593 research outputs found

    Integrated production-distribution systems : Trends and perspectives

    Get PDF
    During the last two decades, integrated production-distribution problems have attracted a great deal of attention in the operations research literature. Within a short period, a large number of papers have been published and the field has expanded dramatically. The purpose of this paper is to provide a comprehensive review of the existing literature by classifying the existing models into several different categories based on multiple characteristics. The paper also discusses some trends and list promising avenues for future research

    Comparison of supply chain planning concepts for general multi-item, multi-echelon systems

    Get PDF
    In this paper we present two alternative concepts to control general multi-item, multi-echelon systems under stochastic stationary demand for end items. Such systems consist of items that are assembled from other items and in turn are assembled into other items. Each assembly process involves a planned lead time. For such systems optimal control policies are unknown to-date. Therefore we resort to control concepts that at least enable an exact computation of the control parameters. The two alternative concepts represent two fundamentally different modeling concepts: an LP-based concept representing application of deterministic mathematical programming models in a rolling schedule context (the common practice in so-called Advanced Planning Systems), and modified base stock policies representing application of classical multi-echelon inventory models. The parameters of the LP-based concept can be detennined by discrete event simulation. The parameters of the modified base stock policies can be determined analytically. We compare the two concepts based on the required supply chain capital investment required to guarantee target end item service levels. Surprisingly, the modified base stock policies outperform the LP-based concept. We provide managerial insights as well as a deeper understanding into a number of fundamental issues related to supply chain planning and supply chain design

    Integrated facility location and capacity planning under uncertainty

    Get PDF
    We address a multi-period facility location problem with two customer segments having distinct service requirements. While customers in one segment receive preferred service, customers in the other segment accept delayed deliveries as long as lateness does not exceed a pre-specified threshold. The objective is to define a schedule for facility deployment and capacity scalability that satisfies all customer demands at minimum cost. Facilities can have their capacities adjusted over the planning horizon through incrementally increasing or reducing the number of modular units they hold. These two features, capacity expansion and capacity contraction, can help substantially improve the flexibility in responding to demand changes. Future customer demands are assumed to be unknown. We propose two different frameworks for planning capacity decisions and present a two-stage stochastic model for each one of them. While in the first model decisions related to capacity scalability are modeled as first-stage decisions, in the second model, capacity adjustments are deferred to the second stage. We develop the extensive forms of the associated stochastic programs for the case of demand uncertainty being captured by a finite set of scenarios. Additional inequalities are proposed to enhance the original formulations. An extensive computational study with randomly generated instances shows that the proposed enhancements are very useful. Specifically, 97.5% of the instances can be solved to optimality in much shorter computing times. Important insights are also provided into the impact of the two different frameworks for planning capacity adjustments on the facility network configuration and its total cost.publishersversionpublishe

    Modeling inventory and responsiveness costs in a supply chain

    Get PDF
    Evaluation of supply chain performance is often complicated by the various interrelationships that exist within the network of suppliers. Currently many supply chain metrics cannot be analytically determined. Instead, metrics are derived from monitoring historical data, which is commonly referred to as Supply Chain Analytics. With these analytics it is possible to answer questions such as: What is the inventory cost distribution across the chain? What is the actual inventory turnover ratio? What is the cost of demand changes to individual suppliers? However, this approach requires a significant amount of historical data which must be continuously extracted from the associated Enterprise Resources Planning (ERP) system. In this dissertation models are developed for evaluating two Supply Chain metrics, as an alternative to the use of Supply Chain Analytics. First, inventory costs are estimated by supplier in a deterministic (Q , R, δ )2 supply chain. In this arrangement each part has two sequential reorder (R) inventory locations: (i) on the output side of the seller and (ii) on the input side of the buyer. In most cases the inventory policies are not synchronized and as a result the inventory behavior is not easily characterized and tends to exhibit long cycles. This is primarily due to the difference in production rates ( δ), production batch sizes, and the selection of supply order quantities (Q) for logistics convenience. The (Q , R, δ )2 model that is developed is an extension of the joint economic lot size (JELS) model first proposed by Banerjee (1986). JELS is derived as a compromise between the seller\u27s and the buyer\u27s economic lot sizes and therefore attempts to synchronize the supply policy. The (Q , R, δ )2 model is an approximation since it approximates the average inventory behavior across a range of supply cycles. Several supply relationships are considered by capturing the inventory behavior for each supplier in that relationship. For several case studies the joint inventory cost for a supply pair tends to be a stepped convex function. Second, a measure is derived for responsiveness of a supply chain as a function of the expected annual cost of making inventory and production capacity adjustments to account for a series of significant demand change events. Modern supply chains are expected to use changes in production capacity (as opposed to inventory) to react to significant demand changes. Significant demand changes are defined as shifts in market conditions that cannot be buffered by finished product inventory alone and require adjustments in the supply policy. These changes could involve a ± 25% change in the uniform demand level. The research question is what these costs are and how they are being shared within the network of suppliers. The developed measure is applicable in a multi-product supply chain and considers both demand correlations and resource commonality. Finally, the behavior of the two developed metrics is studied as a function of key supply chain parameters (e.g., reorder levels, batch sizes, and demand rate changes). A deterministic simulation model and program was developed for this purpose

    Performance measurements and performance control in supply chain management

    Get PDF
    No abstract

    Essays on Shipment Consolidation Scheduling and Decision Making in the Context of Flexible Demand

    Get PDF
    This dissertation contains three essays related to shipment consolidation scheduling and decision making in the presence of flexible demand. The first essay is presented in Section 1. This essay introduces a new mathematical model for shipment consolidation scheduling for a two-echelon supply chain. The problem addresses shipment coordination and consolidation decisions that are made by a manufacturer who provides inventory replenishments to multiple downstream distribution centers. Unlike previous studies, the consolidation activities in this problem are not restricted to specific policies such as aggregation of shipments at regular times or consolidating when a predetermined quantity has accumulated. Rather, we consider the construction of a detailed shipment consolidation schedule over a planning horizon. We develop a mixed-integer quadratic optimization model to identify the shipment consolidation schedule that minimizes total cost. A genetic algorithm is developed to handle large problem instances. The other two essays explore the concept of flexible demand. In Section 2, we introduce a new variant of the vehicle routing problem (VRP): the vehicle routing problem with flexible repeat visits (VRP-FRV). This problem considers a set of customers at certain locations with certain maximum inter-visit time requirements. However, they are flexible in their visit times. The VRP-FRV has several real-world applications. One scenario is that of caretakers who provide service to elderly people at home. Each caretaker is assigned a number of elderly people to visit one or more times per day. Elderly people differ in their requirements and the minimum frequency at which they need to be visited every day. The VRP-FRV can also be imagined as a police patrol routing problem where the customers are various locations in the city that require frequent observations. Such locations could include known high-crime areas, high-profile residences, and/or safe houses. We develop a math model to minimize the total number of vehicles needed to cover the customer demands and determine the optimal customer visit schedules and vehicle routes. A heuristic method is developed to handle large problem instances. In the third study, presented in Section 3, we consider a single-item cyclic coordinated order fulfillment problem with batch supplies and flexible demands. The system in this study consists of multiple suppliers who each deliver a single item to a central node from which multiple demanders are then replenished. Importantly, demand is flexible and is a control action that the decision maker applies to optimize the system. The objective is to minimize total system cost subject to several operational constraints. The decisions include the timing and sizes of batches delivered by the suppliers to the central node and the timing and amounts by which demanders are replenished. We develop an integer programing model, provide several theoretical insights related to the model, and solve the math model for different problem sizes
    • …
    corecore