2,317 research outputs found

    In vivo measurements with robust silicon-based multielectrode arrays with extreme shaft lengths

    Get PDF
    In this paper, manufacturing and in vivo testing of extreme-long Si-based neural microelectrode arrays are presented. Probes with different shaft lengths (15–70 mm) are formed by deep reactive ion etching and have been equipped with platinum electrodes of various configurations. In vivo measurements on rats indicate good mechanical stability, robust implantation, and targeting capability. High-quality signals have been recorded from different locations of the cerebrum of the rodents. The accompanied tissue damage is characterized by histology

    Development and characterization of micromachined devices for separation techniques

    Get PDF
    Nowadays microfluidic is becoming an important technology in many chemical and biological processes and analysis applications. The potential to replace large-scale conventional laboratory instrumentation with miniaturized and self-contained systems, (called lab-on-a-chip (LOC) or point-of-care-testing (POCT)), offers a variety of advantages such as low reagent consumption, faster analysis speeds, and the capability of operating in a massively parallel scale in order to achieve high-throughput. Micro-electro-mechanical-systems (MEMS) technologies enable both the fabrication of miniaturized system and the possibility of developing compact and portable systems. The work described in this dissertation is towards the development of micromachined separation devices for both high-speed gas chromatography (HSGC) and gravitational field-flow fractionation (GrFFF) using MEMS technologies. Concerning the HSGC, a complete platform of three MEMS-based GC core components (injector, separation column and detector) is designed, fabricated and characterized. The microinjector consists of a set of pneumatically driven microvalves, based on a polymeric actuating membrane. Experimental results demonstrate that the microinjector is able to guarantee low dead volumes, fast actuation time, a wide operating temperature range and high chemical inertness. The microcolumn consists of an all-silicon microcolumn having a nearly circular cross-section channel. The extensive characterization has produced separation performances very close to the theoretical ideal expectations. A thermal conductivity detector (TCD) is chosen as most proper detector to be miniaturized since the volume reduction of the detector chamber results in increased mass and reduced dead volumes. The microTDC shows a good sensitivity and a very wide dynamic range. Finally a feasibility study for miniaturizing a channel suited for GrFFF is performed. The proposed GrFFF microchannel is at early stage of development, but represents a first step for the realization of a highly portable and potentially low-cost POCT device for biomedical applications

    Mems (Micro-Electro-Mechanical-Systems) Based Microfluidic Platforms for Magnetic Cell Separation

    Get PDF
    Microfluidic platforms for magnetic cell separation were developed and investigated for isolation of magnetic particles and magnetically tagged cells from a fluidic sample. Two types of magnetic separation platforms were considered: an Isodynamic Open Gradient Magnetic Sorter (OGMS) and a multistage bio-ferrograph. Miniaturized magnets were designed using magnetostatic simulation software, microfluidic channels were fabricated using microfabrication technology and magnetic separation was investigated using video microscopy and digital image processing. The isodynamic OGMS consisted of an external magnetic circuit and a microfabricated channel (biochip) with embedded magnetic elements. The biochip is placed inside the magnetic field of the external circuit to obtain nearly constant energy density gradient in the portion of the channel used for separation. The microfabrication process involved improving adhesion of thick SU-8 to Pyrex, forming enclosed channels using a low temperature SU-8 adhesive bonding, and fabricating patterned plating molds on both sides of the bonded wafers. Adhesion of SU-8 to Pyrex was improved by using a highly crosslinked thin SU-8 adhesion layer, and enclosed microchannels were fabricated using selectively exposed SU-8 bond formation layers. Electroplating molds were fabricated using KMPR photoresists and were integrated on both sides of the bonded wafers. The multistage bio-ferrograph consisted of a microfabricated enclosed channel placed on the surface of a multi-unit magnet (4 trapezoidal magnets placed in series) assembly such that magnetic cells from a flowing stream would be deposited on designated locations. The OGMS was able to deflect magnetic particles by 500-1000 microns and the capture efficiencies of magnetic particles and cells with the multistage bio-ferrograph were 80-85 percent and 99.5 percent, respectivel

    Mems (Micro-Electro-Mechanical-Systems) Based Microfluidic Platforms for Magnetic Cell Separation

    Get PDF
    Microfluidic platforms for magnetic cell separation were developed and investigated for isolation of magnetic particles and magnetically tagged cells from a fluidic sample. Two types of magnetic separation platforms were considered: an Isodynamic Open Gradient Magnetic Sorter (OGMS) and a multistage bio-ferrograph. Miniaturized magnets were designed using magnetostatic simulation software, microfluidic channels were fabricated using microfabrication technology and magnetic separation was investigated using video microscopy and digital image processing. The isodynamic OGMS consisted of an external magnetic circuit and a microfabricated channel (biochip) with embedded magnetic elements. The biochip is placed inside the magnetic field of the external circuit to obtain nearly constant energy density gradient in the portion of the channel used for separation. The microfabrication process involved improving adhesion of thick SU-8 to Pyrex, forming enclosed channels using a low temperature SU-8 adhesive bonding, and fabricating patterned plating molds on both sides of the bonded wafers. Adhesion of SU-8 to Pyrex was improved by using a highly crosslinked thin SU-8 adhesion layer, and enclosed microchannels were fabricated using selectively exposed SU-8 bond formation layers. Electroplating molds were fabricated using KMPR photoresists and were integrated on both sides of the bonded wafers. The multistage bio-ferrograph consisted of a microfabricated enclosed channel placed on the surface of a multi-unit magnet (4 trapezoidal magnets placed in series) assembly such that magnetic cells from a flowing stream would be deposited on designated locations. The OGMS was able to deflect magnetic particles by 500-1000 microns and the capture efficiencies of magnetic particles and cells with the multistage bio-ferrograph were 80-85 percent and 99.5 percent, respectivel

    Diode laser processing of PMMA and LCP materials for microsystem packaging

    Get PDF
    The thesis describes the development of laser-assisted bonding methods for assembly of microfluidic devices and MEMS packaging. A laser microwelding technique for assembly of transparent polymer substrates for fabrication of microfluidic devices was studied. The transparent PMMA substrates were bonded together using a high power diode laser system with a broad top-hat beam profile and an intermediate titanium thin film consisting of 0.7 mm diameter spots. A tensile strength of 6 MPa was achieved for this novel method which is comparable to that of the previous work in laser welding of polymers. It has been demonstrated that the method is capable of leak free encapsulation of a microfluidic channel. Furthermore, a novel laser-based method using an LCP film for packaging of MEMS, sensors and other microelectronic devices has been investigated. The results show that it is possible to use a laser based method with an LCP polymer for high quality substrate bonding applications. Glass-glass based cavities allow optical transmission and have potential applications for optical sensors and other photonic devices. For glass-glass bonding, it was shown that thin film titanium material can be used as an effective optical absorber in the laser based LCP bonding technique. Laser bonding of glass and silicon using an LCP film has also been achieved but in this case the silicon substrate acted as the absorber to capture the laser power. Laser bonding of a silicon cap to a molded LCP package has also been demonstrated successfully. The results of temperature monitoring using embedded sensors show that the temperature at the base of the LCP package (~130C) is substantially lower than the bonding temperature (> 280C). The results of shear and leak test show good reliability and hermeticity of the laser bonded microcavities. Both two-dimensional and three-dimensional models of heat transfer are developed and studied using the COMSOL Multiphysics software tool to understand the localised laser heating effects. The results are in good agreement with those of the practical work

    MEMS-Based Micro-heat Pipes

    Get PDF
    Micro-electro-mechanical systems (MEMS)-based micro-heat pipes, as a novel heat pipe technology, is considered as one of the most promising options for thermal control applications in microelectronic circuits packaging, concentrated solar cells, infrared detectors, micro-fuel cells, etc. The operating principles, heat transfer characteristics, and fabrication process of MEMS-based micro-grooved heat pipes are firstly introduced and the state-of-the-art of research both experimental and theoretical is thoroughly reviewed. Then, other emerging MEMS-based micro-heat pipes, such as micro-capillary pumped loop, micro-loop heat pipe, micro-oscillating heat pipe, and micro-vapor chamber are briefly reviewed as well. Finally, some promising and innovatory applications of the MEMS-based micro-heat pipes are reported. This chapter is expected to provide basic reference for future researches

    Numerical investigation of the structure of a silicon six-wafer micro-combustor under the effect of hydrogen/air ratio

    Get PDF
    Research reports indicate that sufficiently high equivalence ratio of the hydrogen/air mixture leads to the upstream burning in the recirculation jacket, possibly damaging the micro- combustor due to the high wall temperature. This work investigates the influences of the equivalence ratio of the mixture on the structure of a micro-combustor device. Numerical simulation approaches focused on the structural design of the micro-combustor with the flame burning in the recirculation jacket. Combustion characteristics of the combustor were first analysed based on 2D computational Fluid Dynamics (CFD), and then thermo-mechanical analysis on the combustor was carried out by means of 3D Finite Element Analysis (FEA) method. The results showed that the most dangerous locations where the critical failure could possibly occur lay at the burning areas in the recirculation jacket due to the poor bonding, the high temperature and the residual stress. The results of this study can be used for the design and improvement of the micro-combustors

    Ultrathin silicon wafer bonding physics and applications

    Get PDF
    Ultrathin silicon wafer bonding is an emerging process that simplifies device fabrication, reduces manufacturing costs, increases yield, and allows the realization of novel devices. Ultrathin silicon wafers are between 3 and 200 microns thick with all the same properties of the thicker silicon wafers (greater than 300 microns) normally used by the semiconductor electronics industry. Wafer bonding is one technique by which multiple layers are formed. In this thesis, the history and practice of wafer bonding is described and applied to the manufacture of microelectomechanical systems (MEMS) devices with layer thickness on the scale of microns. Handling and processing problems specific to ultrathin silicon wafers and their bonding are addressed and solved. A model that predicts the conformal nature of these flexible silicon wafers and its impact on bonding is developed in terms of a relatively new description of surface quality, the Power Spectral Density (PSD). A process for reducing surface roughness of silicon is elucidated and a model of this process is described. A method of detecting particle contamination in chemical baths and other processes using wafer bonding is detailed. A final section highlights some recent work that has used ultrathin silicon wafer bonding to fabricate MEMS devices that have reduced existing design complexity and made possible novel, and otherwise difficult to produce, sensors. A new fabrication process that can reduce the required time for proof-of-principle devices using ultrathin silicon wafers is also described

    Microfabrication of Alkali Vapor MEMS Cells for chip-scale atomic clock

    Get PDF
    The technology of MEMS atomic cells containing rubidium or caesium vapors in an atmosphere of neon buffer gas has been developed. Two-chamber silicon cells containing an optical cavity, shallow filtration channels and a technical container for a solid-state alkali source have been implemented in a single-step process of anisotropic wet chemical etching. To prevent significant undercutting of the filtration channels during etching of the through silicon cavities, the shapes of the compensating elements at the convex corners of the silicon nitride mask have been calculated and the composition of the silicon etchant has been experimentally found. The sealing of the cells has been carried out by silicon-glass anodic bonding at a temperature of 250 оС. For this purpose the LK5 glass which has an increased ionic conductivity in comparison with the conventional glass Borofloat 33 was used. The best microfabricated cells allowed us to obtain estimates of the relative instability of the coherent population trapping resonance frequency at the level of 5·10-11 at 1 s
    • …
    corecore