3,856 research outputs found

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    FLC control for tuning exploration phase in bio-inspired metaheuristic

    Get PDF
    Growing popularity of the Bat Algorithm has encouraged researchers to focus their work on its further improvements. Most work has been done within the area of hybridization of Bat Algorithm with other metaheuristics or local search methods. Unfortunately, most of these modifications not only improves the quality of obtained solutions, but also increases the number of control parameters that are needed to be set in order to obtain solutions of expected quality. This makes such solutions quite impractical. What more, there is no clear indication what these parameters do in term of a search process. In this paper authors are trying to incorporate Mamdani type Fuzzy Logic Controller (FLC) to tackle some of these mentioned shortcomings by using the FLC to control the exploration phase of a bio-inspired metaheuristic. FLC also allows us to incorporate expert knowledge about the problem at hand and define expected behaviors of system – here process of searching in multidimensional search space by modeling the process of bats hunting for their prey

    Novel metaheuristic hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation

    Get PDF
    © 2014 Elsevier B.V. All rights reserved. This paper presents hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation and their application to control of a flexible manipulator system. Spiral dynamic algorithm (SDA) has faster convergence speed and good exploitation strategy. However, the incorporation of constant radius and angular displacement in its spiral model causes the exploration strategy to be less effective hence resulting in low accurate solution. Bacteria chemotaxis on the other hand, is the most prominent strategy in bacterial foraging algorithm. However, the incorporation of a constant step-size for the bacteria movement affects the algorithm performance. Defining a large step-size results in faster convergence speed but produces low accuracy while de.ning a small step-size gives high accuracy but produces slower convergence speed. The hybrid algorithms proposed in this paper synergise SDA and bacteria chemotaxis and thus introduce more effective exploration strategy leading to higher accuracy, faster convergence speed and low computation time. The proposed algorithms are tested with several benchmark functions and statistically analysed via nonparametric Friedman and Wilcoxon signed rank tests as well as parametric t-test in comparison to their predecessor algorithms. Moreover, they are used to optimise hybrid Proportional-Derivative-like fuzzy-logic controller for position tracking of a flexible manipulator system. The results show that the proposed algorithms significantly improve both convergence speed as well as fitness accuracy and result in better system response in controlling the flexible manipulator

    Optimization of Membership Functions for the Fuzzy Controllers of the Water Tank and Inverted Pendulum with Differents PSO Variants

    Get PDF
     In this paper the particle swarm optimization metaheuristic and two of its variants (inertia weight and constriction coefficient) are used as an optimization strategy for the design of optimal membership functions of fuzzy control systems for the water tank and inverted pendulum benchmark problems. Each variant has its own advantages in the algorithm, allowing the exploration and exploitation in different ways and this allows finding the optimal solution in a better way

    Optimal Fuzzy Controller Design for Autonomous Robot Path Tracking Using Population-Based Metaheuristics

    Get PDF
    This researchwas funded by projects TecNM-5654.19-P and DemocratAI PID2020-115570GB-C22.In this work, we propose, through the use of population-based metaheuristics, an optimization method that solves the problem of autonomous path tracking using a rear-wheel fuzzy logic controller. This approach enables the design of controllers using rules that are linguistically familiar to human users. Moreover, a new technique that uses three different paths to validate the performance of each candidate configuration is presented. We extend on our previous work by adding two more membership functions to the previous fuzzy model, intending to have a finer-grained adjustment. We tuned the controller using several well-known metaheuristic methods, Genetic Algorithms (GA), Particle Swarm Optimization (PSO), GreyWolf Optimizer (GWO), Harmony Search (HS), and the recent Aquila Optimizer (AO) and Arithmetic Optimization Algorithms. Experiments validate that, compared to published results, the proposed fuzzy controllers have better RMSE-measured performance. Nevertheless, experiments also highlight problems with the common practice of evaluating the performance of fuzzy controllers with a single problem case and performance metric, resulting in controllers that tend to be overtrained.TecNM-5654.19-PDemocratAI PID2020-115570GB-C2

    Improving Transparency in Approximate Fuzzy Modeling Using Multi-objective Immune-Inspired Optimisation

    Get PDF
    In this paper, an immune inspired multi-objective fuzzy modeling (IMOFM) mechanism is proposed specifically for high-dimensional regression problems. For such problems, prediction accuracy is often the paramount requirement. With such a requirement in mind, however, one should also put considerable efforts in eliciting models which are as transparent as possible, a ‘tricky’ exercise in itself. The proposed mechanism adopts a multi-stage modeling procedure and a variable length coding scheme to account for the enlarged search space due to simultaneous optimisation of the rule-base structure and its associated parameters. We claim here that IMOFM can account for both Singleton and Mamdani Fuzzy Rule-Based Systems (FRBS) due to the carefully chosen output membership functions, the inference scheme and the defuzzification method. The proposed modeling approach has been compared to other representatives using a benchmark problem, and was further applied to a high-dimensional problem, taken from the steel industry, which concerns the prediction of mechanical properties of hot rolled steels. Results confirm that IMOFM is capable of eliciting not only accurate but also transparent FRBSs from quantitative data

    A Review on the Development of Fuzzy Classifiers with Improved Interpretability and Accuracy Parameters

    Get PDF
    This review paper of fuzzy classifiers with improved interpretability and accuracy param-eter discussed the most fundamental aspect of very effective and powerful tools in form of probabilistic reasoning, The fuzzy logic concept allows the effective realization of ap-proximate, vague, uncertain, dynamic, and more realistic conditions, which is closer to the actual physical world and human thinking. The fuzzy theory has the competency to catch the lack of preciseness of linguistic terms in a speech of natural language. The fuzzy theory provides a more significant competency to model humans like com-mon-sense reasoning and conclusion making to fuzzy set and rules as good membership function. Also, in this paper reviews discussed the evaluation of the fuzzy set, type-1, type-2, and interval type-2 fuzzy system from traditional Boolean crisp set logic along with interpretability and accuracy issues in the fuzzy system
    • …
    corecore