2,515 research outputs found

    Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks

    Full text link
    Semantic labeling (or pixel-level land-cover classification) in ultra-high resolution imagery (< 10cm) requires statistical models able to learn high level concepts from spatial data, with large appearance variations. Convolutional Neural Networks (CNNs) achieve this goal by learning discriminatively a hierarchy of representations of increasing abstraction. In this paper we present a CNN-based system relying on an downsample-then-upsample architecture. Specifically, it first learns a rough spatial map of high-level representations by means of convolutions and then learns to upsample them back to the original resolution by deconvolutions. By doing so, the CNN learns to densely label every pixel at the original resolution of the image. This results in many advantages, including i) state-of-the-art numerical accuracy, ii) improved geometric accuracy of predictions and iii) high efficiency at inference time. We test the proposed system on the Vaihingen and Potsdam sub-decimeter resolution datasets, involving semantic labeling of aerial images of 9cm and 5cm resolution, respectively. These datasets are composed by many large and fully annotated tiles allowing an unbiased evaluation of models making use of spatial information. We do so by comparing two standard CNN architectures to the proposed one: standard patch classification, prediction of local label patches by employing only convolutions and full patch labeling by employing deconvolutions. All the systems compare favorably or outperform a state-of-the-art baseline relying on superpixels and powerful appearance descriptors. The proposed full patch labeling CNN outperforms these models by a large margin, also showing a very appealing inference time.Comment: Accepted in IEEE Transactions on Geoscience and Remote Sensing, 201

    Topology, homogeneity and scale factors for object detection: application of eCognition software for urban mapping using multispectral satellite image

    Full text link
    The research scope of this paper is to apply spatial object based image analysis (OBIA) method for processing panchromatic multispectral image covering study area of Brussels for urban mapping. The aim is to map different land cover types and more specifically, built-up areas from the very high resolution (VHR) satellite image using OBIA approach. A case study covers urban landscapes in the eastern areas of the city of Brussels, Belgium. Technically, this research was performed in eCognition raster processing software demonstrating excellent results of image segmentation and classification. The tools embedded in eCognition enabled to perform image segmentation and objects classification processes in a semi-automated regime, which is useful for the city planning, spatial analysis and urban growth analysis. The combination of the OBIA method together with technical tools of the eCognition demonstrated applicability of this method for urban mapping in densely populated areas, e.g. in megapolis and capital cities. The methodology included multiresolution segmentation and classification of the created objects.Comment: 6 pages, 12 figures, INSO2015, Ed. by A. Girgvliani et al. Akaki Tsereteli State University, Kutaisi (Imereti), Georgi

    Repeatable semantic reef-mapping through photogrammetry and label-augmentation

    Get PDF
    In an endeavor to study natural systems at multiple spatial and taxonomic resolutions, there is an urgent need for automated, high-throughput frameworks that can handle plethora of information. The coalescence of remote-sensing, computer-vision, and deep-learning elicits a new era in ecological research. However, in complex systems, such as marine-benthic habitats, key ecological processes still remain enigmatic due to the lack of cross-scale automated approaches (mms to kms) for community structure analysis. We address this gap by working towards scalable and comprehensive photogrammetric surveys, tackling the profound challenges of full semantic segmentation and 3D grid definition. Full semantic segmentation (where every pixel is classified) is extremely labour-intensive and difficult to achieve using manual labeling. We propose using label-augmentation, i.e., propagation of sparse manual labels, to accelerate the task of full segmentation of photomosaics. Photomosaics are synthetic images generated from a projected point-of-view of a 3D model. In the lack of navigation sensors (e.g., a diver-held camera), it is difficult to repeatably determine the slope-angle of a 3D map. We show this is especially important in complex topographical settings, prevalent in coral-reefs. Specifically, we evaluate our approach on benthic habitats, in three different environments in the challenging underwater domain. Our approach for label-augmentation shows human-level accuracy in full segmentation of photomosaics using labeling as sparse as 0.1%, evaluated on several ecological measures. Moreover, we found that grid definition using a leveler improves the consistency in community-metrics obtained due to occlusions and topology (angle and distance between objects), and that we were able to standardise the 3D transformation with two percent error in size measurements. By significantly easing the annotation process for full segmentation and standardizing the 3D grid definition we present a semantic mapping methodology enabling change-detection, which is practical, swift, and cost-effective. Our workflow enables repeatable surveys without permanent markers and specialized mapping gear, useful for research and monitoring, and our code is available online. Additionally, we release the Benthos data-set, fully manually labeled photomosaics from three oceanic environments with over 4500 segmented objects useful for research in computer-vision and marine ecology

    Learning Aerial Image Segmentation from Online Maps

    Get PDF
    This study deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data-hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps which can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale, publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled, pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.Comment: Published in IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSIN

    The Segment Anything Model (SAM) for Remote Sensing Applications: From Zero to One Shot

    Full text link
    Segmentation is an essential step for remote sensing image processing. This study aims to advance the application of the Segment Anything Model (SAM), an innovative image segmentation model by Meta AI, in the field of remote sensing image analysis. SAM is known for its exceptional generalization capabilities and zero-shot learning, making it a promising approach to processing aerial and orbital images from diverse geographical contexts. Our exploration involved testing SAM across multi-scale datasets using various input prompts, such as bounding boxes, individual points, and text descriptors. To enhance the model's performance, we implemented a novel automated technique that combines a text-prompt-derived general example with one-shot training. This adjustment resulted in an improvement in accuracy, underscoring SAM's potential for deployment in remote sensing imagery and reducing the need for manual annotation. Despite the limitations encountered with lower spatial resolution images, SAM exhibits promising adaptability to remote sensing data analysis. We recommend future research to enhance the model's proficiency through integration with supplementary fine-tuning techniques and other networks. Furthermore, we provide the open-source code of our modifications on online repositories, encouraging further and broader adaptations of SAM to the remote sensing domain.Comment: 20 pages, 9 figure

    Aprendizado ativo baseado em atributos contextuais de superpixel para classificação de imagem de sensoriamento remoto

    Get PDF
    Orientadores: Alexandre Xavier Falcão, Jefersson Alex dos SantosDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Recentemente, técnicas de aprendizado de máquina têm sido propostas para criar mapas temáticos a partir de imagens de sensoriamento remoto. Estas técnicas podem ser divididas em métodos de classificação baseados em pixels ou regiões. Este trabalho concentra-se na segunda abordagem, uma vez que estamos interessados em imagens com milhões de pixels e a segmentação da imagem em regiões (superpixels) pode reduzir consideravelmente o número de amostras a serem classificadas. Porém, mesmo utilizando superpixels, o número de amostras ainda é grande para anotá-las manualmente e treinar o classificador. As técnicas de aprendizado ativo propostas resolvem este problema começando pela seleção de um conjunto pequeno de amostras selecionadas aleatoriamente. Tais amostras são anotadas manualmente e utilizadas para treinar a primeira instância do classificador. Em cada iteração do ciclo de aprendizagem, o classificador atribui rótulos e seleciona as amostras mais informativas para a correção/confirmação pelo usuário, aumentando o tamanho do conjunto de treinamento. A instância do classificador é melhorada no final de cada iteração pelo seu treinamento e utilizada na iteração seguinte até que o usuário esteja satisfeito com o classificador. Observamos que a maior parte dos métodos reclassificam o conjunto inteiro de dados em cada iteração do ciclo de aprendizagem, tornando este processo inviável para interação com o usuário. Portanto, enderaçamos dois problemas importantes em classificação baseada em regiões de imagens de sensoriamento remoto: (a) a descrição efetiva de superpixels e (b) a redução do tempo requerido para seleção de amostras em aprendizado ativo. Primeiro, propusemos um descritor contextual de superpixels baseado na técnica de sacola de palavras, que melhora o resultado de descritores de cor e textura amplamente utilizados. Posteriormente, propusemos um método supervisionado de redução do conjunto de dados que é baseado em um método do estado da arte em aprendizado ativo chamado Multi-Class Level Uncertainty (MCLU). Nosso método mostrou-se tão eficaz quanto o MCLU e ao mesmo tempo consideravelmente mais eficiente. Adicionalmente, melhoramos seu desempenho por meio da aplicação de um processo de relaxação no mapa de classificação, utilizando Campos Aleatórios de MarkovAbstract: In recent years, machine learning techniques have been proposed to create classification maps from remote sensing images. These techniques can be divided into pixel- and region-based image classification methods. This work concentrates on the second approach, since we are interested in images with millions of pixels and the segmentation of the image into regions (superpixels) can considerably reduce the number of samples for classification. However, even using superpixels the number of samples is still large for manual annotation of samples to train the classifier. Active learning techniques have been proposed to address the problem by starting from a small set of randomly selected samples, which are manually labeled and used to train a first instance of the classifier. At each learning iteration, the classifier assigns labels and selects the most informative samples for user correction/confirmation, increasing the size of the training set. An improved instance of the classifier is created by training, after each iteration, and used in the next iteration until the user is satisfied with the classifier. We observed that most methods reclassify the entire pool of unlabeled samples at every learning iteration, making the process unfeasible for user interaction. Therefore, we address two important problems in region-based classification of remote sensing images: (a) the effective superpixel description and (b) the reduction of the time required for sample selection in active learning. First, we propose a contextual superpixel descriptor, based on bag of visual words, that outperforms widely used color and texture descriptors. Second, we propose a supervised method for dataset reduction that is based on a state-of-art active learning technique, called Multi-Class Level Uncertainty (MCLU). Our method has shown to be as effective as MCLU, while being considerably more efficient. Additionally, we further improve its performance by applying a relaxation process on the classification map by using Markov Random FieldsMestradoCiência da ComputaçãoMestre em Ciência da Computaçã
    • …
    corecore