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Abstract

This report describes the results

of a research program directed toward

the development of a theory of the

spectral reflectance or emittance of

particulate minerals. The theory is

expected to prove invaluable in the

detailed interpretation of the remote

infrared spectra of planetary surfaces.

The principal results are described in

two manuscripts that have been submitted

for publication (Sections II and III).

Some further improvements and other

results are discussed in other sections.
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I. INTRODUCTION

The results of our research program directed at the development of

a theory of the spectral reflectance of minerals have been discussed in

1 2 3a series of reports ' ' as the work has proceeded. These progress

reports have continually updated the theory as successive refinements

were made. During the course of the work certain lines of investiga-

tion were pursued while others were abandoned without perhaps being

sufficiently explored. Frequently, improvements in the fit to certain

spectral features were made at the expense of other details, but as the

improvements were almost always in the nature of a less approximate

treatment, and as the apparent fit showed distinct overall improvements,

the authors believe that the theory has continually improved. A thorough

description of the details of the work, as of the summer of 1972, has

been submitted for publication in Applied Optics. This description

takes the form of two papers. The first provides a coherent description

of the entire theory and the second shows the results of comparison of

that theory with experimental data. For the most part these are up-to-

date and are therefore herein presented as the bulk of the final report

on this work. Nonetheless in the few months remaining after the.ir sub-

mission some further improvements were made in the theory. They will

be discussed along with some topics not treated in the papers. It is

the authors' intention to write a further paper to discuss these topics

and improvements when they have sufficiently matured.
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II. The Spectral Reflectance and Emittance

of Particulate Materials,

Part I - Theory

A. G. Emslie and J. R. Aronson

Arthur D. Little, Inc.

Cambridge, Massachusetts 02140

Abstract

The infrared spectral reflectance of a semi-infinite medium

composed of irregular particles of different materials is cal-

culated in terms of the sizes, shapes, and complex refractive in-

dices of the particles. For particles larger than the wavelength

the scattering and absorption are computed mainly by geometrical

optics but with important wave-optical corrections for the addi-

tional absorption caused by edges and asperities, which are repre-

sented by dipoles distributed over the surface of the particle.

II-l
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For particles smaller than the wavelength a Lorentz-Lorenz model

is used to derive the average complex index of the medium, the

/

particles being treated as ellipsoids with a wide range of shapes.

The average scattering of an individual ellipsoidal particle is

then found from the relative refractive index of the particle

with respect to the Lorentz-Lorenz medium. For both large and

small particles the single-particle scattering is represented by

six discrete beams. Calculation of the reflectance is then

facilitated by a radiative transfer method that also involves six

beams. For particles of intermediate size a suitable formula

bridging the results for large and small particles is found to

be satisfactory.

II-2
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INTRODUCTION

Many theoretical attempts have been made to explain the re-

1 2flection spectra of clouds and powders. ' Most authors calculate

the scattering and absorption of the individual particles by apply-

3
ing the well-known Mie theory to spheres of the same volume as

4
the actual particles. The reflectance of the cloud or powder is

then calculated by a two-beam theory such as that of Schuster or

Kubelka and Munk, by a many-beam method usually based on the

7 8
general theory of Chandrasekhar, or by a Monte Carlo technique.

9
Blevin and Brown have demonstrated that multiple-beam calculations,

in which scattering and absorption -are regarded as spatially con-

tinuous, remain approximately valid even when the particles are

almost in contact. Non-continuum models have, however, been pro-

posed by Lathrop and Melamed.

This paper presents a theory of spectral reflectance in which

two additional physical mechanisms are taken into account, namely,

the effect of particle shape and, in the case of closely-spaced

II-3
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fine particles, the effect of coherent interaction between the par-

ticles. Inclusion of these two effects is essential to provide

good agreement between theoretical and experimental spectra, as

12shown in Part II. In addition, the theory incorporates a num-

ber of mathematical innovations.

In order to allow for shape features such as edges and sur-

face asperities on large particles (d >^ A) we abandon Mie theory

and revert to a combination of geometrical optics to obtain the

main scattering and absorption, and wave optics to obtain the

effect of the edges and asperities, both regarded as induced

dipoles. This we will refer to as the coarse particle theory.

In the case of fine closely-spaced particles (d « X), we

also do not use Mie theory but regard the particles as randomly

oriented ellipsoidal dipoles which cause both coherent scattering

(Fresnel component) and incoherent scattering (Rayleigh component).

This we call the fine particle theory. The coarse and fine theo-

ries are connected by an empirical bridging formula.

II-4
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COARSE PARTICLE THEORY

As a model for the coarse particle theory we represent the

large-scale shape of a particle by a sphere of the same volume as

the actual particle and the small-scale shape, including edges and

other surface asperities, as a distribution of dipoles spread uni-

formly over the surface of the sphere. This model evolved from

the practical requirement of mathematical tractability and from

the consideration that, for chunky particles at least, the scatter-

ing and absorption corsssections depend critically on the small-

scale shape but only slightly on the large-scale shape. Final jus-

tification of the model appears in the good agreement between the-

ory and experiment. One might think that an equivalent sphere

would be a poor representation of a platelet-shaped particle but

even in this extreme case the theory gives results in good agree-

ment with observation.

1. Calculation of Single-Particle Scattering and Absorption

Crosssections

II-5
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We first consider a parallel beam of radiation incident on

the equivalent sphere which represents a given particle. Fig. 1

shows reflected and refracted rays produced by an incident ray that

strikes the sphere at an angle of incidence 6.

In order to allow for the effect of inhomogeneous wave pro-

pagation that occurs owing to the complex index of refraction

m = n - ik (1)

we define the effective angle of refraction fy as the direction of

the Poynting vector in the particle, given by the formula

sin 9
tan i|) = r r r-rr- (2)

Re (in - sin 6)1/Z

where Re signifies "real part". Eq. (2) reduces to the usual law

of refraction when m is real, i.e., when the absorption index k

is zero.

The angle of deviation <}> of the transmitted ray is given by the

relation

4 - 2- I 0 - t|» I (3)

II-6
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FIGURE 1 RAY TRACING GEOMETRY
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where the absolute value signs allow for the case where n < 1.

The transmission path £ is given by the equation

£ = 2a cosijj (4)

where a is the radius of the sphere.

Let I0 be the intensity of the unpolarized incident parallel

beam. Then the power incident on the sphere in the angular range

d9 is

dP0 = ira
2I0 sin29 d6 (5)

The corresponding refracted power is

= Tra2I0T0
2T sin29 d6 (6)

where T0 is the surface transmittance which includes the effects of

Fresnel reflection and absorption by asperities and edges, and T is

the transmission factor given by

T = e" ~*~~ (7)

where X is the free-space wavelength of the radiation. An expres-

sion for To is derived later.

II-8
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The angular distribution (6), considered as function of the

angle of deviation <f> given by (3), is the contribution of refrac-

tion to the single particle phase function. To facilitate radiative

transfer calculations we represent the continuous distribution (6)

approximately by a set of six mutually perpendicular discrete beams

comprising a forward-scattered beams, a backward-scattered beam

and four transversely-scattered beams. For this purpose we need

a method for dividing the power dP of a ray in the forward hemi-

sphere between the forward and transverse discrete beams. Suitable

weighting factors are cos2^ for the forward direction and sin2<}>

for the combined transverse directions since this division clearly

conserves energy and is exact for <J> = 0, 45°, and 90°. For a ray

in the backwards (<j> >^ 90°) hemisphere the backwards and trans-

verse weighting factors are also cos2<|> and sin2<f>. In the case of

isotropic scattering the weighting scheme results in equal inten-
/

sities in the six discrete beams as it should.

Using this weighting method we find from (6) that the cross-

II-9
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sections for forward, transverse, and backward scattering due to

refraction are

<t><rr/2
°refr f = ™ T°T COs<)> sin2e de

a r71/2
refr, t = ira2 / T0

2T sin2<j> sin29 d6 (9)

6=0

a = ira2 f T0
2T cos2(|) sin29 d6 (10)

rerr, b J

The crosssections for externally reflected radiation are

given similarly by

•is 12
= Wo2 1

refl, f
a „ f = ira2 / R0 cos229 sin29 d9 (11)

/•TT/2

a .. fc = Tra
2 / R0 sin

229 sin29 d9 (12)
rerl, t J0

/•ir/4
a ., . = ira2 / Ro cos229 sin29 d9 (13)
refl, b J °

where R0, the surface reflectance, like T0, includes the effects

of both Fresnel reflection and absorption by asperities and edges,

11-10

Arthur D Little; Inc



and will be calculated later. These two quantities, as well as T,

vary with wavelength since they depend on m which is a function

of the wavelength. The weighting factors cos2<J> and sin2<j> in this

case become cos229 and sin226 since <f> = IT - 26 for reflection.

A third contribution to the crosssections arises from radia-

tion that undergoes one or more internal reflections in the par-

ticle. For a given incident ray the fraction of the power that

emerges from the particle after undergoing internal reflections

2 2 2 2 3
is the sum of the series R0T0 T + R0 T0 T + which has

2
the value R0T0 /(1-R0T). We assume for simplicity that this power

is distributed isotropically so that the weighting factors are the

same for all six discrete beams. The crosssections for iternally

reflected radiation are therefore

= A 21 R0T0 T
7int refl, f 6 ""*

Tr/2 22
S - Sin26de
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ir/2
aint refl

i « r i r/2 TJ T
, b = ? ̂  J ^

To calculate the absorption crosssection we subtract the sum

2 22
of the factors T0 T, R0, and R0T0 T /(1-R0T) from unity and inte-

grate over 6. Therefore

Oabs = ™2 <l - Ro - l) sin29 d6 (17)

Some comments are in order on how our procedure compares with

current methods. The scheme of applying weighting factors directly

to the phase function in order to derive a set of discrete beams

differs from the usual method in which the phase function is first

expanded in a series of Legendre polynomials which is then truncated,

generally after two terms. It is to be noted that the reconsti-

tuted phase function obtained from the truncated series may differ

very considerably from the original phase function, especially in

the case of strong forward scattering. For complete forward scat-

tering the truncated phase function is proportional to 1 + 3 cost))

which actually yields a negative intensity in the backward direc-

11-12
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tion (<j> = ir). We believe that our procedure is preferable since

it cannot give rise to any such non-physical intensity distribution.

The Mie theory, which is widely applied at present for phase

function calculations of both spherical and non-spherical particles,

cannot be made to include the important effects of edges and other

asperities. The reason is that R0 and T0, which contain these

effects, occur in different ways in the expressions for the cross-

sections for reflection, refraction, internal reflection, and

absorption.

In our treatment we omit the effect of diffraction around a

particle on the ground that for powders, on which most of our ex-

perimental work has been done, the particles are so close together

and so randomly distributed that the conditions for Fraunhofer

diffraction do not exist. In the case of clouds, however, a cor-

rection for diffraction should be made.

2. Effect of Edges and Asperities

The surface reflection and transmission factors R0 and T0

11-13
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depend on the effect of edges and asperities on the particles as

12
well as on the ordinary Fresnel reflectance. In Part II we show

experimentally that very fine particles adhering to the larger par-

ticles in a coarse powder cause a substantial reduction in reflec-

tion level. Another experiment shows that a similar loss occurs in

the reflectance of a single crystal when the surface of the crystal

is abraded. Moreover, the spectral reflectance of the abraded

crystal has a broad feature that closely resembles a feature in

the spectrum of a coarse powder of the same material. Microscop-

ic examination of this powder shows that the particles have, in

addition to the expected sharp edges, facets that are covered with

fine steps, ridges, and other asperities. Another powder composed

of spherical particles which have surface asperities but no edges

has a smaller reflection loss than a powder of jagged particles.

These facts prove that any perturbation of the smooth surface of

a particle, whether in the form of an edge, an asperity, or an

adhering smaller particle, causes enhanced absorption.

11-14
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We have considered several possible mechanisms for the en-

hanced absorption. One idea is that asperities and edges act like

a transition layer with a graded refractive index that provides a

partial impedance match between vacuum and the interior of the par-

ticles . Another concept is that in spectral regions of near-total

external reflection, which occurs when n < 1, the inhomogeneous

wave traveling tangentially just under the surface of the particle

is scattered by asperities and edges into the interior of the par-

ticles, where it is absorbed. A third possibility is that the

asperities and edges act as induced dipoles and absorb some of the

incident radiation directly.

In view of the fact that the phenomenon of excessive absorp-

tion is observed when the asperities or adhering particles are

much smaller than the wavelength we conclude that direct dipole

absorption is the most likely mechanism. The reason is that under

these conditions dipole absorption is directly proportional to the

volume of an asperity while scattering varies as the square of the

11-15
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volume. Impedance matching requires a transition layer whose thick-

ness is an appreciable fraction of a wavelength. In this paper, we

will therefore confine our calculations to the case of direct ab-

sorption by surface dipoles. This subject has been investigated

13 14in some depth by Strachan and Berreman. We find, however, that

a simpler theory, in which we ignore interactions of the dipoles

with each other and with the underlying main particle, serves our

purposes very well.

We assume that edges and asperities can be represented as

ellipsoidal particles. An ellipsoidal sub-particle of electric

susceptibility x placed in an electric field E acquires a polar-

ization P given by the well-known result of electrostatics:

py =

(20)

where the components PX, Py, PZ and Ex, Ey, Ez of P and E are re-

11-16
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ferred to coordinates aligned with the principal axes of the ellip-

soid. The depolarization factors L, M, N are determined by the

axial ratios of the ellipsoid and satisfy the relation

L + M + N = 47T (21)

In the case of a sphere L = M = N = 4ir/3.

From (18)-(20) one finds for the components of the induced

dipole moment y:

„ - V(K-l)Ey
yx 4TT + L(K-l) (22)

_ V(K-1)EV
My 4TT + M(K-l)

= V(K-l)Eg
pz 4rr + N(K-l)

where V is the volume of the particle and K is its dielectric con-

stant.

We assume that the particle is small enough so that (22)-(24)

remain approximately valid for an alternating field. Then the

power absorbed by the particle is

11-17
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f

= " Tm* (K-DlExl2 . (K-l)[Ey|2 (K-1)|E,|2 I
~ 2 \ 47r+L(K-l) 4ir+M(K-l) 4Tr+N(K-l) J

We next assume that the particle can have all orientations

relative to the field E. Then the average power absorbed is

(26)

where u is the angular frequency of the radiation and we have re-

placed K by the square of the complex refractive index, m.

It is to be noted that for a given shape of ellipsoid, speci-

fied by particular values of L, M, and N, W becomes very large at

wavelengths for which m is near the poles of the expression in

1/2curly brackets in (26), i.e., when n«l and k is near [(4ir/L)-l] t

1 /2 1/2
[(4ir/M)-l] , or f(4ir/N)-l] . Such values of m actually occur

in strong reststrahlen spectral regions in the infrared. There-

fore reflection spectra calculated for edges or asperities repre-

II-18
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sented by a particular choice of L, M, and N show very sharp de-

creases in reflectance at wavelengths for which m is close to these

special values of m, while experimental spectra show much broader

absorption maxima in the same regions of the spectrum. It is

clear therefore that in the theory one must allow for the observed

variability in the shapes of edges and asperities by averaging

over a range of values L, M, and N. We have tried averaging Eq.

(26) over various ranges of L, M, and N subject, of course, to

condition (21). The result is that the widths of the absorption

maxima now become similar to those observed experimentally, pro-

vided that the range of integration over L, M, and N is wide enough.

Apart from this requirement one still has considerable freedom in

the choice in the range of ellipsoid shapes included in the average,

as determined by L, M, and N values covered. Different ellipsoid

shape distributions produce subtle differences in the shape of

the theoretical reflectance spectrum.
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In the case of edges we choose ellipsoids that are very elon-

gated in the direction of the edge, corresponding to N = 0, and

with a complete range of cross-sectional shapes. Under these con-

ditions, M = 4ir - L and L varies from 0 to 4ir. On averaging (26)

over all values of L with equal weighting we obtain for the power

absorbed by an edge:

= o)Ve IEI
 2
 0

We • -1 Im (m2-! + 4 log m) (27)

In the case of surface asperities where the shapes may vary

from ridges to mounds we select ellipsoids of revolution (L = M)

and let N vary from 0 (needle shape) to 4ir/3 (sphere). The aver-

age value of W for asperities is then

»a ' - - *•> 'I' log - 9 log _) (28)

We must next consider the value to be assigned to the volume

V of asperities or edges. In the case of asperities we could take

Va to be twice the actual volume of a ridge or bump on the sur-
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face in order to allow approximately for the image field. In prac-

tice, however, since the details of the size distribution of the

asperities are difficult to obtain we regard V as an adjustable

constant.

In the case of edges V can be expressed as

Ve = He 6 b (29)

where &e, 6, and b are respectively the edge length, the effective

depth of penetration of the radiation, and the effective width of

the region perturbed by the presence of the edge.

We assume that both 6 and b are of the order of X/4ir, where X

is the free-space wavelength of the radiation, except that in spec-

tral regions of high absorption 6 should become considerably smaller

than b owing to reduced penetration of the radiation. This behav-

iour in absorbing regions is obtained if we equate 6 to the 1/e

penetration depth of the Poynting vector associated with the re-

fracted wave, which, for an average angle of incidence of 45°, is

11-21
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given by

6
 2 1/2

 (30)

4TrRe(0.5-m ) '

However, since this expression diverges when the medium is trans-

parent and n > l/v̂ 2~, we replace (30) by the modified expression

1 v

= _X /

~ *' V
6 = -^ 1 1 - e

 MW'J m ' ; (31)

which reduces to (30) in highly absorbing regions and is approxi-

mately X/4iT in transparent regions.

We now calculate the surface absorptance of a particle. The

power density I0 of the incident parallel beam is given by

^ }

The average surface absorptance caused by edges and asperities for

locations on the equivalent spherical particle corresponding to

the angle of incidence 6 is given by the expression

A0 = 1 - e~
X (33)

where

Ke e + Na'a (34)
I0 C.OS&
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Here Ne and Na are the average number of edges and asperities per

unit area of the spherical surface. The obliquity factor l/cos6

allows for the increase in the number of edges and asperities per

unit crosssection of the beam as 6 increases. The exponential

form of (33) ensures that A0 always lies between 0 and 1 and has

the correct value when WQ and Wa are small.e a

The surface reflectance and transmittance are related to A0 by

the equations

R0 - (
Rs * Rp) (1 - A.) (35)

T0 = (1 -
 Rs * Rp) (1 - A0) (36)

where Rs and Rp are the Fresnel reflectances at the angle of inci-

dence 6 for the two states of polarization of the incident radia-

tion. It will be noticed that (35) and (36) reduce to the usual

expressions in the absence of edges or asperities. The equations

also satisfy energy conservation since

R + T + A = 1 (37)
o o o
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From (27), (28), (29) and (32), Equation (34) becomes

|-Ne£eSb Im(m
2 - 1 + 4 log m)

n

- NaVaIm(12 log
 m + 1 - 9 log ) (38)
n 0

m

In this expression we consider NaVa, the total volume of asperities

per unit area of particle surface, as an adjustable parameter.

Likewise b, the effective width of an edge, is adjustable to some

extent from a nominal value of X/4ir.

The product Ne&e, which is the total length of all the edges

of a particle divided by the surface area of the equivalent sphere,

depends on the geometry of the particle. Values of this quantity,

expressed in terms of the diameter d^ of the equivalent sphere, are

shown in Table I for the five regular polyhedra. It is to be noted

that for any given particle shape the edge absorption depends in-

versely on d. As one would expect, the proportionality constant

increases, albeit erratically, as the number of edges increases.

Since the dodecahedron and icosahedron have unlikely geometries
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we take Ne&e to be the mean for the first three polyhedra:

- (39)

Table I. Total Edge Length per Unit Area of Equivalent Sphere

Particle
Shape

Tetrahedron

Cube

Octahedron

Dodecahedron

Icosahedron

FINE PARTICLE THEORY

Number of
Edges

6

12

12

30

30

»e*e

3.14/d

3.08/d

3.96/d

'3.90/d

5.93/d

Closely spaced fine particles of size much smaller than a

wavelength interact in two ways with a beam of radiation. First,

many particles scatter coherently in the beam direction and there-

by give rise to an average Lorentz-Lorenz (L.L.) index of refrac-
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tion for the particulate medium, which causes Fresnel reflection

at the surface of the medium. Second, since the particles are

not regularly spaced as in a crystal each particle also scatters

o.

the radiation incoherently in all directions (Rayleigh Scattering)

with an intensity that depends on the contrast between the in-

trinsic refractive index of a given particle and the L.L. index of

the averaged medium in which it is embedded. The fine particle

theory includes both of these effects.

1. The Lorentz-Lorenz Index of Refraction

Our model for a fine-particle powder consists of an assembly

of ellipsoids of the same volume as the actual particles and cover-

ing a wide range of shapes. The reasons for this choice of model

are that ellipsoids are mathematically tractable by the L.L. method

and that an average over a range of ellipsoid shapes avoids "reso-

nance" difficulties of the kind already mentioned in connection

with edge and asperity dipoles. Such difficulties previously led

us ' ' to calculate excessively high Fresnel reflectances
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when the L.L. method was used for spherical shapes alone.

By analogy with the original L.L. method we consider a par-

ticular ellipsoid to be enclosed in a coaxial ellipsoidal cavity

of the same shape carved out of a continuous medium that has the

average L.L. index m. If E is the average electric field in the

medium then the field Ec in the cavity has the components

Ec = E" (1 + LX) (40)
X X

Ey = I" (1 + MX) (41)

EC = E (1 + NX) (42)
z z

where x is the electric susceptibility of the medium and L, M, and

N are the depolarization factors of the cavity and of the ellipsoid.

The axes (x, y, z) are aligned with the axes of the ellipsoid.

The field EC in the cavity produces a polarization P in the

particle with components

P =
 XE£ = X(l + LX)EK . .

x 1 + LX 1 + LX *• '

y i + MX i + MX
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NX)EZ
l 'z ~ 1 + NX " 1 + NX

We now assume that the ellipsoid has random orientation with

respect to the field E in the medium and calculate the average

polarization of the ellipsoid in the direction of E. The result is

- = <P-E> _ X|E|(1 + LX + 1 + MX + 1 + NX \

1 + LX 1 + MX 1 + NX /

The average electric moment induced in the ellipsoid is

therefore

— = XIE
V 3

1 + LX 1 + MX 1 + NX \
1 + LX 1 + MX 1 + NX I

where V is the volume of the ellipsoid.

Next we average y with respect to ellipsoid shape. For this

purpose we assume that all values of L, M, and N from 0 to ATT are

equally probable subject to the constraint that L + M + N = Air.

The result of the averaging is

We can also write the relation

fll

V | E |
(49)
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since the whole medium can be considered to be composed of ellip-

soids of average dipole moment y packed at the volume fraction f.

On substituting for v from (48) into (49) and solving for x

we obtain the result

f |"(1 + -Ar) log (1 + 4irX) -l]
L - - - - - (50)

- f + (1 + > log (1 + 4irx) -l]

(51)

— _2 2
Since 4irX = m - 1 and 4irX = m - 1 we obtain the following rela-

tion between the L.L. index m and the particle index m:

_ 2f|(1 + -A-) log (m2) - l]_2 . L nr—1 J
m - J. T r-f= - —

1 - f + -Z3y- (1 + -£-—) log(m2) - 1
m L j. j

It is worth noting that m -»• m, as it should, when f -»• 1.

This formula can readily be generalized for the case of a

mixture of fine particles of different materials with volume frac-

tions fj and indices mj. The result is

(52)
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2. Rayleigh Scattering Crosssection

The Raleigh scattering by an ellipsoidal particle of index m

immersed in a medium of L.L. index m depends on the polarizibility

of the ellipsoid, which is related to the relative index m/m by

the formula

.o -- - z - (53)
X 4* + L(|r - 1)

with similar expressions for the polarizibilities a and a along

the two other principal axes of the ellipsoid.

The total scattering crosssection for an incident paral-

18lei beam of radiation in the medium is given by

a = -^ K"a2|a |
2 + m2|a I2 + n2|a |2) (54)J x y z

where A, m, n are the direction cosines of the electric field

in the medium and

2ir 2ir n
K = X ,, Xmedium

(55)

Here n is the real part of the L.L. index m.

On averaging over all orientations of the ellipsoid relative
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to the electric field direction we find, from (53) and (54):

Sir , ,m2 2f, l
V2|r5-- 1| {I ^-^z—

m 4ir m

(56)

We next average over all ellipsoid shapes as in the deri-

vation of the L.L. index. Under these conditions the three terms

containing L, M, and N are equal and (56) reduces to

2
52

(57)

where < > indicates averaging over L.

On carrying out the averaging for 0 ̂  L = 4u, and allowing

for the fact that m and m are complex numbers, we obtain

n2 .2

a =
Sir

Im(log z-) + Im

(58)

where Im signifies "imaginary part".
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One can generalize this expression to include the case of a

mixture of mineral powders (or of particles of the same material

but of different sizes) by multiplying (58) by the particle volume

fraction f. of material j and summing over j.

RADIATIVE TRANSFER THEORY

The radiative transfer theory presented in this paper is re-

stricted to the calculation of the reflectance of a parallel beam

incident normally on the surface of a semi-infinite powder or cloud.

This case is equivalent, by Kirchhoff's law, to the calculation

of the normal emittance of an isothermal powder or cloud, which

is approximately the measured quantity discussed in Part II.

(1) Six-beam Model

Multiple scattering of the incident parallel beam produces

diffuse radiation in the particulate medium. We represent the

combination of diffuse and collimated radiation at any point in

the medium by means of six mutually orthogonal beams, one of which
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is in the direction of the collimated incident beam which we take

to be the x-direction.

Let I and J be the flux densities of the beams in the x and

-x directions and !]_, 12, 13, I4 the fluxes in the transverse

directions y, -y, z, -z. Then the radiative transfer equations

are

^ = -(K + Sb + St)I + SbJ + |- St(Ii + I2 + I3 + I4) (59)

- ̂  = -(K + Sb + St)J + Sbl + J St(Ii + I2 + I3 + I4) (60)

dlT
dy

" |^ = -(K -f Sb + St)I2 + Sbli + £ St(I + J + I3 + I4) (62)

U* = -(K + Sb + St)I3 + SbI4 + i St(I + J + T! + I2) (63)

" & = -(K + Sb + St)x4 + SbZ3 + T St(X + J + Ix + I2) (64)

where K, Sb, St are the absorption, backscattering, and transverse

scattering coefficients, respectively, for any of the beams.

These coefficients will later be expressed in terms of the single-

-(K + Sb + St)l! + SbI2 + i St(I + J + I3 + IO (61)
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particle crosssections derived above.

Owing to the symmetry of the situation we have:

l! - I2 - 13 - 14 - 4- P (65)

where P is the sum of the transverse fluxes. Therefore, on

adding Equations (61)-(64) we obtain the result

P 1 (I + J) (66)

On substituting this value of P into (59) and (60) and re-

arranging the resulting equations we find that they can be put in

the form

= -(K' + S')I + S'J (67)

- - -(K1 + S')J + S'l (68)

where

4K

4K + 2St

2

4K + 2St

Thus the radiative transfer problem here reduces essentially

to a two-beam problem with equations which are identical in form
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to the well-known equations of Schuster or Kubelka and Munk.

The interpretation of our coefficients K' and S' is different,

however, since, from (69) and (70), each involves both absorption

and scattering terms which arise from the interaction of the I and

J beams with the reservoir of transverse radiation. In the Schuster-

Kubelka-Munk equations, on the other hand, K1 and S' refer to ab-

sorption and backscattering, respectively, of two, oppositely-

directed diffuse beams.

We have also tried an alternative six-beam model, similar to

4
that used by Conel, in which three of the orthogonal beams are

equally inclined with respect to the +x direction and the other

three beams equally inclined with respect to the -x direction.

This model is very convenient if the incident radiation is diffuse,

but leads to difficulties for collimated incident radiation. To

solve the radiative transfer problem for this orientation of the

six beams one must derive coefficients S-^ and $2 (from the single-
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particle scattering coefficients) that describe respectively the

rate of scattering of the incident collimated beam into the for-

ward and backward sets of beams. In performing this calculation

we found that S^ becomes negative if the single-particle phase

function has a sufficiently large backward-to-forward assymmetry

factor. For this reason we abandoned this model.

(2) Coarse-particle Case

In the case of coarse particles the boundary condition at the

surface of the particulate medium (x = 0) is that I(o) is matched

to the flux I0 of the incident collimated beam, while j(o) is

matched to the flux J0 of the outgoing diffuse radiation. At

x = oo both I and J are zero. With these boundary conditions

Equations (67) and (68) give for the reflectance J0/I0 the ex-

pression

v I / y' o V*
RV = 1 + |r - y(fr) + 2(fr) (71)

It is worth noting that our six-beam transfer model does

not involve a gradual conversion of the incident collimated beam
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19into diffuse radiation in the medium as in the model of Duntley

which is similar to an earlier version of our theory. While this

20change made little difference, our present model is much easier

to apply and can readily be extended to the case of oblique incidence.

The scattering coefficients St and Sb in (69) and (70) are

given by

St - N ot (72)

Sb = N ab (73)

Here N is the number of particles per unit volume and at, a^ are

the total single-particle crosssections for transverse and back-

ward scattering:

°t = arefr,t + arefl,t + ffint.refl,t

ab = arefr,b + arefl,b + °int.refl,b

The absorption coefficient K is given by

K = N oabs (76)

The particle density N is related to the particle volume-
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fraction f and the diameter d of the equivalent sphere by the

formula

In the case of a mixture of particles, or of a distribution

of sizes, we attach a subscript j to f and d in (77) and sum (72),

(73) and (76) over j to obtain average values of St, S^ and K.

(3) Fine-Particle Case

In the case of fine particles the boundary condition at the

surface of the medium is that both the incident collimated beam

I0 and the outgoing internal beam J undergo Fresnel reflection

due to the L.L. index m of the medium. The surface reflectance

Rs is given by

*s - I |TT I2 <78>
With this boundary condition the reflectance R derived from

Equations (67) and (68) now becomes

R = Rs + " R Y (79)
(1 - RSRV)
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where Ry is the volume reflectance given as before by (71) .

As in the coarse-particle case, a comment is in order here.

Since our model involves only collimated rather than diffuse beams

19the phenomenon of trapped radiation due to total internal reflec

tion does not arise since all beams are either perpendicular or

parallel to the surface of the medium.

The coefficients Ŝ ., S^ and K for the fine-particle case are

St = j N a (80)

Sb = \ N a (81)

K - (82)

where a is given by (58) . For mixtures we again use average values

of St, Sb and K obtained by attaching a subscript j to f and d in

(77) and summing over j .

COMBINATION OF COARSE AND FINE PARTICLE THEORIES

For particles in the size range between a few tenths of a

wavelength and one wavelength neither the coarse nor the fine par-
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ticle theory would be expected to give accurate results. The laws

of geometrical optics used in the ray tracing part of the coarse

particle theory begin to break down for particles smaller than the

wavelength and the laws of wave optics gradually take over. Again,

for particles larger than a few tenths of a wavelength the concept

of the average L.L. index used in the fine particle theory becomes

inexact because neighboring particles are too widely spaced to

produce strong coherent scattering. Moreover, the dipole approx-

imation used in the Rayleigh scattering part of the fine-particle

theory becomes a progressively poorer approximation as the par-

ticles become larger.

It would clearly be impractical to derive a comprehensive

theory for particles of any size which would include the effects

of coherence, edges, asperities, and particle shape. Instead, we

use an empirical bridging formula that reduces to the coarse-particle

theory for large particles and to the fine-particle theory for very
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small particles. The main justification for the bridging formula

is that for particles in the intermediate size range the coarse-

and fine-particle theories give calculated reflection spectra

that resemble each other.

We assume a bridging formula of the type

R = F Rcoarse + U - *) *fine (83)

where F is a weighting factor that is a function of the size para-

meter x = ird/X. A simple expression for F in terms of x that

approaches 1 when x is large and 0 when x is small is:

F -- — (84)
1 + Axp

where p is a positive integer and A is a parameter that determines

the suddenness of the transition from coarse-particle theory to

fine-particle theory. We have found by trial that the values

p = 1, A = 6 produce a merging of the two theories that gives

good agreement with experiment over a wide range of .particle

sizes. Under these conditions (84) becomes
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COMPUTATION

The theory described above has been programmed using Fortran

IV for high speed computations. The input variables are the par-

ticle sizes, dj, the complex refractive indices, nu(A), the mineral

volume fractions, fj and two adjustable parameters b and NV which

are involved in the effects of dipole absorption by edges and

surface asperities respectively.

The complex refractive indices are provided as needed in

the program by means of a dispersion formula containing a small

number of Lorentz resonance terms and a high frequency dielec-

tric constant. Each resonance term is defined by the usual three

classical oscillator parameters; line frequency, width and strength.

The values for the oscillator parameters are taken from published

21 22results where available. ' Otherwise we derive them ourselves

using a similar least squares method of fitting reflectance spectra,

11-42 Arthur D Little Inc



calculated from the dispersion formula, to the observed reflec-

tance spectra of polished samples.

In the case of uniaxial birefringent minerals, we treat

the indices for the EJ.C and EllG orientations with suitable

weighting factors as though they represent different species.

While this is not an exact method, it has proven to be a very

satisfactory approximation.

The output of the program consists of the reflectance as

calculated by either the coarse-particle theory or the fine-particle

theory or a combination of the two theories as described above,

both in the form of printed outputs and spectral plots. The

results of a number of intermediate calculations of quantities

such as the various K's and S's are also produced and these are

very useful in developing an understanding of the complicated

processes involved.

The program which has not yet been fully optimized takes

about 1 minute for a 300 point spectrum on an IBM 360/65 machine,
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for a two component mixture and single particle size. Provision

for running a particle size dispersion is provided but the running

time is not simply proportional to the number of particle sizes

employed as repetitive calculations are avoided. The times involved

in performing these calculations can thus be seen to be quite modest.

DISCUSSION AND CONCLUSION

The theory presented above contains a number of innovations

In the treatment of the interaction of radiation with a particulate

medium. As mentioned earlier, we consider that the most important

Innovations are the inclusion of the additional absorption caused

by edges and asperities on coarse particles. Without allowance

for these effects one cannot achieve a good fit between theory and

experiment in the reststrahlen regions of the spectrum.

Other new features are involved in the calculation of the

single particle crosssections in the coarse-particle theory, in-

cluding the use of the Poynting vector rather than the wave normal

11-44

Arthur D Little Inc.



in coarse particle ray tracing; the separate evaluation of the

crosssections for external reflection, multiple internal reflec-

tion, and refraction, which provides considerable insight into the

relative importance of the three mechanisms; and the use of the

coŝ , sin̂  weighting factors to convert the single-particle phase

function into the mathematically convenient form of six discrete

beams.

In the fine-particle theory the recognition of the "resonances"

associated with ellipsoid shape appears to be new, as well as the

method of averaging over a wide range of shape, both for the Lorentz-

Lorenz index and for the Rayleigh scattering. The immersed-particle

model used to calculate the Rayleigh scattering of closely spaced

fine particles is also novel.

The use of separate theories for coarse and fine particles

along with a bridging formula for intermediate particle sizes

seems to be a different approach. This method is seen to be a
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necessary procedure as soon as one recognizes the essential differ-

ence between the regimes of coherent and incoherent scattering by

the particles.

Finally, the six-beam radiative transfer method, in which

the four transverse beams act as a radiation reservoir that inter-

acts with the forward and backward beams, is new and well matched

to the six-beam single-particle phase function.

The development of the theory has proceeded by a process of

successive refinement of approximations as the results of the com-

putations were compared with experimental data. A number of re-

finements remain to be made. Among the most important of these

is a suitable allowance for the fact that opaque particles in

densely packed powders shadow each other in a way not allowed for

in any continuum model. We have attempted to solve this problem

by replacing the derivatives on the left-hand sides of Equations

(59)-(64) by the finite intensity differences AI, AJ, etc., that
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exist across an individual particle. On solving the difference

equations for a monolayer of particles of diameter d we find for

the reflectance and absorptance of the monolayer:

= f «L-\ 3 f 4 °abs oi, + 2 Vt + gt
2 \

\ " d l \ 4aab8 + 2 c r t /

2
gabs + 6 gabs "t i fQj \

where f is the volume fraction of the particles and aabs, at, ab

are given, as before, by (17), (74), and (75). The reflectance

of a semi-infinite stack of monolayers is

where T, the monolayer transmittance, is given by

T = 1 - p - a (89)

A comparison of spectral reflectances calculated by the non-

continuum formula (88) and the continuum formula (71) shows that

the non-continuum model gives significantly higher reflectance in
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strong reststrahlen regions and is thereby in better agreement with

experimental spectra. As one would expect, the two theories give

identical results in regions of the spectrum where p and I-T are

small. Unfortunately, the non-continuum model, like that of

Melamed, cannot be easily extended to the important case of a

medium composed of a mixture of particles of different materials

with a wide range of sizes, such as occurs on planetary-surfaces.

The present continuum model, on the other hand, is able to treat

such a medium, although with some loss of accuracy in the general

spectral level.

An assumption in the coarse-particle theory is that the rays

enter each material from the void rather than directly from one

material into another. While this is a good approximation for

relatively low density powders, it will break down in the case of

compact agglomerates. In principle we could extend the computa-

tional techniques to handle this case. Another difficult case
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would be the suspension of coarse particles of some materials in

a medium composed principally of fine-particles of other materials.

The present theory is capable of treating this case as well, again

with some modifications of the computer programs.

We intend to apply the theory described in this paper to

transmission spectra of atmospheric clouds and aerosols in the

near future. In the aerosol case immersed-particle scattering

reduces to ordinary Rayleigh scattering owing to the small volume

fraction of the fine particles involved.

Our method of separately calculating the various scattering

crosssections of a single particle allows relatively simple modi-

fications of the crosssection formulas to be made, so that one can

treat the case of particles of non-spherical gross shape, e.g.,

platelets or cylinders. Such particles are often encountered in

ice-crystal clouds. It is to be noted that thin platelets give

little refractive scattering although in any theory based on a
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spherical model (e.g. Mie theory) a. refractive contribution is

automatically included.
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III. The Spectral Reflectance and Emittance

of Particulate Materials,

Part II Application and Results

J. R. Aronson and A. G. Emslie

Arthur D. Little, Inc.

Cambridge, Massachusetts 02140

Abstract

Experimental data on the spectral emittance of particulate

minerals, obtained using a Michelson Interferometer operating

between 300 and 1400 cm are compared with the results of a new

theory of the spectral reflectance (emittance) of such materials.

The comparisons show that the theory predicts the infrared

spectra of minerals quite well both for single substances and

mixtures, over the wide particle size range between 0.3y and 330y.

The good agreement suggests that the theory can be used in the

application of remote infrared spectroscopy to such problems as

the compositional analysis of the surface of a planet.

INTRODUCTION

For many years it has been recognized that infrared spectro-

scopy provides unique information as to the composition of minerals.

This results from the rich vibrational spectra that may be ob-

tained in the infrared region. While most workers have concen-

trated their efforts on laboratory transmission spectra, such
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potentially important remote sensing techniques as emission and

reflection were in fact investigated by Coblentz almost three

quarters of a century ago. The advent of the space program re-

awakened an interest in this topic and a number of groups proposed

remote infrared spectroscopy as a very valuable tool for the

evaluation of planetary surface mineralogy from orbiting or flyby

spacecraft. The instrumental capability for obtaining excellent

remote data has continued to improve as is demonstrated by recent

2 3
results from the Mariner Mars and Nimbus orbiting

spacecraft.

While the reflectance spectra of polished mineral samples

provide many strong features suitable for relatively simple

interpretation, the spectra of roughened or particulate samples

change in important ways with the degree of roughness or the

particle size and packing density. For some time, it was be-

lieved by many investigators that the spectra of finely divided

minerals approximate blackbody spectra and thus contain very

4
little or no information as to composition. We showed both

experimentally and theoretically that this was not true but

that the problem was simply one of the signal-to-noise ratio.

Others ' examined the effects of particle size on spectral

shape and found that different spectral features had widely

differing behaviors as a function of particle size. In some

cases peaks could even turn into troughs. As the greatest

difficulties inherent in the prospects for remote mineral

analysis by infrared spectroscopy were clearly those of
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interpretation, we began the development of a new theory of

the reflectance or emittance of particulate solids several

Q

years ago . The current status of the theory is detailed in

9
the preceding paper (hereafter referred to as I).

An earlier version of the theory produced relatively good

agreement with experimental data in the coarse-particle regime.

The agreement in all particle size ranges has continued to improve

through a process of successive refinement of the assumptions as

discrepancies appeared in the comparison of theoretical predic-

tions with experimental measurements.

APPARATUS

Our measurements have been made on a 7-35y (1400-300 cm )

Michelson interferometer spectrometer system, which uses a

germanium coated Csl beamsplitter and a Barnes TGS pyroelectric

detector. Figure 1 shows the Interferometer. Figure 2 shows the

sample chamber in which the emittance spectra of mineral powders

and comparison blackbody sources are measured. The samples are

heated from below and mounted on a lazy susan turntable so that

alternate measurements can be made without breaking the vacuum

or inert gas atmosphere. Vacuum measurements can be made to

investigate the effects of high thermal gradients on the spectra.

Figure 3 shows the entire system including a digital data

acquisition system based on a Hewlett-Packard 2116B minicomputer.

The powders are generally supported in a sample tray 0.6 cm

deep with a total volume of 3.04 cm3. This tray is instrumented

III-3

Arthur D Little, Inc



oc
UJ

o
oc
LU
LL
OC

O
CO

o
2

III-4

Arthur D Little Inc



FIGURE 2 EMITTANCE OPTICS
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FIGURE 3 INTERFEROMETER SYSTEM
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for temperature measurements by imbedding a thermistor in the base

and stringing two sets of 0.05 cm differential copper-constantan

thermocouples 0.2 and 0.5 cm above the base (Figure 4). The

gradient between the upper two stations is extrapolated to the

nominal surface in order to provide a first estimate of the

"surface" temperature. Thermistors located on the interferometer

detector case, on the black shield that surrounds the sample

chamber, and on the experimental blackbodies provide the other

temperatures required for data reduction.

The experimental blackbodies are constructed of aluminum

and have concentric 30° V-grooves cut into the surface. They

are coated with Parsons black paint (Eppley Laboratory) as

previous results using Nextel black paint (Minnesota Mining

and Manufacturing Co.) indicated the presence of spectral fea-

tures near 1090 cm and 460 cm , owing to the presence of

small glass beads in the Nextel paint. The Parsons black

standard was run against a Cabot Corporation Carbolac-1 black

powder sample (9m y carbon particles) as well as a Nextel-

coated standard and the data indicate a spectrally flat emit-

tance for the Parsons standard from 1400 cm to about 500 cm

The emittance of the Parsons standard then appears to fall mono-

tonically reaching apparent values of about .97 near 350 cm

DATA REDUCTION

The data reduction procedure involves Fourier transformation

of the interferograms of the sample and the two experimental

III-7
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blackbodies which are run at temperatures close to that of the

sample and differ by about 5°C. High signal-to-noise data are

obtained with a sample surface temperature about 15°C above the

near-ambient interferometer and shield temperatures in about

20 minutes with a spectral resolution of about 3 cm

The spectral emittance e (v) of the sample is the spectral
s

radiance N (v) of the sample divided by the spectral radiance
S

B (v) of a blackbody at the same temperature as the sample. We
S

calculate B (v) from the Planck function using the inferred
S

surface temperature of the sample. We determine N (v) from the
S

measured output spectrum E (v) of the sample by means of the
s

instrument transfer function and a correction for radiation from

the shield that is reflected from the sample.

The transfer function relates radiance N(v) to spectral

output voltage E(v) obtained by Fourier transformation of the

interferogram. We assume that the formula is linear and of

the form

N = No 4- f (1)

where N , the input radiance that produces zero output signal,

is equal to the radiance of the instrument in the direction

towards the sample. To determine N and R we replace the

sample successively by two blackbodies at temperatures T.. and

T . Then, from (1)

E!ei Bi - NO
 + r
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where e., e0 are the emittances of the "blackbodies," which

would allow for small departures from perfect blackbody behavior.

From (2) and (3) we obtain for R(v) and N (v) :

E ~ E

(4)

and

£1 Bl £2 B2

No(v) = [ E l B 1 + £ 2 B 2 - ( E 1 + E 2 ) ] ( 5 )

With the sample in place we determine the net radiance Ns

of the sample from the measured spectral output Eg by means of

Eq (1)

N
S =

 N
O
 + r

and where R and N are known from (4) and (5) .o

On combining (4) - (6) we can express Ng directly in

terms of the measured quantities E1 , E» and E :
_L *-.

2 E ~ E ~ E

?
(7)

Finally, the emittance e of the sample is computed from

the formula

N - B (1 - -) - B4 -
- _ S C _ IT 1 IT ..

» B - B (1 - % . B »
s c IT i IT

which is based on simple radiative transfer considerations. Here

B is the radiance of the cavity or shield (assumed to be a

blackbody) at temperature T surrounding the sample, B. is the

111-10
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radiance of the interferometer aperture (also assumed to be a black-

body at temperature T.)» B is the Planck function for the temper-
1. S

ature T of the sample, and fl is the solid angle subtended at
S

the sample by the interferometer aperture. The cavity walls are

coated with 3M Nextel black paint which, together with multiple

reflections, should make it an almost perfect blackbody. In the

data reduction up to the present we have assumed that the black-

bodies are indeed black, so that e.. = e_ = 1.

As the surface of the powder cannot be microscopically smooth

(we draw a spatula edge across the powder surface to prevent

gross roughness) and as the depth of origin of the radiation is a

function of the optical constants at the various frequencies,

we cannot expect the definition of the surface to be very exact.

Further, the position of the stretched thermocouple wires has

some error and the possibility of a poor equilibrium between the

radiation field and the shiny thermocouples is quite likely.

For all of these reasons we chose to estimate our "surface"

temperature by a radiative expedient based on what is generally

11 12
known as the principal Christiansen frequency ' . When the

refractive index, n of a substance approaches unity and the

_2
absorption index, k is quite small (^ 10 ) the amount of

surface reflection is negligible and the refractive scattering

is minimal. Thus the emittance is maximum and close to unity.

This combination of the optical constants occurs at slightly

higher frequencies than the first principal reststrahlen band.
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It cannot in principle occur for a mixture of materials as the

location of the Christiansen frequency will be different for each

species. Even two orientations of birefringent minerals have

slightly different Christiansen frequencies. We take the value

for the average of the two orientations of corundum to be 1020 cm

-1 13
and for quartz to be 1360 cm from data of Barker ' and Spitzer

14
and Kleinman . We assume that the only significant temperature

error in our data reduction scheme is that of the "surface

temperature". We then use the extrapolated "surface tempera-

ture" as a first estimate of the true surface temperature and

calculate an emittance spectrum. The computer program is con-

structed so that this temperature may be varied and the procedure

is to make the required changes in this temperature so as to pro-

vide a unit emittance at the principal Christiansen frequency.

We have found that the extrapolated surface temperature

and the temperature derived by the Christiansen frequency tech-

nique differ by a few tenths of a degree in cases of relatively

low temperature gradients (ca. 5°/cm to 10°/cm as measured by

our upper differential thermocouple) which occur in atmospheric

pressure runs. Under conditions of high temperature gradients

(vacuum) the procedure is quite inaccurate and we plan to dis-

cuss this in a future communication. All of the data are plotted

as reflectance (R = 1 - e) for convenience in comparison with the

theory. The validity of this procedure which is simply an

application of Kirchhoff's Law for "infinitely" thick media

has been previously shown
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COMPARISON OF THEORY AND EXPERIMENT

As discussed in (I), our theory consists of two subtheories.

The first, which is based on geometrical optics supplemented by

certain wave optics considerations, is applicable in the coarse-

particle region which extends down to particle sizes roughly com-

parable with the free space radiation wavelength. The second, a

fine-particle theory, is based on the Lorentz-Lorenz theory of

dielectrics, and Rayleigh scattering by particles immersed in

the medium whose optical properties are set by the Lorentz-

Lorenz field. In order to bridge the two theories for those

particle sizes falling in the ill-defined region between the

regions of clear applicability of either theory, we have at

present resorted to a simple empirical bridging formula that

gradually merges the results of the two subtheories.

Figure 5 shows a comparison of the experimental and

theoretical results for corundum powders. The 120y sample was

obtained from the Norton Company, the 0.3y sample from Adolf

Meller Co., and the other samples are LWA powders obtained from

the Microabrasives Corporation of Westfield, Massachusetts. The

particle sizes shown on the figure for the LWA powders are

Microabrasives designations except for the 3.5y sample. This is

Microabrasives LWA 3 but our particle size counts indicated a

value of about 3.8y. The shape of the spectrum between 630 and

900 cm and the particle size effect in regions of the

spectrum where the particles are opaque was correctly predicted
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only after we included the wave optics additions to the basic

geometrical optics model to account for the effects of particle

edges and surface asperities. The edge effect which dominates

at the lower particle sizes (d's) of the coarse-particle theory pro-

duces the 1/d dependence of the reflectance spectra in this

region of high absorption by the particles. The fact that the

630 - 900 cm feature persists to relatively large particle

sizes (120y) was explicable only after scanning electron micro-

graphs (Figure 6) revealed the presence of small step-like

surface asperities for this material. If the number of these

asperities is proportional to the surface area of the particles

they will produce no d-dependent effect (see Figure 7). The

surface density of these asperities is an adjustable parameter

in the theory. The scale factor for the 1/d effect of the

particle edges has been chosen, as discussed in (I), by means of

reasonable, but somewhat arbitrary physical assumptions. We have

used the same factor for all jagged particles. The general level

observed in the reststrahlen regions for large particles in all

of our work is higher than predicted by the theory. We believe

this to be the result of deficiencies in our continuum-type

radiative transfer model as the particles in such regions are

highly opaque and therefore give rise to a large change in the

radiative fluxes in a single layer of particles, which violates

the assumptions of continuum model. Correction of the theory by

means of a discrete layer model is required.
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SCANNING ELECTRON MICROGRAPH OF STEPLIKE ASPERITIES.
30/J CORUNDUM, 1000X
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FIGURE 6
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As reduction of particle size generally results in increasing

porosity (decreased packing density) and the fine-particle theory

shows a decided porosity dependent effect owing to the dilution

of the optical constants by high void fractions, we have carried

out several experiments with the 0.3y powder as a function of

packing density. The results showed that as packing density is

increased, the principal effect is to increase the spectral contrast

in the two features at 450 cm and 580 cm . The data shown

in Figure 5 for the 0.3y sample were obtained by compressing

it gently, thus increasing the volume fraction of material to

0.19 from 0.09 which is its state as prepared by our usual

techniques.

The feature observed near 930 cm """ in the theoretical

spectra for the 3.5y and lOy cases would be considerably reduced

if a particle size distribution had been used. It is to be noted

that the peak in the experimental spectrum in this general region

shifts to higher frequencies as the average particle size is

reduced. This may very well be the effect of a contribution by

the feature in question. The feature is caused by the onset of

a refractive contribution to the scattering as the particles

become more transparent for frequencies approaching the Christian-

sen frequency at 1020 cm . This contribution falls off rapidly

as the frequency approaches still closer to Christiansen point.

A similar explanation applies to the theoretically predicted

convex shape of the spectra at frequencies above 1020 cm con-

trasted with the concave shape shown by the experimental data.

Arthur D Little, Inc



Figure 7 shows the theoretical corundum spectra as calculated

for the 120y and 30p particle sizes by options in our program that

either, 1) treat the particles as smooth spheres, 2) include both

the effects of edges and surface asperities, 3) include edges, but

no asperities, and 4) include asperities but no edges. As can be

seen both edges and asperities are necessary to account for the

particle size dependence in the reststrahlen regions and the shape

of the 630 - 900 cm feature in the 120y particle size sample.

The amount of surface asperities used for these plots is NV =

3 x 10 cm (see I). This value, which corresponds to the

"average" thickness of the asperity layer, indicates that a

substantial change in reflectance is caused by a relatively small

amount of these asperities. The effect is due to the high

efficiency of absorption by ellipsoidal particles having n«l

and k^l such as occur in reststrahlen bands. The amount of

asperities appears compatible with photomicrographs of the

particles. In a similar fashion the scale factor for the d

dependence described in (I) by the value b^A/47r is somewhat

arbitrary and might be slightly adjusted for a better fit to the

data. At the present time b = 0.9 is used for all of our

theoretical computations. However,as these factors are unlikely

to be known precisely for arbitrary unknown samples, we have not

yet optimized the fit.

The phenomenon of additional absorption by the needle-like

dipoles that represent the edges and the more general spheroidal
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dipoles that represent surface asperities was an important inno-

vation in our coarse-particle theory. We therefore attempted to

prove the reality of these effects by carrying out several

critical experiments. The first of these was a comparison of a

single crystal emittance spectrum of "randomly oriented sapphire"

with the emittance spectrum obtained after substantial surface

abrasion with 15y diamond paste. The results are shown in

Figure 8 and a stereo pair of scanning electron micrographs of

a replica of the surface are shown in Figure 9. Figure 8 shows

that the anomalous shape of the powder spectrum in the 630 -

900 cm region can be produced in a single crystal spectrum by

providing surface asperities.

The second critical experiment was carried out by running

two samples of corundum beads (Figure 10). These beads were

produced for us by D. Spooner and R. Bechtold of the Lockheed

Electronics Geophysics section. The mechanism of bead production

is to feed small particles of corundum into a hydrogen-oxygen

flame where partial melting occurs. After air cooling, small

amounts of a number of other A190_ phases were observed by

X-ray diffraction, but annealing at 1400°C for more than 4 hours

removed the other phases, resulting in pure -̂Al-O.,. Figure 11

shows scanning electron micrographs of the sapphire beads. Sur-

face asperities similar to those shown for most samples of

crushed corundum (Figure 6) still occur on these beads. Some

non-spheroidized material still exists, principally in the smaller
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sized sample but the particles have been largely de-edged. The

changed level of the spectra in the 575 - 900 cm region and

the noticeably smaller particle size effect when contrasted with

the data for comparable sized particles in Figure 5 both confirm

the assumed mechanism of edge absorption. We believe that the

residual edges in the 35y beads are largely responsible for the

fact that the spectrum of this sample is still somewhat below

the spectrum of the 130y beads in the 575 - 900 cm region.

We note that the level of the spectrum of the 35y beads lies

between the level of the 60y and 120y corundum powders. A

dendritic growth can be seen in the scanning electron micrographs

of the bead surfaces. This material is apparently responsible

for the shape variation in the 630 - 900 cm region. Such a

result is in accord with a number of theoretical experiments we

have conducted by varying the shapes of the asperities (I).

The empirical bridging formula used in the region between

0.3y and 12y where both theories are being extended beyond their

range of applicability appears to provide better results than

either theory alone. This can be seen in Figure 12 where the

results of both individual theories and the bridged theory are

compared with experimental results for 3.5y corundum powder. The

relatively greater strength of the feature near 535 cm with

smaller particle size can be seen in the experimental data for

the 3.5y and lOy particles (Figure 5). This is apparently a

residue of the strong fine-particle feature shown by the theory

Figure 12) to peak near 570 cm and it was used in an attempt to
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ascertain a reasonable bridging relationship. This relationship

can probably be improved upon, but its optimization is somewhat

dependent on the optimization of the other adjustable factors

as well as the replacement of the monodisperse assumption with a

more realistic particle size distribution function. The real

particles, of course, have a size distribution, but the theoreti-

cal results shown in this paper are all for monodisperse

particles.

Figure 13 shows the theoretical and experimental results for

quartz powders. Once again the theoretical spectra for the

coarser particles do not attain values as high as those observed

in the experimental data in the reststrahlen regions. For the

theoretical runs we assumed no surface asperities, since the

1100 - 1200 cm~ feature in quartz, which is similar to the

previously discussed 630 - 900 cm feature in corundum, is

only observed at the smallest particle sizes. However, clinging

fine particles are commonly observed to be present in samples of

larger particle size. In our theory they would act in much the

same way as surface asperities. The data shown for the sample

marked 0 - 20y provide a good example of the effect of such fines,

The average particle size for this sample is near lOy but the

effect of the large number (but small volume fraction (0.007) of

particles less than 2.85p) is such as to give a more pronounced

feature in the 1100 - 1200 cm region than is observed for the

4.5y sample. In fact, the latter sample was obtained only after
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a discrepancy was observed between the experimental particle size

and that necessary to produce the feature, using the same value

of b, the scale factor for the 1/d edge effect as was used

for corundum. That discrepancy led us to reexamine the particle

distribution in the 0 - 20y sample and the wide distribution

found suggested that a narrower size range for this important

experiment was in order. The 4.5y sample was then obtained from

Duke Standards of Palo Alto, California. They indicate a 1 - 4.5y

range for the sample. Our particle counts give 4.6y for the

volume averaged size of this material, and it has an obviously

narrower particle size distribution than the 0 to 20y sample.

The 0 - 20y sample can be reasonably well fitted by the theory,

if we use an asperity factor of NV = 1.5 x 10 cm to represent

the clinging fine particles. This fit tends to confirm our idea

that a small volume of clinging fines represents the same kind of

extra absorption as do surface asperities. This effect was first

observed in some of our early work, when some large quartz

particle samples were run as received and after a wet-sieving

procedure was used to remove the small volume fraction, but large

numbers of clinging fine particles. Figure 14 shows photo-

micrographs of the samples of quartz powders of large particle

size (170y) as received and after removal of the fines. Figure 15

shows the resultant spectra. The very large effect shown in

Figure 15 was produced by a quite small volume fraction of the

fines. As with the surface asperities, the effect appears most
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As Received After Removal of Fines

FIGURE 14 SCANNING ELECTRON MICROGRAPHS (95X) OF 170M QUARTZ PARTICLES

111-30

Arthur D Little Inc



cc
LU
Q

1
p I
DC =

.o o
LL UJ

O 2
LU D
U -I

" 3
"ILL 2
UJ CO

oc <
-I LL

Q. LU
X I
LU I-

LO

OC
D
O

30NV1031d3d

111-31

Arthur DLittklnc



significant in regions of high absorption. -, ,

As with corundum we note a theoretical feature (Figure 13)

slightly to the high frequency side of the principal reststrahlen

band for samples of intermediate particle size (4.5y and lOy).

This feature does not occur in the experimental data which as

before is actually for a particle size distribution. We again

note an apparent shift of the reststrahlen feature toward higher

frequencies as the particle size is reduced, and believe that

the theoretical feature contributes to the shift. It is signifi-

cant that the feature in question is also produced theoretically

12in Mie theory calculations for the intermediate particle

sizes.

Figure 16 shows experimental and theoretical results for

garnet powders obtained from Barton Mines of North Creek, New

York. The particle sizes used to calculate the theoretical

spectra for these samples were obtained by microscopic techniques.

They are slightly larger than the analyses given by Barton Mines.

No Surface asperities were invoked in computing the theoretical

spectra as microscopic examination showed no need for such a

factor. The optical constants used as input parameters for the

garnet data were obtained by fitting the spectrum of a large

polished sample with a set of classical oscillator parameters,

using the Lorentz line shape, by well known techniques . The

minor discrepancy observed near 500 cm is thought to be due

to a slightly deficient set of dispersion parameters, since an

insufficient number of points were taken in the spectrum of the

single crystal to resolve the small feature by least squares analysis.
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The experimental and theoretical spectra of two mixtures of

quartz and corundum powders are shown in Figure 17. Each mixture

actually represents a mixture of four components as quartz and

corundum are both uniaxial crystals so that two sets of optical

constants are required to represent each of them. In these cases

the experimental data were processed using the measured sample

temperatures instead of applying the usual Christiansen tech-

nique as this technique cannot be justified for the case of

mixtures. It is clear from the theoretical results shown in

this figure that there is no frequency where the reflectance is

zero such as would occur at the principal Christiansen frequency

for a pure sample. The experimental results can be seen to con-

firm this theoretical conclusion. We note that the departure

from zero reflectance is substantially greater for the finer

particles. Thus arbitrarily setting the lowest point in the

spectrum of a mixture at zero reflectance or unit emittance would

make a substantially greater error for the finer particle data

than for the coarser particle data. It is also quite signifi-

cant that for the finer particle sample the lowest point in the

spectrum occurs near 1160 cm" . This corresponds to the

Christiansen frequency of neither component. Thus an identifi-

cation technique based on the principal Christiansen frequency

would fail for this mixture.
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For both mixtures the shapes of the theoretical spectra

quite adequately represent the experimental data. While the

general level of the theoretical spectrum of the mixture of

finer size powders is also in good agreement with the experimental

spectrum, the same cannot be said for the spectrum of the mixture

of coarse powders. Once again we believe this discrepancy is

due to our use of a continuum model rather than a discrete

layer model.

It is worth noting, however, that for remote sensing

applications where the problem is the inverse one of determining

mineral compositions from spectral data, the general spectral

level is much less important than the detailed structure of the

spectral features.
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IV. MODIFICATIONS IN THE THEORY

DISCRETE-LAYER MODEL

In Section II, pp 46-48, we outlined a discrete-layer model that

describes the radiative transfer in media composed of closely-packed

coarse particles much more realistically than can be done by a continuum

model in which scattering and absorption are regarded as continuously

distributed parameters. Since writing the paper we have extended the

discrete-layer model to include the effect of diffuse scattering by

asperities on the surfaces of the particles.

We consider a parallel beam of radiation of intensity I

incident at an angle 6 on an element of area dA of the surface of

a particle. Then the reflected power is

P = R I dA cose (1)
o o

where R is the diffuse reflectance,
o

For simplicity we assume that the reflected radiation is Lambertian,

so that the angular distribution has the form

dP = — cosx dto (2)

where x is measured from the normal to dA and dco is an element

of solid angle.
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We now resolve the diffuse radiation into discrete beams along

2 2
the normal and tangential directions by means of our cos x> sin x

weighting factors. We find that the radiation splits equally between

these directions:

P = i R I cose dA (3)
normal 2 o o

P „. -, = T R I cos6 dA (4)tangential 2 o o

Here Eq. (4) represents the sum of four discrete tangential beams.

We next resolve these beams by the same method into back, trans-

verse, and forward components relative to the original incident beam.

The results, expressed as differential scattering crdsssections, are

da, , = TT R dA (7- cos6 sin26 + cos36) (5)back i o 4 ,

da = ̂  R dA (^ cose + \ cos36 + cosO sin26) (6)
transverse 2 o 2 2

da. , = \ R dA (7- cose sin20) (7)
forward 2 o V4

The sum of these crosssections is R dA cos6, as it should be.

To obtain the total particle crosssections for transverse and

2
backward external reflection we replace dA by 2ira sin6 d6 in (6)

and (5) and integrate with respect to 6:

a , = -FI I R~(j-~+-ycos 9-+-f-s-in"e)-sin29d9- (-8-)ren.t JQ o n n z.

f'2
a „ . = ira2 I R (-5- sin29 + ^ cos29) sin29d9 (9)rerl,b y o o 2.
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These formulas replace the specular reflection formulas (12) and (13) in

Section II. The diffuse-reflection values of a „ , and a .... .
refl.b refl.t

are used in (74) and (75) of Section II in the calculation of a and

a, , which in turn enter into the evaluation of the reflectance and

absorptance p and a of a monolayer of particles through (86) and

(87) of Section II. Eq. (88) then gives the reflectance of the powder.

In the case of a mixture of particles of approximately equal

size we calculate the quantities p. and a. from (86) and (87) for

each kind of particle separately as though it were present alone at the

volume fraction f. Then we determine the average values p and a

by the formulas

P̂  = Zf p (10)

^ = Zf a (11)

where f. is the volume fraction of mineral j, excluding vacuum.

We have not yet generalized the discrete-layer model to the case

of particles with a wide distribution of sizes.

CONTACT FACTOR

In our report of April 1, 1971, pp 9-12 we derived an expression

for the effective fraction G of the surface area of a particle

available for scattering after allowance is made for the effect of

optical bonding near the points of contact with neighboring particles.
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The "contact factor" G was given by

0.6 f X
G = 1 - —2- (12)

where f, X , and d are the volume fraction of particles, the free-

space wavelength, and the particle diameter, respectively.

In using this formula to correct the scattering coefficient S

we encountered two difficulties. The first is that G drops abruptly

to zero when d falls below a certain critical value. The second is

that (12) does not allow for the fact that the concept of optical

bonding breaks down in spectral regions where the particles are opaque.

We can avoid both difficulties by modifying (12) to read

0.6 f X T/d
(13)

where
_ - 4irkd/X /-I / \T = e (14)

is the transmission factor along a particle diameter. One sees that

in spectral regions where the particles are opaque, T = 0 and G = 1.

Therefore the contact factor has no effect. As the particle diameter

decreases the exponent of (13) increases and G tends to zero

continuously.

-We—include—the—factor—G—in-the-theor-y-as_a-multiplicativ_e_fact.or_

which modifies the scattering crosssections a and a, . The effect is

to reduce the scattering, and therefore the reflectance, for transmitting

particles only.
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COMPARISON WITH EXPERIMENT

Figures 1, 2 and 3 show the results of using the discrete-layer

model and the new contact factor to fit the experimental data of

Figures 5, 13, and 17 of Section III. A considerable improvement can

be seen in the reflectance level in the reststrahlen bands for the

coarser particles. Some increase in the level resulting from the

discrete-layer model for those regions where the particles are semi-

transparent was effectively nullified by the contact factor.

The use of the coarse particle theory instead of the bridged

theory for the lOy particles would have resulted in a slightly lower

spectral level but only at the expense of introducing some minor shape

discrepancies. No attempt was made to reoptimize the bridging formula.

The comparison between these three figures and their analogs in Section

III demonstrates the essential validity of the discussion of Section II

concerning the failings of a continuum model.
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V. THE INVERSE PROBLEM

The inverse problem consists finding a suitable way to use the

theory of reflectance to analyze the experimental spectrum of an

unknown mixture of powdered minerals in order to derive quantitative

information about volume fractions (f.) and particle sizes (d.)

of the minerals (j). It is assumed, of course, that the mixture

contains a reasonably small number of candidate minerals of known

optical constants.

Our theory indicates quite strongly that a simple linear mixing

rule for reflectances is not a good basis for the inverse problem.

For example, Figure 1 shows the variation of reflectance predicted by

the continuum model, described in Sections II and III, as a function

of the relative proportions of the two components in quartz-corundum

mixtures. The five frequencies chosen illustrate examples of rather

different behavior. The important point is the significant non-linearity

of the curves, the extreme example being that for 630 cm

A further consideration is that no theory could possibly include

all of the parameters needed to describe a real mixture, such as the

particle size distributions of all component minerals, the nature of the

surface asperities on each type of particle, the degree of aggregation,

etc. This means that the theoretical spectrum will always differ
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quantitatively from the experimental spectrum even with the optimum

choice of the adjustable theoretical parameters. Such differences will

occur in spectral level and in the detailed shape of the spectral bands.

It appears, however, that the locations of the maxima and minima of the

experimental and theoretical spectra agree quite well, for optimum

values of the theoretical parameters, and that the ordering of the

peaks and valleys with respect to amplitude is about the same for both

spectra.

On the basis of these considerations we have developed a new

quantitative method for comparing a theoretical spectrum with an

experimental one. The method pays attention only to the ordering of the

amplitudes in each spectrum at a number of frequencies selected from

the experimental spectrum on the basis of features of interest such

as peaks, valleys, abrupt changes of slope, etc. Some twenty to thirty

frequencies are often sufficient to characterize an infrared spectrum.

After selection of N frequencies we compare the amplitude at

the first frequency with the amplitudes at the other N-l frequencies,

and record a +, 0, or - at each of these frequencies depending on

whether the amplitude is greater than, equal to, or less than that at

the first frequency. We then repeat the comparison starting with the

second frequency and comparing its amplitude with those of the succeeding

N-2 frequencies. On continuing the process we obtain a triangular

matrix of N(N-l)/2 elements which have the symbols +, 0, or -. This
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matrix characterizes the characteristic shape of the experimental

spectrum. The symbol 0 is assigned when the amplitudes at two fre-

quencies are equal within some noise level.

We now compute a theoretical spectrum, for a set of assumed values

of the f. and the d., and characterize it in the same way as for
J J

experimental spectrum,, using the same set of N selected frequencies.

Next we compare the theoretical and experimental matrices and

count the number of coincidences in the two sets of N(N-l)/2 elements.

The final score, which lies between 0 and N(N-l)/2, is a quantitative

measure of the degree of fit between the theoretical and experimental

spectra and can be used as the criterion for determining the optimum

theoretical parameters.

A computer program was constructed to carry out such an analysis

of our data. It was used for two mixtures of quartz and corundum. The

coarse-particle theory results were used for the 170y quartz-120p

corundum mixture, and the bridged theory for the lOy mixture. The

procedure used the continuum model theory and so its facility for

ignoring the spectral level was more severely tested than would presently

be the case. The analysis was carried out in each example after choosing

"20~s'p"e"c'tra"l~~ points~from-the-experimental— data-.—F-igure-2_shows_the-coinci-

dence scores for each of the chosen ratios of the components. The

arrows indicate the measured ratios in the real mixtures, but it must
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be recognized that this ratio is the average for the entire sample,

and may not describe the top layer where the measured radiation originates.

No attempt has yet been made to interpolate between the individual

theoretical results although this could clearly be done. An increase

in the number of spectral points would also almost certainly improve

the technique as 20 points did not sufficiently describe all features

in the spectrum. We consider that this initial success should be

readily extendable to mixtures having more components.
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•VI. CONCLUSIONS

1 2 3The research program described in the current and preceeding ' '

reports has resulted in the development of a comprehensive new theory

of the spectral reflectance (or emittance) of particulate materials.

The theory has been shown to give excellent agreement with experimental

measurements of the infrared emittance spectra of particulate minerals

and mixtures of minerals over a wide range of particle sizes and

packings.

The theory consists of two subtheories. The coarse particle

theory is based mainly on geometrical optics, involving the effects of

reflection, refraction and absorption. However, certain wave optical

considerations are required as the model consists essentially of an

assemblage of randomly contacting large spheres that have a degree of

surface roughness. The surface roughness is represented by a distri-

bution of ellipsoidal sub-particles for which the absorption and

scattering are calculated by wave optics. The loss of scattering

efficiency due to optical bonding at the points of contact is also

calculated by wave optics. For fine particles, the theory includes a

modification of the Lorentz-Lorenz theory to the case of ellipsoidal

particles and the use of Rayleigh scattering by such particles considered

to be immersed in the Lorentz-Lorenz medium. The two theories are

empirically bridged to cover the intermediate region of particle sizes.
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In addition, a new method has been devised to treat the inverse

problem of analysis of the spectrum of an unknown mixture. This method

correlates the characteristic spectral features with those predicted

by the theory and searches for a best fit. At the same time it minimizes

the effects of discrepancies in the absolute levels of the spectra. We

anticipate that this method will prove very useful in the analysis of

the spectra of planetary surfaces.
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VII. SUGGESTIONS FOR FURTHER IMPROVEMENTS

Further work could profitably be undertaken in a number of areas.

A. Methods of Treating Particle Size Distributions

This is expecially important with regard to the discrete layer

model which at present is valid only for mixtures of particles of

comparable diameters.

B. Extension of the Method of Dealing with The Inverse Problem to

More Complicated Mixtures

C. Further Study of the Effects of Thermal Gradients

1 2
We have carried out some work in this area ' , but a better

understanding of the experimental data in this regard is still

required.

D. The Effects of Particle Aggregations

E. Methods for Handling Biaxial Crystallites

F. Extension of the Theory to Particulate Media Having Near

Zero Porosity

The coarse particle theory presently assumes that any ray

passes from one material to the next via the void space. This

may not always be true.

G. Resolution of a Minor Discrepancy

For intermediate size particles, there is an apparent dis-

crepancy between theory and experiment near 930 cm for corundum

and near 1280 cm for quartz. While we believe that the problem

relates to the monodisperse assumption used in the theoretical

computations (see Section III) the problem requires further investigation.
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