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Abstract: In an endeavor to study natural systems at multiple spatial and taxonomic resolutions,
there is an urgent need for automated, high-throughput frameworks that can handle plethora of
information. The coalescence of remote-sensing, computer-vision, and deep-learning elicits a new era
in ecological research. However, in complex systems, such as marine-benthic habitats, key ecological
processes still remain enigmatic due to the lack of cross-scale automated approaches (mms to kms) for
community structure analysis. We address this gap by working towards scalable and comprehensive
photogrammetric surveys, tackling the profound challenges of full semantic segmentation and 3D
grid definition. Full semantic segmentation (where every pixel is classified) is extremely labour-
intensive and difficult to achieve using manual labeling. We propose using label-augmentation, i.e.,
propagation of sparse manual labels, to accelerate the task of full segmentation of photomosaics.
Photomosaics are synthetic images generated from a projected point-of-view of a 3D model. In
the lack of navigation sensors (e.g., a diver-held camera), it is difficult to repeatably determine
the slope-angle of a 3D map. We show this is especially important in complex topographical
settings, prevalent in coral-reefs. Specifically, we evaluate our approach on benthic habitats, in three
different environments in the challenging underwater domain. Our approach for label-augmentation
shows human-level accuracy in full segmentation of photomosaics using labeling as sparse as 0.1%,
evaluated on several ecological measures. Moreover, we found that grid definition using a leveler
improves the consistency in community-metrics obtained due to occlusions and topology (angle
and distance between objects), and that we were able to standardise the 3D transformation with
two percent error in size measurements. By significantly easing the annotation process for full
segmentation and standardizing the 3D grid definition we present a semantic mapping methodology
enabling change-detection, which is practical, swift, and cost-effective. Our workflow enables
repeatable surveys without permanent markers and specialized mapping gear, useful for research
and monitoring, and our code is available online. Additionally, we release the Benthos data-set, fully
manually labeled photomosaics from three oceanic environments with over 4500 segmented objects
useful for research in computer-vision and marine ecology.

Keywords: photogrammetry; orthorectification; change-detection; community ecology;
label-augmentation; coral-reefs; benthic mapping; computer-vision; multi-level superpixels
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1. Introduction

Accelerations in technologies [1] have empowered ecological studies by facilitating
digital representations of natural systems [2], thus reducing uncertainties in predicting their
future-state [3]. Advances in computer-vision and remote-sensing enable cross-scale re-
search. In the near future, deep neural networks will help to decipher process-from-pattern
as part of automated workflows; preceded by data acquisition from robotic platforms and
semantic segmentation of image-based maps [4,5]. Image-based mapping and semantic
segmentation are used in an array of ecological studies and applications, ranging from
studying vegetation patterns [6–8] and city-scapes [9] to farm-management [10]. Specif-
ically, photogrammetry has become a popular approach for benthic research and reef
monitoring [11–21]. Structure-From-Motion (SFM) photogrammetry estimates the 3D scene
structure and relative motion using subsequent images. It is now possible to view an
ecosystem within a digital framework as a continuum across spatial scales, and examine
the individuals, populations, and communities that comprise it. Nevertheless, photogram-
metry is not yet fully mature as a repeatable method for wide scale ecological surveys. First,
the output 3D models and photomosaics need to be labeled rigorously for analysis. This is
laborious and requires expert knowledge. Thus, there is an urgent need for automation
in the full segmentation task (i.e., labeling each pixel) of photomosaics. Second, a 3D grid
needs to be consistently defined for repeated surveys. Without proper data extraction that
includes full, pixel-wise classification and labeling, the relevant information remains con-
cealed in the image. Here, we address both issues, providing a more coherent solution for
habitat-mapping and underwater photogrammetry. While our methods are applicable to
all domains in which photogrammetry is used, here we focus on the benthic environment.

There are increasing efforts for automatic labeling using machine learning [4,6,9,20,22].
However, the commonly used tools [23,24] still provide point classification and not full
segmentation. Such sparse sampling is overlooking object/patch level information, such
as the morpho-metrics (shape and size) of individual organisms that can be provided
by full semantic segmentation. Several methods for segmentation of benthic images and
photomosaics have been demonstrated [25–29], including using multi-view images [30]
and 3D models [31]. These works that are based on deep learning provide impressive
results; however, deep neural networks rely on a high number of learning parameters and
because of that, they need to be trained with a large amount of data to avoid overfitting.
Then, the main problem for successful automatic identification of marine species is the lack
of training data and extensive variability within taxa [32,33] that prevents using labeled
data from other locations and predicting labels that were not used in the training data. To
overcome this, we propose propagating sparse labels using our Multi-Level Superpixel
(MLS) approach [25]. In [25] this method was suggested as a way to quickly generate
training data for deep learning semantic segmentation in several terrestrial and underwater
domains. Here we show that even by itself it enables obtaining fast full segmentation
with minimal human intervention. We test it extensively on photomosaics with respect to
ecological measurements and show that it provides very high accuracy. Thus, it can be used
as a complimentary method for generating dense training data in cases where there are no
available trained deep networks as it is general and not domain specific. Challenges for
deep-learning algorithms in underwater imaging include illumination and range, as well
as image degradation caused by refraction and wavelength-specific attenuation [34,35].
An orthophoto is generated from a single angle-of-view on the 3D model through the
process of orthorectification where a planimetrically correct image is created by removing
the effects of perspective (tilt) and relief (terrain). In an orthophoto, the objects are scaled
and located in their true positions (topology), enabling direct measurements of areas and
distances [36]. However, in transition from 3D to 2D (orthorectification) there are six
degrees-of-freedom that need to be set. In topographically complex structures, such as
coral reefs, exporting different perspectives of the same 3D model affects the occlusions
(Figure 1) and map-topology, as well as artifacting and distortion on non-planar objects
with limited input views. Thus, the distance and angle between organisms may differ
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without consistency in orthorectification. This can be detrimental, for example, in studies
regarding neighbor-relations and size-distributions.

Figure 1. The effect of orthorectification with a leveler on coral topology, prevalence and size: Three photomosaic replicates
were generated subsequently. (a) Ground-truth (baseline) photomosaic. (b) Replicate which was orthorectified using the
spirit leveler as a reference. (c) No leveler (Naïve) was orthorectified without intervention (3D transformation). The numbers
in yellow (left) are close-ups on the columns.

Most solutions for defining the plane of projection try to define the Z-axis according
to depth in the water-column. Usually, permanent markers such as plastic tubes or steel
bolts are used for this purpose [15], and their depth and the distance between them need to
be measured directly or indirectly [37]. Other means to solve this problem include towed
buoys mounted with GPS sensors [38] in shallow water surveys, and positioning with
acoustic data [39]. Yet, these solutions are impractical for deep and remote reef habitats
such as Mesophotic Coral Ecosystems (MCEs, 30–150 m depth) [40].

To tackle this problem, we define the Z-axis as the depth axis by placing a spirit leveler
within the survey plot and using it to transform the 3D model.

Benthic habitat mapping using acoustic and optic sensors encompassess a range of foci
and scales, from species distribution models to community mapping and abiotic habitat
mapping [41]. Optical imaging can provide much greater detail than acoustic sensors,
which have wider scalability. However, benthic habitats are difficult to map due to the
complex interactions between physical, chemical, biological, and behavioral elements
that comprise them [42]. Here we present a multi-class community mapping scheme for
benthic surveys.

The sessile communities that form and inhabit the reef are linked through cross-scale
processes. For instance, in scleractinian corals, growth-rates and neighbor interactions
occur at very small spatial scales, yet they operate within a much more expansive system,
where dispersion is enhanced by predation and extreme weather events [43], and vicariance
is reticulate through ocean currents [44]. Accordingly, both the minute and the enormous
scales are significant in characterizing the physical and biological features of reef structures.
The composition of taxa in space and time has been the focus of many studies in benthic
ecology. However, reefs are so intricate (Figure 2) that in the lack of adequate technology
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for community-level investigation, the dynamics of sessile organisms remain puzzling.
Thus, fundamental questions regarding key ecological processes in the reef have remained
largely the same for over five decades [45–49], as a simplified compartmentalization of the
benthos is often made for handling complex phenomena.

Figure 2. The main challenges in benthic image segmentation are due to plasticity, irregular shapes,
and elaborate 3D structures. (a) The benthic community structure in Eilat, the Red Sea, is composed
mainly of Scleractinian corals. (b) The reefs in the eastern Caribbean are shifting towards a sponge
and soft-coral dominated community. (c) In the eastern Mediterranean, the rocky reef is temporarily
dominated by turf algae.

In ecological studies, the scale of investigation depends on the rate of events [50,51].
Benthic organisms have growth rates on the scale of mms to cms per year [52]. Therefore,
our investigation necessitates cm scale change-detection abilities. To assess and validate
the change-detection ability of our workflow, we conduct a repeated survey and show
that such orthorectification enables consistently examining the growth and decay, spatial
topology, and presence/absence counts of sessile reef organisms.

Our methodology for automated and repeatable semantic mapping can detect and
relocate sessile organisms on the cm-scale across hundreds of metres. Such a tool can assist
in constructing a multi-level, cross-scale view of underwater and terrestrial ecosystems,
useful for research and monitoring efforts. In this paper, we describe its application on a
new data-set that includes manually segmented photomosaics from three different regions:
a rocky reef in the Eastern Mediterranean, a coral reef in the Northern Red-Sea, and a coral
community in the Eastern Caribbean. We validate our approach through computer-vision
metrics as well as relevant ecological metrics.

Our specific contributions are:

• Extensive ecological validation of semantic segmentation through label-augmentation
of sparse annotations.

• Validation of 3D grid standardisation with a consumer-grade spirit-leveler.
• The Benthos data-set that includes three segmented photomosaics from different

oceanic environments.

2. Materials and Methods
2.1. Imaging System and Photogrammetric Equipment

A NIKON D850 camera with a 35 mm NIKKOR lens in a Nauticam housing with
four INON Z-240 strobes was used (Figure 3b). Photogrammetric targets are objects with
distinguishable features and orientation. Our targets included measuring tapes, 0.5 m
scale-bars, underwater colour charts (DGK), a spirit leveler, and dive slates with electrical
tape markings (Figure 3a).
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Figure 3. Workflow for semantic mapping: (a) Scale bars are located next to a distinguishable object
at the survey starting point, slate and colour-card are used as photogrammetric targets, and the
spirit leveler is aligned in the scene and used for 3D grid definition in post processing. (b) Image
acquisition is carried out using a diver-held imaging system. (c) An RGB photomosaic is produced
and (d) labeled sparsely. (e) Labels are augmented for full terrain depiction using Multi Level
Superpixels (MLS). (f) Community statistics such as class specific size-frequency distribution are
extracted automatically.

2.2. Plot Setup and Acquisition Protocol

When reaching the target depth, a distinguishable natural or artificial object which is
relatively simple to navigate to was detected as a starting point for the survey. From that
point, we measured the required transect length (5–30 m) using a measuring tape and
marked its surroundings using photogrammetric targets and scale bars. In the orthorecti-
fication experiments, we aligned a spirit leveler in the survey plot. The spirit leveler has
three bubble indicators (Figure 3a). When it is placed in such a way that the bubbles are
centred, the leveler can be used to define a plane-of-projection. Optimally, the leveler was
placed in the centre of the plot, and parallel to the transect. The leveler is used to transform
the 3D model, thus it is paramount to obtain a good reconstruction of it by acquiring many
(>15) images from different angles and distances.

Before each survey, several test images were taken to adjust camera settings: ISO, aper-
ture, shutter speed, and focus. When reaching the optimal camera settings the survey was
initiated, and settings were not changed throughout it. Images were acquired at 1 Hz using
the camera’s interval timer shooting function. The camera was held mainly downward-
looking while the diver swam in a lawn-mower (boustrophodonic) pattern, performing
close reciprocal passes over the survey plot to ensure overlap between parallel legs.
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2.3. Study Sites and Data-Sets

We used image-sets from three distinct oceanic environments (Figures 2 and 4).
This comes to show the implementation of our workflow in different ecological zones,
and demonstrate the generality of this method (Table 1).

Figure 4. [Top] The global distribution of the three study zones, and the main photomosaics used in this study; the benthos
data-set [bottom], (Table 1). (A) Spartan Reef offshore Haifa on the eastern Mediterranean coastline (MD data-set). (B) IUI of
Eilat reef, Gulf of Aqaba, northern Red-Sea (RS and RS20 data-sets). (C) Double-Wreck reef, island of St. Eustatius in the
eastern Caribbean (CR data-set).

Table 1. The different data-sets used in this study are from three oceanic regions. Some of the data-sets are labeled coarsely
(not all pixels have a label) and some are manually segmented (full manual labeling; every pixel has a label). Classification
is divided between a genus-specific scheme and a lower level habitat-mapping scheme (Terrain) with eight classess that
represent the terrain type.

Region Name Depth (m) Size in m2 Labeling Classification Map Replicates

Red Sea RS20 20 10 × 1 Coarse Genus 3

Red Sea RS 24–28 5 × 5 Full Terrain 2

Mediterranean MD 20 5 × 4 Full Terrain 2

Caribbean CR 20 12 × 2 Full Terrain 1
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Labeling and Classification

We used two manual labeling schemes: coarse labeling (a polygon inside the object
covering its centre but not all of its pixels) and full segmentation, and two classification
schemes: genus-specific (57 classes), and habitat mapping (eight classes) (Table 1). We
used labelbox, a dedicated tool for computer-vision applications, because of its flexibility,
academic pricing benefits, and simple interface. Images were uploaded and labeled with
a polygon project setup. In data-set Red Sea 20 (RS20) we used genus-specific classes for
scleractinian corals, and other sessile groups at lower taxonomic resolutions. In data-sets
Red-Sea (RS), Caribbean (CR), and Mediterranean (MD) we used eight classes in full
manual labeling, by the terrain type. This requires less expertise and can be distributed
among non-expert labelers such as under-graduate or high-school students, and even
external workforces.

2.4. Label-Augmentation

This experiment reflects the amount of labeling effort required in order to obtain the
highest quality of label-augmentation.

Augmentation from Sparse Annotations

Label-augmentation consists of expanding sparse labels to full segmentation by aug-
menting the number of labeled samples. We use the method previously developed by
us [53] that was since validated extensively on different types of data including city-scape
images for autonomous driving, terrestrial orthophotos, and fluorescent and RGB coral
images [25,54] (code available online https://github.com/Shathe/ML-Superpixels (accessed
on 19 January 2021)). Here, we examine this method with respect to meaningful ecological
measures. We apply label-augmentation on photomosaics (Figure 5), where the input is
sparse annotations, and the output is a fully segmented map. A superpixel is a low-level
grouping of neighboring pixels. The MLS approach uses superpixels to propagate the
sparse labels. It computes several superpixel levels of different sizes and uses the sparse
annotations as votes. It consists of applying the superpixel image segmentation iteratively,
progressively decreasing the number of superpixels generated in each iteration. In the first
iteration, the number of superpixels is very high, leading to very small-sized superpixels
for capturing small details of the images. The following iterations decrease the number of
superpixels, leading to larger superpixels covering unlabeled pixels. Successive iterations
do not overwrite information; they only add new labeling information until all pixels
are covered.

Figure 5. Augmentation validation workflow. (a) A 5 × 5 m2 photomosaic from the RS data-set.
(b) The mosaic was fully labeled manually according to the eight classes in the colour code (right).
(c) The full labels were sparsified (the example depicts the remaining 0.1% pixels and a magnification
of the top left corner). (d) The sparse labels were augmented using our method, and (e) evaluated
against the full manual labels.

To evaluate the method, we conducted an experiment to estimate how many initial
seeds are required to achieve an accurate full segmentation and how different sparsities
affect the augmentation performance. As our photomosaics were manually labeled densely,
i.e., all the pixels were labeled, we simulate the sparse labeling by randomly sampling

https://github.com/Shathe/ML-Superpixels
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initial seeds in several sparsity levels (10%, 1%, 0.1%, 0.01%, 0.001%) of the original dense
labels, and augmenting it using the same method. These sparse labels simulate the way
benthic data-sets are usually labeled for reducing the labeling cost.

2.5. Orthorectification

The purpose of this experiment was to simulate repeated surveys without permanent
markers or navigation sensors. In this manner, repeated surveys can take place with the
aid of natural and artificial references such as distinctive reef features or mooring sinkers.
These objects serve as a starting point for the survey, and orthophotos can be registered in
post-processing as long as they are consistently orthorectified.

2.5.1. 3D Grid Definition and Orthorectification

We used Agisoft Metashape 1.5 for constructing the 3D map models and orthopho-
tos (Agisoft Metashape Professional Version 1.5, Agisoft LLC, St. Petersburg, Russia,
2016). In data-sets RS20, RS, and MD, a 0.5 × 0.05 m2 spirit leveler was used to de-
fine the 3D grid. The models were scaled using the known size of the scale bars. We
marked the points of known distance on 5–10 images until the scale error was lower
than 0.0005 m. Exporting the orthophoto has several degrees-of-freedom that have to
be set for repeatability. The locations of three corners of the spirit leveler were marked
as (X, Y, Z) = (0, 0, Z), (0, 0.05 m, Z), (0.5 m, 0, Z) where Z is the known depth measured
in situ. This was done within the reference pane of Agisoft, marking 15–20 images from
different angles and distances. The model was then rotated and translated accordingly,
and a photomosaic was exported. Orthorectified photomosaics were exported as .png
image files at a resolution of 0.5 mm per pixel. These were then cropped to the area of
interest and adjusted for contrast in Matlab using the imadjust function [MATLAB R2019].

2.5.2. Repeated-Survey Simulation

To estimate the ability of our pipeline for orthorectifying using a leveler and its change-
detection sensitivity we repeated image acquisition two to three times during the same
dive, resulting in image sets that constitute technical replicates. Between repeats, the spirit
leveler was moved around the scene. The ground-truth photomosaic represents a first
temporal repeat or baseline survey, and it was fully manually labeled. The labels were
then sparsified (subsampled), and augmented on all replicates resulting in fully segmented
photomosaic replicates. These were compared to the ground-truth mosaic for evaluation
(Figure 6e).

In this experiment our replicates are expected to be identical and the negative-control
(naïve) is expected to show the highest variance from the ground-truth. To generate the
naïve (no leveler) photomosaic, one of the image-sets was exported twice, before and after
transformation. We registered the replicate orthophotos using Matlab’s manual image
registration tool cpselect and 15–20 registration points (Figure 6c).

2.6. Evaluation Metrics

In all augmentation experiments, the augmented labels were evaluated against the
original manual dense annotations. Several metrics were used to assess the performance of
the augmentation including recall, accuracy (per pixel) and the Intersection over Union
(IoU, per class):

Recall =
True Positives

True Positives + False Negatives
(1)

Accuracy =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
(2)

IoU =
True Positives

True Positives + False Positives + False Negatives
(3)
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Figure 6. Testing orthorectification through label-augmentation. Two photomosaics are generated
subsequently, the ground-truth (top) represents the baseline survey, and the replicate (bottom)
represents the temporal repeat. (a) The ground-truth (baseline) photomosaic is labeled. (b) Labels
are sparsified (c) Manual registration of photomosaics is done using distinctive features in the
scene. (d) Sparse labels from (b) are augmented on the baseline and transformed mosaic replicate.
(e) augmented maps are used for evaluation.

These metrics are normally used to assess the performance of CNNs in segmenta-
tion tasks.

2.7. Community-Metrics Comparisons

We developed a Matlab code for community data extraction. All the objects below size
0.0002 m2 were excluded from analysis because they come from noise in the segmentations.

• Class-specific size-frequency distributions. We divided the classes in nine bins,
starting from 0.0002 m2 to 0.045 m2 with a step size of 0.005 m2. We used χ2 distance
to assess the similarity of class size distribution between maps. Low values indicate
high similarity between sets of data where zero is the maximal similarity.

χ2 Distance =
n

∑
i=1

(Observedi − Expectedi)
2

Observedi + Expectedi
(4)

• Relative amount of individuals per class. The number of objects from each class
divided by the total number of objects in the map.

• Relative area by class. The size in m2 per class divided by the total size of the map.
The photomosaics are exported at 0.5 mm per pixel, and to transfer to m2 we use the
following equation:

Size in m2 =
∑ Pixels

4
× 10−6 (5)

3. Results
3.1. Label-Augmentation

In this experiment we used fully manually labeled images to test the MLS augmen-
tation approach from sparse seeds on wide scale data; photomosaics from different reef
environments. We used data-sets RS, MD, and CR. The label-augmentation experiment
shows that augmented labeling and dense manual annotations provide very similar ecolog-
ical outputs. Figure 7 depicts both the per-pixel accuracy and the IoU for all sparsity levels.
The per-pixel metric (accuracy) is higher because of the background classes (Sand, Rock)
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that have a larger area. Please note that this means that the per-pixel metrics are biased
towards dominant classes. The per-class metric (IoU) is lower because of small biotic classes
which are more difficult to augment. Per-class metrics take more into account the small
ones, which usually have worse results because they are harder to propagate/augment.
Even though, these metrics show that we can properly propagate sparse labels even for
small classes. For both metrics it can be seen that the sparsity of 0.1% is optimal, as in-
vesting time in annotating beyond this sparsity level does not provide a serious gain in
augmentation quality both in terms of accuracy and IoU.

Figure 7. Augmentation experiment at different sparsities. Accuracy (circles) and Mean Intersection
over Union (IoU) (triangles) are represented by shapes. CR, MD, and RS are in red, green and blue.
The increase in accuracy and IoU is very low above 0.1% sparsity.

The χ2 distance was calculated between the class-specific size-frequency distributions
(e.g., Figure 8 left), and averaged over eight classes in each mosaic replicate and its manual
labels (ground-truth). The distance values are low and there is no significant decrease in
distance above sparsity 0.1%. In data-set CR, the trend is even slightly reversed (Figure 8
right). In relative area (Figure 9 left), the error values are low and there is no serious
decrease in error above sparsity 0.1%. The error for sparsities 0.1–10% ranges from two to
ten percent. In relative amount (Figure 9 right), the errors decrease above sparsity 0.1% in
the RS and CR data-sets, but not in the MD data-set. The error for sparsities 0.1–10% is
low and ranges from eight to 20 percent.

The label-augmentation experiment shows that the segmentation improves with
denser seeds, most significantly up to 0.1% sparsity, where annotations denser than 0.1%
do not provide serious increase in accuracy. The effect of sparsity on the error in community
metrics was slightly different between data-sets. Noticeably, the RS data-set was most
affected by percent sparsity since it is the most topographically complex reef, with clearer
trends of decrease in error with denser seed-labels. These results mean that to obtain a
reliable segmentation, the amount of required labeling is above 0.1% of the pixels. Label-
augmentation is an important contribution as an efficient sparse to dense approach for
image- segmentation and alleviates the effort in generating training data for deep learning
applications. Ideally, the best way to augment labels is from point annotations of each
object in the image, because the augmentation propagates seed labels. Therefore, an object
that is not labeled, will not show on the augmented image, and will be overridden by
neighboring labels. In labeling, even humans fail to accurately label objects along the edges
and our accuracy in augmentation was affected by the segment edges where most of the
errors occur. Figure 10 shows the manual and augmented labels of the RS data-set, with
close-up views on single coral colonies.
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Figure 8. (Top) Histograms of the Coral class in the RS data-set. The histogram is divided into nine
bins. (Bottom) Average of χ2 distance between the size-freq. distribution of eight classes. Each
photomosaic was compared to its ground-truth: Fully manually labeled photomosaic. The distance
values are low and there is no significant decrease in the distance from sparsity 0.1%. In data-set CR,
the trend is even slightly reversed.

Figure 9. Percent average error in relative area and relative amount over eight classes in the different
data-sets. In relative area (left), the error values are low and there is no significant decrease in error
above sparsity 0.1%. The error for sparsities 0.1–10% ranges from two to ten %. In relative amount
(right), there is a decrease in error above sparsity 0.1% in the RS and CR data-sets, but not in the MD
data-set. The error for sparsities 0.1–10% ranges from eight to 20%.

3.2. Orthorectification

The orthorectified photomosaics were superior to the naïve photomosaics in accuracy
and IoU throughout all data-sets (Figure 11). The χ2 distance was calculated between the
class-specific size-frequency distributions (e.g., Figure 12 left), and averaged over eight
classes in each mosaic replicate and its augmentation from sparsity 0.1% (ground-truth).
In the orthorectification experiment (Figure 12 right) the orthorectification using a leveler
reduces the distance between the naïve and orthorectified histograms.
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Figure 10. Comparison of the manual (a) and augmented labels (b) from sparsity 0.1%. (c) Close up
views of the coral colonies in the areas indicated in coloured squares (left). (d) Substraction of the
photomosaics shows that the differences occur along the edges of the segments. Black indicates no
difference and colours indicates difference in pixel value.

Figure 11. Results of the orthorectification experiment. Treatments are signified in shape, and data-sets are from left to right.
No-leveler (naïve, circle) is always inferior to the replicates (triangle and square). Accuracy ranges from 82 to 92 percent
and IoU ranges from 52 to 64 percent.

Figure 12. (Left) Histograms of the Coral class in the RS data-set. The histogram is divided into
nine bins. (Right) Average of χ2 distance between the size-frequency distribution of eight classes.
Each photomosaic was compared to its ground-truth: augmented labels from sparsity of 0.1% and
the orthorectification further reduces the distance. The distance for photomosaics that have been
orthorectified ranges between three to four percent, and for the naïve photomosaics from five to eight
percent, with similar effect in both data-sets.
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In relative area (Figure 13 left) the orthorectification increases accuracy. Error was
calculated as the ratio between each replicate and the ground-truth mosaic (multiplied by
100). The error for photomosaic that have been orthorectified ranges between two to five
percent, and for the naïve photomosaics from four to seven percent, with similar effect
in both data-sets. In relative amount (Figure 13, right) the orthorectification increases the
accuracy. The error for photomosaics that have been orthorectified ranges between eight to
11 percent, and for the naïve photomosaics from 13 to 19 percent, with more effect in the
RS data-set. The orthorectification experiment shows that for both data-sets the error in
size-frequency distribution as well as relative size and amount decreased when the maps
were orthorectified. This is a clear trend in which the naïve orthomosaics are inferior in
repeatability to the orthorectified replicates. We found that the effect of orthorectification
on the augmentation results was stronger on topographically complex reefs where more
occlusions occur. Furthermore, despite small differences in accuracy (Figure 11), the pres-
ence/absence data as well as the topology of the maps differs significantly (Figure 10).
Such artifacts generated by inconsistent orthorectification are inimical for studies interested
in tracking single coral colonies over time.

Figure 13. Percent average error in total amount of individuals over eight classes in the different data-
sets. In relative area (left), the error for photomosaic that have been orthorectified ranges between
two to five percent, and for the naïve photomosaics from four to seven percent, with similar effect in
both data-sets. In relative amount (right), the error for photomosaic that have been orthorectified
ranges between eight to 11 percent, and for the naïve photomosaics from 13 to 19 percent, with more
effect in the RS data-set.

4. Discussion

We presented a methodology for cm-scale change-detection, solving two main issues:
swift data-extraction and consistent 3D grid definition. We used the MLS approach for
label-augmentation on photomosaics, and a 3D transformation of the map using a spirit
leveler placed in the scene. We used image-sets from three distinct oceanic environments,
implementing our workflow as a general and robust method in different ecological zones
(Figure 4, Table 1). The results support our method as a practical, rapid, and cost-effective
solution that can be applied at the reef-scape scale with colony level resolution.

Labeling the RS and CR data-sets was difficult due to the large amount of small
segments. The CR data-set also had a large amount of non-rigid corals and strong surge
currents during image acquisition, resulting in reconstruction artifacts. In all data-sets, we
found that it is important to label the objects close to the edges.

Label-augmentation is useful because it opens the possibility to augment previously
labeled data with minimal adjustments. In that case, the detection ability in augmenting
labels from sparse annotations will be at the resolution of the spacing between labels.
Although 0.1% sparsity might take longer than the traditional random point annotation, it
is important to note that we showed it yields significantly more data and therefore worth
the added time. In addition, when labeling the orthophotos using polygons it requires only
<10 clicks per object and yields more than 0.1% sparsity.

In the orthorectification experiment we tested whether 3D grid definition using a
spirit leveler is superior to a non-intervention, naïve approach, and provides stable results.
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Before deciding on the leveler method, we also tried to use a line and a float with
weights for finding the Z-axis, but it does not reconstruct well in the model and is suscepti-
ble to currents. Alternatively, we thought on using corner-shaped aluminum bars linked to
permanent markers, which are intrusive and can be inconsistent due to subtle movements
of the seabed. We also tried to measure the depth at the corner and centre of the plot which
proved to be time-consuming and less practical.

To conclude, slope angle and topographical complexity are the key factors that increase
the necessity of this kind of approach for consistent 3D grid-definition. A two to five percent
error in the orthorectification experiment translates into a cm change-detection threshold
in real-world applications such as coral reef monitoring.

Full consistent semantic mapping brings forth unprecedented level-of-detail that will
pave the way for a new generation of highly detailed ecological studies. Yielding extensive
community metrics automatically is one of the main motivations of photogrammetric sur-
veys. Here, we streamline and enhance the volume of information extracted automatically
from photomosaics.

We successfully detected and classified organisms as small as two cm2. However,
orthorectification generates artifacts such as blur and holes which also affect size/area
measurements. We designed our workflow to be robust and adaptable rather than domain-
specific which is often the case with deep-learning and limited training-data. As our
analysis shows, the commonly used accuracy and IoU evaluation metrics often do not tell
the whole story, as ecological metrics provide a more comprehensive evaluation. Therefore,
our evaluation criteria are useful for testing other image segmentation approaches as well.

Although this workflow is customized for an underwater setting, it is widely trans-
ferable. Previously, label-augmentation through the MLS approach was established to
facilitate training semantic segmentation [25,53,54] and was demonstrated on multiple
domains such as multi-modal images of corals and terrestrial orthophotos with similar
accuracy, showing the generality and the wide range of problems that can be handled with
this approach. Thus, this work is significant for all ecologists that wish to use photogram-
metry in their research. Object Based Image Analysis (OBIA) has been used extensively in
remote sensing [55] and benthic habitat mapping [56–59]. As long as the object of interest
is larger than the pixel size, it can be delineated as a group of pixels. Here we use an
adaptive-Superpixel approach- MLS, which can also be considered to be an object-based
Image analysis scheme. At the cm scale resolutions of benthic organisms, we require high
resolution data to employ such object oriented image analysis schemes, which can be
provided by photogrammetric surveys with sub cm resolution across tens of metres.

Shortcomings and remaining challenges for robust automatic surveys include lack of
specific algorithms for underwater photogrammetry that take into consideration non-rigid
organisms such as soft-corals in surge currents, and analysis of 3D photogrammetrical
outputs [31,60,61]. Many studies have used 2D maps, photomosaics, instead of 3D data;
point-clouds or surface-mesh which are also generated in the photogrammetric process.
This reduction is made to simplify the technical aspects of data-analysis (labeling in 3D) in
the lack of adequate software and workflows. Relative abundance (amount) and relative
area (Figures 9 and 13) metrics are important for ecological studies because they reflect
diversity and evenness measures as well as the well-being of the reef. Furthermore, since
object level separation is still ambiguous in photomosaic analysis (due to occlusions and
angle-of-view), area measurements are more reliable than individual counts and allow
estimating the percent live-cover. A main drawback in photomosaics is that even with
consistent orthorectification there are occlusions and size distortions (artifacts) of non-
planar objects that make measuring individual reef organisms challenging. An inherent
limitation in orthophotos is that they fail to depict crevices, overhangs, and other non-
planar reef formations. Therefore, some organisms are not represented proportionally in
ecological estimations based on orthophotos. Nevertheless, they are still the prevalent tool
for such estimates because of their advantages; scalability and resolution. Future studies
should focus on deriving community metrics of benthic habitats using the full suite of
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visual information in photogrammetric surveys; linking the high-resolution information
contained in the input images for the Structure From Motion (SFM) process across a wide
scale 3D map.

One of the biggest challenges in achieving a taxonomic segmentation of the seabed
is the intricacy of the benthos. Sessile invertebrates often do not have clear bound-
aries, and display overgrowth patterns which are difficult to classify. In such cases,
even manual segmentation would not be accurate. Specific algorithms for underwa-
ter image enhancement [62] might improve edge detection algorithms, and enable bet-
ter segmentation. Moreover, there still remains significant work to be done on accu-
rate placement of underwater photomosaic on GPS coordinates [37,63]. This would
benefit reef ecology because benthic-mapping would become easily repeatable between
teams as well as more precisely comparable across geographic grids. This is normally
done using permanent markers or navigation sensors such as GPS buoys which are
only effective for shallow reefs. Diver-held navigation tools such as underwater tablets
(e.g., http://allecoproducts.fi/about/, https://uwis.fi/en/ (accessed on 19 January 2021))
are emerging, and will complement photogrammetric surveys in the near future.

Classification of the benthos is one of the most important aspects of marine research
and conservation, and underwater photogrammetry can supplement other modalities
in benthic habitat mapping. For example, [64] combined acoustic and visual sensors
to produce a wide scale bathymetry coupled with high resolution photomosaics from
video. Furthermore, Multibeam echosounders are becoming popular for indicating seabed
substrate type. However, they still require calibration across sites and devices [65]. Spectral
features obtained in acoustic surveys have also been shown to be a predictor for terrain type
in acoustic habitat mapping. However, these also require ground truthing [66], which can
be done using photomosaics. Adaptive workflows that combine acoustic and visual sensors
will enable complex navigation tasks with multimodal data. For example, an acoustic
survey can find points of interests followed by a close-up visual survey. This will not only
benefit ecological surveys and habitat depiction but also development of new algorithms
for Multi-modal Simultaneous Localization and Mapping (SLAM).

5. Conclusions

We presented our work on benthic mapping and accelerated segmentation through
photogrammetry and Multi-Level Superpixels, and showed the accuracy of repeated
surveys using orthorectification and sparse label augmentation. We included objects
as small as 2 cm2 and shown that our method provides fast and reliable segmentation
across scale. This approach is appropriate for any person who is interested in using
photogrammetry for ecological surveys, especially diver-based underwater surveys (i.e.,
transects, reef-plots).

Photogrammetry is gaining traction among marine ecologists and map-models of the
benthos have outstanding resolution and scaling abilities. Diver-based photogrammetry is
possible to conduct without extensive expertise or specialized equipment and is becoming
a key tool in the benthic ecology toolbox. With meaningful annotations, photomosaics of
the reef can capture the size, shape, and location of hundreds of individual reef organisms.
Thus, the bottleneck in ecological studies is shifting towards analysis over acquisition.
With advances in acquisition and computer-processing abilities, it is of great importance to
explore new ways for data extraction, and the automation of classification and labeling
needs to be integrated into marine surveys. Label-augmentation enables serious time sav-
ings for complete scene understanding and measurements at the individual-to-population
level, such as size-frequency distribution and relative abundance. However, to compare
complementing maps over time, standardization needs to be made in terms of consistent
3D grid definition; especially on topographically complex reefs.

We conducted repeated surveys of the same reef plot at minimal intervals of a few
minutes assuming no actual change in the terrain in this time-frame, following this assump-
tion, we expected the photomosaic replicates to contain identical ecological information.

http://allecoproducts.fi/about/
https://uwis.fi/en/
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However, comparing the similarity of orthophotos is not straightforward, due to differences
such as color and artifacts (blur/holes) caused for example by slight differences in the
distance and angle of image. We compared the maps indirectly through label-augmentation.
Comparing the segmented maps generated from augmenting a single set of sparse labels
(from the original image) tests all steps of the workflow intact, and includes noise from
the photogrammetric (different input images) and orthorectification processes. Thus, it
simulates an observer effect and a noisy real-world situation.

When applying this workflow in any setting, the most important factors to consider
are the classification level (taxonomic/functional specificity), as it implies on the level of
expert knowledge required as well as the accuracy in automatic identification, and the
expected change-detection ability which is governed by the effective resolution and signal-
to-noise ratio. Furthermore, it is important to consider the effect of the slope on the reef,
in the sense that the top down view is not always perpendicular to the reef-table.

At the moment, there are several tools for image segmentation with weak human-
interference [67]. Moreover, new tools will soon be released with promising outlook on the
benthic photomosaic segmentation tasks [68].
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