPPT techniques from the same amount of installed solar panel. In further detail, this dissertation proposes the FCS-MPC technique for the qZSI in PV system. In order to further improve the performance of the system, FCS-MPC with one step horizon prediction has been implemented and compared with the classical PI controller. The presented work shows the proposed control techniques outperform the ones of the conventional linear controllers for the same application. Finally, a new method of the parallel processing is presented to reduce the time processing for the MPC

    Performance Analysis Of Hybrid Ai-Based Technique For Maximum Power Point Tracking In Solar Energy System Applications

    Get PDF
    Demand is increasing for a system based on renewable energy sources that can be employed to both fulfill rising electricity needs and mitigate climate change. Solar energy is the most prominent renewable energy option. However, only 30%-40% of the solar irradiance or sunlight intensity is converted into electrical energy by the solar panel system, which is low compared to other sources. This is because the solar power system\u27s output curve for power versus voltage has just one Global Maximum Power Point (GMPP) and several local Maximum Power Points (MPPs). For a long time, substantial research in Artificial Intelligence (AI) has been undertaken to build algorithms that can track the MPP more efficiently to acquire the most output from a Photovoltaic (PV) panel system because traditional Maximum Power Point Tracking (MPPT) techniques such as Incremental Conductance (INC) and Perturb and Observe (P&Q) are unable to track the GMPP under varying weather conditions. Literature (K. Y. Yap et al., 2020) has shown that most AIbased MPPT algorithms have a faster convergence time, reduced steady-state oscillation, and higher efficiency but need a lot of processing and are expensive to implement. However, hybrid MPPT has been shown to have a good performance-to-complexity ratio. It incorporates the benefits of traditional and AI-based MPPT methodologies but choosing the appropriate hybrid MPPT techniques is still a challenge since each has advantages and disadvantages. In this research work, we proposed a suitable hybrid AI-based MPPT technique that exhibited the right balance between performance and complexity when utilizing AI in MPPT for solar power system optimization. To achieve this, we looked at the basic concept of maximum power point tracking and compared some AI-based MPPT algorithms for GMPP estimation. After evaluating and comparing these approaches, the most practical and effective ones were chosen, modeled, and simulated in MATLAB Simulink to demonstrate the method\u27s correctness and dependability in estimating GMPP under various solar irradiation and PV cell temperature values. The AI-based MPPT techniques evaluated include Particle Swarm Optimization (PSO) trained Adaptive Neural Fuzzy Inference System (ANFIS) and PSO trained Neural Network (NN) MPPT. We compared these methods with Genetic Algorithm (GA)-trained ANFIS method. Simulation results demonstrated that the investigated technique could track the GMPP of the PV system and has a faster convergence time and more excellent stability. Lastly, we investigated the suitability of Buck, Boost, and Buck-Boost converter topologies for hybrid AI-based MPPT in solar energy systems under varying solar irradiance and temperature conditions. The simulation results provided valuable insights into the efficiency and performance of the different converter topologies in solar energy systems employing hybrid AI-based MPPT techniques. The Boost converter was identified as the optimal topology based on the results, surpassing the Buck and Buck-Boost converters in terms of efficiency and performance. Keywords—Maximum Power Point Tracking (MPPT), Genetic Algorithm, Adaptive Neural-Fuzzy Interference System (ANFIS), Particle Swarm Optimization (PSO
    • …
    corecore