1,570 research outputs found

    The Effect of 2D and 3D Menus on Memory Retention in User Interface Design

    Get PDF
    The increasing use of 3D user interface elements, particularly 3D menus, demonstrates the need to expand research in the field of Human Computer Interaction (HCI) as it pertains to 3D user interfaces. The results of this thesis contribute to the understanding of the cognitive impacts of using 3D menus. Multiple application areas for 3D menus have been identified where memory retention is a critical success factor, but little research has been done in the area of memory retention for 3D menus. The purpose of this thesis is to investigate if the use of 3D carousel menus increases retention of information over 2D menus and if is there a gender effect with these results. A three factor split-plot (one-between subject factor and two-within subject factors) experiment was designed to test if menu dimension, content type, and gender are significant factors in memory retention and to determine if there are any interactions between these factors. The results of the experiment revealed that dimension and gender are not significant factors in the retention of information and none of the interactions of dimension (2D vs. 3D), gender, and content were significant. Several subjects’ questionnaire responses demonstrated that the menu dimension they perceived to better aid retention was 3D; however these results were not statistically significant. While these results showed that within the boundaries chosen the use of a 3D menu neither promotes nor degrades memory retention, there are still a number of questions that need to be answered regarding the use of 3D menus and their effect on other cognitive processes

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness ñ€“ Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Empirical studies of pen tilting performance in pen-based user interfaces

    Full text link

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, fĂŒhren zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhĂ€rent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natĂŒrliche Interaktionstechniken als hilfreich fĂŒr die Datenanalyse erwiesen. DarĂŒber hinaus spielt in solchen AnwendungsfĂ€llen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext fĂŒr die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung gefĂŒhrt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion fĂŒr diese oft komplexen Systeme. In meiner Dissertation beschĂ€ftige ich mich mit dieser Herausforderung, indem ich die Interaktion fĂŒr immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von rĂ€umlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann rĂ€umliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen fĂŒr immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. FĂŒr die zweite Frage untersuche ich, wie insbesondere die rĂ€umliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit rĂ€umlichen GerĂ€ten im Vergleich zur Touch-Eingabe, die Verwendung zusĂ€tzlicher mobiler GerĂ€te als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darĂŒber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie rĂ€umliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstĂŒtzen können

    Age-related cognitive decline and navigation in electronic environments

    Get PDF
    The older population is increasing, as is life expectancy. Technical devices are becoming more widespread and used for many everyday tasks. Knowledge about new technology is important to remain as an active and independent part of the society. However, if an old user group should have equal access to this technology, new demands will be placed on the design of interfaces and devices. With respect to old users it is and will be important to develop technical devices and interfaces that take the age-related decline in physical and cognitive abilities into account. The aim of this work was to investigate to what extent the age-related cognitive decline affects performance on different computer-related tasks and the use of different interfaces. With respect to the use of computer interfaces, two studies were conducted. In the first study, the information was presented with a hierarchical structure. In the second study the information was presented as a 3D-environment, and it was also investigated how an overview map could support navigation. The third study examined the age-related cognitive decline in the use of a small mobile phone display with a hierarchical information structure. The results from the studies showed that the most pronounced age-related difference was found in the use of the 3D-environment. Within this environment, prior experience was found to have the largest impact on performance. Regarding the hierarchical information structures, prior experience seemed to have a larger impact on performance of easy tasks, while age and cognitive abilities had a larger impact on performance of more complex tasks. With respect to navigation aids, the overview map in the 3D-environment did not reduce the age-differences; however, it contributed to a better perceived orientation and reduced the feeling of being lost

    Study of the interaction with a virtual 3D environment displayed on a smartphone

    Get PDF
    Les environnements virtuels Ă  3D (EV 3D) sont de plus en plus utilisĂ©s dans diffĂ©rentes applications telles que la CAO, les jeux ou la tĂ©lĂ©opĂ©ration. L'Ă©volution des performances matĂ©rielles des Smartphones a conduit Ă  l'introduction des applications 3D sur les appareils mobiles. En outre, les Smartphones offrent de nouvelles capacitĂ©s bien au-delĂ  de la communication vocale traditionnelle qui sont consentis par l'intĂ©gritĂ© d'une grande variĂ©tĂ© de capteurs et par la connectivitĂ© via Internet. En consĂ©quence, plusieurs intĂ©ressantes applications 3D peuvent ĂȘtre conçues en permettant aux capacitĂ©s de l'appareil d'interagir dans un EV 3D. Sachant que les Smartphones ont de petits et aplatis Ă©crans et que EV 3D est large, dense et contenant un grand nombre de cibles de tailles diffĂ©rentes, les appareils mobiles prĂ©sentent certaines contraintes d'interaction dans l'EV 3D comme : la densitĂ© de l'environnement, la profondeur de cibles et l'occlusion. La tĂąche de sĂ©lection fait face Ă  ces trois problĂšmes pour sĂ©lectionner une cible. De plus, la tĂąche de sĂ©lection peut ĂȘtre dĂ©composĂ©e en trois sous-tĂąches : la Navigation, le Pointage et la Validation. En consĂ©quence, les chercheurs dans un environnement virtuel 3D ont dĂ©veloppĂ© de nouvelles techniques et mĂ©taphores pour l'interaction en 3D afin d'amĂ©liorer l'utilisation des applications 3D sur les appareils mobiles, de maintenir la tĂąche de sĂ©lection et de faire face aux problĂšmes ou facteurs affectant la performance de sĂ©lection. En tenant compte de ces considĂ©rations, cette thĂšse expose un Ă©tat de l'art des techniques de sĂ©lection existantes dans un EV 3D et des techniques de sĂ©lection sur Smartphone. Il expose les techniques de sĂ©lection dans un EV 3D structurĂ©es autour des trois sous-tĂąches de sĂ©lection: navigation, pointage et validation. En outre, il dĂ©crit les techniques de dĂ©sambiguĂŻsation permettant de sĂ©lectionner une cible parmi un ensemble d'objets prĂ©sĂ©lectionnĂ©s. UltĂ©rieurement, il expose certaines techniques d'interaction dĂ©crites dans la littĂ©rature et conçues pour ĂȘtre implĂ©menter sur un Smartphone. Ces techniques sont divisĂ©es en deux groupes : techniques effectuant des tĂąches de sĂ©lection bidimensionnelle sur un Smartphone et techniques exĂ©cutant des tĂąches de sĂ©lection tridimensionnelle sur un Smartphone. Enfin, nous exposons les techniques qui utilisaient le Smartphone comme un pĂ©riphĂ©rique de saisie. Ensuite, nous discuterons la problĂ©matique de sĂ©lection dans un EV 3D affichĂ©e sur un Smartphone. Il expose les trois problĂšmes identifiĂ©s de sĂ©lection : la densitĂ© de l'environnement, la profondeur des cibles et l'occlusion. Ensuite, il Ă©tablit l'amĂ©lioration offerte par chaque technique existante pour la rĂ©solution des problĂšmes de sĂ©lection. Il analyse les atouts proposĂ©s par les diffĂ©rentes techniques, la maniĂšre dont ils Ă©liminent les problĂšmes, leurs avantages et leurs inconvĂ©nients. En outre, il illustre la classification des techniques de sĂ©lection pour un EV 3D en fonction des trois problĂšmes discutĂ©s (densitĂ©, profondeur et occlusion) affectant les performances de sĂ©lection dans un environnement dense Ă  3D. Hormis pour les jeux vidĂ©o, l'utilisation d'environnement virtuel 3D sur Smartphone n'est pas encore dĂ©mocratisĂ©e. Ceci est dĂ» au manque de techniques d'interaction proposĂ©es pour interagir avec un dense EV 3D composĂ© de nombreux objets proches les uns des autres et affichĂ©s sur un petit Ă©cran aplati et les problĂšmes de sĂ©lection pour afficher l' EV 3D sur un petit Ă©cran plutĂŽt sur un grand Ă©cran. En consĂ©quence, cette thĂšse se concentre sur la proposition et la description du fruit de cette Ă©tude : la technique d'interaction DichotoZoom. Elle compare et Ă©value la technique proposĂ©e Ă  la technique de circulation suggĂ©rĂ©e par la littĂ©rature. L'analyse comparative montre l'efficacitĂ© de la technique DichotoZoom par rapport Ă  sa contrepartie. Ensuite, DichotoZoom a Ă©tĂ© Ă©valuĂ© selon les diffĂ©rentes modalitĂ©s d'interaction disponibles sur les Smartphones. Cette Ă©valuation montre la performance de la technique de sĂ©lection proposĂ©e basĂ©e sur les quatre modalitĂ©s d'interaction suivantes : utilisation de boutons physiques ou sous forme de composants graphiques, utilisation d'interactions gestuelles via l'Ă©cran tactile ou le dĂ©placement de l'appareil lui-mĂȘme. Enfin, cette thĂšse Ă©numĂšre nos contributions dans le domaine des techniques d'interaction 3D utilisĂ©es dans un environnement virtuel 3D dense affichĂ© sur de petits Ă©crans et propose des travaux futurs.3D Virtual Environments (3D VE) are more and more used in different applications such as CAD, games, or teleoperation. Due to the improvement of smartphones hardware performance, 3D applications were also introduced to mobile devices. In addition, smartphones provide new computing capabilities far beyond the traditional voice communication. They are permitted by the variety of built-in sensors and the internet connectivity. In consequence, interesting 3D applications can be designed by enabling the device capabilities to interact in a 3D VE. Due to the fact that smartphones have small and flat screens and that a 3D VE is wide and dense with a large number of targets of various sizes, mobile devices present some constraints in interacting on the 3D VE like: the environment density, the depth of targets and the occlusion. The selection task faces these three problems to select a target. In addition, the selection task can be decomposed into three subtasks: Navigation, Pointing and Validation. In consequence, researchers in 3D virtual environment have developed new techniques and metaphors for 3D interaction to improve 3D application usability on mobile devices, to support the selection task and to face the problems or factors affecting selection performance. In light of these considerations, this thesis exposes a state of the art of the existing selection techniques in 3D VE and the selection techniques on smartphones. It exposes the selection techniques in 3D VE structured around the selection subtasks: navigation, pointing and validation. Moreover, it describes disambiguation techniques providing the selection of a target from a set of pre-selected objects. Afterward, it exposes some interaction techniques described in literature and designed for implementation on Smartphone. These techniques are divided into two groups: techniques performing two-dimensional selection tasks on smartphones, and techniques performing three-dimensional selection tasks on smartphones. Finally, we expose techniques that used the smartphone as an input device. Then, we will discuss the problematic of selecting in 3D VE displayed on a Smartphone. It exposes the three identified selection problems: the environment density, the depth of targets and the occlusion. Afterward, it establishes the enhancement offered by each existing technique in solving the selection problems. It analysis the assets proposed by different techniques, the way they eliminates the problems, their advantages and their inconvenient. Furthermore, it illustrates the classification of the selection techniques for 3D VE according to the three discussed problems (density, depth and occlusion) affecting the selection performance in a dense 3D VE. Except for video games, the use of 3D virtual environment (3D VE) on Smartphone has not yet been popularized. This is due to the lack of interaction techniques to interact with a dense 3D VE composed of many objects close to each other and displayed on a small and flat screen and the selection problems to display the 3D VE on a small screen rather on a large screen. Accordingly, this thesis focuses on defining and describing the fruit of this study: DichotoZoom interaction technique. It compares and evaluates the proposed technique to the Circulation technique, suggested by the literature. The comparative analysis shows the effectiveness of DichotoZoom technique compared to its counterpart. Then, DichotoZoom was evaluated in different modalities of interaction available on Smartphones. It reports on the performance of the proposed selection technique based on the following four interaction modalities: using physical buttons, using graphical buttons, using gestural interactions via touchscreen or moving the device itself. Finally, this thesis lists our contributions to the field of 3D interaction techniques used in a dense 3D virtual environment displayed on small screens and proposes some future works

    Does Service Bundling Reduce Churn?

    Get PDF
    We examine whether bundling in telecommunications services reduces churn using a series of large, independent cross sections of household decisions. To identify the effect of bundling, we construct a pseudo-panel dataset and utilize a linear, dynamic panel-data model, supplemented by nearest-neighbor matching. We find bundling does reduce churn for all three "triple-play" services. However, the effect is only "visible" during times of turbulent demand. We also find evidence that broadband was substituting for pay television in 2009. This analysis highlights that bundling helps with customer retention in service industries, and may play an important role in preserving contracting markets.Bundle, Service, Churn, Triple Play, Telecommunications, Cable, Broadband, Telephone, Screen

    Serious games: design and development

    Get PDF
    With the growth of the video game industry, interest in video game research has increased, leading to the study of Serious Games. Serious Games are generally perceived as games that use the video games’ capabilities to emerge players, for other purposes besides entertainment. These purposes include education and training, among others. By using Serious Games for education, teachers could capture the students’ attention in the same way that video games often do, thus the learning process could be more efficient. Additionally, by exploiting the potential of these virtual worlds, it is possible to experience situations that would otherwise be very difficult to experience in the real world, mainly due to reasons of cost, safety and time. Serious Games research and development is still very scarse. However, nowadays there is a large number of available platforms and tools, which can be used to develop Serious Games and video games in general. For instance, web browsers can now provide easy access to realistic 3D virtual worlds. This grants video game developers the tools to create compelling and rich environments that can be accessed by anyone with an internet connection. Additionnaly, other development platforms can be used to achieve different goals. Desktop technologies provide greater processing power and achieve greater results in terms of visual quality, as well as in terms of creating more accurate simulations. This disseration describes the design and development of two Serious Games, one for PC, developed with XNA, and another for the web, developed with WebGL.O crescimento da indĂșstria dos jogos de vĂ­deo, despoletou um maior interesse no estudo deste fenĂłmeno, o que consequentemente levou ao estudo de Jogos SĂ©rios. Jogos SĂ©rios sĂŁo normalmente considerados jogos de vĂ­deo que sĂŁo desenvolvidos para outros fins para alĂ©m do entretenimento. Estes fins incluem a educação e o treino, entre outros. Ao utilizar Jogos SĂ©rios para a educação, os docentes poderiam conseguir captar a atenção dos alunos da mesma forma que os jogos de vĂ­deo normalmente conseguem. Desta forma o processo de aprendizagem poderia ser mais eficiente. Adicionalmente, ao explorar o potencial destes mundos virtuais, Ă© possĂ­vel experienciar situaçÔes que de outra forma seriam difĂ­ceis de experienciar na vida real, devido ao seu custo, a razĂ”es de segurança e tambĂ©m ao tempo dispendido para as realizar. O estudo de Jogos SĂ©rios Ă© ainda bastante disperso. No entanto, hoje em dia existe jĂĄ um grande nĂșmero de plataformas e ferramentas disponĂ­veis que podem ser usadas para desenvolver Jogos SĂ©rios. Por exemplo, os web browsers podem agora fornecer acesso fĂĄcil a mundos virtuais 3D. Isto permite que os criadores de jogos de vĂ­deo tenham acesso Ă s ferramentas necessĂĄrias para criar ambientes ricos, que possam ser acedidos por qualquer pessoa atravĂ©s de uma ligacção Ă  internet. Adicionalmente, existem outras plataformas de desenvolvimento que podem ser utilizadas para alcançar objetivos diferentes. Tecnologias desktop fornecem um maior poder de processamento e permitem alcançar melhores resultados em termos de qualidade visual, bem como em termos de criação de simulaçÔes mais precisas. Nesta dissertação descreve-se a criação e o desenvolvimento de dois Jogos SĂ©rios, um para PC, desenvolvido em XNA e outro outro para a web, desenvolvido em WebGL
    • 

    corecore