4,085 research outputs found

    Remote Sensing of Precipitation: Part II

    Get PDF
    Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products

    Multi-Sensor Imaging and Space-Ground Cross-Validation for 2010 Flood along Indus River, Pakistan

    Get PDF
    Flood monitoring was conducted using multi-sensor data from space-borne optical, and microwave sensors; with cross-validation by ground-based rain gauges and streamflow stations along the Indus River; Pakistan. First; the optical imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) was processed to delineate the extent of the 2010 flood along Indus River; Pakistan. Moreover; the all-weather all-time capability of higher resolution imagery from the Advanced Synthetic Aperture Radar (ASAR) is used to monitor flooding in the lower Indus river basin. Then a proxy for river discharge from the Advanced Microwave Scanning Radiometer (AMSR-E) aboard NASA’s Aqua satellite and rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) are used to study streamflow time series and precipitation patterns. The AMSR-E detected water surface signal was cross-validated with ground-based river discharge observations at multiple streamflow stations along the main Indus River. A high correlation was found; as indicated by a Pearson correlation coefficient of above 0.8 for the discharge gauge stations located in the southwest of Indus River basin. It is concluded that remote-sensing data integrated from multispectral and microwave sensors could be used to supplement stream gauges in sparsely gauged large basins to monitor and detect floods.JRC.G.2-Global security and crisis managemen

    Multi-physics ensemble snow modelling in the western Himalaya

    Get PDF
    Combining multiple data sources with multi-physics simulation frameworks offers new potential to extend snow model inter-comparison efforts to the Himalaya. As such, this study evaluates the sensitivity of simulated regional snow cover and runoff dynamics to different snowpack process representations. The evaluation is based on a spatially distributed version of the Factorial Snowpack Model (FSM) set up for the Astore catchment in the upper Indus basin. The FSM multi-physics model was driven by climate fields from the High Asia Refined Analysis (HAR) dynamical downscaling product. Ensemble performance was evaluated primarily using MODIS remote sensing of snow-covered area, albedo and land surface temperature. In line with previous snow model inter-comparisons, no single FSM configuration performs best in all of the years simulated. However, the results demonstrate that performance variation in this case is at least partly related to inaccuracies in the sequencing of inter-annual variation in HAR climate inputs, not just FSM model limitations. Ensemble spread is dominated by interactions between parameterisations of albedo, snowpack hydrology and atmospheric stability effects on turbulent heat fluxes. The resulting ensemble structure is similar in different years, which leads to systematic divergence in ablation and mass balance at high elevations. While ensemble spread and errors are notably lower when viewed as anomalies, FSM configurations show important differences in their absolute sensitivity to climate variation. Comparison with observations suggests that a subset of the ensemble should be retained for climate change projections, namely those members including prognostic albedo and liquid water retention, refreezing and drainage processes

    Comparison between statistical and dynamical downscaling of rainfall over the Gwadar‐Ormara basin, Pakistan

    Get PDF
    Abstract This paper evaluated and compared the performance of a statistical downscaling method and a dynamical downscaling method to simulate the spatial–temporal rainfall distribution. Outputs from RegCM4 Regional Climate Model (RCM) and the CanESM2 Atmosphere–Ocean General Circulation Model (AOGCM) were selected for the data scarce Gwadar‐Ormara basin, Pakistan. The evaluation was based on the climatological average and standard deviation for historic (1971–2000) and future (2041–2070) time periods under Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. The performance evaluation showed that statistical downscaling is preferred to simulate and project rainfall patterns in the study area. Additionally, the Statistical DownScaling Model (SDSM) showed low R2 values in calibration and validation of the simulations with respect to observed data for the historic period. Overall, SDSM generated satisfactory results in simulating the monthly rainfall cycle of the entire basin. In this study, RegCM4 showed large rainfall errors and missed one rainfall season in the historic period. This study also explored whether the grid‐based rainfall time series of the Asian Precipitation—Highly Resolved Observational Daily Integration Towards Evaluation (APHRODITE) dataset could be used to enlarge and complement the sample of in situ observed rainfall time series. A spatial correlogram was used for observed and APHRODITE rainfall data to assess the consistency between the two data sources, which resulted in rejecting APHRODITE data. For the future time period (2041–2070) under RCPs 4.5 and 8.5 scenarios, rainfall projections did not show significant difference for both downscaling approaches. This may relate to the driving model (CanESM2 AOGCM) and not necessarily suggests poor performance of downscaling; either statistical or dynamical. Hence, the study recommends evaluating a multi‐model ensemble including other GCMs and RCMs for the same area of study

    Benefits of the successive GPM based satellite precipitation estimates IMERG–V03, –V04, –V05 and GSMaP–V06, –V07 over diverse geomorphic and meteorological regions of Pakistan

    Get PDF
    Launched in 2014, the Global Precipitation Measurement (GPM) mission aimed at ensuring the continuity with the Tropical Rainfall Measuring Mission (TRMM) launched in 1997 that has provided unprecedented accuracy in Satellite Precipitation Estimates (SPEs) on the near-global scale. Since then, various SPE versions have been successively made available from the GPM mission. The present study assesses the potential benefits of the successive GPM based SPEs product versions that include the Integrated Multi–Satellite Retrievals for GPM (IMERG) version 3 to 5 (–v03, –v04, –v05) and the Global Satellite Mapping of Precipitation (GSMaP) version 6 to 7 (–v06, –v07). Additionally, the most effective TRMM based SPEs products are also considered to provide a first insight into the GPM effectiveness in ensuring TRMM continuity. The analysis is conducted over different geomorphic and meteorological regions of Pakistan while using 88 precipitations gauges as the reference. Results show a clear enhancement in precipitation estimates that were derived from the very last IMERG–v05 in comparison to its two previous versions IMERG–v03 and –v04. Interestingly, based on the considered statistical metrics, IMERG–v03 provides more consistent precipitation estimate than IMERG–v04, which should be considered as a transition IMERG version. As expected, GSMaP–v07 precipitation estimates are more accurate than the previous GSMaP–v06. However, the enhancement from the old to the new version is very low. More generally, the transition from TRMM to GPM is successful with an overall better performance of GPM based SPEs than TRMM ones. Finally, all of the considered SPEs have presented a strong spatial variability in terms of accuracy with none of them outperforming the others, for all of the gauges locations over the considered regions

    Remote Sensing of Precipitation: Volume 2

    Get PDF
    Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne

    Utilization of Remote Sensing Data for Estimation of the Groundwater Storage Variation

    Full text link
    Groundwater is the most extracted raw material, with an average withdrawal rate of 982 km3 per year, where 70 percent of the total groundwater withdrawn is used for agriculture globally (Margat & van der Gun, 2013). With climate change and increased water demands in recent years, monitoring the changes in the groundwater storage is of the utmost importance. This thesis presents an analysis that determines the rates, trends, and directions where groundwater storage is going in Pakistan. It also correlates fluctuations in groundwater storage with variations in precipitation and agricultural productivity in the country. The overall objectives of this thesis are to identify the long-term variations in groundwater storage, and examine the impact of precipitation and crop production on the groundwater reserves in Pakistan. In this thesis, The Gravity Recovery and Climate Experiment (GRACE) satellite data are used to estimate changes in groundwater storage for the study period of April 2002 – June 2017. By subtracting the different water subcomponents, i.e. soil moisture and snow water equivalent, derived from the Global Land Data Assimilation System (GLDAS) Noah from the GRACE data products, variations in groundwater storage are estimated. Precipitation data for this study is obtained from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) CDR system. Agricultural information, which includes the crop water requirement, is derived from CROPWAT, and yield data are obtained from the Bureau of Statistics, Punjab. The results reveal that groundwater storage in Pakistan is declining at a high rate. Over a period of 183 months, Punjab province has observed the highest loss in total volume of groundwater storage (28.2 km3), followed by Balochistan (19.57 km3), Khyber Pakhtunkhwa (9.84 km3), and lastly, Sindh (5.46 km3). The results also show that precipitation has a weak positive impact on groundwater storage and soil moisture, depending on the region. Lastly, crop cultivation has had a significant impact on the groundwater withdrawal rates, with amounts varying on a district by district basis. The contributions of this study include a better understanding of variations in the groundwater storage across different provinces in Pakistan, and an analysis of the effect of groundwater changes in relation to crop water demand and precipitation. GRACE data can be used to assess groundwater depletion in areas where groundwater monitoring is not available, as it can help with the evaluation of decreasing trends in groundwater levels. It can also provide policy makers information needed to conserve groundwater resources for future use
    • 

    corecore