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Abstract

This paper evaluated and compared the performance of a statistical downscal-

ing method and a dynamical downscaling method to simulate the spatial–tem-

poral rainfall distribution. Outputs from RegCM4 Regional Climate Model

(RCM) and the CanESM2 Atmosphere–Ocean General Circulation Model

(AOGCM) were selected for the data scarce Gwadar-Ormara basin, Pakistan.

The evaluation was based on the climatological average and standard deviation

for historic (1971–2000) and future (2041–2070) time periods under Represen-

tative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. The performance

evaluation showed that statistical downscaling is preferred to simulate and

project rainfall patterns in the study area. Additionally, the Statistical Down-

Scaling Model (SDSM) showed low R2 values in calibration and validation of

the simulations with respect to observed data for the historic period. Overall,

SDSM generated satisfactory results in simulating the monthly rainfall cycle of

the entire basin. In this study, RegCM4 showed large rainfall errors and missed

one rainfall season in the historic period. This study also explored whether the

grid-based rainfall time series of the Asian Precipitation—Highly Resolved

Observational Daily Integration Towards Evaluation (APHRODITE) dataset

could be used to enlarge and complement the sample of in situ observed rain-

fall time series. A spatial correlogram was used for observed and APHRODITE

rainfall data to assess the consistency between the two data sources, which

resulted in rejecting APHRODITE data. For the future time period (2041–
2070) under RCPs 4.5 and 8.5 scenarios, rainfall projections did not show sig-

nificant difference for both downscaling approaches. This may relate to the

driving model (CanESM2 AOGCM) and not necessarily suggests poor perfor-

mance of downscaling; either statistical or dynamical. Hence, the study recom-

mends evaluating a multi-model ensemble including other GCMs and RCMs

for the same area of study.
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1 | INTRODUCTION

Climate change impact assessment studies help to
understand the effects of changes in climatic variables on
the hydrological cycle and water availability for any
region. Impact studies also assess changes in extreme
events like water scarcity, flooding and droughts. General
Circulation Models (GCMs) serve to simulate the aver-
age, synoptic-scale, general-circulation patterns of the
atmosphere for present climate, and to predict the future
climate (Kour et al., 2016). GCMs provide climate projec-
tions for large spatial resolutions, ranging from
150 km � 150 km to 300 km � 300 km. At these resolu-
tions, projections are not necessarily reliable for impact
studies at the regional scale (<2500 km2) or local scale
(<500 km2), and imply that spatial downscaling is neces-
sary to provide meaningful information on impacts at
regional scales (Fowler et al., 2007).

Downscaling can be through dynamical downscaling
or statistical downscaling. Dynamical downscaling
implies the application of a Regional Climate Model
(RCM) for a region of interest and nested within a GCM.
RCMs are aligned to GCMs as RCMs read the input of
time-varying atmospheric forcing conditions generated
by a GCM. Sunyer et al. (2012) describe that conditions
are obtained for a finite domain of the GCM (one-way
nesting) and applied to atmospherically force the RCM.
Statistical downscaling, also known as empirical down-
scaling, relies on a statistical relationship between grid-
based variables (‘predictor’—either from GCM or RCM)
and observed meteorological variables (‘predictand’), as
obtained by rainfall observations (i.e., gauges and/or sen-
sors). Statistical downscaling techniques differ in com-
plexity from linear regression to statistical neural
networks and weather generators (Kour et al., 2016). Sta-
tistical downscaling is considered more direct in use as
scaling relies on established relationships for individual
ground meteorological stations.

RCMs simulate meteorological variables at spatial
grid elements of typically 25 km � 25 km with improved
spatial representation of meteorological variables as com-
pared with GCMs. However, RCMs simulated climatic
variables such as rainfall depth do not precisely match
with observed ground-based counterparts. RCMs inherit
errors from their driving GCM, but errors also result from
RCMs by imperfect model conceptualization, parameteri-
zation physics, defined initial conditions, established
boundary conditions and effects of spatial averaging over
grid elements. Climatic models (GCMs and RCMs) differ
in their approaches, leading to dissimilar results between
historic simulation and future projections. As a result,
outcomes from climate models must be associated with
uncertainty. Uncertainty in climate model simulations

for future periods also relates to the emission pathways.
Further, the unique characteristics of respective dynami-
cal and statistical downscaling method lead to differences
in climate projections that add uncertainty to climate
projections. Therefore, before using the climate model
outputs for climate impact studies, the performance of
downscaling approaches should be analysed with focus
on error assessments and quantification of uncertainties
associated with projections.

Studies by Mearns et al. (1999), Haylock et al. (2006),
Gutmann et al. (2012), Flaounas et al. (2013), Tang et al.
(2016) and Grigory et al. (2018) compared the perfor-
mance of statistical and dynamical downscaling methods
for different regions worldwide. The results of these stud-
ies showed that the changes in projected precipitation dif-
fered between the two downscaling methods and
advocated further evaluation of global models, emission
scenarios and downscaling methods. Schmidli et al.
(2007) applied statistical and dynamical methods to
downscale daily precipitation over the Alpine Region in
Europe and stated that the performance of the methods
varied significantly from region to region and from sea-
son to season. Overall, the study suggested that both
downscaling methods contribute to uncertainty in future
scenarios. Ayar et al. (2015) compared statistical and
dynamical downscaling methods under the European
and Mediterranean branch of the CORDEX initiative
hindcast framework. Their results showed that the occur-
rence and intensity of rain were better simulated by sta-
tistical downscaling methods, whereas spatial variability
and temporal variability of rain were better simulated by
RCMs. Su et al. (2017) compared monthly rainfall gener-
ated from statistical and dynamical methods over the
Heihe River basin in China and reported that the two
downscaling methods reasonably reproduced the spatial
pattern and monthly rainfall in the rainy season.

Although many climate change studies in Pakistan have
been performed using either dynamical or statistical down-
scaling methods, none of them evaluated and intercom-
pared results of the two downscaling techniques for a
specific area of interest. In the Global Change Impact Stud-
ies Centre (GCISC) of Pakistan, most of the studies were
conducted on climate change projections over entire
Pakistan using PRECIS and RegCM3 RCMs (focusing on
dynamical downscaling only) under the Special Report on
Emission Scenarios (SRES)—A2 scenario. Such studies
include Akhtar et al. (2008), Islam et al. (2009), Mehmood
et al. (2009) and Saeed et al. (2009). Other studies like Khat-
tak et al. (2011), Ghumman et al. (2013) and Khan et al.
(2017) only made use of statistical downscaling methods for
climate change assessment over entire or part of Pakistan.

Before the use of dynamical and statistical downscal-
ing methods for Representative Concentration Pathway
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(RCP) scenarios, the downscaling methods were used with
Fourth Assessment Report (AR4) SRES emission scenarios
(A1, A2, B1, B2) in the climate research community. Some
recent studies have used statistical downscaling approaches
with RCP scenarios for climate change projections over
Pakistan. For example, Su et al. (2016) analysed the
impacts of climate change on temperature and precipita-
tion by evaluating GCM model ensembles using statistical
downscaling within the Coupled Model Intercomparison
Project Phase 5 (CMIP5) over the Indus River basin using
different RCP scenarios (2.6, 4.5 and 8.5). Amin et al.
(2017) performed statistical analysis of precipitation
on monthly, seasonal and annual scales for Pakistan for
1996–2015 and 2041–2060. They used the SimCLIM model
for future precipitation projections under RCP 6.0. Other
studies like Ding and Ke (2013) used statistical downscal-
ing approaches to assess predictions of seasonal (i.e., mon-
soon) precipitation for Pakistan.

A major research gap exists in comparing dynamical
and statistical downscaling for precipitation in the southern
part of Pakistan. The southern part is more arid and down-
scaling rainfall is more challenging compared with wet
regions due to erratic and infrequent rainfall. The complex-
ity is further enhanced due to scarcity of data and rapidly
changing climatic settings from the Arabian Sea towards
the Upper Indus area. Balochistan being geographically
Pakistan's largest province, having an area of 347,190 km2,
has a climate lying in hyper-arid, arid and semi-arid
domains. The Gwadar-Ormara basin, which is the study
area in this research, is located on the south-western fringe
of Balochistan. From literature review, it appears that the
study by Ahmed et al. (2015) is the only study that has been
conducted on the southern part (Balochistan) of Pakistan,
using statistical techniques only to downscale rainfall. Fur-
ther, this study took the province in its entirety and has not
focused specifically on the Gwadar-Ormara basin. This
study area is chosen because none of the climate change
impact assessment studies has focused particularly on the
Gwadar-Ormara catchment in Balochistan, Pakistan. Also,
the area is geo-strategically important to Pakistan because
of the ongoing China-Pakistan Economic Corridor (CPEC)
project, which is worth 46 billion US dollars. The climate of
Gwadar-Ormara basin is arid with warm summers, mild
winters and erratic rainfall patterns. The mean annual rain-
fall varies from 75 to 100 mm. Most of the rain falls
between December and February, with a monthly average
rainfall of 20 mm. Analysis by the United Nations Develop-
ment Programme (UNDP Report, 2016) showed that trends
over the last 30–50 years suggested that rainfall has
decreased in the south-western Balochistan and coastal
areas. Therefore, accurate simulations and predictions of
changes in rainfall are highly important for future planning
and management of water resources (Boosik & Jorge, 2007).

The aim of this study is to compare a dynamical and
statistical downscaling approach to determine which tech-
nique is better suited to simulate the spatial–temporal rain-
fall distribution over the Gwadar-Ormara basin for historic
and future climatic windows using different RCPs. In order
to analyse both approaches, model outcomes of one GCM,
the CanESM2 Atmosphere–Ocean General Circulation
Model (AOGCM), were downscaled to make the evaluation
and comparison more objective. The comparison was devel-
oped for the baseline period (1971–2000) and for a future
climatic window (2041–2070) using medium concentration
pathway RCP 4.5 and high concentration pathway RCP 8.5.
The evaluation and comparison of the downscaling
methods were based on statistics of the mean and standard
deviation of rainfall, for which daily observed data were
used from gauging stations. The climatological averages on
a monthly time scale served to understand the limitations
and strengths of the two downscaling approaches driven by
the same global climate model.

The novelty of this study is the comparison between
the two downscaling methods under RCP scenarios for a
data scarce study area of Gwadar-Ormara basin, Paki-
stan. Moreover, the comparison of observed in situ rain-
fall data and the APHRODITE gridded rainfall product
focusing the study area, makes this study relevant for
comparison and evaluation of climate models, as well as
gridded rainfall products.

2 | DATA USED

2.1 | In situ data

For this study, daily rainfall time series data for eight sta-
tions were collected from the archive of the National
Engineering Services Pakistan (NESPAK). Given the size
of the study area, the number of stations was low and
they were not uniformly distributed. A screening of the
time series data showed that a number of stations had
substantial data gaps over the time period of 1971–2000.
To overcome the gaps in in situ data, missing daily
rainfall data were imputed using two packages in R soft-
ware, namely Multivariate Imputation via Chained
Equations (MICE) and missForest. The results of both
methods were compared with available observed rainfall
data and the method giving a closer match to the avail-
able observed rainfall data was selected for every station.

2.2 | APHRODITE gridded data

In order to avoid the uncertainties that may arise from
the imputation of the observed rainfall data, an
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independent alternative rainfall data source was consid-
ered for filling of relatively large data gaps in in-situ time
series. For this purpose, the gridded dataset of the Asian
Precipitation—Highly Resolved Observational Daily Inte-
gration Towards Evaluation of Water Resources
(APHRODITE) project (version V1101) for monsoonal
Asia (60�–150� E, 15�–55� N) with 0.25� resolution for
daily rainfall was selected and evaluated with the avail-
able observed daily rainfall data using spatial correlo-
grams. The APHRODITE gridded dataset is based on
data collected from 5000 to 12,000 stations, with signifi-
cant improvement in description of the areal distribution
and variability of rainfall around the Himalaya, com-
pared with other available products (Yatagai et al., 2012).

2.3 | NCEP reanalysis data

Daily reanalysis data from NCEP/NCAR (National Cen-
ter for Atmospheric Research) for the period 1961–2005
was used for establishing statistical relationships with
observed in situ data. The NCEP data are a set of
observed large-scale atmospheric variables with a resolu-
tion of 2.5� � 2.5� (�280 km � 280 km). NCEP reanaly-
sis data are an important component for the set-up of the
Statistical DownScaling Model (SDSM) used, as it sup-
plies the predictor values for calibration and validation of
the model. Throughout the SDSM literature, the NCEP/
NCAR reanalysis has been the only dataset used to repre-
sent the past global-scale atmospheric state (Diaz-Nieto &
Wilby, 2005; Dibike & Coulibaly, 2005; Gagnon
et al., 2005; Khan et al., 2006; Mahmood & Babel, 2013,
2014; Wilby et al., 2002).

2.4 | Climate models data

The CanESM2 AOGCM was used in this research, as the
model is one of the 10 CMIP5 AOGCMs driving 13
Coordinated Regional Climate Downscaling Experiment
(CORDEX)—South Asia downscaled RCM simulations.
The main reason of selecting CanESM2 as a driving
model and NCEP reanalysis data was the ready-to-use
atmospheric variables available in coherence with atmo-
spheric variables of NCEP reanalysis data to be used
directly in SDSM (Wilby et al., 2002). Section 2.5 further
explains why the CanESM2 AOGCM was selected in the
study. CanESM2 is a fourth-generation coupled global cli-
mate model developed by the Canadian Centre for Cli-
mate Modelling and Analysis (CCCma). Data are
provided at a spatial resolution of 2.8125� � 2.8125�

(�315 km � 315 km). For this study, the CanESM2 daily
atmospheric predictors for baseline (1971–2000) and

future (2041–2070) periods and for the two pathways
RCP 4.5 and RCP 8.5 were used. To evaluate dynamical
downscaling, the IITM–RegCM4 RCM with a spatial res-
olution of 0.44� � 0.44� (�50 km � 50 km) was selected,
as this was the only RCM available that had CanESM2 as
driving AOGCM in the CORDEX-SA experiment. The
IITM-RegCM4 RCM precipitation dataset for historic
(1971–2000) and future (2041–2070) climate windows
under RCP 4.5 and RCP 8.5 was used.

2.5 | Selection of datasets

Both CanESM2 output and NCEP/NCAR reanalysis data
use the same set of 26 predictor variables to keep consis-
tency. It must be noted that the number and attributes of
NCEP atmospheric predictors and any GCM daily atmo-
spheric variables should be the same to perform statisti-
cal downscaling, as it is a requirement of SDSM. The
GCM predictor variables must be normalized with
respect to a reference period and available for all vari-
ables used in the model calibration (Dawson &
Wilby, 2007). Keeping this in mind, only the CanESM2
AOGCM under CMIP5 had the data available to be nor-
malized with NCEP predictors. To be able to compare the
different data sources, a historic period from CMIP5
instead of CMIP6 has been chosen, as such was war-
ranted given the scope of the study.

3 | METHODOLOGY

3.1 | Quality assessment of observed in
situ and APHRODITE rainfall data

A comparison of the observed in situ and APHRODITE
gridded rainfall product was carried out to identify incon-
sistencies in the observed rainfall data (1971–2000). The
spatial correlation structure of the two datasets, that is, in
situ and APHRODITE, was compared to assess the reli-
ability of APHRODITE data to be used instead of in situ
data in cases when data were missing or incomplete. The
spatial correlograms were more useful than other statis-
tics because they provided information about the correla-
tion of each pair of spatial observations when the
distance between pairs was varied. Hence, in the spatial
correlograms, the correlation coefficient was plotted as a
function of the distance to inspect which dataset shows
high correlations for closely located points and smaller
values for points at larger distances, which follows the
Tobler's first law of geography (Tobler, 1970).

To construct spatial correlograms, daily observed in
situ rainfall values were spatially interpolated using the
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Inverse Distance Weighting (IDW) method for six sta-
tions (Pasni, Shadikaur, Tank, Hore, Chibkalamati and
Basolmasjid). IDW was selected because it is simple and
efficient compared with other interpolation techniques
(Wu & Hung, 2016). Out of the period 1971–2000 for
which data have been collected, a four-year period (1988–
1991) was chosen because only for this period daily time
series were available without missing values for a maxi-
mum number of six gauging stations. After interpolation,
gridded maps of mean monthly rainfall depth were pre-
pared from interpolated daily rainfall. The gridded maps
were resampled at a grid scale equal to APHRODITE
(25 km � 25 km) for comparison purposes. This resulted
in 27 grid elements that covered the study area. To calcu-
late cross-correlation coefficients between all combina-
tions of grid elements, centre pixel values (locations
shown in Figure 1) were extracted from each grid. Subse-
quently, cross-correlation coefficients were plotted
against the corresponding distance for all combinations
of elements. The same procedure was repeated for the
APHRODITE dataset for which interpolation was not
needed.

3.2 | Statistical downscaling of CanESM2
AOGCM data

The SDSM developed by Wilby et al. (2002) was used in
this study. SDSM is a tool that establishes statistical rela-
tionships between large-scale variables (predictors) and

local-scale variables (predictands) through the use of a
combination of a Stochastic Weather Generator (SWG)
and Multiple Linear Regression (MLR) empirical
approaches. The development and application of SDSM
involved five main steps: (1) predictand and predictor
selection, (2) model calibration, (3) weather generator,
(4) model validation, and (5) future climate scenario
generator.

Calibration of the SDSM approach for respective
gauge sites resulted in optimal coefficients of the regres-
sion relations, which facilitated the development of mul-
tiple scenarios of daily surface weather variables.
Assuming that these statistical relationships remain valid
for future periods, downscaled daily weather information
was obtained for a future time period, considering the
relationships with GCM-derived predictors (Dawson &
Wilby, 2007).

Daily rainfall time series obtained for each of the
27 grid elements that cover the study area were used as
predictand in SDSM. Predictand rainfall data
(in mm/day) was retrieved by IDW interpolating data
of eight rainfall stations (1971–2000) that was
resampled to 25 km � 25 km grid cell size. For calibra-
tion of the SDSM, the period 1971–1990 was selected,
whereas for validation, the period 1991–2000 was
selected, for both NCEP reanalysis data and observed
data. The data of the CanESM2 AOGCM have been
processed by the Canadian Climate Scenario Center
and could be applied as input to the SDSM model. For
periodic rainfall analysis, the seasonal (June, July,

FIGURE 1 Location of (numbered) centre points of 27 grid elements (size of 25 km � 25 km) covering the study area along with the

position of gauge stations (represented by triangles).
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August) option was selected. The June, July, August
season was selected to analyse the model performance
for wet monsoon months. The methodology described
by Mahmood and Babel (2013) to statistically down-
scale CanESM2 AOGCM data using SDSM has been
followed in this study and is shown in Figure 2.

3.3 | Dynamical downscaling using
IITM-RegCM4 RCM

Raw RCM data are available in the CORDEX-SA dataset
(downloaded from: https://climate4impact.eu/impactportal/
data/esgfsearch.jsp). For this study, data for the RegCM4

FIGURE 2 Statistical DownScaling

Model workflow methodology used in

this study.
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RCM (see Section 2.4) were selected. Data are available in
rotated-polar grids. For this study the data were re-gridded
to a regular geographic grid with equally sized grid cells of
50 km � 50 km to facilitate spatial analysis over the study
area. The RegCM4 RCM is a numerical climate prediction
model influenced by specified lateral and ocean conditions
from the CanESM2 AOGCM. It offers ready-to-use dynami-
cally downscaled simulations of rainfall for 1951–2100,
which was divided into two periods for this study: historical
(1971–2000) and future (2041–2070) periods. After re-gridd-
ing RCM data, rainfall values in mm/day were extracted for
each grid cell covering the study area. The extracted values
were then utilized directly, without performing any bias
correction, to calculate the monthly climatological average
and monthly climatological standard deviation. These
results were compared with the simulation results from the
statistically downscaled CanESM2 AOGCM data and
observed data. The comparison between dynamically down-
scaled RegCM4 RCM data and statistically downscaled
CanESM2 AOGCM data was established at the basin scale,
so that the comparison result was not affected by dissimilar
grid cell sizes for the statistically downscaled AOGCM
(25 km � 25 km) and RCM (50 km � 50 km).

4 | RESULTS

4.1 | Quality assessment of observed and
APHRODITE data

Spatial correlograms for observed and APHRODITE
data were used to assess the quality of each dataset.
Results of respective correlograms indicated that the
observed data (see Figure 3) followed Tobler's law better
than the APHRODITE data (see Figure 4). Figure 3 shows
a distinct pattern where the correlation coefficient decreases
with the increase in distance for all combinations of the

27 central points of the grid elements that cover the study
area. Despite Figure 3 shows substantial variation (indi-
cated by the black dots), the correlation between grid ele-
ment values at increasing distances showed the same and
overall decreasing trend. To suppress variation in the spa-
tial correlogram, average values of correlation coefficients
at each distance step of 10 km were calculated and plot-
ted with red dots in Figure 3. This shows a more lucid
shape of the correlogram. Distance intervals of 10 km
were selected, assuming that spatial rainfall occurrence
over this distance does not change considerably. The
APHRODITE data show a correlation of 0.8 at a distance
of 200 km that must be considered unrealistic. The corre-
logram in Figure 4 suggests that pronounced correlation
even extends up to a distance of 350 km, which is unreal-
istic as well. The correlogram in Figure 4 suggests a very
slow decorrelation, indicating that the APHRODITE data
set can be considered unreliable. Therefore, the APHRO-
DITE data were rejected for further use. The likely reason
that APHRODITE data are not fit for use in this study
can be attributed to the low number of gauging stations
in the study area (see Climate Data Guide, 2020). This
guide describes that in regions where climate stations are
scarce, APHRODITE may provide unrealistic spatial pat-
terns of precipitation.

4.2 | Statistical downscaling of CanESM2
AOGCM data

4.2.1 | Calibration and validation of SDSM

Model calibration and validation are essential steps to
analyse how well a model can simulate counterparts of
observed, target data. Out of 27 grid elements, calibration
and validation graphs of monthly rainfall data for five
grid elements are shown in Figures 5 and 6, respectively.

FIGURE 3 Spatial correlogram of

in situ data (black points) and 10-km

averaged correlogram (red points) for all

combinations of pixels covering the

study area.
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Grid elements 1, 3, 10, 11 and 24 were selected because
these elements overlay locations of gauging stations. For
all 27 grid elements, the coefficient of determination (R2)
was calculated after calibration, resulting in values
between 0.2 and 0.08. The R2 values are low as caused by
erratic rainfall values in the observed dataset that was
used as predictand. Also, the poor data quality affected
the performance of the established transfer function by
SDSM. Moreover, the unique topography and climatic
conditions of the coastal basin could be another reason
that statistically downscaled CanESM2 GCM and NCEP
reanalysis data do not match with the observed data.

Figure 5 shows that December, January, February
and June, July, August are the wettest months as indi-
cated by observed, NCEP and CanESM2 data sources.
Whereas March, April, May and September, October,
November are the driest months, as shown by smaller
rainfall values of observed, NCEP and CanESM2. For
the validation period, no distinct rainfall pattern with
drier and wetter seasons could be identified (Figure 6).
The comparison between observed and simulated
counterparts on a daily time step is not meaningful, as
most of the days have no rainfall. Therefore, this study
considered the evaluation of accumulated rainfall
depths on a monthly time scale. Calibration and valida-
tion graphs show that observed and simulated counter-
parts do not match well and show large deviations.
Due to the uncertainty in observed and statistically
downscaled GCM outputs, a bias correction procedure
was not carried out. Bias correction of the downscaled
climate model data (see e.g., Khadka & Pathak, 2016;
Mahmood & Babel, 2013, 2014) is meaningful when
there is enough confidence in the observed dataset.
However, this is not the case for the observed data in
this study.

4.2.2 | Performance evaluation of statistical
downscaling of rainfall

The results of statistical downscaling are further evalu-
ated by means of climatological averages and standard
deviations of rainfall that were compared with observed
counterparts for 27 grid elements covering the study area
for the historic period (1971–2000). Results of the evalua-
tion are presented in Figures 7 and 8. Figure 7 shows the
monthly average for observed and simulated rainfall, and
Figure 8 shows the monthly average standard deviation
for observed and simulated rainfall.

Further, a climate change impact assessment was
done by comparing the observed historic data and statisti-
cally downscaled historic simulations with future projec-
tions of CanESM2 under RCP 4.5 and 8.5. Results of the
monthly average and monthly standard deviation are
shown in Figures 9 and 10, respectively.

Figure 7 shows that the downscaled CanESM2 rain-
fall for the historic period (1971–2000) has relatively low
maximum and high minimum monthly rainfall values
compared with observed counterparts. Simulated results
satisfactorily represent the overall monthly rainfall cycle
over the study area, that is, the wet and dry seasonal
trend shown by the simulation is in coherence with the
observed rainfall data. This shows that the calibration of
SDSM is reasonable. Furthermore, the observed average
rainfall in July is close to the downscaled counterparts
for 1971–2000. Also, for November and December, the
simulated data fit reasonably to the observed data.
The performance evaluation of the statistical downscal-
ing method based on the standard deviation showed poor
results for NCEP and CanESM2 simulations compared
with observed data for the historic time period (see
Figure 8). The observed data show very high standard

FIGURE 4 Spatial correlogram of

APHRODITE data for all combinations

of pixels covering the study area.
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deviation values and a large monthly variation due to the
uncertainty in the rainfall data. This behaviour was not
replicated well by the SDSM model, with lower standard
deviation values for NCEP and CanESM2.

In the climate change impact assessment, the SDSM
results (Figures 9 and 10) obtained for future projections
(2041–2070) show almost no difference between
CanESM2 simulations under emission scenarios RCPs
4.5 and RCPs 8.5 in terms of the monthly average rainfall
and the monthly average standard deviation. Figures 9
and 10 also show that the statistically downscaled future
projections of CanESM2 are close to the historic down-
scaled simulations. This is highly unlikely, as the increase
in greenhouse gas concentrations in the atmosphere is
expected to affect rainfall amounts. In this regard, it can
be concluded that the selected NCEP predictors within
SDSM are insensitive to different radiative forcing terms
that results in an unreliable performance of SDSM in pre-
dicting future rainfall.

The pronounced difference between observed and
simulated downscaled GCM rainfall for calibration and vali-
dation periods of SDSM was significantly less when
monthly average rainfall for 27 grid elements was calcu-
lated. The climatological averaging of rainfall over 30 years
for historic and future periods suppressed the erratic precip-
itation pattern and showed a temporal rainfall pattern that
weakly matches the downscaled CanESM2 simulations.

4.3 | Dynamical downscaling using
IITM-RegCM4 RCM

The performance of the dynamical downscaling approach
(RegCM4 RCM) was evaluated by comparing simulated

monthly average rainfall (Figure 11) and monthly aver-
age standard deviation (Figure 12) with observed data for
the historic time period. Figure 11 shows that the
RegCM4 historic simulation largely overestimates
the monthly average rainfall in particular for the wet
period (June, July, August), so that the climatological
rainfall pattern of the observed data is no longer visible
under the simulated patterns of the RegCM4 RCM. The
RegCM4 RCM simulated average standard deviation
values of monthly rainfall at the basin scale, which are
unrealistically high compared with the observed counter-
parts for the baseline period (Figure 12). Overall, based
on the results from dynamical downscaling, it can be
concluded that the RCM results deviate largely from the
observed counterparts and thus RCM results cannot be
directly used in hydrological impact studies. Figures 11
and 12 confirm that the CanESM2 AOGCM provides a
closer match to the observed rainfall than the RegCM4
RCM. Therefore, the error in the RCM data is much
likely due to the characteristics of the RCM itself and not
due to the driving AOGCM.

The climate change impact assessment from dynami-
cally downscaled future climatic projections (2041–2070)
under RCP 4.5 and RCP 8.5 showed higher monthly aver-
age rainfall and standard deviation values compared with
the historic simulation. In comparison with historic RCM
data, the RCM future climatic projections under RCPs
showed no change in terms of monthly average rainfall
for the months January to March and August to Decem-
ber (see Figure 13). The future projections from the RCM
under the RCP scenarios showed an increase in rainfall
variability compared with the historic simulated rainfall
variability, except for September and October where the
RCP scenarios showed a decreasing trend compared with

FIGURE 5 Observed versus simulated rainfall in the calibration for the period 1971–1990. Observed data are shown with straight lines, NCEP

with dashed lines and CanESM2 with dotted lines for all five grid elements (GE 1: Red, GE3: Blue, GE10: Green, GE11: Yellow, GE24: Black).
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historic RCM data (see Figure 14). Further, Figures 13
and 14 show that the difference between simulations of
RegCM4 RCM for the two RCP scenarios is not signifi-
cant. The projections under RCP 4.5 are identical to the
projections under RCP 8.5 except for June, July and
September.

Furthermore, the RCM also fails to simulate the sea-
sonal pattern of rainfall over the study area. The dynamical
downscaling method fails to simulate the precipitation sea-
son of December, January, February for historic and future
climate periods (Figures 11 and 13).

The RCM data were also analysed for its spatial distri-
bution of daily mean rainfall over the study area. The
results of this analysis are shown in Figure 15. It shows
the difference between the observed rainfall and RCM-
simulated counterparts for the wet month of July (1971–
2000). The figure shows that the RCM (50 km � 50 km
grid cell size) has a similar spatial rainfall distribution as

the observed counterpart that was based on gauged sta-
tion data interpolated at a 25 km � 25 km grid cell size,
despite that the RCM monthly average values are highly
unrealistic. The rainfall from the coastline to the upland
area decreases from high mean monthly to low mean
monthly values, as shown in both maps. The observed
rainfall pattern shows more variation from the west of
the basin to the east, which is not satisfactorily repre-
sented by the RCM. For instance, in the central part of
the basin, where three stations (Hore, Shadikaur and
Pasni) are located, observed data showed a maximum
mean rainfall of about 0.6 mm/day in July over the 30-
year period. The RCM shows a mean rainfall of 25.7 mm/
day in the same area. The maximum mean rainfall of
36.6 mm/day in the RCM data shown in the right corner
of the basin does not correspond with the rainfall value
of the observed dataset. This further indicates that the
RCM outputs cannot be used directly for quantifying the

FIGURE 6 Observed versus

simulated rainfall in the validation for

the period 1991–2000. Observed data

are shown with straight lines, NCEP

with dashed lines and CanESM2 with

dotted lines for all five grid elements

(GE 1: Red, GE3: Blue, GE10: Green,

GE11: Yellow, GE24: Black).
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FIGURE 7 Observed and Statistical DownScaling Model simulated monthly average rainfall for historic period (1971–2000) for the
entire basin.

10 of 19 ATTIQUE ET AL.Meteorological Applications
Science and Technology for Weather and Climate

 14698080, 2023, 5, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.2151 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [31/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



hydrological impacts of climate change. Moreover, it
should be noted that different classification scales in Fig-
ure 15 are applied to make the visual analysis and inter-
pretation of both maps meaningful.

4.4 | Comparison of statistical versus
dynamical downscaling

Findings in this study indicate that statistical downscaling
performed better than dynamical downscaling. Despite the
very coarse resolution of the AOGCM, the statistical

downscaling method developed multiple regression equa-
tions between large-scale atmospheric variables and local
climate surface variables, due to which the statistical down-
scaling method simulated the rainfall close to that of the
observed one, and better than the dynamical downscaling
method, for the baseline period (1971–2000). The monthly
rainfall and seasonal trend over the Gwadar-Ormara basin
is well represented by statistical downscaling for the historic
period. The observed annual cycle of rainfall is noticeable
and comparable to statistically downscaled CanESM2
AOGCM simulations, while this is not the case with
dynamically downscaled simulations.
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FIGURE 8 Observed and Statistical DownScaling Model simulated monthly average standard deviation of rainfall for historic period

(1971–2000) for the entire basin.
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FIGURE 9 Observed and Statistical DownScaling Model simulated monthly average rainfall for historic period (1971–2000) and future

period (2041–2070) for the entire basin.
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The statistical downscaling method showed relatively
low R2 values for the SDSM calibration and validation
periods, indicating a poor match between observed,
NCEP and CanESM2 data. The SDSM method showed
insensitivity of selected large-scale atmospheric predic-
tors to different concentration pathways due to which the
reliability of statistical downscaling is not satisfactory in
projecting future rainfall (for the window 2041–2070).
Average monthly rainfall values under RCP 4.5 and RCP
8.5 generated by SDSM are identical to each other, as
shown in Figure 9. Also, these projections are similar to
average monthly rainfall values simulated in the historic
period (1971–2000).

The performance of the dynamical downscaling
method is not satisfactory compared with statistical
downscaling, as the RegCM4 RCM missed the December,
January, February wet seasons over the Gwadar-Ormara
basin in both historic and future periods. Further, RCM
outputs show very high rainfall values in the wet season
of June, July, August, which according to Almazroui
(2016) might be due to the choice of the parameterization
of cumulus convection schemes, mathematical algo-
rithms, land–sea contrast and surface characteristics set-
tings. The RCM showed poorer results in downscaling
rainfall than SDSM. Figure 12 shows that the results
obtained from the dynamically downscaled RegCM4
RCM lead to the conclusion that rainfall estimates by
SDSM are significantly better than the estimates by the
RCM. The uncertainty in RCM data for the historic
period is higher than in the observed and statistically

downscaled CanESM2 AOGCM data, as can be noticed
from Figures 11 and 12.

While there are limitations with dynamical downscal-
ing, there are few strengths associated with this approach
including no additional use of a model to downscale rain-
fall unlike in statistical downscaling. Hence, model cali-
bration and validation steps are not required. In case of
dynamical downscaling, the rainfall values under green-
house gas concentration scenarios are higher compared
with the historic simulations, which is not observed in
the case of statistical downscaling. Additionally, dynami-
cal downscaling works better than statistical downscaling
in terms of portraying spatial rainfall variation, due to
the higher resolution of the RCM (refer Figure 15), when
compared with the observed data. The statistical down-
scaling method underestimates the spatial variation of
rainfall patterns because of statistical relationships
between local and large-scale climate variables, which
are assumed to remain constant and valid in the future.

For further comparison, basin-wide annual climatic
mean values of observed and simulated rainfall (from
both SDSM and RCM) for the historic (1971–2000) and
future period (2041–2070) are provided in Table 1. Values
show how each method performed in downscaling rain-
fall compared with the observed dataset. The comparison
between statistical and dynamical downscaled future pro-
jections in the period 2041–2070 under the two RCPs
shows that climatic mean values hardly differ. It is
unclear what the cause of these small differences
is. Apparently, the driving model used (CanESM2
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FIGURE 10 Observed and Statistical DownScaling Model simulated monthly average standard deviation of rainfall for historic period

(1971–2000) and future period (2041–2070) for the entire basin.
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AOGCM) shows a very low sensitivity to the two selected
RCP scenarios (intermediate and intensive concentration
scenarios).

5 | DISCUSSION

Sanjay et al. (2013) evaluated the performances of RCMs
as part of the CORDEX-SA evaluation initiative. They
evaluated RCMs in comparison with those of the
AOGCMs being part of CMIP5 to inter-compare multiple
models over South Asia. Among the selected 10 AOGCMs
and five RCMs for a 15-year evaluation period (1990–
2004), they found that the CanESM2 AOGCM showed a

dry (negative) bias in simulating annual mean precipita-
tion (mm/day) over central India and southern parts of
Pakistan compared with the monthly mean rain gauge-
based global land precipitation dataset from the Climate
Research Unit (CRU) of the University of East Anglia.
They also found that individual RCMs (driven by CMIP5
AOGCMs) resulted in biases varying from dry to wet over
central India and southern parts of Pakistan in the histor-
ical simulations. Another main conclusion of the study
was that the RCMs (including RegCM4) overestimate the
spatial variability compared with observed CRU annual
precipitation climatology over South Asia. A study con-
ducted by Choudhary and Dimri (2017) came to similar
results that RCMs under CORDEX-SA exhibit a large wet
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FIGURE 11 Observed and regional climate model simulated monthly average rainfall for historic period (1971–2000) for the entire
basin.

0

5

10

15

20

25

30

35

40

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
ea

n 
St

an
da

rd
 D

ev
ia

�o
n 

(m
m

/d
ay

)

Obs 1971–2000 CanESM2 AOGCM 1971–2000 RegCM4 RCM 1971–2000

FIGURE 12 Observed and regional climate model simulated monthly average standard deviation of rainfall for historic period (1971–
2000) for the entire basin.
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bias over the region, which means overestimation of pre-
cipitation in historic as well as in future projections. The
results of these past studies concur to results of this study
undertaken over Gwadar-Ormara basin in Pakistan and
show that results from climate models for historic periods
may not always be reliable, and thus data must be ana-
lysed for reliability before data can be used for impact
assessment studies.

To reduce uncertainties (or errors) from climate
models, a bias correction step is generally applied. Stud-
ies by Teutschbein and Seibert (2012), Berg et al. (2012)
and Chen et al. (2017) have recommended this step
before further use of outcomes of the RCM simulations.
In this study, overestimation of the seasonal (June, July,

August) rainfall by RegCM4 over the entire basin should
be corrected and then the performance of the RCM
should be evaluated and compared with the statistical
downscaled model results. However, due to poor quality
of the observed data, bias correction has not been under-
taken. Nevertheless, it is questionable whether in this
case a bias correction procedure would be effective given
the very large mismatch between simulated rainfall and
observed counterparts. Considering observed in situ data,
a correction factor as large as 180 for June in the historic
period is needed to remove the bias from the RCM simu-
lations. That is why the RegCM4 RCM is considered to
be unreliable to represent spatial–temporal rainfall vari-
ability. Poor results have been reported for the same
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FIGURE 13 Observed and regional climate model simulated monthly average rainfall for historic period (1971–2000) and future period

(2041–2070) for the entire basin.
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FIGURE 14 Observed and regional climate model simulated monthly average standard deviation of rainfall for historic period (1971–
2000) and future period (2041–2070) for the entire basin.
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FIGURE 15 Spatial variation of regional climate model (above) and observed (below) daily mean rainfall values (1971–2000) for the
wet month of July.

TABLE 1 Observed versus simulated annual climatological means.

Time period Annual climatic mean (mm/day)

Observed historic (1971–2000) 0.2

RegCM4 historic (1971–2000) 5.4

RegCM4 RCP 4.5 (2041–2070) 8.2

RegCM4 RCP 8.5 (2041–2070) 8.1

CanESM2 AOGCM historic (1971–2000) 0.2

CanESM2 AOGCM RCP 4.5 (2041–2070) 0.1

CanESM2 AOGCM RCP 8.5 (2041–2070) 0.1

Abbreviations: AOGCM, Atmosphere–Ocean General Circulation Model; RCP, representative concentration pathways.
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climate model in studies by Haile and Rientjes (2015)
and Almazroui (2016). Furthermore, the RCM may
require improvements in the physical parameterization,
convection parameterization and land surface scheme
settings (Sanjay et al., 2013).

The challenge in the study was to analyse the perfor-
mance of the two downscaling approaches in simulating
and predicting the spatial–temporal rainfall distribution
over the Gwadar-Ormara basin, where the available
observed data are not only scarce but also uncertain
and erroneous. In such cases, precipitation products
based on satellite measurements or gauge-based gridded
observations are used due to their high spatial–temporal
resolution and global coverage. Nonetheless, these prod-
ucts can be subject to substantial biases as well due to
uncertainties in spatial sampling (e.g., spatial interpola-
tion errors) and retrieval algorithms, sampling frequency
and non-uniform field-of-view of sensors (Huffman
et al., 2007; Joyce et al., 2004). Hence, it is essential to
validate these precipitation products, using in situ obser-
vations, before further use in hydrological models.

Several studies (Anjum et al., 2018; Iqbal &
Athar, 2018; Khan et al., 2014; Khandu & Forootan, 2016;
Tan et al., 2020) have evaluated multi-gridded and multi-
satellite based precipitation products at daily, monthly
and annual scales over the Tibetan Plateau, Bhutan and
Pakistan. Only a few have focused on APHRODITE vali-
dation over Pakistan. Faiz et al. (2020) performed a statis-
tical evaluation of PERSIANN-CDR, CPC-Global,
TRMM-3B42, CHIRPS and APHRODITE against precipi-
tation gauge observations from six stations in Gilgit and
Hunza catchments, for the period 2000–2004. Their anal-
ysis revealed that all datasets overestimate daily rainfall;
however, after applying a bias correction technique
(quantile mapping), the performance of precipitation
datasets significantly improved. Overall, CHIRPS and
APHRODITE showed the best performance among the
five datasets after bias correction.

Ali et al. (2012) analysed APHRODITE on a decadal
basis using data from 12 different gauge stations in the
humid and sub-humid regions of Pakistan for the period
of 1971–2007. They concluded that the APHRODITE data
showed non-consistent correlation coefficient values with
observed precipitation data from very poor (0.001–0.15)
to very good (0.79–0.99) for different stations in several
decades. The study did not include gauge station data
from Balochistan province in Pakistan in the analysis.
However, a study by Ahmed et al. (2019) assessed gridded
precipitation datasets over the region of Balochistan
specifically. They evaluated the performance of Global
Precipitation Climatology Centre (GPCC), CRU, APHRO-
DITE and Centre for Climatic Research—University of
Delaware (UDel) rainfall data. The results revealed a

clear superiority of GPCC over other products, whereas
APHRODITE underestimated the precipitation, espe-
cially in the months of the monsoon. From the results of
these studies and the current study, it is confirmed that
APHRODITE is not suitable to be used as an alternative
dataset to the observed rainfall data in the arid or semi-
arid regions (in the south) of Pakistan. The very low
number of rain gauges in the study area may attribute to
the poor quality of APHRODITE data. The product may
show satisfactory results in the northern part by the
larger number of gauge stations.

Based on the results from the studies discussed in this
section, supporting the results of the current study, it is
evident that the study undertaken has provided reliable
yet unconventional results for the performance evalua-
tion of the two downscaling approaches. Despite limita-
tions regarding the poor quality of observed rainfall data
used, there is a high potential in this study offering other
researchers to assess the weaknesses and strengths of the
RegCM4 RCM driven by the CanESM2 AOGCM over
arid systems. The unconventional results can be regarded
as an invitation to further evaluate multi-model ensem-
bles including other GCMs and RCMs for the same data
scarce area of Gwadar-Ormara basin in Pakistan. Fur-
thermore, there is a potential of obtaining more plausible
results, if a different gridded precipitation dataset such as
the GPCC dataset, as recommended by Ahmed et al.
(2019), can be used as an alternative to in situ data.

6 | CONCLUSION

In this study, a data reliability analysis was first per-
formed for observed rainfall and APHRODITE gridded
rainfall data using spatial correlograms to address the
problem of missing and possibly erroneous daily rainfall
values in the available observed dataset. The spatial cor-
relograms resulted in rejecting the use of APHRODITE
for the Gwadar-Ormara study area, as for unknown rea-
sons, APHRODITE data produced an unrealistic spatial
variation pattern of rainfall. The very low number of rain
gauges in the study area may attribute to the poor quality
of APHRODITE data, such as shown in other studies and
suggested in the literature.

To meet the research objectives, statistically downscaled
CanESM2 AOGCM results were compared with observed
data. Similarly, dynamically downscaled results of the
RegCM4 RCM driven by the same AOGCM were compared
with observed data and statistically downscaled results. The
calibration and validation plots of the SDSM showed unre-
alistic monthly average rainfall values compared with
observed counterparts that SDSM could not replicate well.
However, overall statistical downscaling performed better

16 of 19 ATTIQUE ET AL.Meteorological Applications
Science and Technology for Weather and Climate

 14698080, 2023, 5, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.2151 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [31/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



in simulating the monthly rainfall cycle compared with
dynamical downscaling for the historic period (1971–2000),
without application of bias correction to the outputs of both
downscaling methods. As the regression equations were
established between local-scale predictands (observed) and
large-scale atmospheric predictors (NCEP/NCAR and
AOGCM) in the statistical downscaling method, rainfall
was simulated relatively close to observed rainfall. Hence,
the SDSM results are considered more trustworthy than the
RCM results. In the period 2041–2070 under RCPs 4.5 and
8.5, rainfall projections did not show any significant differ-
ence in both downscaling approaches. This might highlight
a limitation of the driving model (CanESM2 AOGCM) and
does not necessarily suggest poor performance of any down-
scaling approach; either statistical or dynamical.

The dynamical downscaling method (using RegCM4
RCM) overestimated the monthly average rainfall over
the study area in both historic and future time periods.
The RCM showed a large difference between rainfall sim-
ulations for the historic period and future projections.
The errors in RCM results can be attributed to uncertain
initial conditions, the physical parameterization scheme
and/or lateral atmospheric boundaries, which made the
outputs from the RCM inconsistent with those from
the CanESM2 AOGCM and observed data. Bias correc-
tion of the downscaled results (from both SDSM and the
RCM) using a high-quality observational dataset should
be carried out before using the outputs in hydrological
(impact) studies. Dynamical downscaling, due to the
higher resolution of RCMs, showed spatial rainfall varia-
tion, that well compared with observed data and was able
to represent the large variation in rainfall over the study
area similarly to that of observed rainfall.
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