31 research outputs found

    Visualization and analysis of gene expression in bio-molecular networks

    Get PDF

    BioSilicoSystems - A Multipronged Approach Towards Analysis and Representation of Biological Data (PhD Thesis)

    Get PDF
    The rising field of integrative bioinformatics provides the vital methods to integrate, manage and also to analyze the diverse data and allows gaining new and deeper insights and a clear understanding of the intricate biological systems. The difficulty is not only to facilitate the study of heterogeneous data within the biological context, but it also more fundamental, how to represent and make the available knowledge accessible. Moreover, adding valuable information and functions that persuade the user to discover the interesting relations hidden within the data is, in itself, a great challenge. Also, the cumulative information can provide greater biological insight than is possible with individual information sources. Furthermore, the rapidly growing number of databases and data types poses the challenge of integrating the heterogeneous data types, especially in biology. This rapid increase in the volume and number of data resources drive for providing polymorphic views of the same data and often overlap in multiple resources. 

In this thesis a multi-pronged approach is proposed that deals with various methods for the analysis and representation of the diverse biological data which are present in different data sources. This is an effort to explain and emphasize on different concepts which are developed for the analysis of molecular data and also to explain its biological significance. The hypotheses proposed are in context with various other results and findings published in the past. The approach demonstrated also explains different ways to integrate the molecular data from various sources along with the need for a comprehensive understanding and clear projection of the concept or the algorithm and its results, but with simple means and methods. The multifarious approach proposed in this work comprises of different tools or methods spanning significant areas of bioinformatics research such as data integration, data visualization, biological network construction / reconstruction and alignment of biological pathways. Each tool deals with a unique approach to utilize the molecular data for different areas of biological research and is built based on the kernel of the thesis. Furthermore these methods are combined with graphical representation that make things simple and comprehensible and also helps to understand with ease the underlying biological complexity. Moreover the human eye is often used to and it is more comfortable with the visual representation of the facts

    Bioinformatics and Next Generation Sequencing: Applications of Arthropod Genomes

    Get PDF
    Over the past decade, the Next Generation Sequencing (NGS) technology has been broadly applied in many areas such as genomics, medical diagnosis, biotechnology, virology, biological systematics, forensic biology, and anthropology. Taken together, it has offered us brilliant insights into life sciences. Most of the work presented in this thesis describes NGS applications on genome assembly, genome annotation, and comparative genomics, using arthropods as case studies: (1) by sequencing and analyzing the genomes of three Tetranychus spider mites with three completely different feeding behaviors, we uncovered genomic signature variations and indicative of pest adaptations; (2) we sequenced, assembled and annotated five Brevipalpus flat mite genomes and their corresponding endosymbiont Cardinium genomes. Comparative genomics reveals herbivorous pest adaptations and parthenogenesis; (3) the complete genomic analysis of parasitoid wasp Copidosoma floridanum indicates the mechanism of polyembryony of such primary parasite of moths. By bioinformatics and genomics approaches, my study provides the genomic basis and establishes the hypotheses for the future biology in pest and arthropod researches. These NGS applications of arthropod genomes will offer new insights into arthropod evolution and plant-herbivore interactions, open unique opportunities to develop novel plant protection strategies, and additionally, provide arthropod genomic resources as well

    QUANTITATIVE AND FUNCTIONAL ANALYSIS PIPELINE FOR LABEL-FREE METAPROTEOMICS DATA AND ITS APPLICATIONS

    Get PDF
    Since the large-scale metaproteome was first reported in 2005, metaproteomics has advanced at a tremendous rate both in its quantitative and qualitative metrics. Furthermore metaproteomics is now being applied as a general tool in microbial ecology in a large variety of environmental studies. Though metaproteomics is becoming a useful and even a standard tool for the microbial ecologist, standardized bioinformatics pipelines are not readily available. Therefore, we developed quantitative and functional analysis pipeline for metaproteomics (QFAM) to help analyze large and complicated metaproteomics data in a robust and timely fashion with outputs designed to be simple and clearly understood by the microbial ecologist. QFAM starts by running peptide-spectrum searches against resultant MS/MS datasets with mixed metagenome/appropriate protein FASTA database. Its primary search algorithm is MyriMatch/IDPicker. MyriMatch/IDPicker uses multi-CPUs effectively, has an accurate scoring-system, correctly use the high MS accuracy data, and finally has a robust method for protein determination. These are required features for metaproteomics requiring large protein database and complicated peptide-structure. QFAM has quantitative (QAM) and functional (FAM) analysis to provide dependable protein signatures and confident information for understanding the characteristics of the metaproteome. QAM employs a ’selfea’ R package, which provides probability models as well as Cohen’s effect sizes. Our benchmark data test and Monte Carlo simulation results show that selfea can reduce false positives efficiently while losing few true positives; one of the key goals of proteomics and/or metaproteomics experiments. FAM has two modules: BioSystems and COG analysis. The BioSystems module is most appropriate for well-annotated model organisms, such as humans, whereas the COG module is useful for less-annotated microorganisms and metagenome sequences. Both modules provide an enrichment test using Fisher’s exact-test and a significance test using selfea. With two statistics, FAM generates differentially enriched functional terms that are insightful for discerning biological information held behind the metaproteome data. Two application studies in chapter 4 and 5 show how QFAM can be employed for metaproteomics data analysis. QFAM is distinguished from other proteomics pipelines by multiprocessing as well as quantitative and functional analysis

    Computational genomics of lactobacilli

    Get PDF
    Lactobacilli are generally harmless gram-positive lactic acid bacteria and well known for their broad spectrum of beneficial effects on human health and usage in food production. However, relatively little is known at the molecular level about the relationships between lactobacilli and humans and about their food processing abilities. The aim of this thesis was to establish bioinformatics approaches for classifying proteins involved in the health effects and food production abilities of lactobacilli and to elucidate the functional potential of two biomedically important Lactobacillus species using whole-genome sequencing. To facilitate the genome-based analysis of lactobacilli, two new bioinformatics approaches were developed for the systematic analysis of protein function. The first approach, called LOCP, fulfilled the need for accurate genome-wide annotation of putative pilus operons in gram-positive bacteria, whereas the second approach, BLANNOTATOR, represented an improved homology-based solution for general function annotation of bacterial proteins. Importantly, both approaches showed superior accuracy in evaluation tests and proved to be useful in finding information ignored by other homology-search methods, illustrating their added value to the current repertoire of function classification systems. Their application also led to the discovery of several putative pilus operons and new potential effector molecules in lactobacilli, including many of the key findings of this thesis work. Lactobacillus rhamnosus GG is one of the clinically best-studied Lactobacillus strains and has a long history of safe use in the food industry. The whole-genome sequencing of the strain GG and a closely related dairy strain L. rhamnosus LC705 revealed two almost identical genomes, despite the physiological differences between the strains. Nevertheless of the extensive genomic similarity, present only in GG was a genomic region containing genes for three pilin subunits and a pilin-dedicated sortase. The presence of these pili on the cell surface of L. rhamnosus GG was also confirmed, and one of the GG-specific pilins was demonstrated to be central for the mucus interaction of strain GG. These discoveries established the presence of gram-positive pilus structures also in non-pathogenic bacteria and provided a long-awaited explanation for the highly efficient adhesion of the strain GG to the intestinal mucosa. The other Lactobacillus species investigated in this thesis was Lactobacillus crispatus. To gain insights into its physiology and to identify components by which this important constituent of the healthy human vagina may promote urogenital health, the genome of a representative L. crispatus strain was sequenced and compared to those of nine others. These analyses provided an accurate account of features associated with vaginal health and revealed a set of 1,224 gene families that were universally conserved across all the ten strains, and, most likely, also across the entire L. crispatus species. Importantly, this set of genes was shown to contain adhesion genes involved in the displacement of the bacterial vaginosis-associated Gardnerella vaginalis from vaginal cells and provided a molecular explanation for the inverse association between L. crispatus and G. vaginalis colonisation in the vagina. Taken together, the present study demonstrates the power of whole-genome sequencing and computer-assisted genome annotation in identifying genes that are involved in host-interactions and have industrial value. The discovery of gram-positive pili in L. rhamnosus GG and the mechanism by which L. crispatus excludes G. vaginalis from vaginal cells are both major steps forward in understanding the interaction between lactobacilli and host. We envisage that these findings together with the developed bioinformatics methods will aid the improvement of probiotic products and human health in the future.Laktobasillit ovat enimmäkseen harmittomia gram-positiivisia maitohappobakteereja. Vaikka näitä terveysvaikutteisiakin hyötybakteereja on hyödynnetty elintarvikkeiden valmistuksessa jo vuosisatoja, tietämyksemme laktobasillien molekyylibiologisista perusteista on varsin rajallinen. Tämän väitöskirjatyön tavoitteena oli kehittää uusia laskennallisia työkaluja laktobasillien tuottamien biomolekyylien karakterisointiin sekä selvittää kahden biolääketieteellisestikin merkittävän laktobasillilajin toimintaan perimän luentaa hyödyntäen. Väitöskirjatutkimuksessa esitellään kaksi laskennallisen biologian menetelmää laktobasillien ilmentämien ominaisuuksien ennustamiseen perimätiedosta sekä hyödynnetään näitä laktobasillien toiminnan tulkinnassa. Menetelmistä ensimmäinen, LOCP, on luotu seulomaan perimätiedosta pili-tartuntaelimien tuottamiseen tarvittavia geeniryhmiä, kun taas menetelmistä jälkimmäinen, BLANNOTATOR, on sekvenssivertailuihin ja lähisukuisista biomolekyyleistä lainattuun tietoon perustuva uusi proteiinisekvenssien luokitintyökalu. Osatöissä tehdyissä selvityksissä molemmat kehitetyistä menetelmistä osoittautuivat ennennäkemättömän tarkoiksi ja kykeneviksi löytämään muiden tehtäviin soveltuvien menetelmien erheellisesti sivuttamaa tietoa. Ohjelmien avulla pystyttiin myös löytämään uusia pili-tartuntaelimien tuottamiseen tarvittavia geeniryhmiä sekä muita mahdollisesti biolääketieteellisesti merkittäviä ominaisuuksia laktobasilleista, mukaan lukien useimmat tässäkin väitöskirjatyössä esitetyt havainnot. Ensimmäinen väitöskirjatyössä tarkasteltu bakteeri oli Lactobacillus rhamnosus GG, joka on eräs tunnetuimmista ja tutkituimmista probiooteista, eli terveysvaikutteisista bakteereista. Tämän teollisestikin merkittävän laktobasillin perimän luenta ja perimän vertailu toisen lähisukulaisen laktobasillin, L. rhamnosus LC705, perimään paljasti yllätyksellisen vähän perinnöllisiä eroja näiden kahden biologisesti erilaisen bakteerin välillä. Perimien vastaavuudesta huolimatta tutkimuksessa onnistuttiin laskennallisia menetelmiä hyödyntämällä kuitenkin myös tunnistamaan yhteensä viisi L. rhamnosus GG -bakteerille ominaista perimäjaksoa, joista merkittävimmän havaittiin sisältävän pili-tartuntaelimien biosynteesissä tarvittavan geeniryhmän. Työssä myös todistettiin pili-tartuntaelimen ilmentyminen bakteerisolun pinnalle ja tartuntaelimen erään osakomponentin merkitys L. rhamnosus GG -bakteerin sitoutumiselle ihmisen ruuansulatusjärjestelmää peittävään limaan. Yhdessä nämä löydökset todistivat kiistatta ensimmäistä kertaa pili-tartuntaelimen ilmentymisen hyötybakteerissa ja tarjosivat uraauurtavan näkökulman L. rhamnosus GG -bakteerin terveysvaikutuksille sekä kyvylle sitoutua ruuansulatusjärjestelmän eri osiin L. rhamnosus LC705 -bakteeria paremmin. Lisäksi väitöskirjatyössä selvitettiin ihmisen emättimessä runsaastikin läsnä olevan ja emätinterveydelle tärkeän Lactobacillus crispatus -bakteerin perinnöllistä perustaa. Työssä kartoitettiin L. crispatus -lajia hyvin edustavan kannan perimä. Vertaamalla kannan perimää yhdeksän muun saman lajin kannan perimiin, luotiin kattava kuvaus lajin ominaisuuksista ja tunnistettiin yhteensä 1224 geeniperhettä, joiden voidaan olettaa vastaavan bakteerin lajityypillisistä piirteistä. Nämä lajityypilliset geeniperheet muodostavat merkittävän osan kunkin L. crispatus -kannan perimästä, ja niiden joukosta onnistuttiin tunnistamaan lajin tarttumiskyvystä mahdollisesti vastaavia geenejä. Erään tällaisen tarttumisgeenin tuotteen osoitettiin myös kykenevän estämään Gardnerella vaginalis -haittabakteerin kiinnittymistä emättimen epiteelin. Tämä löydös selittää osaltaan L. crispatus -bakteerin roolia terveen emättimen valtalajina. Loppupäätelmänä voidaan esittää, että bakteerien perimän luenta ja bakteeriperäisten proteiinisekvenssien luokitusennustukset ovat äärimmäisen hyödyllinen tapa tulkita laktobasillien ilmentämiä ominaisuuksia ja löytää terveysvaikutteisia biomolekyylejä. Pili-tartuntaelimien ja G. vaginalis -haittabakteerin kiinnittymistä estävän proteiinin löytyminen ovat tärkeä edistysaskel kohti kokonaisvaltaista laktobasillien ja ihmisten vuorovaikutuksien ymmärtämistä ja voivat avata yhdessä kehitettyjen laskennallisten biologisten menetelmien kanssa täysin uudenlaisia lähestymistapoja tuottaa entistä parempia terveyttä edistäviä elintarvikkeita ja parantaa ihmisterveyttä

    Sequencing and Assembling the Nuclear Genome of the Antarctic Psychrophilic Green Alga Chlamydomonas sp. UWO241: Unravelling the Evolution of Cold Adaptation

    Get PDF
    DNA sequencing technologies have undergone tremendous advancements in recent years, but assembling, annotating, and analyzing a nuclear genome is still a huge undertaking, especially for small laboratory groups, partly because many eukaryotic genomes are repeat-rich and contain thousands of genes and introns. The Antarctic harbors a variety of algae that can withstand extreme cold but do not grow at warmer temperatures (psychrophiles), including the unicellular green alga Chlamydomonas sp. UWO241 (a.k.a. UWO241). Little is known, however, about how psychrophilic algae evolved from their respective mesophilic ancestors by adapting to particular cold environments. To present insights into this issue,I critically determined the draft nuclear genome (~212 Mb, 16,325 protein-coding genes) sequence of UWO241 and performed comparative genomic analyses. Firstly, an assembly pipeline was developed for processing high throughput sequencing (DNA-Seq) reads into genomic contigs. These contigs, alongside transcriptome sequencing (RNA-Seq) reads, were fed into an annotation pipeline, containing the commonly used bioinformatics gene-profiling software. Computational analyses were carried out on a powerful in-house computer. Finally, comparative genomic analyses were performed between UWO241 and its close green algal relatives in the Chlamydomonadales revealing: (1) UWO241 harbors hundreds of highly similar duplicate genes involved in diverse cellular processes, some of which I argue are aiding its survival in the Antarctic via gene dosage; (2) UWO241 encodes a large number (Âł37) of ice-binding proteins (IBPs), putatively originating from horizontal gene transfer; and (3) UWO241 appears to have an expanded set of orthologous gene families for reverse transcriptase, IBPs and antenna proteins. These investigations deepen our understanding of evolution between psychrophilic and mesophilic algae and help unravel the existence of common mechanisms in the adaptation to cold environments

    Comparative genomics of Dothideomycete fungi

    Get PDF
    Fungi are a diverse group of eukaryotic micro-organisms particularly suited for comparative genomics analyses. Fungi are important to industry, fundamental science and many of them are notorious pathogens of crops, thereby endangering global food supply. Dozens of fungi have been sequenced in the last decade and with the advances of the next generation sequencing, thousands of new genome sequences will become available in coming years. In this thesis I have used bioinformatics tools to study different biological and evolutionary processes in various genomes with a focus on the genomes of the Dothideomycetefungi Cladosporium fulvum, Dothistroma septosporumand Zymoseptoria tritici. Chapter 1introduces the scientific disciplines of mycology and bioinformatics from a historical perspective. It exemplifies a typical whole-genome sequence analysis of a fungal genome, and focusses in particular on structural gene annotation and detection of transposable elements. In addition it shortly reviews the microRNA pathway as known in animal and plants in the context of the putative existence of similar yet subtle different small RNA pathways in other branches of the eukaryotic tree of life. Chapter 2addresses the novel sequenced genomes of the closely related Dothideomyceteplant pathogenic fungi Cladosporium fulvumand Dothistroma septosporum. Remarkably, it revealed occurrence of a surprisingly high similarity at the protein level combined with striking differences at the DNA level, gene repertoire and gene expression. Most noticeably, the genome of C. fulvumappears to be at least twice as large, which is solely attributable to a much larger content in repetitive sequences. Chapter 3describes a novel alignment-based fungal gene prediction method (ABFGP) that is particularly suitable for plastic genomes like those of fungi. It shows excellent performance benchmarked on a dataset of 7,000 unigene-supported gene models from ten different fungi. Applicability of the method was shown by revisiting the annotations of C. fulvumand D. septosporumand of various other fungal genomes from the first-generation sequencing era. Thousands of gene models were revised in each of the gene catalogues, indeed revealing a correlation to the quality of the genome assembly, and to sequencing strategies used in the sequencing centres, highlighting different types of errors in different annotation pipelines. Chapter 4focusses on the unexpected high number of gene models that were identified by ABFGP that align nicely to informant genes, but only upon toleration of frame shifts and in-frame stop-codons. These discordances could represent sequence errors (SEs) and/or disruptive mutations (DMs) that caused these truncated and erroneous gene models. We revisited the same fungal gene catalogues as in chapter 3, confirmed SEs by resequencing and successively removed those, yielding a high-confidence and large dataset of nearly 1,000 pseudogenes caused by DMs. This dataset of fungal pseudogenes, containing genes listed as bona fide genes in current gene catalogues, does not correspond to various observations previously done on fungal pseudogenes. Moreover, the degree of pseudogenization showing up to a ten-fold variation for the lowest versus the highest affected species, is generally higher in species that reproduce asexually compared to those that in addition reproduce sexually. Chapter 5describes explorative genomics and comparative genomics analyses revealing the presence of introner-like elements (ILEs) in various Dothideomycetefungi including Zymoseptoria triticiin which they had not identified yet, although its genome sequence is already publicly available for several years. ILEs combine hallmark intron properties with the apparent capability of multiplying themselves as repetitive sequence. ILEs strongly associate with events of intron gain, thereby delivering in silico proof of their mobility. Phylogenetic analyses at the intra- and inter-species level showed that most ILEs are related and likely share common ancestry. Chapter 6provides additional evidence that ILE multiplication strongly dominates over other types of intron duplication in fungi. The observed high rate of ILE multiplication followed by rapid sequence degeneration led us to hypothesize that multiplication of ILEs has been the major cause and mechanism of intron gain in fungi, and we speculate that this could be generalized to all eukaryotes. Chapter 7describes a new strategy for miRNA hairpin prediction using statistical distributions of observed biological variation of properties (descriptors) of known miRNA hairpins. We show that the method outperforms miRNA prediction by previous, conventional methods that usually apply threshold filtering. Using this method, several novel candidate miRNAs were assigned in the genomes of Caenorhabditis elegansand two human viruses. Although this chapter is not applied on fungi, the study does provide a flexible method to find evidence for existence of a putative miRNA-like pathway in fungi. Chapter 8provides a general discussion on the advent of bioinformatics in mycological research and its implications. It highlights the necessity of a prioriplanning and integration of functional analysis and bioinformatics in order to achieve scientific excellence, and describes possible scenarios for the near future of fungal (comparative) genomics research. Moreover, it discusses the intrinsic error rate in large-scale, automatically inferred datasets and the implications of using and comparing those.</p

    Comparative genomics of Dothideomycete fungi

    Get PDF
    Fungi are a diverse group of eukaryotic micro-organisms particularly suited for comparative genomics analyses. Fungi are important to industry, fundamental science and many of them are notorious pathogens of crops, thereby endangering global food supply. Dozens of fungi have been sequenced in the last decade and with the advances of the next generation sequencing, thousands of new genome sequences will become available in coming years. In this thesis I have used bioinformatics tools to study different biological and evolutionary processes in various genomes with a focus on the genomes of the Dothideomycetefungi Cladosporium fulvum, Dothistroma septosporumand Zymoseptoria tritici. Chapter 1introduces the scientific disciplines of mycology and bioinformatics from a historical perspective. It exemplifies a typical whole-genome sequence analysis of a fungal genome, and focusses in particular on structural gene annotation and detection of transposable elements. In addition it shortly reviews the microRNA pathway as known in animal and plants in the context of the putative existence of similar yet subtle different small RNA pathways in other branches of the eukaryotic tree of life. Chapter 2addresses the novel sequenced genomes of the closely related Dothideomyceteplant pathogenic fungi Cladosporium fulvumand Dothistroma septosporum. Remarkably, it revealed occurrence of a surprisingly high similarity at the protein level combined with striking differences at the DNA level, gene repertoire and gene expression. Most noticeably, the genome of C. fulvumappears to be at least twice as large, which is solely attributable to a much larger content in repetitive sequences. Chapter 3describes a novel alignment-based fungal gene prediction method (ABFGP) that is particularly suitable for plastic genomes like those of fungi. It shows excellent performance benchmarked on a dataset of 7,000 unigene-supported gene models from ten different fungi. Applicability of the method was shown by revisiting the annotations of C. fulvumand D. septosporumand of various other fungal genomes from the first-generation sequencing era. Thousands of gene models were revised in each of the gene catalogues, indeed revealing a correlation to the quality of the genome assembly, and to sequencing strategies used in the sequencing centres, highlighting different types of errors in different annotation pipelines. Chapter 4focusses on the unexpected high number of gene models that were identified by ABFGP that align nicely to informant genes, but only upon toleration of frame shifts and in-frame stop-codons. These discordances could represent sequence errors (SEs) and/or disruptive mutations (DMs) that caused these truncated and erroneous gene models. We revisited the same fungal gene catalogues as in chapter 3, confirmed SEs by resequencing and successively removed those, yielding a high-confidence and large dataset of nearly 1,000 pseudogenes caused by DMs. This dataset of fungal pseudogenes, containing genes listed as bona fide genes in current gene catalogues, does not correspond to various observations previously done on fungal pseudogenes. Moreover, the degree of pseudogenization showing up to a ten-fold variation for the lowest versus the highest affected species, is generally higher in species that reproduce asexually compared to those that in addition reproduce sexually. Chapter 5describes explorative genomics and comparative genomics analyses revealing the presence of introner-like elements (ILEs) in various Dothideomycetefungi including Zymoseptoria triticiin which they had not identified yet, although its genome sequence is already publicly available for several years. ILEs combine hallmark intron properties with the apparent capability of multiplying themselves as repetitive sequence. ILEs strongly associate with events of intron gain, thereby delivering in silico proof of their mobility. Phylogenetic analyses at the intra- and inter-species level showed that most ILEs are related and likely share common ancestry. Chapter 6provides additional evidence that ILE multiplication strongly dominates over other types of intron duplication in fungi. The observed high rate of ILE multiplication followed by rapid sequence degeneration led us to hypothesize that multiplication of ILEs has been the major cause and mechanism of intron gain in fungi, and we speculate that this could be generalized to all eukaryotes. Chapter 7describes a new strategy for miRNA hairpin prediction using statistical distributions of observed biological variation of properties (descriptors) of known miRNA hairpins. We show that the method outperforms miRNA prediction by previous, conventional methods that usually apply threshold filtering. Using this method, several novel candidate miRNAs were assigned in the genomes of Caenorhabditis elegansand two human viruses. Although this chapter is not applied on fungi, the study does provide a flexible method to find evidence for existence of a putative miRNA-like pathway in fungi. Chapter 8provides a general discussion on the advent of bioinformatics in mycological research and its implications. It highlights the necessity of a prioriplanning and integration of functional analysis and bioinformatics in order to achieve scientific excellence, and describes possible scenarios for the near future of fungal (comparative) genomics research. Moreover, it discusses the intrinsic error rate in large-scale, automatically inferred datasets and the implications of using and comparing those.</p

    A transcriptomics approach to understanding polymorphic and transcript level differences linked to isoquinoline alkaloid production in triploid varieties of narcissus pseudonarcissus

    Get PDF
    The Amaryllidaceae have characteristic isoquinoline alkaloids including galanthamine that is approved for treatment of Alzheimer’s disease. The daffodil (Narcissus pseudonarcissus) is an industrial source of this alkaloid. This project undertook analysis of the daffodil transcriptome as an approach to understanding this alkaloid biosynthetic pathway. Material from the basal plate of var. Carlton was analysed using the Roche 454 GS FLX Titanium and Illumina HiSeq platforms to assemble reference transcripts (45324 transcripts from 454, 165065 from Illumina). Annotation was via a bespoke BLAST pipeline utilizing UniProt, TAIR, Rfam and RefSeq. Further functional annotation and enrichment studies were carried out using the DAVID platform encompassing KEGG, GO and EC annotations. Illumina HiSeq sequencing of a second variety, Andrew’s Choice, was used alongside the reference transcripts to identify SNPs and transcript level differences. A bioinformatics method to determine ploidy indicated both varieties were triploid, in agreement with microscopy results. The level of selected transcripts was also assessed using qPCR. Several transcripts putatively involved in alkaloid biosynthesis were identified. Comp75950_c0_s1 showed homology to a C4H gene from peppers and could be involve in protocatechuic acid biosynthesis in daffodils. Two transcripts, Daff106212 and Contig1404, were predicted to catalyse the synthesis of norbelladine from protocatechuic acid and tyramine, and its subsequence conversion to 4’-O-methylnorbelladine. Finally, transcripts HDA57HA0AK3FX and Daff88927 were suggested for the final step in galanthamine biosynthesis, an intermolecular phenol coupling. This is the first transcriptomic comparison of two daffodil varieties and is an important resource for further investigation into genes involved in Amaryllidaceae alkaloid biosynthesis

    Mechanisms Underlying Freeze Tolerance in the Spring Field Cricket, \u3cem\u3eGryllus veletis\u3c/em\u3e

    Get PDF
    Freeze tolerance has evolved repeatedly across insects, facilitating survival in low temperature environments. Internal ice formation poses several challenges, but the mechanisms that mitigate these challenges in freeze-tolerant insects are not well understood. To better understand how insects survive freezing, I describe a novel laboratory model, the spring field cricket Gryllus veletis (Orthoptera: Gryllidae). Following acclimation to six weeks of decreasing temperature and photoperiod (mimicking autumn), G. veletis juveniles becomes moderately freeze-tolerant, surviving freezing at -8 °C for up to one week, and surviving temperatures as low as -12 °C. Acclimation is associated with increased control of the temperature and location of ice formation, accumulation of cryoprotectant molecules (myo-inositol, proline, and trehalose) in hemolymph and fat body tissue, metabolic rate suppression, and differential expression of more than 3,000 genes in fat body tissue. To test cryoprotectant function, I increase their concentration in G. veletis hemolymph (via injection) and freeze isolated fat body tissue with exogenous cryoprotectants. I show that cryoprotectants improve survival of freeze-tolerant G. veletis (proline), their fat body cells (myo-inositol), or both (trehalose) under otherwise lethal conditions, suggesting limited functional overlap of these cryoprotectants. However, no cryoprotectant (alone or in combination) can confer freeze tolerance on freeze-intolerant G. veletis or their cells. During acclimation, G. veletis upregulates genes encoding cryoprotectant transmembrane transporters, antioxidants, and molecular chaperones, which may protect cells during freezing and thawing. In addition, acclimated G. veletis upregulates genes encoding lipid metabolism enzymes, and cytoskeletal proteins and their regulators, which I hypothesize promote membrane and cytoskeletal remodelling. To investigate the function of these genes in freeze tolerance, I develop a method to knock down gene expression in G. veletis using RNA interference. I knock down expression of three genes (encoding a cryoprotectant transporter, an antioxidant, and a cytoskeletal regulator), laying the ground work for others to test whether and how these genes contribute to mechanisms underlying freeze tolerance. By using a combination of descriptive and manipulative experiments in an appropriate laboratory model, I improve our understanding of the factors that contribute to insect freeze tolerance
    corecore