28 research outputs found

    A distributed topology for identifying anomalies in an industrial environment

    Get PDF
    The devastating consequences of climate change have resulted in the promotion of clean energies, being the wind energy the one with greater potential. This technology has been developed in recent years following different strategic plans, playing special attention to wind generation. In this sense, the use of bicomponent materials in wind generator blades and housings is a widely spread procedure. However, the great complexity of the process followed to obtain this kind of materials hinders the problem of detecting anomalous situations in the plant, due to sensors or actuators malfunctions. This has a direct impact on the features of the final product, with the corresponding influence in the durability and wind generator performance. In this context, the present work proposes the use of a distributed anomaly detection system to identify the source of the wrong operation. With this aim, five different one-class techniques are considered to detect deviations in three plant components located in a bicomponent mixing machine installation: the flow meter, the pressure sensor and the pump speed.CITIC, as a Research Center of the university System of Galicia, is funded by Conselleria de Education, Universidade e Formacion Profesional of the Xunta de Galicia through the European regional Development Fund (ERDF) and the Secretaria Xeral de Universidades (Ref. ED431G 2019/01)

    A hybrid one-class approach for detecting anomalies in industrial systems

    Get PDF
    Financiado para publicación en aberto: Universidade da Coruña/CISUG[Abstract]: The significant advance of Internet of Things in industrial environments has provided the possibility of monitoring the different variables that come into play in an industrial process. This circumstance allows the supervision of the current state of an industrial plant and the consequent decision making possibilities. Then, the use of anomaly detection techniques are presented as a powerful tool to determine unexpected situations. The present research is based on the implementation of one-class classifiers to detect anomalies in two industrial systems. The proposal is validated using two real datasets registered during different operating points of two industrial plants. To ensure a better performance, a clustering process is developed prior the classifier implementation. Then, local classifiers are trained over each cluster, leading to successful results when they are tested with both real and artificial anomalies. Validation results present in all cases, AUC values above 90%.Xunta de Galicia. Consellería de Educación, Universidade e Formación Profesional; ED431G 2019/0

    Continuous Identity Verification in Cloud Computing Services

    Get PDF
    Cloud computing has become a hugely popular new paradigm for hosting and delivering services over the internet for individuals and organisations with low cost. However, security is a sensitive issue in cloud computing, as it its services remain accessible to anyone after initial authenticated login and for significant periods. This has led to an increase in the number of attacks on sensitive cus-tomer information. This research identified biometric approaches as a possible solution for security to be maintained beyond the point of entry. Specifically, behaviour profiling has been proposed and applied across various other applications in the area of Transparent Authentication Systems (TAS’s) and Intrusion Detection Systems (IDS’s) to detect account misuse. However, little research has sought to imple-ment this technique within cloud computing services to detect misuse. This research proposes a novel continuous identity verification system as a supporting factor to protect cloud users by operating transparently to detect ab-normal access. The research examines the feasibility of applying a behavioural profiling technique on cloud users with respect to Software as a Service (SaaS) and Infrastructure as a Service (IaaS). Two real-life datasets were collected from 30 and 60 users for SaaS and IaaS studies, respectively. A thorough design and investigation of the biometric techniques was undertaken, including description statistics analysis and pattern classification optimisation. A number of factors were analysed to evaluate the impact on system performance, such as volume of data and type of sample selection. On average, using random sampling, the best experimental result achieved an EER (Equal Error Rate) of as low as 5.8%; six users experienced EERs equal to or less than 0.3%. Moreover, the IaaS study achieved a higher performance than the SaaS study with an overall EER of 0.32%. Based on the intensive analysis of the experimental performance of SaaS and IaaS studies, it has been identified that changes in user behaviour over time can negatively affect the performance of the suggested technique. Therefore, a dy-namic template renewal procedure has been proposed as a novel solution to keep recent user behaviour updated in the current users’ templates. The practi-cal experimental result using the more realistic time-series sampling methodolo-gy has shown the validity of the proposed solution with higher accuracy of 5.77 % EER

    MFIRE-2: A Multi Agent System for Flow-based Intrusion Detection Using Stochastic Search

    Get PDF
    Detecting attacks targeted against military and commercial computer networks is a crucial element in the domain of cyberwarfare. The traditional method of signature-based intrusion detection is a primary mechanism to alert administrators to malicious activity. However, signature-based methods are not capable of detecting new or novel attacks. This research continues the development of a novel simulated, multiagent, flow-based intrusion detection system called MFIRE. Agents in the network are trained to recognize common attacks, and they share data with other agents to improve the overall effectiveness of the system. A Support Vector Machine (SVM) is the primary classifier with which agents determine an attack is occurring. Agents are prompted to move to different locations within the network to find better vantage points, and two methods for achieving this are developed. One uses a centralized reputation-based model, and the other uses a decentralized model optimized with stochastic search. The latter is tested for basic functionality. The reputation model is extensively tested in two configurations and results show that it is significantly superior to a system with non-moving agents. The resulting system, MFIRE-2, demonstrates exciting new network defense capabilities, and should be considered for implementation in future cyberwarfare applications

    Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation

    Get PDF
    Intrusion detection systems (IDSs) are intrinsically linked to a comprehensive solution of cyberattacks prevention instruments. To achieve a higher detection rate, the ability to design an improved detection framework is sought after, particularly when utilizing ensemble learners. Designing an ensemble often lies in two main challenges such as the choice of available base classifiers and combiner methods. This paper performs an overview of how ensemble learners are exploited in IDSs by means of systematic mapping study. We collected and analyzed 124 prominent publications from the existing literature. The selected publications were then mapped into several categories such as years of publications, publication venues, datasets used, ensemble methods, and IDS techniques. Furthermore, this study reports and analyzes an empirical investigation of a new classifier ensemble approach, called stack of ensemble (SoE) for anomaly-based IDS. The SoE is an ensemble classifier that adopts parallel architecture to combine three individual ensemble learners such as random forest, gradient boosting machine, and extreme gradient boosting machine in a homogeneous manner. The performance significance among classification algorithms is statistically examined in terms of their Matthews correlation coefficients, accuracies, false positive rates, and area under ROC curve metrics. Our study fills the gap in current literature concerning an up-to-date systematic mapping study, not to mention an extensive empirical evaluation of the recent advances of ensemble learning techniques applied to IDSs. (C) 2020 Elsevier Inc. All rights reserved

    EDMON - Electronic Disease Surveillance and Monitoring Network: A Personalized Health Model-based Digital Infectious Disease Detection Mechanism using Self-Recorded Data from People with Type 1 Diabetes

    Get PDF
    Through time, we as a society have been tested with infectious disease outbreaks of different magnitude, which often pose major public health challenges. To mitigate the challenges, research endeavors have been focused on early detection mechanisms through identifying potential data sources, mode of data collection and transmission, case and outbreak detection methods. Driven by the ubiquitous nature of smartphones and wearables, the current endeavor is targeted towards individualizing the surveillance effort through a personalized health model, where the case detection is realized by exploiting self-collected physiological data from wearables and smartphones. This dissertation aims to demonstrate the concept of a personalized health model as a case detector for outbreak detection by utilizing self-recorded data from people with type 1 diabetes. The results have shown that infection onset triggers substantial deviations, i.e. prolonged hyperglycemia regardless of higher insulin injections and fewer carbohydrate consumptions. Per the findings, key parameters such as blood glucose level, insulin, carbohydrate, and insulin-to-carbohydrate ratio are found to carry high discriminative power. A personalized health model devised based on a one-class classifier and unsupervised method using selected parameters achieved promising detection performance. Experimental results show the superior performance of the one-class classifier and, models such as one-class support vector machine, k-nearest neighbor and, k-means achieved better performance. Further, the result also revealed the effect of input parameters, data granularity, and sample sizes on model performances. The presented results have practical significance for understanding the effect of infection episodes amongst people with type 1 diabetes, and the potential of a personalized health model in outbreak detection settings. The added benefit of the personalized health model concept introduced in this dissertation lies in its usefulness beyond the surveillance purpose, i.e. to devise decision support tools and learning platforms for the patient to manage infection-induced crises

    TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE INTRUSION DETECTION SYSTEM USING NEWLY GENERATED HETEROGENEOUS DATASETS

    Get PDF
    With the exponential growth of network-based applications globally, there has been a transformation in organizations\u27 business models. Furthermore, cost reduction of both computational devices and the internet have led people to become more technology dependent. Consequently, due to inordinate use of computer networks, new risks have emerged. Therefore, the process of improving the speed and accuracy of security mechanisms has become crucial.Although abundant new security tools have been developed, the rapid-growth of malicious activities continues to be a pressing issue, as their ever-evolving attacks continue to create severe threats to network security. Classical security techniquesfor instance, firewallsare used as a first line of defense against security problems but remain unable to detect internal intrusions or adequately provide security countermeasures. Thus, network administrators tend to rely predominantly on Intrusion Detection Systems to detect such network intrusive activities. Machine Learning is one of the practical approaches to intrusion detection that learns from data to differentiate between normal and malicious traffic. Although Machine Learning approaches are used frequently, an in-depth analysis of Machine Learning algorithms in the context of intrusion detection has received less attention in the literature.Moreover, adequate datasets are necessary to train and evaluate anomaly-based network intrusion detection systems. There exist a number of such datasetsas DARPA, KDDCUP, and NSL-KDDthat have been widely adopted by researchers to train and evaluate the performance of their proposed intrusion detection approaches. Based on several studies, many such datasets are outworn and unreliable to use. Furthermore, some of these datasets suffer from a lack of traffic diversity and volumes, do not cover the variety of attacks, have anonymized packet information and payload that cannot reflect the current trends, or lack feature set and metadata.This thesis provides a comprehensive analysis of some of the existing Machine Learning approaches for identifying network intrusions. Specifically, it analyzes the algorithms along various dimensionsnamely, feature selection, sensitivity to the hyper-parameter selection, and class imbalance problemsthat are inherent to intrusion detection. It also produces a new reliable dataset labeled Game Theory and Cyber Security (GTCS) that matches real-world criteria, contains normal and different classes of attacks, and reflects the current network traffic trends. The GTCS dataset is used to evaluate the performance of the different approaches, and a detailed experimental evaluation to summarize the effectiveness of each approach is presented. Finally, the thesis proposes an ensemble classifier model composed of multiple classifiers with different learning paradigms to address the issue of detection accuracy and false alarm rate in intrusion detection systems
    corecore