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Abstract
We address a multi-period facility location problem with two customer segments having
distinct service requirements. While customers in one segment receive preferred service,
customers in the other segment accept delayed deliveries as long as lateness does not exceed
a pre-specified threshold. The objective is to define a schedule for facility deployment and
capacity scalability that satisfies all customer demands at minimum cost. Facilities can have
their capacities adjusted over the planning horizon through incrementally increasing or reduc-
ing the number of modular units they hold. These two features, capacity expansion and
capacity contraction, can help substantially improve the flexibility in responding to demand
changes. Future customer demands are assumed to be unknown. We propose two different
frameworks for planning capacity decisions and present a two-stage stochastic model for
each one of them. While in the first model decisions related to capacity scalability are mod-
eled as first-stage decisions, in the second model, capacity adjustments are deferred to the
second stage. We develop the extensive forms of the associated stochastic programs for the
case of demand uncertainty being captured by a finite set of scenarios. Additional inequal-
ities are proposed to enhance the original formulations. An extensive computational study
with randomly generated instances shows that the proposed enhancements are very useful.
Specifically, 97.5% of the instances can be solved to optimality in much shorter computing
times. Important insights are also provided into the impact of the two different frameworks
for planning capacity adjustments on the facility network configuration and its total cost.
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1 Introduction

Location analysis provides a framework for simultaneously finding sites for facilities and
assigning spatially distributed demand points to these facilities to optimize some measurable
criterion (e.g., cost, profit). Sincemarket conditions and customer service requirements evolve
over time, it is also relevant to determine the optimal timing for opening new facilities, in
addition to selecting their best locations (Nickel and Saldanha-da-Gama 2019). Furthermore,
to be better prepared to market changes (e.g., demand fluctuations), the decision process
should also comprise capacity sizing decisions. The latter should specify a schedule for
capacity acquisition, capacity expansion, and capacity contraction at the selected locations,
in the course of the planning horizon.

Generally, facility location research relies on the assumption that future conditions can
be predicted with a reasonable degree of accuracy. This has given rise to the development of
deterministic models, which are by far the most common. Even though such models have the
advantage of often being amenable to mathematical analysis, the mathematical clarity comes
at the cost of decreased realism. In practice, many factors are uncertain (e.g., demands, costs,
resource availability), thereby motivating the development of stochastic models (Correia and
Saldanha-da-Gama 2019). Ignoring uncertainty entails the risk that once the true nature of
the uncertain parameters reveals itself, adjustments in the facility network configuration may
be necessary that are time-consuming and require a prohibitively high expense.

In this paper, we consider a variant of the multi-period capacitated facility location prob-
lem in which some data are uncertain. We assume that there is a finite set of customers
with demand for a single product family over a multi-period finite planning horizon, and a
finite set of potential locations for the facilities that will offer the commodity. The goal is to
choose facility locations, determine a schedule for facility opening and capacity adjustment
(i.e., expansion and contraction), and to decide which customers to serve and from which
facilities. A distinctive feature of our problem is that customers are sensitive to delivery
lead times. This means that some customers require their demands to be met on time (i.e.,
these customers impose a zero delivery lead time), whereas the remaining customers accept
delayed deliveries as long as lateness does not exceed a pre-specified threshold. This form of
customer segmentation can be encountered in a variety of industries, such as retailing (Duran
et al. 2008; Li et al. 2015) and aftermarket services (Alvarez et al. 2015; Hung et al. 2012;
Wang et al. 2002). Naturally, firms that follow this type of customer segmentation also adopt
a price differentiation policy as an incentive for customers to accept longer delivery lead
times. Future demands are not known a priori. Instead, they are assumed to be described by
a finite discrete random vector, following a probability distribution that is known in advance
(e.g., estimated using historical data). Under the assumption that the decision-maker follows
a risk neutral strategy, the objective is to minimize the total expected cost. The latter includes
fixed costs for opening and operating facilities, fixed costs for capacity scaling, and variable
processing, distribution, and tardiness penalty costs. We note that our problem arises in the
context of facility sizing decisions being reversible in the medium term. This is the case, for
example, when on-demand warehousing is used, which is an emerging trend that allows rel-
atively short commitment horizons for lease contracts (Unnu 2020; Pazour and Unnu 2018).
Technological innovations in the chemical process industry also provide flexible production
facilities whose capacities are easily redeployed through adding or removing modular units
(Becker et al. 2019). Therefore, the three planning levels are integrated through considering
strategic decisions (involving facility location), tactical decisions (regarding capacity scal-
ability), and operational decisions (pertaining to demand allocation). Accordingly, facility
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location and capacity sizing decisions can only be made at selected time periods, whereas
demand allocation decisions can be made at any time period of the planning horizon.

A variant of our problem was studied by Correia and Melo (2017), who have shown
that this is already a challenging NP-hard problem when all parameters are assumed to be
known with certainty. To the best of the authors’ knowledge, our work is the first attempt
to understand the additional complexity that arises from incorporating stochasticity into the
underlying difficult-to-solve deterministic facility location and capacity scalability problem
in a multi-period setting. For this reason, we focus on demand uncertainty and defer the
consideration of additional uncertain parameters.

Given that demand uncertainty is captured by a finite set of scenarios with known prob-
abilities, we follow a scenario-based approach and formulate two-stage stochastic programs
for two different strategies regarding capacity sizing. In both models, the first-stage prob-
lem determines the opening schedule for facilities and their initial capacities over the entire
planning horizon before uncertainty about demand is revealed.Additionally, operational deci-
sions are captured in the second-stage problem by specifying the commodity flow between
the selected locations and the customers. Hence, distribution decisions are made after the
demand uncertainty has been resolved. The proposed stochastic programs differ in the way
capacity scalability decisions are treated. In the first model, we follow the approach usually
taken in the literature (Correia and Saldanha-da-Gama 2019; Govindan et al. 2017; Snyder
2006), and assume that these decisions have a strategic nature. Hence, we include them in
the set of ex ante or first-stage decisions. By contrast, in the second model, decisions on the
timing and sizing of capacity adjustments are assumed to have a tactical nature. In this case,
they become ex post or second-stage decisions. This setting is suitable when, e.g. on-demand
warehousing services are available, thus enabling the capacities of operating facilities to be
upgraded and downgraded on a medium-term basis (Unnu 2020; Pazour and Unnu 2018).

The contributions of the present work are summarized as follows. (1) We propose two
alternative modeling strategies for a new facility location and capacity planning problem
with uncertain demand. (2) For each strategy, we formulate the Deterministic Equivalent
Program and develop valid inequalities that significantly improve the polyhedral descrip-
tion of the feasible region. (3) We evaluate the potential benefit obtained from solving the
stochastic programs instead of their deterministic counterparts. (4) We assess the validity
of the proposed two-stage stochastic mixed-integer linear programming (MILP) models by
reporting and analyzing the results of an extensive computational study using a general-
purpose optimization solver. In particular, we provide insights into the impact of considering
capacity planning decisions as second-stage (tactical) decisions as opposed to the typical
approach of treating them as first-stage (strategic) decisions. Without the support of the two
models proposed in this paper it would otherwise be difficult for stakeholders (typically from
higher management) to perceive the trade-offs associated with different strategies for facility
configuration.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the relevant literature. In Sect. 3, we formally describe our problem and present two
different stochastic programs along with the corresponding deterministic equivalent forms.
Several sets of valid inequalities are developed in Sect. 4 to enhance the original formulations
and, therefore, make them more amenable to standard off-the-shelf optimization software.
Computational results are reported in Sect. 5 and the proposed formulations are compared
using variousmetrics. Finally, Sect. 6 includes a summary of our findings and gives directions
for future research.
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2 Literature review

In this section, we review selected research articles on facility location. Our aim is not to
provide an exhaustive review of this field but to analyze the extent to which the features
captured by our models have been addressed in the literature. Accordingly, special emphasis
will be given to stochastic and multi-period location problems.

Different sources of uncertainty have been considered, either individually or simultane-
ously, in the literature dedicated to stochastic facility location, with demand uncertainty being
the most often considered factor. Early contributions addressing uncertain demand include
the works by Louveaux (1986) and Laporte et al. (1994). Over the past decades, the stochastic
dimension in facility locationmodeling has evolved towards different areas, e.g., hub location
(Alumur et al. 2012; Contreras et al. 2011; Correia et al. 2018; Rahmati and Neghabi 2021).
From an application perspective, recent advances in stochastic modeling have been reported,
e.g., in humanitarian logistics (Döyen et al. 2012; Grass et al. 2020; Kınay et al. 2018), and
supply chain network design (Ghafarimoghadam et al. 2019; Govindan et al. 2017;Mohamed
et al. 2020).

While static (or single-period) stochastic location problems have attracted increasing
attention in the literature, there has been limited research on themulti-period stochastic coun-
terpart. Albareda-Sambola et al. (2013) study a multi-period facility location problem with
various sources of uncertainty. Marín et al. (2018) propose a stochastic programming mod-
eling framework for a general class of covering location problems and develop a Lagrangian
relaxation-based heuristic to tackle large-scale instances. In the context of humanitarian
logistics, Kim et al. (2019) investigate the problem of finding optimal locations for drone
facilities taking into account that flight distance is uncertain due to battery consumption being
affected by weather conditions. Khodaparasti et al. (2018) address the problem of designing
a network of nursing homes under uncertain demand and a budget constraint on each time
period. Marković et al. (2017) develop a multi-stage stochastic program for the problem of
locating law enforcement facilities on a road network to intercept stochastic vehicle flows
that try to avoid these facilities. In Mohamed et al. (2020), a multi-stage stochastic program
is proposed to locate intermediate facilities in a two-echelon distribution network facing
uncertain demand.

Capacity planning decisions are often incorporated into facility location problems (Owen
and Daskin 1998; Verter and Dincer 1995). In particular, the gradual adjustment of capaci-
ties over a planning horizon is an important driver for improving flexibility within a facility
network, a feature that is captured in this paper. Ideally, the provision of capacity should
be in line with actual demand needs. Depending on the application context, different strate-
gies can be adopted along the planning horizon, such as capacity expansion (Correia et al.
2013; Cortinhal et al. 2015), capacity expansion combined with capacity reduction (Antunes
and Peeters 2001; Wilhelm et al. 2013), relocation of capacities to different locations (Melo
et al. 2006), and temporary facility closing and reopening (Dias et al. 2007; Jena et al.
2016). Among these strategies, capacity expansion is the predominant policy in a stochas-
tic setting. Early contributions in this area focus on determining a schedule for capacity
acquisition and expansion for a set of facilities already operating at fixed locations (Ahmed
and Garcia 2004; Ahmed et al. 2003). Any continuous amount of capacity can be installed.
By contrast, Alonso-Ayuso et al. (2003) assume a finite set of capacity expansion levels
in a multi-commodity production system. For a multi-echelon logistics network, Aghezzaf
(2005) propose a decomposition-based algorithm to determine a facility location and capac-
ity expansion schedule that is robust to the uncertain realization of customer demand. In
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the problem studied by Hernández et al. (2012), the location and size of prisons are to be
determined along with a schedule for capacity upgrading at both existing and new facilities
under stochastic demand. Recently, a stochastic modeling framework was proposed for a
multi-period hub location problem with uncertain demand (Correia et al. 2018). In addition
to finding the location of hub facilities and setting their initial capacities, an expansion plan
is also determined. This entails deciding on the time period and the number of additional
modular units to be installed in a hub facility. Even though modular capacities are relevant
in many contexts, e.g. to represent modular equipment (Delmelle et al. 2014; Gourdin and
Klopfenstein 2008), they have been hardly considered in the literature. This feature is cap-
tured in our work in conjunction with capacity expansion and capacity reduction. To the best
of our knowledge, there is only one other study that has addressed both capacity upgrading
and downgrading in a stochastic facility location setting, namely Zhuge et al. (2016). In their
two-stage stochastic program, first-stage decisions include locating new distribution centers
(DCs) in the first time period and selecting their initial capacities from a set of three options.
The second-stage decisions define the timing for capacity expansions and contractions as
well as the flow of multiple products. Uncertainty in future demand and the budget available
for replacing capacity levels are considered. Small-sized problems using aggregated data
from an automotive logistics firm are solved by a Lagrangian-based heuristic. The only other
works that also model capacity scalability decisions as second-stage decisions, the former
being limited to capacity expansion decisions, are Correia et al. (2018) for a hub location
problem and Heckmann (2016) for a facility location problem with disruptive events.

Despite considerable progress on stochastic location modeling, there are still a number
of relevant features which have not been addressed so far. The present paper contributes to
filling this gap by proposing two stochastic models for location and capacity planning in a
multi-period context with service-differentiated customer segments.

3 Problem statement and stochastic formulations

The stochastic multi-period facility location and capacity planning problem addressed in
this paper builds upon a deterministic variant studied in Correia and Melo (2017). For con-
venience, we restate the assumptions that are common to the deterministic and stochastic
settings, and introduce additional information pertaining to the stochastic problem. Subse-
quently, two stochastic formulations are proposed that differ in the framework under which
capacity planning decisions can be made.

A planning horizon comprising a finite number of time periods is considered along with
a set of customers with demands for a single commodity in each period. Customers are
differentiated according to their service requirements. Specifically, some customers require
their demands to be met on time, whereas the remaining customers accept delayed deliveries
as long as lateness does not exceed a pre-specified threshold. In this case, an order can be
split over multiple time periods for the same customer. Typically, customers belonging to
the first segment are willing to pay higher prices to have their demands satisfied in the same
period in which they occur. To customers in the second segment, discount prices are often
offered in exchange for longer response times. In our modeling framework, this scheme is
translated into a tardiness penalty cost that is incurred per unit of backorder and per period.
Customer service-differentiation offers greater flexibility to a firm in designing andmanaging
its facility network.
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A set of potential locations where facilities can be established is assumed to be available at
the beginning of the planning horizon.When a facility is opened, its initial capacity levelmust
also be specified. The latter is expressed by the number of modular units that are installed, all
having the same size. The adoption of a base modular unit is common in different application
areas, such as in the public sector (Delmelle et al. 2014) and in telecommunications (Gourdin
and Klopfenstein 2008). Over the planning horizon, the capacity of an operating facility can
be adjusted to increase its responsiveness to changes in the level of customer demand. Two
forms of capacity scalability are considered: capacity expansion and capacity contraction.
This means that one or several modular units can be added to or removed from a facility.
Naturally, these options are mutually exclusive for the same facility at the same time period.
A limit on the total number of modular units that a facility can hold at any time is pre-
specified. Due to the sizeable investment associated with opening facilities, locations cannot
be temporarily closed and reopened.

The objective is to find a schedule for the deployment of facilities and the expansion and
contraction of their capacities to satisfy customer demands at minimal total cost. Different
time scales are considered for decision-making. The capital-intensive decisions involving
facility location and capacity planning decisions can be made at the beginning of selected
time periods, hereafter termed design periods. All other decisions concerning the processing
of the commodity at the open facilities and the allocation of customer demands can be made
at any time period. This setting is also adopted by other authors, e.g., Mohamed et al. (2020)
and Bashiri et al. (2012). Uncertainty about future demand is described by a finite random
vector whose joint probability distribution is assumed to be foreknown. The finitely many
possible realizations of this random vector are called scenarios. Specifically, each scenario
describes all customer demands over all periods of the planning horizon.

Before detailing the two stochastic programming models, we first introduce the notation
that is common to both formulations.

3.1 Notation

Sets

T Set of time periods along the planning horizon.
TL Subset of design time periods at which location and capacity planning decisions can be

made (TL ⊂ T ).
I Set of potential facility sites.

J 0 Set of customers requiring timely deliveries (i.e., their demands must be satisfied in the
same time periods in which they occur).

J 1 Set of customers that tolerate delayed demand fulfillment.
J Set of all customers (J = J 0 ∪ J 1; J 0 ∩ J 1 = ∅).

Let � = 1, resp. �max = max{� ∈ TL }, be the first, resp. last, design period in which
decisions can bemade on opening facilities at potential locations and adjusting their capacities
through adding or removing modular units. The size of a facility at time period � ∈ TL is the
outcome of the design and scalability decisions taken until that period. For � < �max, this size
remains unchanged over all intermediate periods between two consecutive design periods, �
and �′ (� < �′). For � = �max, the capacity of the facility is maintained until the last period of
the planning horizon. Let φ(�) denote the last time period between two consecutive design
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periods � and �′. This parameter is defined as follows:

φ(�) =
{
max{t ∈ T : t < �′} if � < �max,

|T | if � = �max.
(1)

Deterministic parameters

Q Capacity of one modular unit.
ni Maximum number of modular units that can be available at location i at any time

period (i ∈ I ).
ρ j Maximum allowed delay (expressed by the total number of time periods) to satisfy

the demand of customer j ( j ∈ J 1).
FO�

ik Fixed cost of opening facility i with k modular units at design period � (i ∈ I ; k =
1, . . . , ni ; � ∈ TL).

FE�
ik Fixed cost of adding k modular units to the capacity of facility i at design period �

(i ∈ I ; k = 1, . . . , ni − 1; � ∈ TL\{1}).
FR�

ik Fixed cost of removing k modular units from the capacity of facility i at design
period � (i ∈ I ; k = 1, . . . , ni − 1; � ∈ TL\{1}).

Mt
ik Fixed cost of operating facility i with k modular units at time period t (i ∈ I ; k =

1, . . . , ni ; t ∈ T ).
otik Unit processing cost charged by facility i operating with k modular units at time

period t (i ∈ I ; k = 1, . . . , ni ; t ∈ T ).
cti j Unit distribution cost from facility i to customer j at time period t (i ∈ I ; j ∈

J ; t ∈ T ).
ptt

′
j Unit tardiness penalty cost for satisfying demand of customer j in period t ′ that was

originally placed in period t ( j ∈ J 1; t ∈ T ; t ′ = t, t + 1, . . . ,min{t + ρ j , |T |});
in particular, ptt

′
j = 0 for t ′ = t .

The customer-specified time lag for demand satisfaction ρ j ( j ∈ J 1) imposes that an order
placed by customer j for time period t (t ∈ T ) must be filled over periods t, t+1, . . . , t+ρ j .
In case t + ρ j > |T |, then the last delivery must occur at period |T |. This condition ensures
that demand cannot be carried over to periods beyond the planning horizon. If ρ j = 0 for
every customer j ∈ J 1 then our problem reduces to the classical setting in multi-period
facility location.

As shown in Appendix B, some cost parameters capture economies of scale, namely all
fixed costs (FO�

ik , FE�
ik , FR�

ik , M
t
ik) and the variable processing costs (otik).

Stochastic parameters:

dtj (ξ) Randomvariable representing the demand of customer j at time period t ( j ∈ J ; t ∈T ).

� Finite discrete random vector with � =
(
(dtj ) j∈J ; t∈T

)
and � ⊂ R

|J |×|T |
+ .

It is assumed that the joint probability distribution of the random vector � is foreknown.

3.2 A stochastic formulation

Given the problem assumptions, a natural approach to the decision-making process is to
develop a two-stage stochastic programming model, where the facility location and capacity
planning decisions are made in the first stage, and the remaining processing and distribution
decisions are deferred to the second stage. In other words, the first-stage (or ex ante) decisions
are associatedwith the definition of a schedule for location, capacity acquisition, and capacity
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adjustment to be implemented over the entire planning horizon, before a realization of the
demand becomes known. This results from the strategic nature assumed for these decisions
as they have a long-term impact. The following binary variables represent the first-stage
decisions.

z�ik = 1 if a new facility is established with k modular units at potential location i

at time period �, 0 otherwise (i ∈ I ; k = 1, . . . , ni ; � ∈ TL). (2)

e�
ik = 1 if the capacity of a facility in location i is expanded with k modular units at

time period �, 0 otherwise (i ∈ I ; k = 1, . . . , ni − 1; � ∈ TL\{1}). (3)

r�
ik = 1 if the capacity of a facility in location i is reduced by removing k modular

units at time period �, 0 otherwise (i ∈ I ; k = 1, . . . , ni − 1; � ∈ TL\{1}). (4)

v�
ik = 1 if a facility is operated at location i with k modular units at time period

�, 0 otherwise (i ∈ I ; k = 1, . . . , ni ; � ∈ TL). (5)

After customer demand is observed, additional decisions are made by specifying the quan-
tities of product to be processed at the operating facilities and distributed to customers over
the planning horizon. Therefore, second-stage (or ex post) decisions are represented by the
following continuous variables:

xti j (ξ) : Amount of product distributed from facility i to customer j at time period

t (i ∈ I ; j ∈ J 0; t ∈ T ). (6)

ytt
′

i j (ξ) : Amount of product distributed from facility i to customer j at time period

t ′ to (partially) satisfy demand of period t (i ∈ I ; j ∈ J 1; t ∈ T ; t ′ = t,

t + 1, . . . ,min{t + ρ j , |T |}). (7)

wt
ik(ξ) : Total quantity of product handled by facility i operating with k modular

units at time period t (i ∈ I ; k = 1, . . . , ni ; t ∈ T ). (8)

The implicit representation of the two-stage stochastic program is as follows:

Min
∑
�∈TL

∑
i∈I

ni∑
k=1

FO�
ik z

�
ik +

∑
�∈TL\{1}

∑
i∈I

ni−1∑
k=1

FE�
ik e

�
ik +

∑
�∈TL\{1}

∑
i∈I

ni−1∑
k=1

FR�
ik r

�
ik +

∑
�∈TL

∑
i∈I

ni∑
k=1

v�
ik

φ(�)∑
t=�

Mt
ik + E� [Q(z, e, r , v, ξ)] (9)

subject to

∑
�∈TL

ni∑
k=1

z�ik ≤ 1 i ∈ I (10)

ni∑
k=1

v�
ik =

∑
�′∈TL : �′≤�

ni∑
k=1

z�
′
ik i ∈ I , � ∈ TL (11)

ni−1∑
k=1

e�
ik +

ni−1∑
k=1

r�
ik ≤

∑
�′∈TL : �′<�

ni∑
k=1

z�
′
ik i ∈ I , � ∈ TL\{1} (12)
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ni∑
k=1

k v�
ik =

∑
�′∈TL : �′≤�

ni∑
k=1

k z�
′
ik

+
∑

�′∈TL\{1}: �′≤�

ni−1∑
k=1

k
(
e�′
ik − r�′

ik

)
i ∈ I , � ∈ TL (13)

z�ik ∈ {0, 1} i ∈ I , k = 1, . . . , ni , � ∈ TL (14)

v�
ik ∈ {0, 1} i ∈ I , k = 1, . . . , ni , � ∈ TL (15)

e�
ik, r

�
ik ∈ {0, 1} i ∈ I , k = 1, . . . , ni − 1,

� ∈ TL\{1} (16)

with E� [Q(z, e, r , v, ξ)] denoting the recourse function, which represents the expected
value of the second-stage problem. The optimal value of this problem, Q(z, e, r , v, ξ), is
given by

Q(z, e, r , v, ξ) =Min
∑
t∈T

∑
i∈I

ni∑
k=1

otik wt
ik(ξ) +

∑
t∈T

∑
i∈I

∑
j∈J 0

cti j x
t
i j (ξ)+

∑
t∈T

∑
i∈I

∑
j∈J 1

min{t+ρ j , |T |}∑
t ′=t

(
ct

′
i j + ptt

′
j

)
ytt

′
i j (ξ) (17)

subject to ∑
i∈I

x ti j (ξ) = dtj (ξ) j ∈ J 0, t ∈ T (18)

∑
i∈I

min{t+ρ j , |T |}∑
t ′=t

ytt
′

i j (ξ) = dtj (ξ) j ∈ J 1, t ∈ T (19)

wt
ik(ξ) ≤ k Q v�

ik i ∈ I , k = 1, . . . , ni , t ∈ T ,

� = max{�′ ∈ TL : �′ ≤ t} (20)
ni∑
k=1

wt
ik(ξ) =

∑
j∈J 0

xti j (ξ)+

∑
j∈J 1

t∑
t ′=max{1, t−ρ j }

yt
′t
i j (ξ) i ∈ I , t ∈ T (21)

xti j (ξ) ≥ 0 i ∈ I , j ∈ J 0, t ∈ T (22)

ytt
′

i j (ξ) ≥ 0 i ∈ I , j ∈ J 1, t ∈ T ,

t ′ = t, . . . ,min{t + ρ j , |T |} (23)

wt
ik(ξ) ≥ 0 i ∈ I , k = 1, . . . , ni , t ∈ T (24)

In the first-stage problem (9)–(16), the objective is to minimize the sum of fixed costs
and expected processing and demand allocation costs. The fixed costs account for facility
location, capacity expansion, capacity contraction, and facility operating costs. By including
the expected total cost in (9), a neutral approach to risk is assumed, which is a common crite-
rion to address risk in decision-making problems, often leading to computationally tractable
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models (Birge and Louveaux 2011). Constraints (10) ensure that at most one facility can be
opened at a potential location over the planning horizon. Equalities (11) impose that facili-
ties can only be operated provided they have previously been established. Constraints (12)
guarantee that an open facility can be subjected to at most one type of capacity adjustment
(either expansion or contraction) at each design period. The number of available modular
units at open facilities is defined by equalities (13) for each design period. This number is
the outcome of the sizing choice made when the facility was opened, and the number of
modular units that were added or removed afterward. Finally, constraints (14)–(16) set the
binary conditions on the first-stage (strategic) variables.

Every particular realization of customer demand ξ of � yields a second-stage LP-model
(17)–(24). Observe that in this model, the design variables z�ik , v�

ik , e
�
ik , and r�

ik take on
fixed values. The objective function (17) minimizes the sum of processing costs at operating
facilities, distribution costs to customers, and tardiness penalty costs for orders delivered
with delay to customer segment J 1. Demand satisfaction is imposed by constraints (18)
and (19). Capacity constraints are enforced by inequalities (20). Equalities (21) state that
the product flow leaving a facility at a given time period is split into deliveries to priority
customers and to customers that tolerate late shipments. Non-negativity conditions on the
second-stage (operational) variables are set by constraints (22)–(24). Observe that we are
facing a stochastic problem with fixed recourse, since the coefficients of the second-stage
variables (i.e., the unit cost parameters in (17) and the capacity of a modular unit in (20)) are
all known in advance.

Recall that we assume that the random variable ξ has a finite support, i.e., ξ is defined
by a finite probability distribution. Accordingly, let s ∈ S be the index of the possible
realizations of ξ (called scenarios), where S is a finite set, and let πs represent the associ-
ated (positive) probabilities such that

∑
s∈S πs = 1. In this case, E� [Q(z, e, r , v, ξ)] =∑

s∈S πs Q(z, e, r , v, ξs). It follows that we can rewrite formulation (9)–(16) as a MILP
model by defining scenario-indexed demands and recourse variables. The former are given
by dtjs (t ∈ T ; j ∈ J ; s ∈ S), while the latter replace the second-stage variables (6)–(8) and
are represented by

xti js : Amount of product distributed from facility i to customer j at time period

t under scenario s (i ∈ I ; j ∈ J 0; t ∈ T ; s ∈ S). (25)

ytt
′

i js : Amount of product distributed from facility i to customer j at time period

t ′ to (partially) satisfy demand of period t under scenario s (i ∈ I ; j ∈ J 1;
t ∈ T ; t ′ = t, t + 1, . . . ,min{t + ρ j , |T |}; s ∈ S). (26)

wt
iks : Total quantity of product handled by facility i operating with k modular

units at time period t under scenario s (i ∈ I ; k = 1, . . . , ni ; t ∈ T ;
s ∈ S). (27)

Using the above redefinition of the recourse variables,we obtain the so-calleddeterministic
equivalent MILP model, or extensive form, hereafter denoted (PDE−1).

Min
∑
�∈TL

∑
i∈I

ni∑
k=1

FO�
ik z

�
ik +

∑
�∈TL\{1}

∑
i∈I

ni−1∑
k=1

FE�
ik e

�
ik

+
∑

�∈TL\{1}

∑
i∈I

ni−1∑
k=1

FR�
ik r

�
ik +

∑
�∈TL

∑
i∈I

ni∑
k=1

v�
ik

φ(�)∑
t=�

Mt
ik
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+
∑
s∈S

πs

⎡
⎣∑

t∈T

∑
i∈I

ni∑
k=1

otik wt
iks +

∑
t∈T

∑
i∈I

∑
j∈J 0

cti j x
t
i js

+
∑
t∈T

∑
i∈I

∑
j∈J 1

min{t+ρ j , |T |}∑
t ′=t

(
ct

′
i j + ptt

′
j

)
ytt

′
i js

⎤
⎦ (28)

subject to

(10)−(16)∑
i∈I

x ti js = dtjs j ∈ J 0, t ∈ T , s ∈ S (29)

∑
i∈I

min{t+ρ j , |T |}∑
t ′=t

ytt
′

i js = dtjs j ∈ J 1, t ∈ T , s ∈ S (30)

wt
iks ≤ k Q v�

ik i ∈ I , k = 1, . . . , ni , t ∈ T ,

� = max{�′ ∈ TL : �′ ≤ t}, s ∈ S (31)
ni∑
k=1

wt
iks =

∑
j∈J 0

xti js +
∑
j∈J 1

t∑
t ′=max{1, t−ρ j }

yt
′t
i js i ∈ I , t ∈ T , s ∈ S (32)

xti js ≥ 0 i ∈ I , j ∈ J 0, t ∈ T , s ∈ S (33)

ytt
′

i js ≥ 0 i ∈ I , j ∈ J 1, t ∈ T ,

t ′ = t, . . . ,min{t + ρ j , |T |}, s ∈ S (34)

wt
iks ≥ 0 i ∈ I , k = 1, . . . , ni , t ∈ T , s ∈ S. (35)

We note that the extensive form of the stochastic program becomes very large even when
the random variable ξ has a moderate number of possible realizations. Since all the strategic
decisions made in the first stage do not depend on the realization of the random demand pro-
cess, and so the location and capacity scalability schedule determined for the entire planning
horizon is the same for all scenarios, formulation (PDE−1) satisfies the non-anticipativity
principle. For this reason, (PDE−1) will be called the scenario-independent location and
capacity scalability model.

3.3 A stochastic formulation for an alternative strategy

Discrepancies between the capacity of a firm and the demands of its customers result in
inefficiencies, either in underutilized resources or dissatisfied customers. The ability of a
firm to adjust the capacity of its resources in response to varying customer demand is one of
the key factors in decreasing these discrepancies and achieving competitiveness. Therefore,
an alternative strategy to the settings considered in the previous section is to assume that
capacity adjustment decisions have a tactical nature, and thus can be deferred to the second-
stage problem. In this strategy, the first-stage problem consists of defining a schedule for
locating facilities and setting their initial capacities over the planning horizon. Accordingly,
the strategic facility location decisions are the here-and-now decisions. The second-stage
problem addresses the wait-and-see (tactical and operational) decisions by prescribing a
scheme for adjusting the capacities of operating facilities (through expansion or contraction)
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at the design periods, and specifying the product flows from facilities to customers over
all time periods. In contrast to the approach presented in Sect. 3.2, the capacity adjustment
measures depend now on the realization of the uncertain customer demand. As mentioned
earlier, the resulting two-stage stochastic program is suitable for those cases in which sizing
decisions can be reverted in the medium-term. This arises, for example, in the context of
leasing or renting space and equipment. On-demand warehousing is an emerging trend that
enables firms to adapt quickly to variable demand and cost conditions through deploying
storage space at different locations, for different volumes, in a dynamic fashion (Unnu 2020;
Pazour and Unnu 2018). In particular, e-commerce retailers profit from this pay-per-use
model. Another setting that also allows flexible facility reconfiguration arises in the chemical
process industry through modular plants whose capacities can be expanded, contracted or
even relocated over a short planning horizon (Becker et al. 2019). Malladi et al. (2020) and
Faugère et al. (2020) also report on different logistics systems that rely onmodular production
capacity that can be redeployable in the short term.

To formulate a two-stage stochastic program for this alternative strategy, the binary loca-
tion variables (2) and the continuous flow variables (6), (7), and (8) are used. Moreover,
the binary variables associated with the sizing decisions, i.e., (3), (4), and (5), are replaced
by ẽ �

ik(ξ), r̃ �
ik(ξ), and ṽ �

ik(ξ), respectively. Each one of these new variables depends on the
random vector ξ ruling future customer demands. The total expected cost to be minimized is
given by

∑
�∈TL

∑
i∈I

∑ni
k=1 FO

�
ik z

�
ik + E�[Q′(z, ξ)] under constraints (10) and (14). The

optimal value Q′(z, ξ) of the second-stage problem is determined by

Q′(z, ξ) =Min
∑

�∈TL\{1}

∑
i∈I

ni−1∑
k=1

FE�
ik ẽ

�
ik(ξ) +

∑
�∈TL\{1}

∑
i∈I

ni−1∑
k=1

FR�
ik r̃

�
ik(ξ)

+
∑
�∈TL

∑
i∈I

ni∑
k=1

ṽ �
ik(ξ)

φ(�)∑
t=�

Mt
ik +

∑
t∈T

∑
i∈I

ni∑
k=1

otik wt
ik(ξ)

+
∑
t∈T

∑
i∈I

∑
j∈J 0

cti j x
t
i j (ξ) +

∑
t∈T

∑
i∈I

∑
j∈J 1

min{t+ρ j , |T |}∑
t ′=t

(
ct

′
i j + ptt

′
j

)
ytt

′
i j (ξ)

subject to (36)

(18), (19), (21) − (24)
ni∑
k=1

ṽ �
ik(ξ) =

∑
�′∈TL : �′≤�

ni∑
k=1

z�
′
ik i ∈ I , � ∈ TL (37)

ni−1∑
k=1

ẽ �
ik(ξ) +

ni−1∑
k=1

r̃ �
ik(ξ) ≤

∑
�′∈TL : �′<�

ni∑
k=1

z�
′
ik i ∈ I , � ∈ TL\{1} (38)

ni∑
k=1

k ṽ �
ik(ξ) =

∑
�′∈TL : �′≤�

ni∑
k=1

k z�
′
ik

+
∑

�′∈TL\{1}: �′≤�

ni−1∑
k=1

k
(̃
e �′
ik (ξ) − r̃ �′

ik (ξ)
)

i ∈ I , � ∈ TL (39)

wt
ik(ξ) ≤ k Q ṽ �

ik(ξ) i ∈ I , k = 1, . . . , ni , t ∈ T ,
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� = max{�′ ∈ TL : �′ ≤ t} (40)

ṽ �
ik(ξ) ∈ {0, 1} i ∈ I , k = 1, . . . , ni , � ∈ TL (41)

ẽ �
ik(ξ), r̃ �

ik(ξ) ∈ {0, 1} i ∈ I , k = 1, . . . , ni − 1,

� ∈ TL\{1}. (42)

Due to capacity adjustment decisions being now recourse decisions, the new constraints
(37)–(39) are the counterpart of constraints (11)–(13). Likewise, the capacity constraints (40)
replace inequalities (20).

By imposing the same conditions on the random demand vector ξ as in Sect. 3.2,
we can rewrite the recourse function as a function of all scenarios, i.e., E�[Q′(z, ξ)] =∑

s∈S πs Q′(z, ξs). Accordingly, the set of scenario-dependent flow variables (25)–(27) is
extended with the new scenario-indexed capacity scalability variables, ṽ �

iks , ẽ
�
iks , and r̃ �

iks .
The definition of these variables and the resulting deterministic equivalent MILP formula-
tion, hereafter denoted (PDE−2), are detailed in Appendix A. Since all capacity adjustment
decisions depend on the realizations of the random parameters, (PDE−2) will be called the
scenario-dependent capacity scalability model. (PDE−2) defines a large-scale MILP model
with a significant number of binary variables and constraints, even for a small-sized scenario
set.

4 Additional inequalities

In an attempt to improve the polyhedral description of the set of feasible solutions of models
(PDE−1) and (PDE−2), we develop in this section several sets of additional inequalities. The
proposed enhancementsmay contribute tomore problem instances andwith larger sizes being
solved to (near-)optimality with general-purpose optimization software within reasonable
computing time.

4.1 Inequalities for model (PDE−1)

Recall from (28)–(35) that in the extensive form of the deterministic equivalent model
(PDE−1), all facility location and capacity-related decisions are made in the first stage,
before uncertainty about future demand is disclosed. Next, we successively show how the
information conveyed by the various scenarios can be used in this case to derive a lower
bound on the total number of facilities that must be open at a particular design period.

Let us assume, without loss of generality, that the length of the planning horizon is a
multiple of the number of design periods, and let us define σ = |T |/|TL |. Hence, parameter
σ is integer-valued and gives the total number of periods between two consecutive design
periods. Since all demand requirements of the preferred customer segment J 0 must be ser-
viced without delay in every scenario, they are used to set minimum capacity requirements
between two consecutive design periods. The latter are given by

D� = max

⎧⎨
⎩

∑
j∈J 0

dtjs : s ∈ S; t = �, . . . , φ(�)

⎫⎬
⎭ ,
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for every � ∈ TL and φ(�) defined in (1). Hence, the following inequalities must hold for
every design period:

Q
∑
i∈I

ni∑
k=1

k v�
ik ≥ D�, � ∈ TL .

Dividing the above inequalities by the size of a modular unit, Q, and taking into account that
the left-hand side must be integer-valued, it follows that

∑
i∈I

ni∑
k=1

k v�
ik ≥

⌈
D�

Q

⌉
, � ∈ TL . (43)

Furthermore, for a particular design period � (� ∈ TL ), let D̃� denote the largest minimum
demand quantity over all scenarios that has to be covered from period � through period φ(�).

D̃� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
s∈S

{ ∑
j∈J 0

φ(�)∑
t=�

dtjs + ∑
j∈J 1

φ(�)−ρ j∑
t=�

dtjs

}
if � < �max ,

max
s∈S

{ ∑
j∈J

|T |∑
t=�

dtjs

}
if � = �max .

The above expression includes all orders from customer segment J 0 as well as the minimum
quantity of demand that must be delivered to customers J 1 accepting late shipments. Since
demand cannot be lost, in the last time interval (which comprises all periods from �max

through |T |), the orders of both customer segmentsmust be completely satisfied.Accordingly,
the following inequalities ensure that facilities open at time period � (and therefore at all
subsequent periods up to period φ(�)) must have sufficient capacity to serve the demand D̃�:

σ Q
∑
i∈I

ni∑
k=1

k v�
ik ≥ D̃�, � ∈ TL .

Dividing these inequalities, first by Q and then by the time lag σ , we obtain

∑
i∈I

ni∑
k=1

k v�
ik ≥

⎡
⎢⎢⎢

⌈
D̃�

Q

⌉
σ

⎤
⎥⎥⎥ , � ∈ TL . (44)

Combining inequalities (43) and (44), and defining

M� = max

⎧⎨
⎩

⌈
D�

Q

⌉
,

⎡
⎢⎢⎢

⌈
D̃�

Q

⌉
σ

⎤
⎥⎥⎥

⎫⎬
⎭

yields

∑
i∈I

ni∑
k=1

k v�
ik ≥ M�, � ∈ TL .

By applying the Chvátal–Gomory rounding procedure a finite number of times p (p ≥ 1) to
the above inequalities (Wolsey 1998), we obtain

∑
i∈I

ni∑
k=1

⌈
k

p

⌉
v�
ik ≥

⌈
M�

p

⌉
, � ∈ TL , p = 1, . . . ,max

i∈I {ni }. (45)
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The reasoning followed to derive (45) is itself a proof of the following result:

Proposition 1 The set of inequalities (45) is valid for formulation (PDE−1).

The enhanced formulation is called hereafter (P+
DE−1) for the scenario-independent location

and capacity scalability model.

4.2 Inequalities for model (PDE−2)

For the extensive form of the deterministic model given by (52)–(58) (see Appendix A),
we develop additional inequalities that serve a purpose similar to (45). In this case, the
variables ṽ �

iks (cf. (51)) representing the number of modular units available in a location
at time period � (� ∈ TL ) are scenario-indexed. Hence, the minimum quantity of demand
that must be satisfied in each period between two consecutive design periods is scenario
dependent and defined by

��
s = max

⎧⎨
⎩

∑
j∈J 0

dtjs : t = �, . . . , φ(�)

⎫⎬
⎭ , � ∈ TL , s ∈ S.

Given a scenario s and a design period �, it follows that theminimumnumber of open facilities
must satisfy the following conditions:

∑
i∈I

ni∑
k=1

k ṽ �
iks ≥

⌈
��

s

Q

⌉
, � ∈ TL , s ∈ S. (46)

The above inequalities are the counterpart of (43) for the scenario-dependent capacity
scalability model.

Additionally, let �̃ �
s denote the minimum total demand requirements to be satisfied in

scenario s for all periods from � through φ(�), with � ∈ TL .

�̃�
s =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
j∈J 0

φ(�)∑
t=�

dtjs + ∑
j∈J 1

φ(�)−ρ j∑
t=�

dtjs if � < �max ,

∑
j∈J

|T |∑
t=�

dtjs if � = �max .

Therefore, the following inequalities must also hold

∑
i∈I

ni∑
k=1

k ṽ �
iks ≥

⌈
 �̃�
s

Q �
σ

⌉
, � ∈ TL , s ∈ S, (47)

and using inequalities (46) and (47) yields the following relations:

∑
i∈I

ni∑
k=1

k ṽ �
iks ≥ M̃ �

s , � ∈ TL , s ∈ S,

where the lower bound M̃ �
s is defined as the maximum of the two parameters on the right-

hand sides of inequalities (46) and (47). Finally, we apply once again the Chvátal–Gomory
rounding method to the above inequalities and obtain the following result:
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Table 1 Parameter values

Parameter Value Parameter Value

|T | 12, 24 |TL | 3

|J | 20, 40 |J0| β J |J | with β J ∈ {0.25, 0.5, 0.75}
|I | 0.25 |J | ρ 1, 2, 3

|S| 5 πs 1/5 (s ∈ S)

Proposition 2 The set of inequalities

∑
i∈I

ni∑
k=1

⌈
k

p

⌉
ṽ �
iks ≥

⌈
M̃�

s

p

⌉
, � ∈ TL , s ∈ S, p = 1, . . . ,max

i∈I {ni } (48)

is valid for formulation (PDE−2).

The steps presented above serve as proof for this proposition. If for a particular design
period � and scenario s there exist several inequalities (48), all having the same right-hand
side for different values of p, then we only need to consider the inequality with the strongest
left-hand side. A similar remark also applies to (45). The enhanced formulation for the
scenario-dependent capacity scalability case is called hereafter (P+

DE−2).

5 Computational study

In this section, we present the results of an extensive computational study. The computational
experiments were guided by five objectives, namely: (i) to evaluate the usefulness of using
a general-purpose MILP solver to identify optimal or near-optimal solutions to the origi-
nal deterministic equivalent models within reasonable computing time; (ii) to analyze the
effectiveness of the proposed additional inequalities; (iii) to compare the two strategies for
deciding on the timing and sizing of capacity adjustments; (iv) to discuss relevant insights
into the characteristics of the (near-)optimal solutions identified; and (v) to assess the benefits
of using a stochastic programming approach for the problem under study.

5.1 Characteristics of test instances

Since benchmark data sets are not available for the problem at hand, a set of instances
was randomly generated. The size of each instance is mainly dictated by the length of the
planning horizon and the total number of customers according to the choices specified in
Table 1. Planning horizons with 12 and 24 time periods are considered. In both cases, there
are three design periods for making location and capacity scalability decisions. Specifically,
for |T | = 12 (resp. |T | = 24), these opportunities occur at the beginning of periods 1, 5, and
9 (resp. 1, 9, and 17).

Two different sizes for the customer set are assumed and three different partitions of J
are considered. For example, a set of 40 customers can be partitioned into |J 0| = 10 and
|J 1| = 30, |J 0| = |J 1| = 20, and |J 0| = 30 and |J 1| = 10. In all cases, customers in
segment J 1 specify the same maximum number of periods for late deliveries, i.e., ρ j = ρ

for all j ∈ J 1. Instances with ρ = 1, ρ = 2, and ρ = 3 were generated.
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In total, five scenarios are considered that reflect different variations in demand. This
choice is mainly driven by the very large size of our models, as displayed in Table 2, which is
impacted by the number of periods and the number of customers selected. This difficulty is
reflected in other similar research in stochastic facility location as well, thus limiting the total
number of scenarios (Aghezzaf (2005); Alumur et al. (2012); Correia et al. (2018); Diglio
et al. (2020); Heckmann (2016); Marín et al. (2018); Mete and Zabinsky (2010); Moreno
et al. (2018)).

To model different trends in demand, the following continuous uniform distributions are
considered: (i) U[10, 100], (ii) U[100, 200], and (iii) U[200, 300]. Motivated by the works of
Fernández et al. (2019) and Hinojosa et al. (2014) for a stochastic fixed-charge transportation
problem, we have combined these stochastic distributions in different ways to create five
scenarios. In scenario 1, all customer demands are generated from interval (i) in the first
time period; in scenario 2, all demand levels are taken from interval (ii) in the first period; in
scenario 3, interval (iii) is used to generate all demands in period 1; in scenarios 4 and 5, a
demand level is initially chosen at random for each customer, among the three intervals. This
sets the choice for period t = 1. Each interval has an equal probability of being selected. In
every scenario s, the demands of customer j in all periods t > 1 are calculated as β t

js d
t−1
js

with β t
js ∈ U[0.8, 1.2]. This scheme creates demand fluctuations over the planning horizon

that will call for adjustments in the capacity of the facilities. We notice that these scenarios
differ significantly from each other, originating a high demand variability, and thus making
them a suitable choice in a setting with uncertain demand.

The capacity of a modular unit is defined as a function of the demand scenarios, namely

Q = 1
ni |I | U[3, 4]

∑
j∈J

∑
t∈T maxs∈S dtjs
|T | , with ni = 4 for every i ∈ I . Appendix B provides

further details on the procedure for randomly generating all cost parameters. Five instances
were randomly generated for each combination of the parameters shown in Table 1, giving
rise to a total of 180 different instances. Table 2 summarizes the sizes of these instances
according to the formulation chosen. In particular, the number of binary variables increases
significantly in the scenario-dependent capacity scalability model, namely more than 360%.
Together with the considerable number of continuous variables, especially for the instances
with 40 customers, we notice that the models’ dimensions are challenging in a stochastic
MILP context. With the valid inequalities proposed in Sect. 4, the total number of constraints
slightly increases in both enhanced formulations.

5.2 Numerical results

Formulations (PDE−1) and (PDE−2) alongwith their enhancementswere coded in C++ using
IBM ILOGConcert Technology and runwith IBM ILOGCPLEX 12.6. All experiments were
performed on a workstation with a multi-core Intel Xeon E5-2650V3 processor (2.3 GHz, 10
cores), 32 GB RAM, and running the Ubuntu operating system (64-bit). Due to the strategic
nature of the problem that we study, fast solution times are not of paramount importance.
Therefore, a limit of 10 hours of CPU time was set for each solver run. Furthermore, CPLEX
was used with default settings under a deterministic parallel mode.

Regarding goal (i) listed at the beginning of Sect. 5, we evaluate the effectiveness of
using CPLEX to identify (near-)optimal solutions to the test instances for the proposed
original formulations, (PDE−1) and (PDE−2). To do so, we compare the optimality gaps
and the computing times reported by CPLEX. Table 3 summarizes the relevant information
according to the size of the customer set, while Table 4 provides information from a different
perspective, namely for varying values for themaximum delivery delay tolerated by customer
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segment J 1. Column 1 gives the parameter selected (|J | in Table 3 and ρ in Table 4).
Columns 2–5 report the number of instances solved to optimality (# opt sol.) and the number
of instances not solved to proven optimality within the specified time limit (# non-opt sol.) for
all models (i.e., the original formulations and their enhancements). For those instances not
solved optimally, the minimum, average, and maximum optimality gaps achieved by CPLEX
after 10 h of computing time are given for each formulation in columns 7–10 (MIP gap (%)
= (zU B − zLB)/zU B × 100%, with zU B denoting the objective value of the best feasible
solution available and zLB representing the best lower bound identified during the branch-
and-cut procedure). Columns 11–14display theminimum, average, andmaximumcomputing
times, in seconds (MIP CPU (s)). The last row refers to all 180 instances. The best (average)
values with respect to the evaluation criteria are given in bold type.

Table 3 shows that the capability of CPLEX to identify an optimal solution within the
given time limit is affected by the formulation that is used. Regarding formulations (PDE−1)

and (PDE−2), optimality is achieved in all test instances with 20 customers, but deterio-
rates as the total number of customers grows to 40. Not surprisingly, the larger formulation
(PDE−2) poses an additional challenge to CPLEX. In particular, for this formulation, optimal
solutions are only available for less than half of the instances with 40 customers (44.4% or
40/90), whereas 80% (72/90) of the instances with the same number of customers could be
solved to optimality with model (PDE−1). These findings are also supported by the growth
observed in the computing times. Interestingly, for those instances that could not be solved
to proven optimality, the associated gaps are, on average, relatively small (cf. columns 7 and
9 in Table 3). The challenges posed by formulation (PDE−2) result in slightly larger gaps
compared to formulation (PDE−1).

Table 3 also reveals the positive effect of the proposed valid inequalities (45) and (48), an
aspect that was mentioned at the beginning of Sect. 5 as goal (ii) to be investigated. Specifi-
cally, the additional constraints prove to be very useful since they allow the identification of
optimal solutions for a significantly larger number of problem instances in shorter computing
times. Adding inequalities (45) to formulation (PDE−1) results in obtaining optimal solu-
tions to all the instances. Regarding the enhanced model (P+

DE−2), and despite the greater
size of this formulation, 95% (171/180) of all instances are solved to optimality. In this case,
the valid inequalities (48) prove to be very effective for the more challenging instances with
40 customers (90% or 81/90 optimal solutions become available).

Table 4 shows that increasing the maximum lead time for customers accepting late ship-
ments results in slightly more challenging problems for CPLEX. This fact is evidenced by
the larger number of instances not solved to proven optimality as the value of ρ grows.
We remark that increasing ρ brings more flexibility to designing the facility network and
adjusting the capacities of the operating facilities over the planning horizon. Interestingly,
the quality of the best solutions returned by CPLEX upon reaching the time limit does not
seem to be considerably affected by parameter ρ. The enhanced formulations clearly suc-
ceed in solving more instances to optimality and in providing lower optimality gaps under a
substantial reduction of the computational burden.

As evidenced by the significantly shorter computing times of the tighter formula-
tions (P+

DE−1) and (P+
DE−2) (cf. last column in Tables 3, 4), the exploration of the

branch-and-cut tree generated by CPLEX is less time consuming, despite the greater number
of constraints. However, additional computational effort may be required to solve the associ-
ated linear relaxations. This feature is present in solving the LP-relaxation of model (P+

DE−2)

but not for the LP-relaxation of model (P+
DE−1), as displayed in Tables 5 and 6. These tables

report in the last four columns the minimum, average, and maximum solution times of the
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linear relaxation (LP CPU (s)) of all models, for different values of parameter |J | (Table 5)
and parameter ρ (Table 6). In addition, columns 3–6 show the minimum, average, and maxi-
mum integrality gaps (LP gap (%)). The latter give the relative percent deviation between the
objective value of the best feasible solution available (zU B ) and the lower bound provided by
the linear relaxation. The best average values over all 180 instances are highlighted in bold
type in the last row of these tables.

Tables 5 and 6 indicate that the linear relaxations of the enhanced formulations provide
substantially better lower bounds, and as a result lower integrality gaps, as opposed to the
original models. Even though the number of available optimal solutions decreases with a
growing size of J , and accordingly the quality of zU B declines, the average integrality gap
becomes significantly smaller when inequalities (45) and (48) are added to the associated
formulations. By contrast, the magnitude of the maximum allowed tardiness for orders in
customer segment J 1 does not seem to have a major effect on the average integrality gap in
any of the four formulations, as shown in Table 6.

Finally, we note that good integrality gaps such as the ones we have obtained with the
enhanced formulations can be very useful in evaluating the quality of a feasible solution
produced, for example, by a tailored heuristic method. In particular, this feature is relevant
for problems with large customer sets since in this case it becomes increasingly difficult for
a state-of-the-art optimization solver to achieve optimality within acceptable time. From a
computational viewpoint, the optimal solution to the linear relaxation is inexpensive (< 200
seconds for the enhanced models, see Tables 5 and 6).

5.3 Deployment of facility location and capacity scalability strategies

In this section, we focus on goals (iii) and (iv) stated at the beginning of Sect. 5, and compare
the characteristics of the two strategies proposed for locating facilities and adjusting their
capacities over the planning horizon. For this purpose, Table 7 gives the minimum, average,
and maximum relative deviation of the objective values of the best solutions reported by
CPLEX for the enhanced formulations. Specifically, columns 2–4 (resp. 6–8) display the
value of (z+DE−1 − z+DE−2)/z

+
DE−1 × 100% according to the size of the customer set (resp.

the maximum delivery delay). We denote by z+DE−1 and z+DE−2 the best objective values
identified by CPLEX to formulation (P+

DE−1) and (P+
DE−2), respectively, within the given

time limit. Each row associated with the size of a customer set aggregates the results for
90 instances, while each row associated with parameter ρ aggregates the results for 60
instances. Since the relative deviations presented in this table are all positive, they indicate
that cost savings can be achieved with the scenario-dependent capacity scalability model
(strategy 2) over the scenario-independent location and scalability model (strategy 1). This
finding suggests that modeling capacity adjustment decisions as second-stage variables in
formulation (P+

DE−2) allows a more agile response to temporal changes in demand. In other
words, these decisions can be made taking into account the realization of demand. Therefore,
in general, the resulting schedule for facility opening and capacity adjustment is cheaper
compared to the case in which all design and capacity planning decisions must be made in
the first stage. In the latter case, such decisions do not depend on the particular realization of
the random demand process.

Over all instances, strategy 2 allows for up to 10.92% reduction in total cost, with an
average reduction of 4.5%. Even when an instance is not solved to optimality with formula-
tion (P+

DE−2) and an optimal solution is available to formulation (P+
DE−1), strategy 2 always
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Table 7 Comparison between the
best objective values of
formulations (P+

DE−1) and

(P+
DE−2) for different

parameters

|J | % Cost reduction of
(P+

DE−2) over (P+
DE−1)

ρ % Cost reduction of
(P+

DE−2) over (P+
DE−1)

Min Avg Max Min Avg Max

20 0.55 3.86 10.92 1 0.55 3.47 7.03

40 1.50 5.06 10.60 2 0.64 4.50 8.82

3 0.68 5.41 10.92

has lower total cost than strategy 1. This particular case occurs in 9 instances (5% of the
instances).

To further analyze the differences between the two strategies, Table 8 provides additional
information about the selected facilities for each combination of potential facilities (|I |),
number of customers (|J |), and value of ρ (columns 1–3). Average results for strategy 1,
resp. strategy 2, are summarized in columns 4–7, resp. columns 8–11. Since adjustments in
the number of modular units at open facilities are second-stage decisions in strategy 2, the
average values shown in columns 8–10 are taken over all scenarios. The average delayed
demand is also obtained over all scenarios for both strategies (columns 7 and 11).

Not surprisingly, the total number of open facilities is, on average, similar in both strategies.
This is explained by facility opening decisions being modeled as first-stage variables in
both approaches. Furthermore, decisions on upgrading and downgrading the capacities of
operating facilities are driven by the type of strategy used. When such choices are included
in the first-stage (strategy 1), there is a tendency to provide more capacity through installing
additional modular units. Capacity contraction hardly ever occurs. By contrast, capacity
adjustments are more noticeable in strategy 2, especially with regard to removing modular
units. The additional cost incurred by reducing the capacity of a facility is offset by a lower
maintenance cost for that facility. As expected, strategy 2 offers greater flexibility to respond
to demand changes over the planning horizon, thereby yielding network configurations with
lower total cost (cf. Table 7).

In general, and independently of the strategy followed to determine a schedule for facil-
ity opening and capacity adjustment, the percentage of late deliveries increases with the
maximum allowed delay. This feature is more evident in the instances with 20 customers.

5.4 The relevance of the stochastic setting

This section focuses on goal (v) of the computational study, namely on the evaluation of the
benefits of the stochastic programming approach. This is a relevant issue because of the addi-
tional complexity posed by the stochastic setting compared to its deterministic counterpart.
Even though there are no standard ‘robust measures’ for assessing the relevance of using
a stochastic model instead of a (simpler) deterministic model (Birge and Louveaux 2011),
two metrics are often used. The first is the expected value of perfect information (EVPI),
while the second is the value of the stochastic solution (VSS). Many studies in stochastic
facility location have used these metrics (Correia et al. 2018; Diglio et al. 2020; Heckmann
2016; Hinojosa et al. 2014; Marín et al. 2018; Moreno et al. 2018). We have calculated the
EVPI and VSS to measure the benefit of working with the stochastic programs (P+

DE−1) and
(P+

DE−2).
As discussed by Birge and Louveaux (2011), EVPI and VSS are distinct indicators that

assess different types of uncertainty. The EVPI represents the maximum amount that the
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decision-maker would be willing to pay in return for complete information about the future.
It is defined as the difference between the optimal value of the stochastic program (in our case,
z+DE−1 or z

+
DE−2) and the optimal value of the so-called ‘wait-and-see’ (WS) problem. For

each demand scenario s, formulation (P+
DE−1) (or (P+

DE−2)) is solved under the assumption
that the scenario occurs with probability 1. In this way, we obtain the optimal decisions
that should be made if it were possible to fully predict future demands. Let z+DE−1,s (resp.

z+DE−2,s ) denote the optimal value of the deterministic problem associated with a particular
scenario s ∈ S and strategy 1 (resp. strategy 2). It follows that the optimal value of the
WS problem is given by

∑
s∈S πs z

+
DE−1,s for strategy 1. A similar calculation is performed

for strategy 2.
The VSS measures the difference between the optimal objective value of the so-called

‘expected value problem’ (EEV) and the optimal objective value of the stochastic program.
The former is obtained by creating a single scenario in which all random variables are
replaced by their expected values, and then determining the optimal values of the first-stage
variables for that single scenario. Next, the expected cost over all scenarios using those
first-stage variable values is calculated. In the case of our problem, the average scenario
would be constructed by taking the average demand of every customer in each time period,
dtj = ∑

s∈S πs dtjs ( j ∈ J ; t ∈ T ). Unfortunately, the associated values of the first-stage
variables may have no feasible completion in the second-stage, thus resulting in an infeasible
stochastic problem, either for model (P+

DE−1) or model (P+
DE−2), or even both. To overcome

this difficulty, a ‘reference scenario’ is often used (Birge and Louveaux 2011). Typically, the
worst-case scenario, i.e. the scenario with the highest total demand level for all periods is
adopted. Due to the features of our data, it is not possible to identify such scenario (recall
that the demand of every customer may decline or grow between two consecutive periods,
and in scenarios 4 and 5, a random choice of the interval from which demand is generated
takes place for each customer and t = 1). Hence, a so-called ‘modified reference scenario’

was determined by taking dtj = maxs∈S
{
dtjs

}
for every j ∈ J and t ∈ T . Summarizing, the

EVPI measures the value of knowing the future with certainty, while the VSS indicates how
good the optimal solution to the EEV is as an approximation to the optimal solution to the
stochastic program.

Tables 9 and 10 report the average relative values of EVPI (column 5) and modified VSS
(column 7) for strategy 1 and strategy 2, respectively. The relative values are calculated by
dividing each metric by the optimal objective value of the associated stochastic problem.
Column 4 indicates the number of instances for which optimal solutions are available and
thus were used for calculating these average relative gaps. In addition, columns 6 and 8
give the average total computing time required to solve the WS and EEV problems to opti-
mality, respectively. The EVPI and modified VSS gaps reported in the tables indicate that
it is appropriate to consider a stochastic approach rather than its deterministic counterpart.
For the scenario-independent location and capacity scalability model (strategy 1), the rel-
ative EVPI gap ranges from 12.59% to 28.83%, with an average of 21.12%. Concerning
the scenario-dependent capacity scalability model (strategy 2), slightly smaller EVPI gaps
are obtained (average: 17.35%) that vary between 9.83% and 25.83%. In both cases, these
relatively large values reveal that having access to perfect information about future customer
demandswould be quite valuable. This is an indication of a high degree of uncertainty, which,
in turn, demonstrates the usefulness of considering a stochastic approach. Interestingly, the
average EVPI gap does not seem to be greatly affected neither by the size of the customer
set nor by the maximum delivery delay tolerated by customer segment J 1.
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For the modified VSS gap, we observe that it gradually increases with growing value
of ρ. Recall that this metric measures how far away the value of the optimal solution of
a deterministic simplified version of the problem is from the optimal value of a stochastic
problem. By increasing ρ, more opportunities arise to satisfy the demand of some customers
with delay, which, in turn, enable a lower investment in designing the facility network (e.g.,
through reducing the need to establish more facilities). This feature becomes even more
relevant in a stochastic setting, whereas the quality of the optimal solution to the deterministic
EEV problem deteriorates. In other words, the approximation of the stochastic model by one
where expected values are used is poor. Finally, and as expected, the computational burden
required to optimally solve the WS and EEV problems is considerably lower than solving
the stochastic programming models.

6 Conclusions

We have studied a novel multi-period facility location and capacity planning problem under
uncertainty taking into account the sensitivity of each individual customer to delivery lead
times. In addition to determining a schedule for opening facilities and setting their initial
number of modules, this new problem also allows for two different ways to adjust capacity
over the planninghorizon. Specifically, capacities can be increased incrementally by installing
additionalmodules or decreased by removing existingmodular units. For the case of uncertain
future customer demand,we have proposed two stochasticmodels that differ in the framework
in which capacity adjustments can be planned. The first two-stage stochastic model follows
the natural approach of defining all decisions related to the design of the facility network
as first-stage decisions. Demand allocation decisions are deferred to the second stage. This
model is suitable to real-world settings where opening facilities and sizing their capacities
are time-consuming and require substantial capital investment. The secondmodel presents an
alternative strategy which is particularly relevant when capacity adjustment decisions have a
tactical nature, e.g., when short commitment horizons for lease or rental contracts are offered.
In this case, first-stage decisions include the selection of locations to open facilities and setting
their initial capacities. The phased capacity expansion and contraction of facilities along with
demand allocation represent the recourse decisions. Naturally, it is up to the decision-maker
to decide which of the approaches should be followed depending on the problem at hand.
Under the assumption that demand uncertainty can be captured by a finite set of scenarios,
we have presented the extensive form of the deterministic equivalent for the two stochastic
programs.Additionally, valid inequalitieswere developed to enhance the resulting large-scale
formulations.

Numerical experiments with randomly generated instances indicate that the proposed
additional inequalities substantially increase the capability of an off-the-shelf MILP solver
to identify optimal solutions in much shorter computing times. Moreover, improved solution
quality is also achieved for instances for which the specified time limit is reached without
guaranteed optimality. Deferring the decisions on capacity expansion and capacity contrac-
tion to the second-stage problem results in network configurations with noticeable lower
total cost compared to the approach where such decisions belong to the first-stage problem.
This cost advantage arises due to the possibility of adapting the network configuration to
particular demand realizations. However, this approach leads to considerably larger models,
which, in turn, require higher computational burden. Our comparative analysis enables the
decision-maker to understand the opportunities that arise from different strategies and helps
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raise awareness of the potential benefits of conducting this type of study. Despite the aver-
age number of open facilities being similar in the two approaches, decisions on upgrading
or downgrading the capacities of operating facilities differ. In particular, greater flexibility
to respond to demand fluctuations is displayed by the second strategy. Thus, a firm having
access to e.g. on-demand warehousing services will be aware of the benefits to be gained.
Finally, we have also shown that it is worth adopting a modeling framework which captures
the uncertainty in future customer demand despite the additional complexity.

From a practical viewpoint, the NP-hard problems that we study pose significant chal-
lenges as they involve a very large number of variables and constraints. Hence, obtaining
an optimal solution within reasonable computing time with a general-purpose optimiza-
tion solver becomes extremely difficult for large-sized problems. This characteristic is also
encountered in many other multi-period facility location problems under uncertainty (e.g.,
Correia et al. (2018)), and calls for the development of specially tailored decomposition
approaches and heuristic methods. In this case, the enhancements proposed in Sect. 4 would
also be helpful as they sharpen the linear relaxation. The LP-bounds would also be useful to
evaluate the quality of the solutions returned by a heuristic procedure. Moreover, it would be
interesting to investigate the application of a sampling-based approach to handle problems
with a very large number of scenarios. In further work, the proposed models could also be
extended by considering the uncertainty present in other parameters (e.g., costs) along with
the unknown demand. Finally, another line of research could be directed toward the develop-
ment of a multi-stage stochastic framework to enable the revision of the planning decisions
as more information regarding the uncertain data is revealed. Even though a multi-stage
model yields a better characterization of the dynamic planning process, solution techniques
remain computationally challenging (Bakker et al. 2020). However, recent developments in
stochastic nested decomposition techniques seem to be a promising venue for future research
(Zou et al. 2019).
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Appendix A: Deterministic equivalent formulation of the scenario-
dependent capacity scalability problem

For the scenario-dependent capacity scalability problem introduced in Sect. 3.3, the extensive
form of the deterministic equivalent model of the two-stage stochastic program uses the
continuous flow variables (25)–(27) and the following (scenario-indexed) binary variables
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that define the capacity adjustment decisions over the planning horizon:

ẽ �
iks = 1 if the capacity of a facility in location i is expanded with k modular units at

time period � under scenario s, 0 otherwise (i ∈ I ; k = 1, . . . , ni − 1;
� ∈ TL\{1}; s ∈ S). (49)

r̃ �
iks = 1 if the capacity of a facility in location i is reduced by removing k modular

units at time period � under scenario s, 0 otherwise (i ∈ I ; k = 1, . . . , ni − 1;
� ∈ TL\{1}; s ∈ S). (50)

ṽ �
iks = 1 if a facility is operated at location i with k modular units at time period

� under scenario s ∈ S, 0 otherwise (i ∈ I ; k = 1, . . . , ni ; � ∈ TL ; s ∈ S). (51)

Formulation (PDE−2) is given by

Min
∑
�∈TL

∑
i∈I

ni∑
k=1
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ik z

�
ik +

∑
s∈S

πs

⎡
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ni−1∑
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FE�
ik ẽ
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iks
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ik r̃
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ik
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j∈J 1
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⎤
⎦

subject to (52)

(10), (14), (29), (30), (32) − (35)
ni∑
k=1

ṽ �
iks =

∑
�′∈TL : �′≤�

ni∑
k=1

z�
′
ik i ∈ I , � ∈ TL , s ∈ S (53)

ni−1∑
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ẽ �
iks +

ni−1∑
k=1

r̃ �
iks ≤
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ni∑
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′
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k
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e �′
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)
i ∈ I , � ∈ TL , s ∈ S (55)

wt
iks ≤ k Q ṽ �

iks i ∈ I , k = 1, . . . , ni , t ∈ T ,

� = max{�′ ∈ TL : �′ ≤ t}, s ∈ S (56)

ṽ �
iks ∈ {0, 1} i ∈ I , k = 1, . . . , ni , � ∈ TL , s ∈ S (57)

ẽ �
iks, r̃

�
iks ∈ {0, 1} i ∈ I , k = 1, . . . , ni − 1,

� ∈ TL\{1}, s ∈ S (58)
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Appendix B: Cost generation

The cost generation scheme used in our test instances is adapted from a deterministic variant
of our problem, Correia and Melo (2017). The generation of the variable costs relies on two
real random numbers, β1 and β2, in the range 1.01 and 1.03 (details are given next). For i ∈ I
and j ∈ J , the unit variable distribution costs are generated as follows:

c1i j = U[5, 10],
cti j = c1i j for t = 2, . . . , σ,

cti j = β1 c12i j for t = 1 + σ, . . . , 2 σ,

cti j = β2 c24i j for t = 1 + 2 σ, . . . , |T |.
Recall that σ = |T |/|TL | gives the total number of periods between two consecutive design
periods. Since |TL | = 3, the planning horizon is divided into three sections. For |T | = 12
(resp. |T | = 24), each section spans 4 (resp. 8) time periods. The unit distribution costs
are assumed to be constant in all time periods within a section. However, the costs increase
between 1% and 3% from one section to the next. This type of pattern is also present in
the unit variable processing costs. The latter reflect economies of scale by considering the
number of modular units that are available at a particular location. For i ∈ I , we set

o1ik = 100 /
√
Q for t = 1, . . . , σ,

otik = 0.9 otik−1 for t = 2, . . . , σ ; k = 2, . . . , ni ,
otik = β1 oσ

ik for t = 1 + σ, . . . , 2 σ ; k = 2, . . . , ni ,
otik = β2 o2σik for t = 1 + 2 σ, . . . , |T |.

Recall that at most four modular units may be available at a location, i.e. ni = 4 (i ∈ I ).
Regarding the generation of the fixed costs, the following procedure was employed.

• At the first design period, � = 1, the fixed cost of opening facility i (i ∈ I ) with k
modular units (k = 1, . . . , ni ) is defined by

FO1
ik = αi + γi

√
k Q, αi ∈ U[500, 1000]; γi ∈ U[4000, 6000].

In the remaining strategic periods � ∈ TL\{1}, we set FO�
ik = U[1.01, 1.03]FO�−1

ik for
every k = 1, . . . , ni . Once again, the capacity size of a facility at the time it is established
also affects the above costs.

• All remaining fixed costs at location i (i ∈ I ) represent a given percentage of the fixed
opening costs:

FE�
ik = 0.25 FO�

ik k = 1, . . . , ni − 1; � ∈ TL\{1},
FR�

ik = 0.10 FO�
ik k = 1, . . . , ni − 1; � ∈ TL\{1},

Mt
ik = 0.05 FO�

ik k = 1, . . . , ni ; � ∈ TL ; t = �, . . . , t ′; t ′ ∈ T : t ′ < � + 1.

Finally, we adapt the scheme proposed in Correia and Melo (2017) to generate the unit
tardiness penalty costs for late deliveries to customers j ∈ J 1 as follows:

ptt
′

j = 0.01 θ tj (t ′ − t)2 for t ∈ T and t ′ = t, . . . ,min{t + ρ j , |T |},
with

θ tj =
∑
i∈I

ni∑
k=1

Mt
ik

T D |I | ∑
i∈I

ni
+

∑
i∈I

cti j

|I | +
∑
i∈I

ni∑
k=1

otik

|I | ∑
i∈I

ni
,
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and T D denoting the maximum quantity demanded across all scenarios. Therefore, T D =∑
j∈J

∑
t∈T maxs∈S dtjs . Observe that the unit tardiness penalty cost is a function of the

average fixed facility operating costs, and the average variable distribution and processing
costs.
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