1,807 research outputs found

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given

    The 27-28 October 1986 FIRE IFO Cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft

    Get PDF
    Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes

    Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen

    Get PDF
    The ways that fibroblasts remodel their environment are central to wound healing, development of musculoskeletal tissues, and progression of pathologies such as fibrosis. However, the changes that fibroblasts make to the material around them and the mechanical consequences of these changes have proven difficult to quantify, especially in realistic, viscoelastic three-dimensional culture environments, leaving a critical need for quantitative data. Here, we observed the mechanisms and quantified the mechanical effects of fibroblast remodeling in engineered tissue constructs (ETCs) comprised of reconstituted rat tail (type I) collagen and human fibroblast cells. To study the effects of remodeling on tissue mechanics, stress-relaxation tests were performed on ETCs cultured for 24, 48, and 72 h. ETCs were treated with deoxycholate and tested again to assess the ECM response. Viscoelastic relaxation spectra were obtained using the generalized Maxwell model. Cells exhibited viscoelastic damping at two finite time constants over which the ECM showed little damping, approximately 0.2 s and 10-30 s. Different finite time constants in the range of 1-7000 s were attributed to ECM relaxation. Cells remodeled the ECM to produce a relaxation time constant on the order of 7000 s, and to merge relaxation finite time constants in the 0.5-2 s range into a single time content in the 1 s range. Results shed light on hierarchical deformation mechanisms in tissues, and on pathologies related to collagen relaxation such as diastolic dysfunction. Statement of Significance As fibroblasts proliferate within and remodel a tissue, they change the tissue mechanically. Quantifying these changes is critical for understanding wound healing and the development of pathologies such as cardiac fibrosis. Here, we characterize for the first time the spectrum of viscoelastic (rate-dependent) changes arising from the remodeling of reconstituted collagen by fibroblasts. The method also provides estimates of the viscoelastic spectra of fibroblasts within a three-dimensional culture environment. Results are of particular interest because of the ways that fibroblasts alter the mechanical response of collagen at loading frequencies associated with cardiac contraction in humans. © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Development of a theory of the spectral reflectance of minerals, part 4

    Get PDF
    A theory of the spectral reflectance or emittance of particulate minerals was developed. The theory is expected to prove invaluable in the interpretation of the remote infrared spectra of planetary surfaces

    Noise-Resistant Spectral Features for Retrieving Foliar Chemical Parameters

    Get PDF
    Foliar chemical constituents are important indicators for understanding vegetation growing status and ecosystem functionality. Provided the noncontact and nondestructive traits, the hyperspectral analysis is a superior and efficient method for deriving these parameters. In practice, thespectral noise issue significantly impacts the performance of the hyperspectral retrieving system. To systematically investigate this issue, by introducing varying levels of noise to spectral signals, an assessment on noiseresistant capability of spectral features and models for retrieving concentrations of chlorophyll, carotenoids, and leaf water content was conducted. Given the continuous waveletanalysis (CWA) showed superior performance in extracting critical information associating plants biophysical and biochemical status in recent years, both wavelet features (WFs) and some conventional features (CFs) were chosen for the test. Two datasets including a leaf optical properties experiment dataset (n = 330), and a corn leaf spectral experiment dataset (n = 213) were used for analysis and modeling. The results suggested that the WFs had stronger correlations with all leaf chemical parameters than the CFs. According to an evaluation by decay rate of retrieving error that indicates noise-resistant capability, both WFs and CFs exhibited strong resistance to spectral noise. Particularly for WFs, the noise-resistant capability is relevant to the scale of the features. Based on the identified spectral features, both univariate and multivariate retrieving models were established and achieved satisfactory accuracies. Synthesizing the retrieving accuracy, noise resistivity, and model’s complexity, the optimal univariate WF-models were recommended in practice for retrieving leaf chemical parameters

    Tongue Tumor Detection in Medical Hyperspectral Images

    Get PDF
    A hyperspectral imaging system to measure and analyze the reflectance spectra of the human tongue with high spatial resolution is proposed for tongue tumor detection. To achieve fast and accurate performance for detecting tongue tumors, reflectance data were collected using spectral acousto-optic tunable filters and a spectral adapter, and sparse representation was used for the data analysis algorithm. Based on the tumor image database, a recognition rate of 96.5% was achieved. The experimental results show that hyperspectral imaging for tongue tumor diagnosis, together with the spectroscopic classification method provide a new approach for the noninvasive computer-aided diagnosis of tongue tumors

    Finite element simulation of the liquid-liquid transition to metallic hydrogen

    Full text link
    Hydrogen at high temperature and pressure undergoes a phase transition from a liquid molecular phase to a conductive atomic state, or liquid metallic hydrogen, sometimes referred to as the plasma phase transition (PPT). The PPT phase line was observed in a recent experiment studying laser-pulse heated hydrogen in a diamond anvil cell in the pressure range ∼100−170GPa\sim 100 - 170 \text{GPa} for temperatures up to ∼2000K\sim 2000 \text{K}. The experimental signatures of the transition are (i) a negative pressure-temperature slope, (ii) a plateau in the heating curve, assumed to be related to the latent heat of transformation, and (iii) an abrupt increase in the reflectance of the sample. We present a finite element simulation that accurately takes into account the position and time dependence of the heat deposited by the laser pulse. We calculate the heating curves and the sample reflectance and transmittance. This simulation confirms that the observed plateaus are related to the phase transition, however we find that large values of latent heat are needed and may indicate that dynamics at the transition are more complex than considered in current models. Finally, experiments are proposed that can distinguish between a change in optical properties due to a transition to a metallic state or due to closure of the bandgap in molecular hydrogen.Comment: 23 pages, 4 figure

    Responding to Large-Scale Forest Damage in an Alpine Environment with Remote Sensing, Machine Learning, and Web-GIS

    Get PDF
    This paper reports a semi-automated workflow for detection and quantification of forest damage from windthrow in an Alpine region, in particular from the Vaia storm in October 2018. A web-GIS platform allows to select the damaged area by drawing polygons; several vegetation indices (VIs) are automatically calculated using remote sensing data (Sentinel-2A) and tested to identify the more suitable ones for quantifying forest damage using cross-validation with ground-truth data. Results show that the mean value of NDVI and NDMI decreased in the damaged areas, and have a strong negative correlation with severity. RGI has an opposite behavior in contrast with NDVI and NDMI, as it highlights the red component of the land surface. In all cases, variance of the VI increases after the event between 0.03 and 0.15. Understorey not damaged from the windthrow, if consisting of 40% or more of the total cover in the area, undermines significantly the sensibility of the VIs to detecting and predicting severity. Using aggregational statistics (average and standard deviation) of VIs over polygons as input to a machine learning algorithm, i.e., Random Forest, results in severity prediction with regression reaching a root mean square error (RMSE) of 9.96, on a severity scale of 0–100, using an ensemble of area averages and standard deviations of NDVI, NDMI, and RGI indices. The results show that combining more than one VI can significantly improve the estimation of severity, and web-GIS tools can support decisions with selected VIs. The reported results prove that Sentinel-2 imagery can be deployed and analysed via web-tools to estimate forest damage severity and that VIs can be used via machine learning for predicting severity of damage, with careful evaluation of the effect of understorey in each situation
    • …
    corecore