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Abstract: This paper reports a semi-automated workflow for detection and quantification of forest
damage from windthrow in an Alpine region, in particular from the Vaia storm in October 2018. A
web-GIS platform allows to select the damaged area by drawing polygons; several vegetation indices
(VIs) are automatically calculated using remote sensing data (Sentinel-2A) and tested to identify the
more suitable ones for quantifying forest damage using cross-validation with ground-truth data.
Results show that the mean value of NDVI and NDMI decreased in the damaged areas, and have
a strong negative correlation with severity. RGI has an opposite behavior in contrast with NDVI
and NDMI, as it highlights the red component of the land surface. In all cases, variance of the VI
increases after the event between 0.03 and 0.15. Understorey not damaged from the windthrow, if
consisting of 40% or more of the total cover in the area, undermines significantly the sensibility of
the VIs to detecting and predicting severity. Using aggregational statistics (average and standard
deviation) of VIs over polygons as input to a machine learning algorithm, i.e., Random Forest, results
in severity prediction with regression reaching a root mean square error (RMSE) of 9.96, on a severity
scale of 0–100, using an ensemble of area averages and standard deviations of NDVI, NDMI, and RGI
indices. The results show that combining more than one VI can significantly improve the estimation
of severity, and web-GIS tools can support decisions with selected VIs. The reported results prove
that Sentinel-2 imagery can be deployed and analysed via web-tools to estimate forest damage
severity and that VIs can be used via machine learning for predicting severity of damage, with careful
evaluation of the effect of understorey in each situation.

Keywords: Vaia storm; Sentinel-2; climate change; windthrow; forest disturbance; vegetation index

1. Introduction

High severity natural disturbances can significantly alter the structure and morphol-
ogy of forest landscape [1–3]. The damage assessment, generally evaluated using severity
classes, has been usually carried out through field surveys.

Wind is the main disturbance agent affecting European forests, being responsible
for more than 50% of all damage by volume [4]. The damage from fire and windstorms
have been increasing over the past centuries, and they are likely to continue to increase
in the next future [5,6]. According to Gregow et al. [7], windstorms that affected the
Central and Northern European forests in the last decade were stronger than the ones that
occurred before 1990. Moreover, in the period between 1980–2010, the impact on forest
areas, considering the same amount of biomass, was 3–4 times higher than that registered
in the period between 1950–1980. Part of this increase might be due to climate change [8],
but most of it is high likely due to factors related to the current stand conditions of the
European forests [9].
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The cost of such damage can be very high in economic terms (e.g., €6 billion in France
from storms Lothar and Martin in 1999, and around €1.9 billion in Sweden after the storm
Gudrun in 2005) [10]. Further added impact on local communities and forest ecosystems
must be also considered. On 29 October 2018, the Vaia storm and flood event hit North-
Eastern Italy, causing damage to forests mainly located in Alpine areas of the following
regions: Veneto, Trentino-South Tyrol, Friuli Venezia Giulia, and Lombardy. The average
and maximum value of the high-intensity rainfall was 335 mm and 519 mm, respectively,
over a single day, and the wind had peak wind speeds recording close to 200 km h−1 (SE
direction). The storm caused extensive forest damage, completely uprooting trees in large
areas or severely damaging forests of about 42,500 ha, with a first estimated volume of
timber loss of 8.5 million cubic metres [11–13]. Some forest stands were completely blown
down, probably because the wind was funneled into the Alpine valleys and increased speed
by the orography [14], and the characteristics of forests make the stands more susceptible
to windthrow (simple structure, monolayered, and monospecific Norway spruce stands).
The Copernicus Emergency Mapping system reports only about 4000 ha of damaged areas,
about 10% of the affected area, due to cloud cover presence in the optical images used for
mapping [15]. Following the Vaia storm, the impacted regions assessed the forest damage
by means of aerial photographs and very high-resolution optical satellite images with data
from field surveys. Manual area digitalization was adopted, which resulted in complex
interpretation due to mixed interpretations of degree of damage, in particular where many
trees were left standing. In addition, the definition of boundaries are subjective, as often
there is not a clearly defined margin between damaged and untouched forest.

Major challenges for forest-related scientific investigation are related to the analysis of
present and future vulnerabilities of forest socio-ecological systems as well as to translate
associated risks and their outcomes into forest management, policy, and governance
recommendations. In a period of changes, the governance and management of forests
require innovation, making the role of research more important than ever. Remote sensing
can supply timely and new information to the public administration and stakeholders
involved in forest management. The change detection after a natural disturbance needs
pre-event information, but these are not always available and not always complete. Data
derived from remote sensing time series are widely used in change detection analyses
concerning habitats, forest health, degradation of natural resources, biotic and abiotic
disturbances, or forest recovery [16]. Remote sensing data can provide efficient decision
support by supplying an overview of the land-use/land-cover (LULC) scenario over time.
Satellite imagery supports the creation of thematic maps that cover large regions to help
public administration and stakeholders plan efficient forest management [17]. On the other
hand, remote sensing processing requires specialized skills for correct imagery acquisition,
model calibration, and analysis.

Processing satellite imagery can now be done through cloud-based analysis platforms,
such as Google Earth Engine [18]. Cloud-based platforms automate several time-consuming
pre-processing steps such as image acquisition, quality masking, cloud-filtering, and
analysis. The downside is that operators are in the so-called “vendor-locked” position.
In this specific investigation, a custom cloud-based remote cluster was used to develop a
web-GIS platform for custom automation of satellite image analysis. This platform allows
real-time calculation of vegetation indices (VIs) over time-series of image data. Results
from analyses through this processing pipeline are presented relative to using VIs for
assessment of the estimation of degree of damage, expressed in percent.

Vegetation indices have been widely investigated for forestry applications and also
for investigating Vaia damage localization [19]. One of the more commonly used VIs, the
normalized difference vegetation index (NDVI), is calculated as the normalized ratio of the
difference between the near-infrared band and the red band and is used for monitoring
the vegetation canopy response to stress and other factors that change absorption of the
red or infrared part of the spectrum. Normalized indices limit noise due to changes in
the irradiance condition e.g., to clouds, different sun angles, atmospheric condition or



Remote Sens. 2021, 13, 1541 3 of 23

topography [20] and are applied to analyze seasonal and annual trends [21]. It must be
noted that VIs depend strongly also on the phenology, i.e., the growing stage, not only on
disturbance and stress factors induced by climate change or pathogen attacks. NDVI has a
non-linear response, in sparsely vegetated areas where the background reflectance of the
red spectral band increases [22–24]. Over densely vegetated areas, NDVI enhances the low
ratio values while compressing higher ratio values. The enhanced vegetation index (EVI)
was created to correct the background effect using a soil adjustment factor, L, and correcting
the red band with blue band coefficients, C1 and C2 [23]. In the windthrow-damaged area,
the forestry patch is sparse and many trunks lie on the ground. Hence, EVI has been tested
to reduce the noise effect of the canopy background. A damaged forest, with weakened,
stressed, and fallen trees as in Figure 1, can be the optimal habitat for forest pests like the
European spruce bark beetle (Ips typhographus) [25].
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Figure 1. A damaged forest hit by the Vaia windstorm in the Agordino region.

The stages of the pest attack are the green-attack, red-attack, and grey-attack, where
stressed vegetation loses foliage, increases the visible red spectral component, and decreases
the near-infrared response [26]. In the green-attack, the foliage looks unchanged. Thus, it is
difficult to identify, and the moisture decreases in the sapwood [27]. The red-stage happens
the next year and the foliage turns yellow and red. Finally, the tree loses needles, and turns
to grey. The grey stage has been studied with NDVI [28], but several studies have focused
on the red stage applying the RGI index [29–31].

The relative greenness index (RGI) is an index of anthocyanin content [32], and it
takes into consideration the response of the red band over the green band. Study results on
this index bring evidence of a high correlation coefficient, from 0.7 to 0.9, between pixels
covered with red-stage pest attack and the tree crown using a very high spatial resolution
imagery e.g., ~1 m resolution or less. The epidemic red stage was studied in Canada
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using Landsat-TM imagery and applying the enhanced wetness difference index (EWDI)
in a mixed forest [33]. The EWDI is calculated by subtracting the tasseled cap wetness
index [34] of two images in different years. Again, the red-stage attack was studied by [35]
using the normalized difference moisture index (NDMI). Wilson and Sader [36] found
higher accuracies of NDMI over NDVI in change detection of forest harvest. Biotic and
abiotic disturbances were studied considering the red-edge chlorophyll indices (CI) and
NDVI for estimating the temporal change in leaf chlorosis and defoliators in [37].

Previous scientific literature supports further investigation to understand the accuracy
of modelling damage from windthrow using vegetation indices, to identify those that
provide optimal results over mountain regions characterized by an Alpine environment.
The specific goal of this paper is to report on results of testing NDVI, EVI, RGI, EWDI,
NDMI, and CI indices through machine learning and to identify which indices are more
suitable for quantifying damage in areas in the Agordino forest hit by the Vaia storm,
considering also the disturbance and recovery stage. The results have been integrated into
a web-GIS application to support the public administration and stakeholders involved in
forestry management.

2. Materials and Methods
2.1. Study Area

The study area is located in the upper and middle Cordevole Valley, named Agordino.
Here, the forests were severely damaged by the Vaia storm, which affected almost 4000 ha
(6% of the area) with more than 600,000 m3 of windthrown timber. Consequently, 22 testing
areas (Figure 2), representative of a gradient of severity, aspect, and slope, were inspected
between June and September 2019. The size of the testing areas ranges between 1 ha and
61.58 ha.
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2.2. Field Survey

The severity was assessed by determining the canopy cover loss by visual interpre-
tation and validation by experts. First, interpretation was done using high-resolution
orthoimagery from aerial surveys (acquired in 2019), determining the boundaries of the
area considered damaged and providing a value of severity (canopy loss) on a scale from
0 to 100. The second step consisted of a visual inspection directly on site, validating or
changing the severity class assigned in the first step.

The field survey consisted of visual inspection of the 22 plots reporting (i) the severity
in the percentage of fallen trees; a description of the damage with percentages of (ii)
residual canopy cover, (iii) understorey, (iv) overall health index, and (v) crown status
of standing trees. Visual inspection means that expert personnel physically went in the
area and validated the initial severity assessment for each plot. The survey is necessary
to assess the forest condition, and to correlate the ground truth with the values of VIs
that were derived from Sentinel-2 imagery. The fieldwork schedule was coordinated with
the Sentinel-2 acquisition dates, also considering weather conditions (cloud-free days).
Plot names and values of severity, residual canopy cover, and understorey are reported in
Table 1 in the results.

Table 1. Severity, forest and shrub cover, and VI average and standard deviation values for the study
areas in September 2019 of NDVI, RGI, and NDMI (see Appendix B for other VIs). Avg. = average,
Std = standard deviation, Sev. = severity, CC = canopy cover, US = understorey.

Survey Sev. CC US NDVI RGI NDMI

21/09/2019 (%) (%) (%) Avg. Std. Avg. Std. Avg. Std.

RP_01 100 5 5 0.486 0.099 1.098 0.103 0.197 0.096
CSL_03 90 0 45 0.591 0.092 1.020 0.120 0.295 0.098
AL_03 90 5 40 0.561 0.109 1.064 0.157 0.242 0.122
RP_02 90 10 10 0.513 0.101 1.077 0.102 0.230 0.103

VOA_02 80 30 70 0.742 0.095 0.843 0.153 0.473 0.105
VOA_05 80 60 40 0.810 0.084 0.784 0.156 0.554 0.104
LCL_04 80 5 35 0.332 0.071 1.333 0.112 0.078 0.114
AG_03 80 0 15 0.569 0.197 1.153 0.295 0.229 0.224
RP_03 80 5 15 0.599 0.115 0.989 0.150 0.313 0.120
RP_04 70 20 25 0.565 0.093 1.024 0.104 0.297 0.093

LCL_03 70 10 10 0.472 0.093 1.119 0.088 0.194 0.085
TA_02 60 40 70 0.690 0.071 0.923 0.124 0.371 0.084
TA_01 60 10 10 0.436 0.133 1.210 0.122 0.068 0.124

VOA_06 50 60 60 0.782 0.119 0.787 0.171 0.536 0.156
TA_04 50 60 50 0.806 0.081 0.762 0.149 0.537 0.114

VOA_01 50 30 50 0.710 0.095 0.924 0.139 0.432 0.101
RA_03 50 60 40 0.727 0.108 0.87 0.188 0.452 0.124
LCL_02 50 25 25 0.625 0.116 0.960 0.160 0.336 0.117
RA_02 30 30 70 0.805 0.071 0.745 0.133 0.548 0.104

LCL_NW1 0 - - 0.829 0.043 0.721 0.157 0.693 0.092
LCL_NW2 0 - - 0.822 0.029 0.701 0.114 0.672 0.071

RP_NW 0 - - 0.841 0.028 0.657 0.118 0.726 0.055

2.3. Satellite Imagery Processing: Vegetation Indices

Level-2A Sentinel-2 images over the summer season in 2018 and 2019 have not been
clipped to obtain six cloud-free images. Sentinel-2 Level-2A provides the bottom of surface
reflectance, i.e., correction of images for atmospheric effects, through the sen2cor algo-
rithm [38]. Two images were sensed in August and September 2018 (before the event) and
four were sensed between June and October 2019 (after the event). Using these images, we
calculated the following indices NDVI, EVI1, EVI2, RGI, NDMI, CI, and EWDI.

Below are the specific formulas, where “nir” is the near infrared band, specifically
band 8 having 10 m spatial resolution for Sentinel-2; and “red”, which is band 4 in the
Sentinel-2 specifications.
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The NDVI formula is:
NDVI =

nir − red
nir + red

(1)

The EVI index was calculated in two versions called EVI1 and EVI2. The EVI1
formula is:

EVI1 = 2.5 ∗ nir − red
nir + 6∗red − 7.5∗blue + 1

(2)

The EVI2 is:
EVI2 = 2.4 ∗ nir − red

nir + red + 1
(3)

RGI is a simple ratio of the red and green bands, as stated in (4)

RGI =
red

green
(4)

NDMI measures the response to the NIR spectral band of the leaf structure in contrast
with the mid-infrared (MIR) absorbed by the water in the vegetation foliage [33,34], as
stated in (5):

NDMI =
near infrared − mid infrared
near infrared + mid infrared

(5)

The CI red-edge chlorophyll index is based on the ratio R750/R710, as defined by [35]
as stated in (6), and the corresponding Sentinel-2 bands are band 6 and band 5 (respectively,
having 740 nm and 705 nm). The stressed vegetation has a decrease in chlorophyll content,
which absorbs the blue and red light at 430–660 nm. Consequently, the visible red spectral
component increases, whereas the near-infrared response decreases:

CI =
red750

red705
(6)

EWDI is the difference between the most recent tasselled cap image and older image.
The tasselled cap formula is stated in (7):

T. cap wetnes = 0.1509∗blue + 0.1973∗red + 0.3279∗red + 0.3406
∗nir8 − 0.7112∗nir11 − 0.4572∗nir12

(7)

The indices were extracted over 19 damaged areas and 3 control zones that were not
damaged. The severity ranges from 0 (LCL_NW1, LCL_NW2) to 100% (RP_01), and it
has been evaluated with field survey. Average and standard deviation of the index values
inside the polygon were aggregated for each date. Spearman’s rank correlation between
the average values and severity has been calculated.

2.4. Satellite Imagery Processing: Machine Learning

Vegetation indices can be used for predicting the severity of damage using machine
learning. Assessment of accuracy was carried out for the following methods: Support
Vector Machine (SVM), Random Forest (RF), and K-nearest neighbours (KNN).

The SVM split the dataset into two groups using a separating hyperplane. The class is
assigned to all class membership using a Kernel function [39]. The RF creates trees and
applies a predictor to all branches. The tree is built using a Bootstrap statistical technique
for data aggregation [40]. The KNN uses a distance metric, calculating the k nearest
neighbors of the sample. The rminer library for R CRAN was used for classification and
accuracy metrics in this task [41], which in turn uses the kknn library. Default values were
used, i.e., optimal kernel and the number of neighbours k = 7.

The dataset consists of the VIs from the 6 images over the 22 areas, for a total of
132 observations with VIs as predictors and severity as the target variable to predict. All
severity values before the event were set to zero. The dataset was split in 60% as a training
set and 40% as a testing set. The training consisted of using 10-k fold cross-validation, a
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robust methodology to prevent overfitting issues whereas the testing set was used for the
final prediction. The metrics to assess the accuracy of the regression are the following: mean
absolute error (MAE), root mean square error (RMSE), correlation (COR), and adjusted R2

(adj. R2), whereas the metric used to evaluate the classification is Kappa metric (K). The
importance of the VIs is calculated over sensitivity analysis, where the input sensitivity
is calculated for each input VIs using a One-dimensional SA (1D-SA) with seven levels
described in [42].

2.5. Web-GIS Interface

The structure of the web-GIS is composed of the back end, the analysis module, and
the front end, as described in Figure 3. The satellite imagery and metadata are available
through the Sentinel API Hub, so updated Level-2 images over the region of interest are
automatically downloaded and stored as PostGIS elements in the PostgreSQL database.
The data is kept in the original jp2 file format, and PostGIS stores meta-information (out_db
option). The analysis module is based on R CRAN language, which connects the database
with the front end. Therefore, the query can be launched by the user through the front-end
interface that has been developed using Shiny and Leaflet packages. The user sets the
parameters, which are the vegetation index, the areas drawn on the map, and the temporal
window. In contrast, for the querying of the database, the threshold for the cloud coverage
for each image is automatically set below 20%, and the cloud masking is automatically
applied. The results are a colour-coded index map and a time-series plot (see Appendix A).
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3. Results and Discussion

This section is composed of three parts: (i) the temporal profile of each VI, (ii) the
weight of each VI in a prediction model using machine learning, and (iii) the integration in
the web-GIS portal.

3.1. Temporal Analysis

The results of the field survey and the analysis are reported in Tables 1 and 2. Table 1
shows the names of the surveyed areas, with values of estimated severity, percent of
post-event canopy cover and understorey with respective average and standard deviation
of VI value in post-event imagery (September 2019). The field survey highlighted that
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some areas have a similar severity of damage, but different understorey, such as VOA_02,
LCL_04, TA_02 and TA_01. The severity in VOA_02 is 80% and understorey cover is 70,
whereas the severity in LCL_04 is 80% and understorey cover is 35%. TA_02 and TA_01
have 60% of severity and understorey cover, respectively, of 40% and 10%. Table 1 also
shows the values of the VIs in September 2019. The photosynthesis rate in the Alpine
regions is higher in September, i.e., tree growth. Understorey affects NDVI value in the
areas with similar severity. VOA_02 and TA_02 are examples of high NDVI (~0.7) and
high understorey cover in contrast with LCL_04 and TA_01. The last three rows represent
control areas nearby, which were healthy stands not affected by wind damage.

The NDVI temporal series for each plot area are reported in Figure 4. The control
areas with no damage are named LCL_NW1, LCL_NW2, RP_NW (red outline), and clearly
have stable NDVI values, as expected. The NDVI values in the damaged areas decrease
clearly and the standard deviation increase e.g., the areas RP_03, RP_04. It is worth noting
that in some damaged areas, such as the VOA_02, the NDVI values decrease to a lesser
extent than other damaged areas, and the post-event values seem stable over 2019. Again,
TA_01 and TA_02 both have 60% severity, but TA_01 has 10% understorey and NDVI of
0.44, TA_02 has 70% understorey and NDVI of 0.69. LCL_04 and CLS_03 are two forestry
harvest area where the trunks have been removed. The soil is covered by woodchips mixed
with herbaceous recovery; NDVI values in these two cases range from 0.33 to 0.59.

Detailed information about the effect of residual shrub cover and vegetation regen-
eration over NDVI at pixel scale can be observed in Figure 5. The figure shows red/nir
spectral space with values of each pixel in the imagery. The points show the significant
effect of post-event residual (shrub) and regenerated vegetation with the scatterplot and
the NDVI baselines in September 2019. On one hand, the points of RA_02 and VOA_02
are compressed along the Y (red) axis. Both have the same shrub cover of 70%, but RA_02
site, with 30% severity, results in 0.81 value of NDVI, whereas VOA_02 has 80% severity,
resulting in lower NDVI value of 0.74. In both cases, no information can be extracted about
the recovery, because the NDVI value reflects vegetation that can be either from existing
surviving shrub (understorey) or from recovery.

In contrast, in TA_02, the understorey is 70%, and the pixels’ NDVI values range
between the baselines of 0.6 and 0.8. Each pixel in area TA_02 positions itself in the red/nir
scatterplot, depending on the vegetation/damage fraction mixture in the pixel. Scenarios
range from having a significant fraction of vegetation (0.8 NDVI value), likely due to heavy
shrub or even trees resisting the storm, which cannot be differentiated in the scatterplot
from regeneration. The harvesting sites show similar behavior—CLS_03 has 90% severity,
but 45% of the area is recovering with herbaceous vegetation and shrubs. The points in the
scatterplot in Figure 5 range between the NDVI baselines, representing 0.4 and 0.8 values.
LCL_04 has 80% severity and 35% understorey, but the points in the scatterplot cover
an area below the NDVI baseline 0.4. Consequently, the background reflectance of the
soil can contribute to defining severity significantly when the sparse vegetation coverage
(remaining shrubs or recovery) is less than 40%. Above 40% residual vegetation, the NDVI
does not allow to easily distinguish a damaged area. It is worth therefore stating that it is
important to record the initial post-event NDVI value, thus defining the initial per-pixel
NDVI “residual” from shrubs or other resisting vegetation. Finally, a strong negative
Spearman’s rank correlation between NDVI and severity was found for 2019, whereas for
2018, the correlation was not significant, as can be expected.
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Table 2. The Spearman’s rank correlation between severity and VI average values for each month
using R package, clearly showing the difference between pre-event values and post-event values of
NDVI, as the storm occurred at the end of October 2018.

NDVI Spearman Corr. Adj R2 Std. Error p Value

Aug 18 −0.32478 0.00081 0.00971 0.325
Sept 18 −0.23141 0.12340 0.01483 0.060
June 19 −0.69194 0.50950 0.05210 <0.001
July 19 −0.68736 0.48370 0.05427 <0.001
Aug 19 −0.64268 0.38860 0.05319 <0.001
Sept 19 −0.69137 0.43010 0.05428 <0.001

RGI
Aug 18 0.30587 0.06491 0.01747 0.132
Sept 18 0.27437 0.19640 0.04050 0.022
June 19 0.72860 0.57420 0.07077 <0.001
July 19 0.71542 0.51250 0.07593 <0.001
Aug 19 0.70683 0.49130 0.06389 <0.001
Sept 19 0.70683 0.48530 0.06335 <0.001
NDMI
Aug 18 −0.19819 0.06266 0.02089 0.136
Sept 18 −0.11971 0.00978 0.02948 0.284
June 19 −0.73032 0.61600 0.05518 <0.001
July 19 −0.69767 0.58010 0.05799 <0.001
Aug 19 −0.68335 0.56310 0.06087 <0.001
Sept 19 −0.69194 0.57260 0.06064 <0.001
EVI1

Aug 18 −0.48172 0.09318 0.02599 0.090
Sept 18 −0.53098 0.26150 0.02382 0.008
June 19 −0.58139 0.24830 0.05676 0.010
July 19 −0.54817 0.19950 0.05176 0.021
Aug 19 −0.57623 0.22130 0.04507 0.015
Sept 19 −0.60086 0.24340 0.03915 0.011
EVI2

Aug 18 −0.48058 0.03532 0.02442 0.198
Sept 18 −0.44105 0.19910 0.02038 0.021
June 19 −0.57509 0.22640 0.04964 0.014
July 19 −0.55790 0.19940 0.04524 0.021
Aug 19 −0.56821 0.17930 0.04004 0.028
Sept 19 −0.63752 0.25750 0.03693 0.009

CI
Aug 18 −0.33738 0.00204 0.14480 0.319
Sept 18 −0.34024 0.20080 0.12730 0.020

June 2019 −0.61805 0.44060 0.23030 <0.001
July 19 −0.61805 0.41100 0.23650 <0.001
Aug 19 −0.61289 0.36780 0.22830 0.001
Sept 19 −0.67074 0.47490 0.20870 <0.001
EDWI 0.325

Sep 2018–Aug 2018 0.05041 0.01623 0.00142 0.060
Aug 2019–Aug 2018 −0.74979 0.60540 0.00625 <0.001
Sep 2019–Sep 2018 −0.74807 0.56490 0.00581 <0.001
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RGI is a simple ratio of the red and green band. In the pre-event and into the control
zones, the values range between 0.65 and 0.7 (see Figure 4), which means the green
reflectance is greater than the red reflectance. In the harvesting sites, the ratio becomes
greater than 1, so the reflectance of red band exceeds the reflectance of the green band. In
the Agordino windthrown forests, the trunks are lying on the ground since the majority
of trees were uprooted. In this position, the canopy does not completely cover the trunk
and the branches; therefore, the bark and soil are directly exposed and visible from the
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imagery. Consequently, the red spectral component increases. A strong correlation of R2
greater than 0.7 between RGI and the severity has been found (see Table 2).

NDMI has a similar trend to NDVI response, and it has a strong negative correlation
with the severity. NDMI values range from 0.07 to 0.7 (see Figure 4). Healthy vegetation
ranges between 0.6 and 0.8, whereas damaged areas reach a minimum of 0.2 such as RP_01.
In VOA_02 that had 80% of the area damaged and the remaining understorey of 70%.,
average NDMI value is 0.48. Likewise, for the site RA_02, which has exactly the same
understorey of 70%, the NDMI value is a bit greater, 0.55, because the severity is less than
half (30%). In areas TA_01 and TA_02, both with severity of 60%, the NDMI values range
between 0.07 and 0.37 due to the different remaining shrub coverage that is 10% and 40%,
respectively, so the index helps to identify the fraction of bare soil and shrubs.

EVI1 and EVI2 have been tested to study the effect of the canopy fraction. Both indices
have a similar trend, and they range from 0.19 to 0.52. In the pre-event, the values are
quite constant around 0.5, and in the after-event, the value of the indices reach a peak at
0.6. Despite the Spearman’s correlation being negative moderate, the difference pre-post
storm is not very clear, especially in the plot. These indices will not be integrated into the
web application.

EWDI is calculated as the difference between the tasseled cap wetness in two sequen-
tial temporal dates. When the difference was calculated in the same year e.g., in September
and August 2018, obviously no correlation with forestry damage was found. In contrast, on
subtracting September 2018 to September 2019 and August 2018 to August 2019, a strong
negative correlation between the index and the severity was found.

The CI index studies the response of the chlorophyll content that decreases in damaged
areas. The content of chlorophyll in healthy vegetation has a value around 3 [37]. In areas
with sparse green cover such as TOA_01 and TOA_02, CI ranges between 1.45 and 2.10,
and the absolute minimum value from all our areas is 1.34 in LCL_04. Therefore, CI shows
a strong negative correlation with the percentage of damage. The temporal variation of
the CI and NDVI is reported in the scatterplots in Figure 6. In the control areas, there is
no variation in chlorophyll content and NDVI response, so the scatterplot contains sparse
points that do not reflect any change. In contrast, when an area is damaged, some pixels are
aligned with the healthy baseline and other pixels moves from the black baseline (healthy)
to the red baseline (stress), reflecting coherent results with what is reported in [37].

In conclusion, all indices except EVI1 and EVI2 can identify quite well the damaged
areas. This is in line with results that report that EVIs give significant information on green
biomass in non-degraded forests [43]. The visual plot of NDVI, RGI, and NDMI are easier
to read and understand, and will be used for the web application. The VIs have been used
for other disturbances such as bark-beetle infestation [25,33], which is a different case, but
present a similar drop in photosynthetic material.

3.2. Machine Learning Analysis

Regression with machine learning can be used to predict severity. The model parame-
ters were tuned automatically using the Rminer package and a number of search equal to
10. Results were assessed using k-fold cross-validation, with k = 10. The regression error
characteristic curve (REC), which describes the accuracy of the models, shows very similar
results comparing RF, KNN, and SVM (Figure 7) with the former two having slightly
better results. The differences between the first two algorithms are the importance of input
variables. The most important input in both cases is NDMI, but RF takes advantage of
EVI2 information to a greater degree. In contrast, KNN considers RGI as an important
variable (Figure 8).
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KNN (left) and RF (right). RF uses the information of EVI2 for the training.

The severity was then predicted using KNN, RF, SVM algorithms, and a combination
of indices over the testing (Figure 9). Results for the RF algorithm, calculated using the
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Rminer package, are reported in Table 3. NDMI is among the better predictors in our study
for severity. It must be noted that NDMI is used in the literature for detecting water stress
that can be caused by abiotic or biotic factors, e.g., water availability and pathogen attacks,
respectively, and damaged trees reflect a similar spectral signature. It is therefore important
to use NDMI when the causality can be identified specifically.
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Table 3. VIs that have been used as descriptors in machine learning for predicting severity degree
and have been evaluated using metrics.

Descriptor MAE RMSE COR Adj. R2

EVI2 18.07 22.42 0.66 0.38
NDVI_STD 11.39 15.98 0.83 0.65

NDVI 11.40 15.96 0.83 0.66
RGI 8.31 12.40 0.89 0.78

NDVI, RGI 8.63 12.10 0.90 0.78
NDVI, RGI,

NDMI 7.88 10.68 0.92 0.83

NDVI, NDMI 8.13 10.67 0.92 0.84
NDVI,

NDVI_STD 8.07 10.56 0.92 0.84

NDVI, RGI,
NDMI,

NDVI_STD
7.68 9.96 0.93 0.84

NDMI 7.63 10.12 0.93 0.86

The index performing less well is EVI2 with a minimum of 0.38 of adjusted R2. The
NDVI has a average adjusted R2 value of 0.66, but the value increases using NDVI together
with the standard deviation of NDVI; in this case the adjusted R2 reach 0.84.

4. Conclusions

The goal of this investigation is to test the potential of VIs that have proven useful in
previous applications, i.e., NDVI, EVI, RGI, EWDI, NDMI, CI vs. NDVI for their potential
to predict severity of forest areas damaged by windthrow in an alpine environment. The
practical application of these results is to find the most suitable VIs for integrating their use
in a web-GIS application, which automates the typical basic tasks in remote sensing. Remote
sensing analysis requires a piece of specific knowledge and the application aims to simplify
the remote sensing workflow as a support to public administration and stakeholder, which
are not experts in remote sensing. The architecture is based on the PostgreSQL database and
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cloud computing, and allows easy and fast on-demand analysis. The analysis focuses on
windthrow damage and forestry recovery. Furthermore, the indices take into consideration
disturbances that can occur in the future, such as parasite attack. Studying the damaged
areas using Sentinel-2 imagery, the results show a strong correlation of NDVI, RGI, and
NDMI. NDVI and NDMI decrease in the damaged areas, and they have a strong negative
correlation. RGI has a trend in contrast with the NDVI, and it highlights the red component
of the image, such as bark, branches, and soil. It is a simple ratio, easy to calculate using
a red green blue (RGB) camera, which is the base equipment of commercial drones. If
detailed inspection is necessary, UAVs imagery can integrate satellite analysis [35]. NDMI
has a behaviour similar to NDVI, but it is specific for water stress. Finally, the plots in
Figure 4 summarize the temporal behavior of the VIs at the sites. The control areas have a
stable trend in 2018 and 2019 and the damaged areas show a variation in the index with
an increase in standard deviation. Hence, damaged areas can be recognized, but green
coverage greater than 40% influences the indices’ response. Above this percentage, the
apparent forest recovery can be due to shrubs, herbs, or regenerating trees, so field survey
is required. KNN and RF assign different importance to the VI. KNN uses NDMI, RGI, and
NVI whereas RF focus on NDVI, EVI2, and RGI. RF gives less importance to NDVI than
KNN. However, severity prediction using RF produced good results using NDMI or NDVI
and the NDVI standard deviation. In this study, the surveyed areas describe the various
case histories in terms of exposure, slope, and severity in the Agordino area. However,
further analysis is necessary for integrating Sentinel-1 and Sentinel-2, or applying the
model to other Alpine or Pre-Alpine areas affected by the Vaia storm. After two years from
the storm, more investigation can focus on disturbances due to parasites near damaged
areas, such as to study forest health by applying machine learning.

Future work is expected, both related to the analytical part and to the web-GIS.
Regarding the analytical part, tests will be done adding Sentinel-1 information, which
might provide added and non-collinear information with respect to the optical information
from Sentinel-2. In addition, the regeneration will be monitored with the VIs that have
been assessed, to see the sensibility of such information to recovery of the vegetation in the
area. The web-GIS will continue development, to provide automated visualization and
analysis of Sentinel-2 data online. In particular, it is planned to add specific per-pixel cloud
probability that can be calculated with more accurate methods (e.g., s2cloudless [44]) in
order to have a finer definition of reliable pixel values. Users will also be able to define
their own threshold for cloud probability.
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Appendix A

The investigation led to identifying better VIs for monitoring forest damage that
can be successively deployed in the web application. The web application aims to help
forestry technicians and public administrations and stakeholders in forest planning and
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management. In the current stage, the software integrates three indices, determined using
previous investigation on correlation and variable importance using machine learning
regression. The indices used are NDVI, RGI, and NDMI. Figure A1 shows an example
of the interface. On the left, a toolbar allows to select the layer displayed, to activate a
measuring tool and to draw a polygon where the VI analysis will be done. Then, VI and
the temporal domain are chosen in the setting panel. All available Sentinel-2 images, which
spatially overlap the testing area, are clipped and masked. Masking consists of removing
pixels which belong to “cloud (high probability)”, “cloud (medium probability)”, and
“cloud-shadow” in the “Scene Classification” (SCL) product of the Level 2C Sentinel-2
product. Masking is an important step, which removes gross errors in the time-series data
that are created by the user in real-time and might be used for further processing.

A downloadable zonal statistic plot with average and standard deviation of the
selected VI is produced. The color-scaled index map is automatically displayed, and the
time bar allows to change the VI images that are created on-the-fly and projected in the
map. The following items provide an overview of the service provided by the web platform
to end-users:

• draws, over the view area, a styled raster of the chosen VI, automatically clipping
and masking;

• creates a downloadable zonal statistic plot reporting average and standard deviation
values of pixels inside the selected area for all images in the temporal scale;

• provides a downloadable report with raw values with id, timestamp, average, and
standard deviation calculated from all images over the user-selected area (the data
used for creating the plot described in the previous point).

Available Sentinel-2 Level-2C images are automatically downloaded through a script
that checks for available new images each day. This is done only over one specific tile,
(TQS32) as the project had a specific study area to be investigated.
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Appendix B

Table A1. Sev. = Severity (in %); Avg. = Average, Std. = Standard deviation.

21/09/2019 Sev. Canopy Under- NDVI RGI NDMI

Cover Storey Avg. Std. Avg. Std. Avg. Std.

RP_01 100 5 5 0.486 0.099 1.098 0.103 0.197 0.096
CSL_03 90 0 45 0.591 0.092 1.02 0.120 0.295 0.098
AL_03 90 5 40 0.561 0.109 1.064 0.157 0.242 0.122
RP_02 90 10 10 0.513 0.101 1.077 0.102 0.23 0.103

VOA_02 80 30 70 0.742 0.095 0.843 0.153 0.473 0.105
VOA_05 80 60 40 0.810 0.084 0.784 0.156 0.554 0.104
LCL_04 80 5 35 0.332 0.071 1.333 0.112 0.078 0.114
AG_03 80 0 15 0.569 0.197 1.153 0.295 0.229 0.224
RP_03 80 5 15 0.599 0.115 0.989 0.150 0.313 0.120
RP_04 70 20 25 0.565 0.093 1.024 0.104 0.297 0.093

LCL_03 70 10 10 0.472 0.093 1.119 0.088 0.194 0.085
TA_02 60 40 70 0.690 0.071 0.923 0.124 0.371 0.084
TA_01 60 10 10 0.436 0.133 1.210 0.122 0.068 0.124

VOA_06 50 60 60 0.782 0.119 0.787 0.171 0.536 0.156
TA_04 50 60 50 0.806 0.081 0.762 0.149 0.537 0.114

VOA_01 50 30 50 0.710 0.095 0.924 0.139 0.432 0.101
RA_03 50 60 40 0.727 0.108 0.870 0.188 0.452 0.124
LCL_02 50 25 25 0.625 0.116 0.960 0.160 0.336 0.117
RA_02 30 30 70 0.805 0.071 0.745 0.133 0.548 0.104

LCL_NW1 0 - - 0.829 0.043 0.721 0.157 0.693 0.092
LCL_NW2 0 - - 0.822 0.029 0.701 0.114 0.672 0.071

RP_NW 0 - - 0.841 0.028 0.657 0.118 0.726 0.055

21/09/2019 Sev. Canopy Under- EVI1 EVI2 CI
Cover Storey Avg. Std. Avg. Std. Avg. Std.

RP_01 100 5 5 0.233 0.071 0.228 0.068 1.575 0.237
CSL_03 90 0 45 0.317 0.081 0.310 0.079 1.880 0.246
AL_03 90 5 40 0.298 0.087 0.293 0.083 1.785 0.295
RP_02 90 10 10 0.256 0.070 0.249 0.068 1.662 0.248

VOA_02 80 30 70 0.420 0.108 0.405 0.103 2.544 0.434
VOA_05 80 60 40 0.457 0.114 0.441 0.107 3.022 0.567
LCL_04 80 5 35 0.192 0.056 0.197 0.053 1.338 0.181
AG_03 80 0 15 0.316 0.160 0.316 0.152 1.967 0.714
RP_03 80 5 15 0.309 0.089 0.301 0.087 1.898 0.363
RP_04 70 20 25 0.328 0.089 0.318 0.086 1.812 0.276

LCL_03 70 10 10 0.234 0.054 0.228 0.052 1.572 0.219
TA_02 60 40 70 0.370 0.080 0.361 0.077 2.099 0.209
TA_01 60 10 10 0.186 0.068 0.184 0.066 1.457 0.279

VOA_06 50 60 60 0.383 0.115 0.370 0.109 2.786 0.625
TA_04 50 60 50 0.522 0.156 0.504 0.147 2.927 0.497

VOA_01 50 30 50 0.376 0.089 0.364 0.085 2.386 0.386
RA_03 50 60 40 0.384 0.110 0.373 0.104 2.464 0.471
LCL_02 50 25 25 0.346 0.109 0.337 0.105 1.992 0.367
RA_02 30 30 70 0.475 0.125 0.457 0.117 3.053 0.508

LCL_NW1 0 - - 0.342 0.092 0.334 0.088 2.978 0.314
LCL_NW2 0 - - 0.451 0.135 0.446 0.135 2.922 0.193

RP_NW 0 - - 0.454 0.106 0.445 0.101 3.108 0.232
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Table A1. Cont.

21/09/2019 Sev. Canopy Under- EDWI Sep.
19-18

EDWI Aug.
19-18 EDWI 2018

Cover Storey Avg. Std. Avg. Std. Avg. Std.

RP_01 100 5 5 −0.043 0.015 −0.047 0.018 0.006 0.007
CSL_03 90 0 45 −0.046 0.025 −0.049 0.027 0.007 0.010
AL_03 90 5 40 −0.048 0.022 −0.053 0.024 0.006 0.008
RP_02 90 10 10 −0.041 0.018 −0.045 0.020 0.006 0.007

VOA_02 80 30 70 −0.030 0.025 −0.028 0.025 0.011 0.014
VOA_05 80 60 40 −0.017 0.018 −0.014 0.020 0.011 0.009
LCL_04 80 5 35 −0.080 0.026 −0.079 0.035 0.006 0.013
AG_03 80 0 15 −0.043 0.034 −0.045 0.039 0.009 0.011
RP_03 80 5 15 −0.039 0.019 −0.042 0.020 0.006 0.009
RP_04 70 20 25 −0.048 0.020 −0.047 0.021 0.006 0.010

LCL_03 70 10 10 −0.043 0.018 −0.049 0.021 0.006 0.008
TA_02 60 40 70 −0.038 0.017 −0.036 0.018 0.010 0.008
TA_01 60 10 10 −0.044 0.011 −0.048 0.013 0.007 0.004

VOA_06 50 60 60 −0.017 0.018 −0.015 0.021 0.009 0.009
TA_04 50 60 50 −0.017 0.024 −0.015 0.025 0.009 0.016

VOA_01 50 30 50 −0.028 0.016 −0.026 0.016 0.009 0.009
RA_03 50 60 40 −0.030 0.023 −0.024 0.023 0.012 0.011
LCL_02 50 25 25 −0.033 0.020 −0.036 0.024 0.008 0.010
RA_02 30 30 70 −0.021 0.025 −0.014 0.025 0.013 0.013

LCL_NW1 0 - - −0.004 0.012 0.001 0.014 0.005 0.011
LCL_NW2 0 - - −0.002 0.016 −0.001 0.013 0.000 0.018

RP_NW 0 - - −0.004 0.016 0.001 0.015 0.003 0.016
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