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Abstract 

DNA sequencing technologies have undergone tremendous advancements in recent years, but 

assembling, annotating, and analyzing a nuclear genome is still a huge undertaking, especially 

for small laboratory groups, partly because many eukaryotic genomes are repeat-rich and 

contain thousands of genes and introns. The Antarctic harbors a variety of algae that can 

withstand extreme cold but do not grow at warmer temperatures (psychrophiles), including the 

unicellular green alga Chlamydomonas sp. UWO241 (a.k.a. UWO241). Little is known, 

however, about how psychrophilic algae evolved from their respective mesophilic ancestors 

by adapting to particular cold environments. To present insights into this issue, I critically 

determined the draft nuclear genome (~212 Mb, 16,325 protein-coding genes) sequence of 

UWO241 and performed comparative genomic analyses. Firstly, an assembly pipeline was 

developed for processing high throughput sequencing (DNA-Seq) reads into genomic contigs. 

These contigs, alongside transcriptome sequencing (RNA-Seq) reads, were fed into an 

annotation pipeline, containing the commonly used bioinformatics gene-profiling software. 

Computational analyses were carried out on a powerful in-house computer. Finally, 

comparative genomic analyses were performed between UWO241 and its close green algal 

relatives in the Chlamydomonadales revealing: (1) UWO241 harbors hundreds of highly 

similar duplicate genes involved in diverse cellular processes, some of which I argue are aiding 

its survival in the Antarctic via gene dosage; (2) UWO241 encodes a large number (³37) of 

ice-binding proteins (IBPs), putatively originating from horizontal gene transfer; and (3) 

UWO241 appears to have an expanded set of orthologous gene families for reverse 

transcriptase, IBPs and antenna proteins. These investigations deepen our understanding of 

evolution between psychrophilic and mesophilic algae and help unravel the existence of 

common mechanisms in the adaptation to cold environments. 
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Summary for Lay Audience 

Most of the Earth exists at or below the freezing point of water. Such extreme environments 

can harbour a variety of organisms, including psychrophiles, which can withstand intense cold 

and cannot survive at more moderate temperatures. Lake Bonney is a permanently ice-covered 

lake in the McMurdo Dry Valleys of Antarctica. It is home to many cold-adapted microbes 

including the unicellular green alga Chlamydomonas sp. UWO241 (a.k.a. UWO241). Several 

important aspects of its biology, including physiology, molecular biology of photosynthesis 

and comparative genomics, have been studied in detail over the past 25 years. Here, the draft 

genome of UWO241 was determined, including a highly contiguous genome assembly and 

well-annotated coding regions. Furthermore, a comparative genomic framework between 

UWO241 and its close green algal relatives as well as other cold-adapted algae was built. 

Remarkably, UWO241 is unique in many ways. For example, the genome has large size of 

noncoding regions. On the other hand, many genes are duplicated and some gene families 

encoding important functions even contain more genes in the UWO241 genome than other 

green algal relatives, such as antenna protein genes, ribosome genes, and ice-binding protein 

genes. These features deepen our understanding of evolution between psychrophilic and 

mesophilic algae and help unravel the existence of common mechanisms in the adaptation to 

cold environments. 
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Chapter 1  

1 General Introduction 
Next-generation sequencing (NGS) and third-generation sequencing (TGS) technologies 

have made it easy to obtain huge amounts of raw high-throughput DNA and RNA 

sequencing data (DNA-Seq and RNA-Seq) from green algae, but downstream nuclear 

genomic analyses, such as genome assembly, gene annotation, and comparative genomic 

analysis, remain time-consuming, and complicated, especially for smaller laboratory 

groups with limited computing infrastructure. A variety of algae from Antarctica can 

tolerate cold but do not grow at warmer temper (psychrophiles), including the unicellular 

green alga Chlamydomonas sp. UWO241 (a.k.a. UWO241). But how psychrophilic algae 

evolved from their respective mesophilic ancestors by adapting to particular cold 

environments is little known. UWO241 as a psychrophile is emerging as model to explore 

this issue after years’ research on several important aspects, including its physiology, 

molecular biology of photosynthesis, and comparative genomics. In Chapter 1, I present 

the background information on sequencing technologies and green algal genomics, with a 

particular focus on cold-adapted algae as well as members of the Chlamydomonadales. 

Chapter 2 is a step-by-step user guide offering researchers a basic foundation in 

bioinformatics for nuclear genome projects. In Chapter 3, I use various bioinformatics 

software and pipelines to assemble and annotate the nuclear genome of the green algae 

UWO241 using DNA-Seq and RNA-Seq. The assembled nuclear DNA contigs, alongside 

transcriptomic data, are fed into a customized annotation pipeline based on the most up-to-

date eukaryotic bioinformatics gene-profiling software. In chapter 4, I carry out 

comparative genomic analysis of UWO241 with its close green algal relatives and other 

cold-adapted algae, with the ultimate goal of better understanding psychrophily. In short, 

the draft genome of UWO241 from the Chapter 3 is compared to the genomes of the 

mesophilic green algae Chlamydomonas reinhardtii, Volvox carteri, and Dunaliella salina, 

among others, allowing me to interpret some of the crucial hallmarks of the UWO241 

genome. I argue that highly conserved duplicate genes are associated with environmental 

survival in an extreme environment. I show that UWO241 has acquired numerous ice-

binding proteins (IBPs) via horizontal gene transfer (HGT), and that gene families for 
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reverse transcriptases, ribosomal proteins, and antenna proteins are noticeably expanded as 

compared to its mesophilic algal relatives. Presumably, the existence of common 

mechanisms underlying cold adaptation can be attributed to these unique genomic features. 

Lastly, in Chapter 5, I briefly review the challenges and opportunities for bioinformatics 

researchers.  

1.1 Life at the Edge: Psychrophiles and Photopsychrophiles 

1.1.1 Psychrophiles 

The Earth is a cold place (~80% of it is permanently below 5 °C) (Russell 1990). This is 

largely due to 70% of the Earth surface is formed by oceans, among which 90% of water 

is at 5 °C or lower (Golomb 1993). Although the remaining 30% Earth surface is for land, 

10% of which is covered with glacial ice, containing ice caps, glaciers, and the ice sheets 

of polar regions (Kwok et al. 2020). These polar regions are not limited to Antarctica, but 

parts of North America and Europe that are within the Arctic circle (Anisimov et al. 2001). 

Apart from that, mountainous regions such as Alps, Himalayas and Rocky Mountains are 

also contribute to the cold environment of earth’s surface (Margesin and Miteva 2011).  

Despite the frigid conditions, these cold realms are teeming with life—microbial life. In 

2006, D’Amico et al. reviewed the availability of several bacteria and archaea genomes 

living in the cold (D'Amico et al. 2006). Two years later, researchers have discovered novel 

groups of cyanobacteria, fungi, and viruses adapted to cold (Margesin et al. 2008).In 2010, 

Horikoshi and colleagues (2010) published the extremophiles handbook with a special 

focus in Chapter 6 reviewing those microorganisms living in the cold. Despite the 

excitement around these discoveries, many questions remained about the role of these 

organisms in the cold environment, such as the definition of the cold-adapted species. 

Cold adapted organisms are termed as psychrophiles or psychrotrophs (psychrotolerant) 

(Morita 1975). In 1975, Morita (Morita 1975) first defined the terms psychrophiles 

meaning organisms are able to grow optimally at temperatures lower than 15 °C and cannot 

tolerate above 20 °C, which differs from psychrotrophs, organisms that are capable of 

growth at temperatures lower than 15 °C, but also are able to grow and survive at 
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temperatures above 25 °C. Psychrophilic and psychrotolerant representatives can be found 

in all three domains of life, including Bacteria, Archaea, and Eukaryota. Bacteria are 

usually abundant in frozen environments such as lake ice, glaciers, and sea ice; however, 

archaea can survive many permanently cold environments such as polar marine water and 

deep oceans, which are thought to be associated with extremophiles (Mikucki et al. 2011; 

Siddiqui et al. 2013). Notably, an extremophile is an organism that can survive in extreme 

environmental conditions with optimal growth (e.g., high salt concentration, high pressure, 

low temperature etc.), which differs from a typical carbon-based life form using water as a 

solvent to survive (Rothschild and Mancinelli 2001). Also, many psychrophiles have 

evolved strategies to withstand stresses apart from coldness, such as low or high light, 

excessive ultraviolet (UV) radiation, high or low pH, high osmotic pressure and low 

nutrients (Rodrigues and Tiedje 2008) 

In recent years, the application of metagenomics and associated meta-functional 

approaches (metaproteomics and metatranscriptomics) has deepened the insights into the 

molecular mechanisms of cold adaptation (De Maayer et al. 2014; Lyon and Mock 2014; 

Åqvist et al. 2017). There are a wide range of strategies for coping with extreme cold, 

including maintaining functional cold-adapted enzymes (Åqvist et al. 2017), having high 

levels of polyunsaturated fatty acids (PUFAs), which can increase cellular membrane 

fluidity in a cold climate (Becker et al. 2011; Lyon and Mock 2014), as well as employing 

a mixotrophic lifestyle, forming cysts, storing carbohydrates, and/or altering the 

photosynthetic machinery (Lyon and Mock 2014). 

There is diversity of microbial life harboured in various cold environments such as lake, 

sea-ice and deep-sea, representing a broad range of physicochemical conditions in those 

areas (D'Amico et al. 2006). Especially, many of them are psychrophiles whose enzymes 

are sensitive to temperature change (De Maayer et al. 2014). The percentage of Arctic sea 

ice has experienced a dramatic decline linked to global warming in recent years (Obbard 

et al. 2014; Yadav et al. 2020). Thus, the structural and functional assessment of cold-

active enzymes of psychrophilic species may provide insights into the impacts of climate 

change on the microbes present in these extreme environments (Siddiqui et al. 2013).  
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1.1.2 Photosynthetic Psychrophiles 

Our understanding of psychrophily is largely shaped by studies on bacteria and archaea, 

and the field as a whole is still in its infancy (D'Amico et al. 2006; De Maayer et al. 2014), 

especially regarding the comparative genomics of psychrophiles with those from closely 

related mesophiles which grow best in moderate temperature ranging from 20 to 40 °C 

(Mock et al. 2017; Zhang et al. 2020). Several psychrophilic bacteria and archaea have 

been compared in recent publications. For example, the comparison of Alteromonas sp. 

SN2 genome with its two close mesophilic strains suggested the presence of 15 genomic 

islands in strain SN2 likely confer ecological fitness traits (especially membrane transport 

and fatty acid biosynthesis) (Math et al. 2012). Moreover, the halophilic archaeon 

Halorubrum lacusprofundi, isolated from Antarctica, was compared to 12 mesophilic 

Haloarchaea, indicating the type of amino acid substitutions are consistent with structural 

flexibility and protein function at low temperature (DasSarma et al. 2013). 

Furthermore, the psychrophilic and psychrotrophic fungi have also brought great attention 

in recent years. This is partly due to their potential applications in biotechnology and 

pharmaceuticals (Yadav et al. 2019). As reviewed by Hassan et al., fungi are found to be 

able to survive at low temperature as well as some of the extreme environments in polar 

regions, such as high UV, frequent freeze and thaw cycles and low nutrient availability 

(Hassan et al. 2016). Many adaptation features of fungi are identified to tolerate extreme 

environments, such as the production of bioactive metabolites and cold-active enzymes 

(Robinson 2001).  

One of the coldest regions on Earth is the Antarctic (Feller and Gerday 2003). One 

consequence of the apparent inhospitable environment is the lack of the diversity of 

endemic terrestrial plant species found on the Antarctic continent. The Antarctic is limited 

to two angiosperms: Deschampsia antarctica and Colobanthus quitensis (Santiago et al. 

2017). In contrast, Antarctica is teeming with microbial life despite its frigid conditions. 

This includes heterotrophic microbial diversity and an abundance localized to endolithic 

rock surfaces on ice-free Antarctic land surfaces (Coleine et al. 2020). Eukaryotic algae 

and cyanobacteria are the dominant microbial aquatic life forms in the Antarctic (Morgan-

Kiss et al. 2016). Many of these algae are bona fide psychrophiles, among the best studied 
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psychrophilic eukaryotic algae is the diatom Fragilariopsis cylindrus (Appendix A: Table 

S1). Usually, the seawater and sea ice of both the Arctic and Antarctic Oceans harbor this 

diatom, which tends to have higher silicate concentrations (Mock and Hoch 2005). 

Recently, Mock and colleagues (2017) reported the complete sequenced and assembled 

genome of this species; furthermore, this team provided particular insights into this cold-

adapted diatom from the Southern Ocean, discovering that the diploid F. cylindrus genome 

harboured around 24.7% genetic loci with highly divergent alleles, suggesting that 

divergent alleles might be involved in adaptation to environmental fluctuations. 

The psychrotolerant green alga Coccomyxa subellipsoidea C-169 also has a complete 

genome sequence, which was completed and assembled earlier in 2012 (Blanc et al. 2012). 

It was the first psychrotolerant green alga from a polar environment to be sequenced. 

Several gene families in C. subellipsoidae, such as those involved in lipid metabolism, 

transporters, cellulose synthases and short alcohol dehydrogenases (Blanc et al. 2012). 

Notably, psychrotolerant species are the same as mesophiles to grow at 20-40 °C but are 

able to tolerate lower temperatures, albeit with slower growth rates. This psychrotolerant 

green alga does not meet the strict definition of psychrophily, but it strengthens the 

knowledge of the adaptations associated with low temperature. 

1.1.3 Psychrophilic Chlamydomonadaleans 

Psychrophilic chlamydomonadalean algae can be found in diverse (and sometimes strange) 

environments. Remarkably, almost one-third of known photopsychrophiles (i.e., 

photosynthetic psychrophiles) belong to the green algal order Chlamydomonadales , which 

is found in the Chlorophycean class of the Chlorophyta (Cvetkovska et al. 2017). Moreover, 

many chlamydomonadalean algae inhabiting polar and alpine environments are drought 

resistant, and can tolerate high levels of UV radiation and low-nutrient stresses (Quesada 

and Vincent 2012; Umen and Olson 2012), making them ideal models for studying not 

only psychrophily but adaptations to extreme environments in general. Some species that 

can withstand freezing have been intensively studied, including Chlamydomonas nivalis  

(Brown et al. 2015), Chlamydomonas sp. UWO241 (Morgan-Kiss et al. 2006; Cvetkovska 

et al. 2018; Cvetkovska et al. 2019), and Chlamydomonas sp. ICE-L (Zhang et al. 2020).  
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Unfortunately, little is known about how psychrophilic algae evolved from their respective 

mesophilic ancestors by adapting to particular cold environments. However, it is presumed 

that the present origin of the species distribution in Antarctica and the Southern Ocean is a 

consequence of the separation of Antarctica, Australia, Africa and South America from the 

former supercontinent, Gondwana, approximately 165M years ago (Florindo and Siegert 

2008; Wright et al. 2020). The subsequent climate change from warm, ‘greenhouse 

conditions’ to an ‘ice-house condition’ 46M years ago established the permanent, cold 

Antarctic environment about 35M years ago (Séranne 1999; Montañez and Poulsen 2013). 

Some interesting hypotheses are available. Chlamydomonas nivalis, for example, can 

thrive in alpine and polar snowfields (Remias et al. 2010) where it can withstand high light 

levels (up to 5000 µmol photons m-2 s-1), intense UV radiation, and, of course, low 

temperatures (Williams et al. 2003). Moreover, C. nivalis is commonly identified in 

mixtures of bacteria and fungi and these large assemblages of bacteria and fungi can 

develop symbiotic or parasitic relationships with the alga (Brown et al. 2015). It is tempting 

to link psychrophily to the unique lifestyles of this snow alga. Researchers further 

recognized that C. nivalis can enter into a dormant diploid zygotic stage, withstand winter 

freezing and later switch back to an active stage during the warmer summer season, 

suggesting a potential strategy for surviving harsh environments (Remias et al. 2010).  

Coincidentally, researchers are also unravelling the mechanisms by which psychrophiles 

survive such harsh environments as floating ice. Chlamydomonas sp. ICE-L (a.k.a. ICE-L) 

was first isolated from floating marine ice near the Antarctic coast (Liu et al. 2006). 

Researchers discovered that the primary nitrogen metabolism of ICE-L is consistent with 

light exposure. This might be a strategy for adapting to continuous light in summer and 

sustained darkness in winter (Wang et al. 2015). Recently, Zhang et al. presented the 

genome of ICE-L that provided evidence of its adaptation to its extreme Antarctic 

environment via expanded repertoire of genes for diverse metabolic processes and genes 

gained by horizontal gene transfer (Zhang et al. 2020). 

Psychrophilic green algae from the Chlamydomonadales are of our particular interest. This 

order harbors not only some of the best-studied cold-adapted algae to date, such as 

UWO241, C. nivalis, and ICE-L, but also a myriad of model mesophilic species. These 
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species include but are not limited to C. reinhardtii, V. carteri, G. pectorale and D. salina. 

C. reinhardtii, for example, is an excellent comparison target for the investigations of 

psychrophilic chlamydomonads (Cvetkovska et al. 2017), not only because its immense 

volume of scientific literature regarding the molecular biology and physiology of 

photosynthesis, but also the availability of genomic data that can be used to perform several 

critical comparisons with psychrophilic genomes, such as the comparisons of gene family 

expansion and contraction, pathway loss and gain, the comparison of substitution rates at 

synonymous and nonsynonymous sites of protein-coding genes (i.e., calculating dN/dS). 

There are a wide range of strategies for coping with extreme cold, including having high 

levels of polyunsaturated fatty acids (PUFAs), which can increase cellular membrane 

fluidity in a cold climate (Becker et al. 2011; Lyon and Mock 2014), as well as employing 

a mixotrophic lifestyle, forming cysts, storing carbohydrates, and/or altering the 

photosynthetic machinery (Lyon and Mock 2014). Thus, it appears that the next logical 

step is to explore the lineage-specific genes and gene families via the genome content. 

Unfortunately, there are very few complete nuclear genome sequences from psychrophilic 

green algae. Having such sequence data could greatly improve our understanding of cold-

adaptation, and extremophily in general. In contrast, there are a wide range of genome 

sequences from mesophilic green algae, including various chlamydomonadaleans 

(Appendix A: Table S2). The first completely sequenced green algal nuclear genome was 

that of the prasinophyte Ostreococcus tauri—a feat carried out by the whole genome 

shotgun Sanger sequencing and aided by the extremely small genome size of O. tauri (12.5 

Mb) (Derelle et al. 2006). Soon thereafter, scientists began decoding (again, using a 

Sanger-based approach) much larger nuclear DNAs (nucDNAs) from green algae, 

including those of the unicellular chlamydomonadalean C. reinhardtii (~120 Mb) 

(Merchant et al. 2007) and its close multicellular relative V. carteri (138 Mb) (Prochnik et 

al. 2010). More recently, researchers have used NGS to assemble entire nuclear DNA 

(nucDNA) from chlamydomonadaleans, such as the ~150 Mb nuclear genome of the 

colonial green alga G. pectorale (Hanschen et al. 2016) and the recently completed genome 

of the acidophile C. eustigma (~130 Mb) (Hirooka et al. 2017). These various genomic 

data sets have provided important insights into green algal evolution, including the origins 

of multicellularity (Prochnik et al. 2010; Hanschen et al. 2016). Thus, it is my hope to gain 
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a better understanding of cold adaptation by decoding the nucDNA from the psychrophilic 

green alga UWO241. 

1.1.4 Chlamydomonas sp. UWO241 

 
Figure 1: The geography of year-round lake ice in McMurdo Dry Valleys. 

(A) Site of isolation of UWO241, Lake Bonney in Taylor Valley. (B) and (C) Research 

work in Lake Bonney and Lake Fryxell, Antarctica. Pictured: Luke Winslow (University 

of Wisconsin, Madison), Kyle Cronin and Dr. Peter Doran (University of Illinois, 

Chicago). (D) Don Jon Pond (the saltiest body of water on Earth) in Wright Valley, 

Antarctica. The images are reworked with the credit from original author Hilary Dugan 

and the images source can be found via EGUblogs 

(https://blogs.egu.eu/network/geosphere/2014/01/13/). For any reuse or distribution, the 

work is licensed under the Creative Commons Attribution 4.0 International licence (CC 

BY 4.0). 

A B

C D
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Figure 2: The UWO241 images under light microscope and electron microscope.  

(A) The single cell of UWO241. (B) The electron micrographs of UWO241 grown under 

laboratory-controlled conditions (8 °C/20 μmol photons m-2 s-1). The letters in the image 

indicating different organelles (C: chloroplast; N: nucleus; G: golgi apparatus; M: 

mitochondrion; F: flagellum). (C) A colony of UWO241 was observed ruptured under the 

light microscope. Reproduced from (Pocock et al. 2004) with permission. 
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The psychrophile Chlamydomonas sp. UWO241, which was isolated 17 m below the 

bottom of the permanent ice surface of Lake Bonney (Figure 1) in the McMurdo Dry 

Valleys of Victoria Land, Antarctica (Neale and Priscu 1995), is emerging as a model for 

studying cold-adaptation. This unicellular biflagellate is surprisingly resilient, persisting in 

an environment that not only is a perpetually cold environment but also has a high saline 

content (700 mM) and low irradiance transitions (Morgan-Kiss et al. 2006). UWO241 

possesses an unusual photosynthetic apparatus (working best at 8 °C), but it presents rates 

of photosynthesis relative to those of C. reinhardtii at 25–35 °C (Cvetkovska et al. 2017) 

(Figure 2). In addition to withstanding constant low temperatures at approximately 5 °C 

year round, UWO241 is exposed to perpetual shading (5 µmol photons m-2 s-1 during 

midday in summer) and seasonal extremes in photoperiod (e.g., 24 h of light during the 

peak summer), which are represented by the blue-green spectrum (450–550 nm) (Dolhi et 

al. 2013). Lake Bonney is also phosphorus limited and contains high levels of dissolved 

oxygen (200% saturation) and high salinity (0.7 M) (Bowman et al. 2016). In UWO241, 

many unique cellular and physiological features have evolved to handle with these extreme 

conditions of Lake Bonney, such as high PSI cyclic electron transport, the inability to grow 

under red light and a lack of state transitions which balance the energy distribution between 

photosystem I (PSI) and photosystem II (PSII) (Morgan-Kiss et al. 2006). 

Over the past 25 years, several important aspects of UWO241, including its physiology 

and molecular biology of photosynthesis, have been studied in detail (Morgan-Kiss et al. 

2006; Cvetkovska et al. 2017). Previous findings have already indicated that UWO241 has 

two near-identical copies of the ferredoxin gene and accumulates large amounts of 

functional ferredoxin protein maintaining high activity and increased structural flexibility 

at low temperature, suggesting an adaptation to cold environments (Cvetkovska et al. 2018). 

In the same year, Possmayer and his colleagues (2018) investigated UWO241 

transcriptome data, revealing the absence of upregulation of genes encoding heat-shock 

proteins (HSPs) under high growth temperature stress and heat shock. One year after, 

Cvetkovska et al. reported a functional chlorophyll biosynthesis pathway lacking of light-

independent protochlorophyllide oxidoreductase (DPOR) in UWO241, and this pathway is 

solely dependent on light-dependent protochlorophyllide oxidoreductase (LPOR) for the 
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enzymatic reduction of protochlorophyllide (Cvetkovska et al. 2019). Recently, UWO241 

was discovered to express comparable levels of the Stt7 protein kinase to C. reinhardtii 

(Stt7 protein kinase is important in the regulation of energy distribution between PSII and 

PSI through state transitions), but exhibited a distinct low temperature-dependent 

phosphorylation pattern in the absence of a classical state transition (Szyszka-Mroz et al. 

2019).  

Given all the previous assessments, UWO241, a psychrophilic alga, has been widely 

explored and has generated particular interest in photosynthetic adaptation associated with 

cold adaptation. However, its naming has experienced a complex journey. Initially, it was 

identified as Chlamydomonas subcaudata via cell morphology (Neale and Priscu 1995); 

however, sequencing patterns suggest that it is more likely to be a psychrophilic strain of 

mesophilic Chlamydomonas raudensis (Pocock et al. 2004). Until recently, studies have 

considered it to be a unique lineage within the Moewusinia clade of the 

Chlamydomonadales but not a strain of  Chlamydomonas raudensis (Possmayer et al. 2016) 

(Figure 3). In addition to UWO241, some of the psychrophiles have been highlighted in 

the phylogeny (Figure 3), such as ICE-L and Chlamydomonas sp. ICE-MDV both fit in 

Monadinia clade, and C. nivalis occupies the Chloromonadinia clade; however, not all of 

these psychrophiles have been completely sequenced. Fortunately, there are many 

mesophilic algal species in the order Chlamydomonadales. For instance, C. reinhardtii is 

in the Reinhardtinia clade and is an excellent comparison target for the investigations of 

psychrophilic chlamydomonads. In addition, various model green algal genomes are 

available in V. carteri, G. pectorale, and D. salina across the clades of Reinhardtinia and 

Dunaliellinia (Figure 3).   
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Figure 3: Phylogenetic relationship of the green algae in the order 

Chlamydomonadales. 

Representative psychrophiles (blue, pink, cyan-blue) and other known model green algae 

(green, red, yellow) are highlighted in different colors. Adapted from (Zhang et al. 2020) 

with permission. 

1.2 A Brief History of DNA Sequencing 
DNA sequencing technologies have advanced at an impressive rate over the past 40 years 

(Liu et al. 2012) (Figure 4). In the late 1970s, two different “first-generation” DNA-Seq 

technologies were developed: Maxam-Gilbert sequencing and Sanger sequencing (Sanger 

and Coulson 1975; Maxam and Gilbert 1977). It was the latter, however, that was adopted 

by most researchers, due to its relatively high efficiency and low radioactivity. The early 

forms of Sanger sequencing were labor intensive, but in the late 1980s and early 1990s, a 

multitude of innovations in reagents and instruments were developed to support high-

throughput Sanger sequencing, which in turn spurred the initiation, and the eventual 
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completion, of the Human Genome Project (Lander et al. 2001; Venter et al. 2001). Today, 

automated Sanger sequencing and the associated bioinformatics software have been widely 

applied to the genomes from diverse species throughout the tree of life, spurring the 

massive field of comparative genomics (Mardis 2008; Pop and Salzberg 2008; Schuster 

2008). 

 

Figure 4: Timeline of DNA sequencing technology and representative DNA 

sequencers.  

Pictures of the figure are utilized mainly from Wikimedia Commons. 

By the mid 2000s, NGS technologies started to appear (Heather and Chain 2016). These 

new forms of DNA sequencing, such as 454 pyrosequencing and SOLiD sequencing, were 

faster, cheaper, and had much greater throughput than their Sanger predecessor, but they 

were also more error-prone (~0.1-15%) and gave much shorter read lengths (35-700 nt) 

(Goodwin et al. 2016). In 2007, the NGS technology Solexa was purchased by Illumina 

(Balasubramanian 2015), rebranded as Illumina sequencing, and quickly became the 

leading DNA sequencing technology, and arguably still is today. Indeed, Illumina has 
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decoded more genomes than other kinds of DNA sequencing, but its biggest drawback is 

the short length of its reads (50-250 nt).  

To overcome the read-length limitations of NGS, long-read third-generation sequencing 

(TGS) sequencing technologies have been developed. In 2010, Pacific Biosciences 

(PacBio) released the Single Molecule Real Time (SMRT) sequencing system, which can 

yield reads that are thousands of nucleotides long. At the same time, Oxford Nanopore 

designed a portable DNA sequencing device (MinION), which was even tested in space 

(Rainey 2017). The long reads of these TGS technologies are great for resolving large, 

structurally complex genomes, but can be expensive, have a very large error rate (5-15%), 

and lower throughput than their NGS counterparts (Goodwin et al. 2016).  

1.3 Green Algal Genomics 
As DNA sequencing technologies have improved so has our ability to assemble entire 

genomes, especially large, complex eukaryotic genomes (Figure 5), including those of 

green algae. The first complete green algal nuclear genomes to be sequenced (those of O. 

tauri and C. reinhardtii) were completed using solely Sanger sequencing via the whole 

genome shotgun method (Derelle et al. 2006; Merchant et al. 2007). These projects also 

involved teams of hundreds of researchers, took many years to finish, and usually contained 

thousands of gaps. For example, the previous published assembly of the ~120 Mb C. 

reinhardtii nucDNA comprised 1500 repeat-rich scaffolds, 15,143 intron-dense genes, and 

was about 95% complete (Merchant et al. 2007). The last green algal nucDNA to be 

sequenced using an entirely Sanger-based approach was that of V. carteri (131 Mb), and 

was carried out by a team of approximately 20 researchers (Prochnik et al. 2010). Soon 

thereafter, scientists started using NGS, or a combination of NGS and Sanger sequencing, 

to obtain green algal nucDNA sequences. In 2014, the massive draft nuclear genome (>340 

Mb) of the chlamydomonadalean alga D. salina was sequenced using a primarily Illumina-

based approach (Polle et al. 2017). More recently, the genomes of the 

chlamydomonadaleans G. pectorale (~150 Mb) and C. eustigma (~130 Mb) were 

sequenced using a combination of 454 and Illumina sequencing (Hanschen et al. 2016; 

Hirooka et al. 2017). Today, small teams of researchers are also resequencing some of the 

early Sanger-based green algal genomes using NGS, and to great effect—such an approach 
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has helped reduce the C. reinhardtii genome assembly to 37 scaffolds, representing 99.5% 

of the genome.  

Given the availability of sequenced green algal genomes, without a comprehensive 

genomic framework , some of the key findings (e.g., evolution of multicellularity and 

environmental adaptation) to the green algal genomics are severely impeded (Blaby-Haas 

and Merchant 2019). Comparison of C. reinhardtii and V. carteri has already revealed the 

evolution of multicellularity and cellular differentiation in volvocine algae (Leliaert et al. 

2012). Specifically, Prochnik et al. discovered that the organismal complexity is highly 

associated with the lineage-specific protein modifications in the multicellular green alga V. 

carteri (Prochnik et al. 2010). Six years later, Hanschen and colleagues (2016) furtherly 

explored the colonial alga G. pectorale and emphasized that the early co-option of cell 

cycle regulation for group-level life cycle and reproduction are key step in the evolution of 

multicellularity. Until recently, the adaptation of green algae to some extreme 

environments have been explained by the genome availability of acidophilic green alga C. 

eustigma, halophilic green alga D. salina and psychrophilic green alga ICE-L. Although 

details have not been clarified in D. salina about the adaptive strategies in sea salt fields, it 

can alleviate the stresses via accumulating glycerol and β-carotene in response to high 

salinity and intense UV light (Polle et al. 2017). Furthermore, the existence of common 

mechanisms in the adaptation to extreme environments have been observed in C. eustigma 

and ICE-L. Hirooka et al. revealed that the energy shuttle and buffering system and arsenic 

detoxification genes were acquired via HGT in C. eustigma to survive in acidic 

environment (Hirooka et al. 2017). Similarly, multiple IBPs genes originated from bacteria 

were assumed to contribute to the origin of the psychrophilic lifestyle in ICE-L (Zhang et 

al. 2020). The rapidly increasing availability of genomic data can provide a window into 

understanding the complexity of algal genomics. Comparative genomics will become a 

very effective tool allowing us to answer some of the critical questions, such as how the 

evolutionary transition of green algae from unicellular to multicellular occurred, how the 

acidophilic green algae evolved from their respective neutrophilic ancestors, and what 

difference is between psychrophilic green algae and their close mesophilic counterparts. 
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Figure 5: The DNA sequencing technologies and representative genomes. 

1.4 Genome Assembly and Annotation  
Why is the eukaryotic genome assembly so challenging? There are many reasons, including 

the large size of nucDNAs, high densities of repeats, heterozygosity, low read coverage, 
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(ONT) or SMRT Pacific Biosciences (PacBio) sequencing platforms, repeat finding can be 

incorporated as a critical step in the genome assembly pipeline (Haridas et al. 2011), which 
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is a series of computational steps that input raw sequencing reads and ultimately output an 

assembled draft genome.  

While a genome can be annotated without a highly contiguous assembly, some of the key 

annotation information might also be missed, such as incomplete genes (losing stop codons 

or start codons) being mistakenly treated as pseudogenes and repeat regions being falsely 

regarded as coding genes. To facilitate some aspects of the downstream analysis (e.g., 

novel genes and gene family identification, HGT detection and duplicate gene exploration), 

every step of the genome pipeline must undoubtedly be followed carefully to obtain a well-

annotated genome, given that it is a daunting task. Eukaryotic genome annotation entails 

many different steps, but usually begins with repeat masking, whereby all repetitive regions 

are masked to not confuse the annotation algorithms. This is then followed by the 

identification of open reading frames and the structural prediction of all coding regions, 

including exon and intron boundary prediction, and finally, functional annotations are 

assigned to these regions. Once complete, genome annotation allows for detailed 

comparative genomic analyses, from gene content and order comparisons to phylogenetic 

analyses. 

Although sequencing more algal genomes can help better understand the diversity of algal 

biology, high-quality genome assembly and structural annotations are necessary to 

facilitate protein identification (Blaby-Haas and Merchant 2019). Fortunately, some green 

algae (Chlorophyta) genomes are haploid and represent relatively small genome size, such 

as the smallest free-living eukaryote O. tauri (12.5 Mb) (Derelle et al. 2006). Additionally, 

the C. reinhardtii has been updated with high-confidence gene models (JGI v5.6), which 

provide an excellent reference system to explore the biological functions of other green 

algae (Merchant et al. 2007; Blaby et al. 2014). However, for those non-model organisms 

without an available reference genome such as UWO241, the challenges of green algal 

nuclear genomics are not limited to the relatively huge genome size (~ 230 Mb) but the 

highly repetitive regions. The number and distribution of repeats can greatly influence the 

genome assembly and genome annotation, because sequencing reads from these regions 

are very similar which will confuse the assembly tools to extend the contigs at these regions 

(Walker et al. 2014). Moreover, some of the long repetitive sequences such as LTR 
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retrotransposons (5~9 kb) and LINEs (5~8 kb) are even longer than sequencing reads, 

especially for Illumina reads (250 bp) (Lerat 2010). It is reported that a total of 63.78% of 

the ICE-L genome assembly lengths (345.23 Mb) were identified as repeat regions, among 

them approximately 40.67% are transposable elements (TEs). Long terminal repeat 

retrotransposons (LTR-RTs) were the most dominant type of TEs, representing 23.32% of 

the assembly (Zhang et al. 2020). Generally, to alleviate the likely confusion and 

misassemblies from repeats during genome assembly, long-read technologies (e.g., PacBio 

or Nanopore) are selected to generate hybrid assemblies, because they stretch repetitive 

regions and thus provide more contiguous reconstructions of the genome (De Maio et al. 

2019). 

Organellar DNAs can interfere with nuclear assemblies. Thus, it is good to assemble these 

genomes first during the assembly and annotation process. Organellar DNAs were first 

completely sequenced from human and mouse mitochondria in 1981 (Anderson et al. 1981; 

Bibb et al. 1981). Five years later (1986), plastid genomes were unraveled in Marchantia 

polymorpha (Ohyama et al. 1986) and tobacco (Shinozaki et al. 1986). With the efforts of 

researchers worldwide, thousands of other organellar genomes have been sequenced and 

published. As of Oct. 2020, there were ~17,000 complete mitochondrial DNA (mtDNA) 

and plastid DNA (ptDNA) sequences in GenBank, making organellar genomes the most 

highly sequenced types of genomes.  

Although not the main focus of this thesis, it should be noted that organellar genomes are 

usually filtered to acquire a pure nuclear genome assembly. Otherwise, the organellar DNA 

will create confusion during the nuclear genome assembly and annotation. The UWO241 

mtDNA and ptDNA are both available and can be found in the publication (Cvetkovska et 

al. 2019).  

1.5 Thesis Objectives  
There are three major objectives in my thesis: (1) To generate a high-quality nuclear 

genome assembly of UWO241 via both NGS and TGS sequencing reads, (2) To accurately 

and thoroughly annotated this genome, and (3) To use these data in a comparative 

framework for a better understanding of the evolution of psychrophily. More specifically, 
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the nuclear genome assembly and gene annotation pipelines will be carried out using the 

most appropriate available bioinformatics software and algorithms. Second, gene content 

and genomic architecture will be compared to the well-annotated chlamydomonadalean 

genomes. Little is known about the genome; it is tempting to deepen our understanding in 

these questions. For example, does the UWO241 genome harbor large numbers of 

duplicate genes? Has it acquired any genes via HGT, such as IBP genes? Does UWO241 

contain unique gene families compared to close related relatives? This thesis will examine 

the basis of the psychrophily in UWO241 and hopefully provide insights into what allows 

UWO241 to survive in such an extreme environment.  

 

Figure 6: The timeline of sequencing data acquired from UWO241 genome. 

Over the past seven years, the Hüner and Smith laboratories have carried out various NGS 

(Illumina) and TGS (PacBio) sequencing data for UWO24 (Figure 6 and Table 1), almost 

all of which remain largely unexplored and unannotated. It is the key objective of my thesis 

to employ these data to assemble and annotate UWO241 nucDNA. It is worth of mention 

that although it took only a few weeks or days to generate these genomic data sets, 

assembling them into a draft nuclear genome is not a trivial undertaking, explaining why 

they remained unanalyzed after years of being available. Indeed, constructing a nuclear 

2013

2015

2016

2017

MiSeq DNA 250 bp 

HiSeq DNA 100 bp  

HiSeq RNA 125 bp

DNA 10 kp 



20 

 

genome assembly is a lengthy and computationally intensive process. Fortunately, many 

other teams have assembled green algal nuclear genomes and performed painstaking and 

pioneering bioinformatics work to help guide me through the process. 

Table 1: NGS (Illumina) and TGS (PacBio) sequencing data from UWO241. 

 Year of sequencing  # Number of reads Average read length 
(bp)  

Average genome 
coverage 

Illumina MiSeq 
paired-end DNA 

2013 17,071,586 ~250 ~17x 

Illumina HiSeq 
paired-end DNA 

2015 193,716,744 ~100 ~77x 

PacBio SMRTcell-
DNA 

2017 1,649,659 ~10,000 ~66x 

Illumina HiSeq-
RNA 

2016 37,748,239 ~125 ~19x 
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Chapter 2  

2 Step-by-Step User Guide in Characterizing the 
Assembly and Annotation of the Eukaryotic Genomes via 
High-throughput Sequencing Analysis 

2.1 Introduction 
The sequencing costs have fallen so dramatically that even a single laboratory can now 

afford to sequence large eukaryotic genomes (Lee et al. 2016); however, it remains a 

challenging task for the genome project especially in genome annotation (Yandell and Ence 

2012). This is in part due to the many barriers in genome projects, the published literature 

simplifies details in methods sections or omits some tedious bioinformatics steps, which 

should be part of supplementary materials. Consequently, these factors can create great 

difficulty in understanding and following for biologists with little to no background in high-

throughput sequencing analysis (i.e., DNA-Seq and RNA-Seq). Moreover, there is no 

objectively ‘correct’ way of performing genome projects. Given that the commercial 

software suites of today are being developed powerfully with user-friendly graphical 

interfaces and ‘one click’ analysis workflows, such software bundles, unfortunately, often 

includes expensive, proprietary (closed-source) programs, which are constrained to 

narrowly defined selections of the most popular analyses (De Wit et al. 2012; Del Angel 

et al. 2018). Alternatively, most bioinformatic software requires considerable knowledge 

of programming. Taking the genome project of green alga Chlamydomonas sp. UWO241 

as an example, data files were obtained and managed within a UNIX-like environment; 

scripting languages, such as Python and Perl, were utilized to manipulate and clean the 

data; and the processed outputs were analyzed and visualized using language such as R 

script. It is no exaggeration to say that there is a widespread and exponentially growing 

demand for bioinformatic skills, and this is particularly in line with the concomitant 

expansion of guidance in such skills.  

The pipelines and algorithms described in this chapter were used to assemble and annotate 

the UWO241 genome and these methods were used to form a step-by-step user guide. Here, 

I present a comprehensive bioinformatics foundation for genome projects specifically for 
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those researchers who have diverse backgrounds but no prior experience in programming. 

First and foremost, the assembly pipeline was developed to process DNA-Seq reads into 

genomic contigs. Taken together with these contigs, RNA-sequencing data were fed into 

an annotation pipeline, which selected the most up-to-date eukaryotic bioinformatic gene-

profiling software. Finally, computational analyses were carried out on an in-house 

computer and supercomputing network, which is a great computing resource for 

computationally intensive bioinformatics work. Additionally, a small set of comparative 

genomic analyses were carried out as an example across the green algae from the order 

Chlamydomonadales. 

2.2 Genome Assembly  
As DNA sequencing technologies have improved, so has our ability to assemble entire 

genomes, especially large, complex eukaryotic genomes (Henson et al. 2012). However, 

high-quality genome assembly and annotation are still major issues (Simão et al. 2015). 

Researchers have to devote considerable time, computing resources and storage resources 

to perform their genome projects. For example, it could take fairly few resources and little 

time for small genomes, such as those of bacteria or archaea, but it will take months or 

even years for eukaryotic genomes, especially those of non-model organisms without an 

available reference genome (Del Angel et al. 2018). Therefore, it is important to understand 

the goal of the project before proceeding, such as to what extent the genome assembly and 

annotation will be able to address the respective biological questions. In the case of a draft 

genome being needed, financial and computational resources are important to consider. 

This is because sequence coverage relies on the amount of DNA to be sequenced, and the 

number of computing hours highly depends on the computing cluster performances (Haas 

et al. 2013). Presumably, the Illumina sequencing will need a more than 60x sequence 

depth, which means that the total number of nucleotides in the reads must be at least 60 

times the number of nucleotides in the genome. Therefore, the importance of evaluating 

the genome size beforehand should not be underestimated. Although utilizing the flow 

cytometry could be an option (measuring the amount of DNA in a nucleus), the genome 

size can also be roughly estimated by k-mer (Genome Size Estimation Tutorial; 

https://bioinformatics.uconn.edu/genome-size-estimation-tutorial/) and the comparison to 
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the genomes of closely related species (Pflug et al. 2020), but closely related species can 

have very different genome sizes (Pellicer et al. 2018). 

Table 2: The representative genome assemblers being used in genome projects. 

Data types  Assemblers Remarks 

Illumina reads SPAdes SPAdes has been successfully applied on some 
eukaryotic genomes.  

PacBio reads  Canu Canu is designed for long reads from PacBio or 
Nanopore. 

Illumina and PacBio reads MaSuRCA MaSuRCA builds mega-reads for hybrid 
PacBio and Illumina to do de novo assembly. 

Pilon Using the Illumina data to polish the long-read 
assemblies, which can lower consensus errors 
and mismatches. 

It is tempting to decipher genome assembly pipelines in part due to their imperative role in 

genome projects. Genome assembly pipelines usually contain the following necessary 

steps: read quality control (QC), genome assembly, contig scaffolding, and gap filling. First 

and foremost, QC is the step involving the removal of sequencing adapters and the 

screening of low-quality reads. Various bioinformatics programs have been developed, 

such as FastQC, which is a user-friendly toolbox (Andrews 2010).  

Importantly, without a comparative understanding of the assembly mechanisms and tools, 

it is impossible to obtain a highly contiguous genome assembly. There are two major 

genome assembly mechanisms. The overlap-layout-consensus (OLC) assembly approach 

is specialized for long reads (10-15 kb) from Pacific Biosciences Single-Molecule Real-

Time (PacBio SMRT) and Oxford Nanopore sequencing technologies, while the de Bruijn 

Graph (DBG) approach is designed for short NGS reads. Via these algorithms, a wide 

variety of assemblers have been developed, which can be grouped into three 

straightforward categories: short-read assemblers, long-read assemblers, and hybrid 

assemblers (Table 2). Short-read assemblers, such as Abyss (Simpson et al. 2009), Spades 

(Bankevich et al. 2012), and SOAPdenovo2 (Luo et al. 2012), are excellent for high-

coverage, repeat-poor genomes, whereas long-read assemblers, such as Canu (Koren et al. 
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2017), are able to work with low-coverage data sets and navigate through complex repeats. 

Alternatively, hybrid assemblers, represented by MaSuRCA (Zimin et al. 2013; Zimin et 

al. 2017) and Spades (Bankevich et al. 2012), can combine the efficiency of the DBG 

approach with the benefits of the OLC approach. Therefore, a mixture of short and long 

reads can be assembled together. Spades is designed for assembling small genomes (i.e., 

bacterial genomes), whereas MaSuRCA has been applied to some of the largest genomes 

on record such as human-sized genomes (Callaway 2017; Zimin et al. 2017).  

Furthermore, to facilitate genome identification, a draft genome assembly should be 

polished beforehand. Gap filling and scaffolding are two strategies that should not be 

underestimated. Many bioinformatic tools are available for scaffolding and gap filling, 

including SSPACE (Boetzer et al. 2010), which can scaffold contigs using paired-end (PE) 

and/or mate-pair (MP) libraries, as well as PBJelly (English et al. 2012), which is an 

automated pipeline for aligning PacBio reads to draft assemblies. It is worth noting that 

long reads (i.e., PacBio reads) are used primarily for contig construction, while the short 

reads (i.e., Illumina PE reads) are employed for polishing (Figure 7). For example, Pilon 

(Walker et al. 2014) is a tool used to improve genome assembly accuracy and resolve 

misassemblies with either short or long reads. 

Although uniform standards are lacking, the quality of any genome assembly is critically 

assessed using the following three factors: contiguity, completeness, and accuracy (Lee et 

al. 2016). Longer contigs are always meaningful in terms of contiguity, but for 

completeness, the assembled contigs should take into account most of the genome. 

Moreover, misassemblies and consensus errors should be alleviated to increase accuracy 

(Li et al. 2010; Lee et al. 2016). Nonetheless, without the common metrics used to indicate 

the quality of genome assembly, the progress of genome projects will be greatly impeded. 

Fortunately, some quality assessment tools have been developed to visualize the quality of 

a genome assembly. For instance, Quast (Gurevich et al. 2013) takes advantage of genome 

assemblies by computing various metrics, including N50 (i.e., the length for which the 

collection of all contigs of that length or longer covers at least 50% of the assembly length) 

and L50 (i.e., the number of contigs whose length are no shorter than N50). Alternatively, 

BUSCO v3 (Simão et al. 2015) provides quantitative measures for the assessment of 
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genome assembly, gene set, and transcriptome completeness based on evolutionarily 

informed expectations of gene content (Zdobnov et al. 2017). 

 
Figure 7: The genome assembly pipelines for assembling the UWO241 genome. 

Illumina reads (short-read pipeline in green), PacBio reads (long-read pipeline in red) and 

hybrid reads (hybrid-read pipeline is highlighted in red and green, respectively). The 

module in blue indicates the assessment of genome assembly qualities. The colored boxes 

represent sequencing files, algorithms and assembled results in respective pipelines. 

2.3 Genome Annotation 
Annotating a eukaryotic genome is a daunting task, partly because many eukaryotic 

genomes are repeat rich and contain thousands of genes and introns (Yandell and Ence 

2012). Eukaryotic genome annotation entails many different steps (Figure 8) but usually 

involves inferring the structure and function of assembled sequences. Protein-coding 

sequences are often explored first, and other noncoding sequences, such as noncoding RNA 

PacBio reads Illumina reads

Output file 
Spades.contig.fa

Reads length ~10kb

N50 ~2.7kb

Assembly quality  
Quast 4.0

Map Illumina reads 
to assemblies

Quality control 
FastQC

Assembler 
Canu v1.5

Assembler 
spades 3.10.1

Reads length ~100bp

Assembler 
MaSuRCA

Output file 
canu.contig.fa

Output file 
MaSuRCA.pilon.contig.fa

Polish assembly 
BWA aligner 

Samtools

Illumina reads

N50 ~376kb

N50 ~69kbCorrection 
Pilon 1.20

Illumina reads

Genome
assembly

Short-read pipeline Long-read pipelineHybrid-read pipeline

Quality control 
FastQC

Quality control 
FastQC

PacBio reads

Reads length ~10kb



33 

 

(e.g., tRNA and rRNA), regulatory or repetitive sequences (e.g., enhancers, promoters, 

short interspersed nuclear elements (SINEs) and long interspersed nuclear elements 

(LINEs)), can also be interpreted as well. Additionally, prior to acquiring nuclear genome 

annotation, contigs containing organellar DNA sequences (mitochondrial and/or 

chloroplastic DNA) should be filtered. Otherwise, the genome assembler will be confused 

and cost more computing resources when assembling the nuclear DNA sequences. 

2.3.1 Structural Annotation 

Structural annotation begins with repeat masking, whereby all repetitive regions are 

masked as not to disturb the annotation algorithms. Why are repeats so annoying? The 

number and distribution of the repeats can greatly influence the genome assembly and 

genome annotation results because sequencing reads from these repeat regions are very 

similar (Del Angel et al. 2018). Additionally, a high repeat content can contribute to a 

fragmented assembly, in part because the assembly tools cannot distinguish the correct 

assembly from these zones (Tørresen et al. 2019). Even worse, contigs will stop extending 

and will be bordered by repeats. Fortunately, brilliant tools have been developed to detect 

and identify these low-complexity regions, including transposable elements by making the 

nucleotide sequences lower case letters to distinguish from other regions, which are kept 

in upper case letters (i.e., soft masking method). RepeatMasker (Tarailo-Graovac and Chen 

2009) and RepeatModeler (Smit and Hubley 2008) are two reputable repeat detection tools. 

RepeatModeler is a de novo repeat family identification and modeling package integrated 

with two de novo repeat finding programs (RECON (Haas et al. 2013) and RepeatScout 

(Price et al. 2005)). RepeatMasker harnesses nhmmer, cross_match, ABBlast/WUBlast, 

RMBlast and Decypher as search engines and utilizes curated libraries of repeats such as 

Dfam (profile HMM library) and Repbase (Bao et al. 2015) (Table 3). Given these repeat 

detection tools, there is an underestimation of the disturbance by repeats. Because partial 

sequencing reads, especially for Illumina reads (~250 bp), are shorter than some long 

repetitive sequences, such as LTR retrotransposons (5~9 kb) and LINEs (5~8 kb), 

confusion and misassemblies are very likely during genome assembly. Generally, to 

alleviate such issues, long-read technologies (e.g., PacBio or Nanopore) are selected to 
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generate hybrid assemblies, because they can often stretch past the entire length of 

repetitive regions and thus provide more contiguous reconstructions of the genome. 

 

Figure 8: The typical workflow of a nuclear genome assembly and annotation.  

The purple color indicates the raw DNA-Seq and RNA-Seq reads. The orange modules 

present the detailed steps in the genome project. 

Given a fully masked genome, genome annotation is advanced by deciphering open reading 

frames and coding region structures. This step includes but is not limited to exon and intron 

boundary prediction (Figure 8). In total, there are three main scenarios for predicting genes 

in a genome: intrinsic (ab initio), extrinsic, and the combiners. The ab initio method targets 

information that can be extracted from the genomic sequence itself, such as coding 

potential and splice site prediction. AUGUSTUS (Stanke et al. 2006) is one of the most 

representative tools using the conditional random field (generalization of HMM) method 

to predict eukaryotic genome genes via structural signals such as intron and coding 

sequencing (CDS) evidence. Thus, it appears that the intrinsic method is able to predict 

non-model organisms and their species-specific genes without external information. 

However, there is likely an underestimation of intensive labor, such as that needing to 
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manually create the training set which is a file with thousands of genes in standard formats 

(GenBank or GFF3) using for predicting the genome structure. Additionally, the respective 

software such as AUGUSTUS (Stanke et al. 2006) should be trained and optimized due to 

species differences. However, effort can be partially saved by retrieving the training gene 

sets from third party bioinformatic software, such as BUSCO (Simão et al. 2015), which 

automatically generate genome annotation training sets. It is noteworthy that plants usually 

need confident training sets to predict the genomes (Foissac et al. 2008). Moreover, plant 

genomes contain a large number of pseudogenes as well as novel protein-coding and 

noncoding genes, and these patterns of gene structure differ among organisms. 

Although intrinsic methods are associated with information from the genome alone, it is 

once again very difficult to accurately interpret genome structure without external evidence 

such as transcripts and/or polypeptide sequencing data. Many pipelines and tools have been 

designed to utilize external information, such as BRAKER1 (Hoff et al. 2016) and 

MAKER (Cantarel et al. 2008). On the one hand, important external evidence includes 

transcripts, which can provide accurate gene coding information for correcting gene 

structure. Representatively, Trinity (Haas et al. 2013) was developed to reconstruct 

transcriptomes de novo from RNA-Seq data. On the other hand, protein homology evidence 

can indicate the presence and location of genes. This is partly because polypeptide 

sequences are more conserved and can be aligned even among distantly related species. 

Nevertheless, it should be noted that protein homology evidence greatly facilitates 

determining the presence of gene loci, but it is not always effective in outlining the exact 

structure of a gene. Some protein evidence detection tools are listed as follows. It is known 

that BLASTX (Kent 2002) can search the nucleotide query against the protein database by 

comparing protein sequences to the six translation-frames of the nucleotide sequences. 

However, when proceeding with large-scale pairwise alignment between protein data sets 

and whole genome sequences, Exonerate is deemed much more efficient (Slater and Birney 

2005), allowing the alignment of sequences using a multiple alignment model. 

In addition to the previously described structural annotation methods, researchers have 

developed a combined method that integrates ab initio draft prediction with extrinsic 

information. For example, EVidenceModeler (aka EVM) (Haas et al. 2008) software 
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integrates ab initio gene predictions, protein homology and transcript alignments into 

weighted consensus gene structures. Specifically, protein homology evidence and 

transcript alignment evidence are acquired from Exonerate (Slater and Birney 2005) and 

PASA (Haas et al. 2003), respectively. Program to Assemble Spliced Alignments (PASA) 

is a eukaryotic genome annotation tool that exploits spliced alignments of expressed 

transcript sequences to automatically model gene structures. Notably, balancing the weight 

value of the combined method is a tricky and subjective process. Many researchers 

unwillingly fall into a trap by consistently rerunning the weight value or the metrics, aiming 

for "perfect" data. However, it can easily takes months to iterate these gene prediction 

processes, and carefully proceeding to the next step is recommended as long as the 

structural annotation can help answer the current biological question (Del Angel et al. 

2018) 
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Table 3: The summary of reputable software and algorithms in genome projects. 

Software and Algorithms  

Genome assembly  Canu v1.6 https://github.com/marbl/canu  

Transcriptome assembly  Trinity v2.4.0  https://github.com/trinityrnaseq/trinityrnaseq  

Genome assembly  MaSuRCA v3.2.3  https://github.com/alekseyzimin/masurca  

Assembly polishing  Pilon v1.20 https://github.com/broadinstitute/pilon  

Contig scaffolding  SSPACE v3.0 https://github.com/nsoranzo/sspace_basic  

Repetitive DNA-motif 

masking  

RepeatMasker v4.0.7  https://github.com/rmhubley/RepeatMasker  

Repetitive DNA-motif 

identification  

RepeatModeler v1.0.8 https://github.com/rmhubley/RepeatModeler  

Genome completeness  BUSCO v3.0.2 https://gitlab.com/ezlab/busco  

Protein alignment  Diamond v0.9.18 https://github.com/bbuchfink/diamond  

Gene prediction  AUGUSTUS http://bioinf.uni-greifswald.de/augustus/  

Gene prediction  EVidenceModeler  https://evidencemodeler.github.io/  

Gene prediction  Exonerate v2.2.0  https://www.ebi.ac.uk/about/vertebrate- 

genomics/software/exonerate  

Gene prediction  PASA  https://github.com/PASApipeline/PASApipeline  

Functional annotation  InterProScan v5.27  https://www.ebi.ac.uk/interpro/  

Gene family prediction  OrthoFinder v2.1.2 https://github.com/davidemms/OrthoFinder  

Gene family prediction  OrthoMCL  http://orthomcl.org/orthomcl/  

Maximum likelihood tree 

calculation  

RAxML v8.2.4 https://sco.h-its.org/exelixis/web/ 

software/raxml/index.html  

tRNA identification  tRNAscan-SE v1.31 http://lowelab.ucsc.edu/tRNAscan-SE/  
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2.3.2 Functional Annotation 

If the purpose of structural annotation is to understand where the genes are located and 

what do they look like, then functional annotation aims to match coding and noncoding 

sequences with relevant biological information. Furthermore, the functions of coding gene 

models can be inferred by amino acid sequence similarity between the genome of interest 

and genomes in public sequence repositories. There are a wide variety of publicly available 

searchable databases, such as GenBank's nonredundant protein database (NR) (Pruitt et al. 

2005), the manually annotated and curated Uniprot Swiss-Prot database (Apweiler et al. 

2004) and the automatically annotated TrEMBL (Boeckmann et al. 2003) protein database. 

Alternatively, there are many tools available for searching the protein sequence similarity, 

starting with BLASTP (Kent 2002), which searches for a protein query against the protein 

database. Diamond is another sequence aligner for protein and translated DNA searches, 

designed for high-performance analysis of large sequence data sets (Buchfink et al. 2015). 

The significant matches from those aligners maintain information such as the gene name, 

a general description and the gene ID, among others. However, not all the matches from 

the aligner are considered significant, and the quality of a match depends on the length of 

the alignment and the percentage similarity. In addition, the E-value is often utilized as the 

criterion when screening outstanding sequence hits. The E-value describes the number of 

hits one can expect to see by chance when searching against a database of a particular size. 

Briefly, the lower the E-value, the more "significant" a match to a database sequence is 

(i.e., there is a smaller probability of finding a match just by chance).  

2.4 Comparative Genomics 
Via the assembly of highly contiguous and well-annotated genomes, researchers usually 

hope to deepen their investigations via comparative genomic analyses of factors, such as 

genome characteristics, metabolic pathways and phylogenetic relationships across closely 

related species. One of the major successes of comparative genomics is the dramatic 

increase in genome projects over the last decade, but without reputable bioinformatics 

websites and tools grounding the basis of analysis, it is impossible to smoothly interpret 

the findings. For example, the InterProScan database is commonly utilized to assess gene 

loss and gain in a genome of interest relative to the genomes of closely related species 
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(Quevillon et al. 2005), which integrates predictive information about protein function 

from a number of partner resources, giving an overview of the families to which a protein 

belongs and the domains and sites it contains. Moreover, the Kyoto Encyclopedia of Gene 

and Genomes (KEGG) (Kanehisa and Goto 2000) is a database specialized for categorizing 

the metabolic pathways according to KEGG Orthology (KO) identifier, and it is useful for 

pathway loss and gain analysis across species. Remarkably, the detection of orthologs is 

becoming much more important with the rapid progress in genome sequencing. 

OrthoFinder is a fast, accurate and comprehensive platform for comparative genomics 

(Emms and Kelly 2015). It mainly identifies orthogroup which is the set of genes that are 

descended from a single gene in the last common ancestor of all the species being 

considered, but there are also options for inferring a rooted species tree of the species being 

analyzed and mapping gene duplication events from gene trees to branches in the species 

tree. Alternatively, OrthoMCL (Li et al. 2003) is a genome-scale algorithm for grouping 

orthologous protein sequences. It provides not only groups shared by two or more 

species/genomes but also groups representing species-specific expanded gene families. 

2.5 Perspectives 
NGS and TGS technologies have made it quite easy to obtain large quantities of DNA-Seq 

data from green algae. Therefore, it is tempting to have pipelines detailing the installation 

of tools, databases and comparative genomics frameworks in large-scale genome projects. 

Here, the genome assembly protocol and annotation pipelines for the UWO241 genome 

were described in a step-by-step user-guide-like manner. This protocol definitely cannot 

cover everything, but it can introduce the bioinformatic methods used in eukaryotic nuclear 

genomics, enabling a user to gain familiarity with the basic analysis steps. The chapter 

summarized the necessary steps, which is also publicly available at GitHub website 

(https://github.com/zx0223winner/Eukaryotic-genome-project). The link detailed 

bioinformatic tools for data sets processing as well as some custom-made scripts and 

command lines used in Python and Unix platforms. Remarkably, steps included sample 

collection, reads quality correction, de novo assembly, gap closing, scaffolding, genome 

assembly assessment, transcriptome assembly, genome masking, structural annotation, 

gene models training, BLAST annotation, functional annotation, genome annotation 
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assessment and comparative genomic analysis. Although the technical aspects of genome 

tools are evolving very quickly, it is my hope that this user guide will provide a 

comprehensive bioinformatics foundation for future genome projects specifically for those 

researchers who have diverse backgrounds but no prior experience in programming. 
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Chapter 3  

3 The Nuclear Draft Genome of the Antarctic Psychrophilic 
Green Alga Chlamydomonas sp. UWO241 

This chapter was adapted from the publication entitled “Draft genome sequence of the 

Antarctic green alga Chlamydomonas sp. UWO241” published on iScience in 2021 by X. 

Zhang, M. Cvetkovska, R. Morgan-Kiss, N. P. A. Hüner and D. R. Smith (Zhang et al. 

2021). 

3.1 Introduction 
The permanently ice-covered lake (Lake Bonney) in the McMurdo Dry Valleys of Victoria 

Land, Antarctica (Neale and Priscu 1995), harbors the psychrophile Chlamydomonas sp. 

UWO241 (hereafter UWO241). Molecular and genetic analyses of UWO241 have already 

revealed some peculiar features, including its apparent inability to perform traditional 

photosynthetic state transitions or grow under red light (Morgan-Kiss et al. 2006). 

Furthermore, UWO241 has recently found to have a functional chlorophyll biosynthesis 

pathway that lost light-independent protochlorophyllide reductase (DPOR) and is solely 

dependent on light-dependent protochlorophyllide oxidoreductase (LPOR) for the 

enzymatic reduction of protochlorophyllide (Cvetkovska et al. 2019). Moreover, 

investigations of the UWO241 transcriptome suggest the absence of the upregulation of 

genes encoding heat-shock proteins (HSPs) (Possmayer 2018). Notably, it appears that 

UWO241 has two nearly identical copies of the ferredoxin gene, and accumulates large 

amounts of functional ferredoxin protein, which reveals an adaptation to cold environments 

(Cvetkovska et al. 2018). Given all the previous assessments, UWO241, a psychrophilic 

alga, has been widely explored and has generated particular interest with respect to the 

psychrophilic and mesophilic species in its order.  

Without a comprehensive genomic framework, the broader application of UWO241 as a 

model system for cold adaptation research is severely impeded. Fortunately, there are many 

mesophilic algal species and few psychrophilic algae in the order Chlamydomonadales. 

For instance, Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L are excellent 
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comparison targets for the investigations of psychrophilic chlamydomonads (Cvetkovska 

et al. 2017; Zhang et al. 2020). 

3.2 Results and Discussions 

3.2.1 Habitat, Taxonomic Position, and Physiological Features of 
the Psychrophilic Green Alga UWO241. 

The past decade has brought draft nuclear genomes for >25 different green algal species, 

with especially strong sampling from the order Chlamydomonadales (Chlorophyceae) 

(Figure 3 and Figure 9D). The psychrophile Chlamydomonas sp. UWO241, which was 

isolated 17 m below the bottom of the permanent ice surface of Lake Bonney in the 

McMurdo Dry Valleys of Victoria Land, Antarctica (Neale and Priscu 1995) (Figure 9A, 

B, C), is emerging as a model for studying cold-adaptation. Until recently, UWO241 was 

considered to be a lineage within the Moewusinia clade of the Chlamydomonadales 

(Possmayer et al. 2016) (Figure 3 and Figure 9D). The phylogeny has also highlighted two 

other psychrophiles, Chlamydomonas sp. ICE-L and Chlamydomonas nivalis; however, 

only the ICE-L genome has been completely sequenced recently (Zhang et al. 2020). 

Remarkably, almost one-third of known photopsychrophiles belong to the green algal order 

Chlamydomonadales, which is found in the Chlorophycean class of Chlorophyta 

(Cvetkovska et al. 2017). Indeed, many chlamydomonadalean algae inhabiting polar and 

alpine environments are drought resistant, and they can tolerate high levels of UV radiation 

and low-nutrient stress (Quesada and Vincent 2012; Umen and Olson 2012), which makes 

them ideal models for studying adaptation to extreme environments. What immediately 

stands out for the UWO241 genome as compared to other available green algal nuclear 

DNAs (nucDNAs) is its relatively large size (twice that of C. reinhardtii), record-setting 

intron density, and high repeat content, outdone only by that of ICE-L (~64% repeats) 

(Zhang et al. 2020). However, close inspection of the UWO241 coding regions uncovered 

something very unique: widespread gene duplication to a degree unmatched in any 

chlorophyte studied to date. 

Although the green algae ICE-L and UWO241 are closely related, they originate from very 

different Antarctic environments. ICE-L was isolated from open sea ice off of Zhongshan 
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Station whereas UWO241 is from Lake Bonney in the McMurdo Dry Valleys, which is 

~2000 km away from Zhongshan Station (Zhang et al. 2020). Lake Bonney is permanently 

covered in ~5 m of ice and UWO241 lives ~17 m below the ice where the temperature is 

around 5 °C year-round (Neale and Priscu 1995). Additionally, UWO241 is surprisingly 

resilient, persisting in an environment that not only is a perpetually cold environment but 

also has a high saline content (700 mM) and low irradiance (Figure 2). UWO241 possesses 

an unusual photosynthetic apparatus , tailored to work best at 8 °C, but it presents rates of 

photosynthesis relatively similar to those of C. reinhardtii at 25-35 °C (Cvetkovska et al. 

2017). In addition to withstanding constant low temperatures of approximately 5 °C year-

round, UWO241 is exposed to perpetual shading (5 µmol photons m-2 s-1 during midday in 

summer) and seasonal extremes in photoperiod (e.g., 24 h of light during the peak summer), 

which is enriched in the blue-green wavelengths of the visible spectrum (450-550 nm). 

Lake Bonney is also phosphorus limited and contains high levels of dissolved oxygen (200% 

saturation). In UWO241, many unique cellular and physiological features have been 

evolved to handle with the extreme conditions of Lake Bonney, such as high PSI cyclic 

electron transport, the inability to grow under red light and a lack of state transitions 

(Morgan-Kiss et al. 2006; Kalra et al. 2020).  
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Figure 9: Chlamydomonas sp. UWO241.  

(A) Origins of isolation of UWO241 and ICE-MDV (from Lake Bonney) as well as ICE-

L (from sea ice off of Zhongshan Station); image from NASA Earth Observatory. (B) 

Photograph of Lake Bonney (Wikimedia-Commons 2020). (C) Simplified diagram 

showing underwater conditions of Lake Bonney. (D) Tree of various chlamydomonadalean 

algae and their nuclear genome statistics; branching order based on previous phylogenetic 

analyses; HSDs inferring the number of highly similar duplicates (Nakada et al. 2008; 

Possmayer et al. 2016; Zhang et al. 2020). 

3.2.2 Characteristics of Chlamydomonas sp. UWO241 

The haploid nuclear genome of UWO241 was assembled de novo using a combination of 

long-read PacBio (~16.5 Gb) and short-read Illumina (~40 Gb) data, resulting in 2,458 

scaffolds (N50 = 375.9 kb) with an accumulative length of 211.6 Mb (%GC = 60.6) (Figure 

9D and Figure 10). This length is consistent with flow cytometry and k-mer spectral 
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analysis of UWO241, which predicted an overall genome size of ~230 Mb (Figure 10A, 

B). In total, 16,325 protein-coding genes were annotated (all supported by transcriptomic 

data), capturing ~85% of the Chlorophyte Benchmarking Universal Single-Copy Orthologs 

(BUSCO) datasets (Figure 10C), indicating a high level of gene-region completeness. The 

UWO241 genome is rich in functional RNAs (630 tRNAs and 480 rRNAs) as well as 

noncoding DNA (~87%), having the highest average intron density yet observed from a 

green alga (~10 introns/gene; avg. intron length 0.9 kb). The intergenic regions abound 

with repeats, accounting for ~104 Mb (~49%) of the total assembly length, ~70 Mb of 

which are represented by transposable elements (TEs) (discussed in Chapter 4). 

Although utilizing a hybrid of long-read single-molecule, real-time (SMRT) sequencing 

(Pacific Biosciences) for de novo assembly and short-read Illumina HiSeq DNA 

sequencing (Table 1), I have produced scaffold-level genome assemblies for UWO241. 

However, multiple approaches have been utilized to improve the genome assembly. As 

displayed in Table 2, the hybrid-read assembler performs better than the single-read 

assemblers. By using the Illumina reads and PacBio reads alone, the single-read assemblers 

yield assembly sizes of only 157 Mb and 150 Mb, accounting for 68.2% and 65.2% of the 

estimated genome size. However, a hybrid-read assembler taking advantage of both read 

types yields as much as 212 Mb, which covers 92% of the estimated genome size. 

Additionally, the contigs assembled with the single-read assembler appear more 

fragmented than those assembled with the hybrid-read assembler. The contig-level 

N50/L50 values in Illumina reads and PacBio reads are 3,188 bp/14,804 and 69,116 

bp/635, respectively. However, via the hybrid method, the scaffold-level metrices are much 

more contiguous, with an N50/L50 of 375,862 bp/165. While this model genome could be 

substantially improved by additional sequencing effort, it is my goal to obtain the best 

genome assembly to date with the current data available. Therefore, the scaffolds from the 

hybrid-read assembler are advanced by filling the gaps and polishing the mismatches. 

Taken together, ~16.5 Gb of PacBio reads and ~40 Gb of Illumina reads are assembled into 

2,464 scaffolds (211.6 Mb), covering ~92% of the estimated haploid genome (Table 4). 

The genome assembly is highly contiguous, with N50 of 375,902 bp and L50 of 165.  
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Figure 10: Summary of statistics of the UWO241 genome.  

(A) The estimated genome size measured via flow cytometry. (B) (a) The estimated 

genome size via different k-mer lengths. (b) The k-mer spectrum of Chlamydomonas sp. 

UWO241. The X-axis is the number of times a given k-mer was observed in the UWO241 

sequencing data. The Y-axis is the total number of k-mers with a given k-mer coverage. 

(C) Nuclear genome statistics of UWO241. 

The assembled genome size varies across the seven species (Figure 11 and Table 7), 

ranging from 111.1 Mb in C. reinhardtii to 541.8 Mb in ICE-L. Surprisingly, the genome 

UWO241 is the third largest across the species, as shown in the Table 6, which is nearly 

double the genome size of C. reinhardtii. It is not uncommon for plants surviving in 

extreme environments to accumulate redundancy, resulting in the novel gene sets and 

genome size expansion (Qian and Zhang 2014; Panchy et al. 2016; Zhang et al. 2020). 

Dunaliella salina as a halophile is able to tolerate the high-salt conditions, similar to 
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UWO241 and ICE-L, which are psychrophiles surviving in both cold and salty 

environments. Furthermore, it is likely that the differences of metrics (e.g., intron length 

and intergenic region length) are related to the varied living environment of genomes. As 

interpreted in Figure 11, the intron length (yellow) and intergenic region length (green) 

contribute to the majority of the genome size for UWO241, D. salina and ICE-L. They 

exhibit accumulative sizes of 110.69 Mb,158.1 Mb and 209.0 Mb for intron length, and 

74.67 Mb, 161.88 Mb and 303.8 Mb for accumulative intergenic region length, 

respectively. While the other fresh-water algae such as C. reinhardtii and Volvox carteri 

have smaller genome sizes and intron lengths. The genome-wide GC content ranged from 

the highest (64.5%) in Gonium pectorale to the lowest (49.1%) in D. salina. UWO241 has 

a GC-rich genome with GC content of 60.6% recorded. It is assumed that the GC content 

diversity is critical for gene and organismal evolution, and plants tend to evolve the 

contrasting GC contents to survive in different environments (Šmarda et al. 2014). A 

research team has demonstrated that the nucleotide composition landscapes in monocots 

are shaped by the GC-biased gene conversion (Singh et al. 2016). 

 

Figure 11: Genome size distribution of UWO241 and its closely green algal relatives. 
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Recently, it was reported that retrotransposon proliferation resulted in the large genome of 

ICE-L (Zhang et al. 2020). ICE-L was found 63.78% of the ICE-L genome assembly 

lengths (345.23 Mb) to be repeat regions. Transposable elements (TEs) accounted for 

40.67% of the ICE-L genome assembly (220.37 Mb), and long terminal repeat 

retrotransposons (LTR-RTs) were the most dominant type of TEs, representing 23.32% of 

the assembly (126.36 Mb) (Zhang et al. 2020). Similarly, to decipher the reasons for the 

large genome size of UWO241, the gene content in the intronic and intergenic regions was 

explored. As presented in Table 5, UWO241 harbors approximately 104 Mb of repeat 

regions, accounting for 49.25% of the whole genome. Specifically, these repetitive regions 

can largely be attributed to the large numbers of LINEs and simple repeats and a myriad of 

unclassified elements. LINEs are TEs that occupy 20.3 Mb in UWO241, accounting for 

9.6% of the genome. Across the unicellular species, the percentage of LINEs in UWO241 

and ICE-L are at the top (Supplementary Information: Table 8). It has been reported that 

RNA-mediated retrotransposons might play an important role in organismal diversity and 

adaptation (Casola and Betrán 2017). Thus, it is enticing to link many unique features of 

the UWO241 genome, such as high proportions of gene duplications, with these unique 

LINE-rich patterns. Simple repeats are also presented at higher levels in UWO241 (Table 

5), but this is not uncommon due to the complexity of the genome. Simple repeats are 

usually defined as the duplications of simple sets of DNA bases (typically 1-5 bp), such as 

A, CA, and CGG (Smit et al. 2015). A larger proportion of unclassified elements are 

observed in UWO241, partly due to the divergence of the repetitive sequence patterns from 

those of C. reinhardtii. Because a curated repeat library for C. reinhardtii directly 

contributes to masking the repeats in related species, unclassified categories can be 

minimized in the future via the increasing sequencing number of diverse closely related 

species. Although not the main focus of the study, future manual curation of the most 

abundant TE families across species could benefit the repeat masking and genome 

annotation of related species and shed light on the evolutionary processes shaping genomes 

(Hubley et al. 2016).  

Prior to identifying the function of a coding sequence, scaffolds containing organellar DNA 

are filtered. The remaining 2458 scaffolds from the nuclear genome are used for gene 

model construction. Finally, I have predicted 16,325 nuclear protein-coding genes, all of 
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which are supported by RNA-Seq transcripts. The assembly completeness is explored 

further by the genome-mode BUSCO scores (Supplementary Information: Table 9), the 

metrics of UWO241(~85%) compare favorably to those of the existing model assemblies 

from 64.6% to 95.9%. Analyses of genome completeness indicate that ~76% of the 

conserved Chlorophyta genes (Chlorophyta_odb10) are annotated and complete in the 

transcriptome data. The BUSCO scores in protein mode suggest the higher gene 

duplication levels in UWO241 (456, 21.0%) and the ICE-L (240, 11.1%) across the green 

algal species (Supplementary Information: Table 9). Some of the genes were identified as 

fragmented relative to the genome assembly mode of BUSCO. UWO241 and ICE-L both 

have higher levels of missing data, which might be due to the expanded size of their 

genomes. As shown in the Table 7, consistent with the genome size increases from 111.1 

Mb to 541.8 Mb, gene density shows the opposite trend, ranging from 159.7 genes/Mb to 

36.7 genes/Mb, with the exception of Gonium pectorale. This might result from the larger 

gene number predicted in G. pectorale.  

Together with the benefits of comparative genomics, the BLASTP search against the 

National Center for Biotechnology Information nonredundant (NCBI-nr) database (release 

201902) shows that 60% of UWO241 proteins significantly (E-value < 1e-5, ³ 80% protein 

length) matched those of Volvocales (C. reinhardtii, G. pectorale, and V. carteri), whereas 

21.8% shows no significant similarity to any known proteins. 

Table 4: Genome assembly results from different assemblers. 

 Single-read assembler Hybrid-read assembler 
Assembler SPAdes 

(Illumina 
reads) 

Canu  
(PacBio 
reads) 

MaSuRCA (Illumina and PacBio 
reads) 

No. of total contigs 70,273 2,858 2,464 
No. of contigs (³ 1000 bp) 49,313 2,858 2,463 
Total length (Mb) 157 150  212 
N50 (bp) 3,188 69,116 375,902 
L50 14,804 635 165 
GC (%) 60.3 60.9 60.6 
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Table 5: Summary of repeats being masked in Chlamydomonas sp. UWO241. 

Repeats category No. of elements Length occupied (bp) Percentage of 
sequence 

LINEs 40,919 20,307,308 9.60% 

LTR elements 548 396,476 0.19% 

DNA elements 791 352,579 0.17% 

Unclassified 199,177 50,349,480 23.79% 

Simple repeats 417,034 31,185,848 14.74% 

Low complexity 27,339 1,977,216 0.93% 

Total 685,808 104,568,907 49.42% 

 

3.2.3 The General Features of Comparative Genomics Analysis in 
UWO241 and its Closely Green Algal Relatives 

Without comparative genomic analysis, investigations of the unique patterns in UWO241 

would have been severely impeded. Given the highly contiguous genome assembly and 

well-annotated genome annotation, I performed an array of comparative genomic analyses 

of UWO241 with other sequenced mesophilic and psychrophilic chlamydomonadaleans, 

including C. reinhardtii, V. carteri, G. pectorale, D. salina, C. eustigma and ICE-L (Table 

6). As previouly discussed, the genome size of UWO241 genome is double that of the 

model alga C. reinhardtii. The predicted gene number is roughly the same to other 

mesophilic algal species, and the number of gene families is slightly lower compared to 

that in other Chlorophyceae, including the volvocine algae (Chlamydomonas, Gonium, and 

Volvox). The GC percentages of UWO241, C. reinhardtii and G. pectorale are above 60%, 

while those of the ICE-L, D. salina and V. carteri are 49.2%, 49.1% and 56.1%, 

respectively. The average intron length of UWO241 (934 bp) and ICE-L (1951.5 bp) are 

larger than that of the other species (279 bp in C. reinhardtii, 399 bp in V. carteri, 407 bp 

in G. pectorale).  

While UWO241 and ICE-L exhibit a lower gene density, the intron length and the 

intergenic region length are greater than those of the other chlamydomonadalean species. 
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Presumably, this is in part due to the highly repetitive elements enriched in these regions, 

such as simple repeats and TE elements, which both present a larger proportion in the 

UWO241 (14.74% and 43.67% of the genome, respectively) and ICE-L (8.13% and 

45.01% of the genome, respectively). Indeed, it is widely believed that TE elements play a 

role in shaping the genome by expanding the genome size and gene structure (Casola and 

Betrán 2017). As displayed in Table 7, there are an average of 10.1 introns per gene with 

an average intron length of 934 bp in UWO241, which are larger than the corresponding 

numbers in C. reinhardtii (7.4/279.2 bp), G. pectorale (6.5/407.0 bp), V. carteri (6.3/399.5 

bp). Possibly, at least one driving force is attributable to the higher level of introns in the 

UWO241 genome. For example, the intronless genes originating from bacteria or archaea 

are acquired by the host via HGT events. However, the horizontally transferred genes such 

as IBP genes are likely to acquire introns due to selection pressure (Raymond and Kim 

2012). As reported in the psychrophilic diatom Fragilariopsis cylindrus, there are 11 

unique IBP isoforms, most of which have no introns, while a few have single, short introns 

near the 3' end (Mock et al. 2017). The same is observed in UWO241, where there are ³ 

37 IBPs, 27 of which contain introns, suggesting the evolutionary timeline among these 

horizontally transferred genes. Additionally, the introns could also accumulate because of 

TE elements, since retrocopies (retrogenes) generated from the RNA-mediated 

retrotransposition might acquire novel introns throughout intronization from the parental 

coding sequence (Casola and Betrán 2017). A large number of genes with retrocopies 

patterns are observed in the UWO241 genome, suggesting the driving force for the 

enrichment of introns in UWO241 (Appendix A: Table S3). It should be noted that the 

intron number might be underestimated because retrocopies can undergo erosion and yield 

retropseudogenes due to a lack of regulatory regions (Kubiak and Makałowska 2017). 

Therefore, I was very careful when exploring those retrocopies in the UWO241 genome, 

and only the functional and expressed gene copies were selected. Furthermore, in my 

attempt to understand whether the phenomenon of large scale retrocopies is unique to 

UWO241, I most strikingly found that many Pfam domains of UWO241 function as 

reverse transcriptases (RTs) compared to other algae. Specifically, there are 77 autonomous 

virus-like LTR retrotransposons and 324 non-LTR retrotransposons (e.g., LINE1) in the 

UWO241 genome (Appendix A: Table S3). Notably, some RNA-mediated TE elements 
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are also detected in the intronic and intergenic regions of the UWO241 genome. 

Preliminary findings show that the photosynthetic ferredoxin gene from UWO241 has a 

much higher intron content than its C. reinhardtii counterparts. Moreover, unlike in C. 

reinhardtii, the UWO241 ferredoxin gene has highly similar duplicates (Cvetkovska et al. 

2018). Although the ferredoxin gene is not found in the HSDs list of ICE-L, UWO241 

(336) and ICE-L (265) both have large size of HSDs candidates (Figure 9D). Many of the 

HSDs genes from the two psychrophiles encode the same functions such as antenna 

proteins, ribosomal proteins and histones (Appendix A: Table S6). 

Table 6: Species list and genome versions used for annotation and comparative 

genomic analysis. 

Species Source References 

C. reinhardtii v5.5 JGI 5.5 (Phytozome 12.1) (Merchant et al. 2007) 

V. carteri v2.1 JGI 2.1 (Phtyzome 12.1) (Prochnik et al. 2010) 

G. pectorale v1.0 GenBank (GCA_001584585.1) (Hanschen et al. 2016) 

D. salina v1.0 JGI 1.0 (Phytozome 12.1) (Polle et al. 2017) 

C. eustigma (Acidophile) GenBank (GCA_002335675.1) (Hirooka et al. 2017) 

Chlamydomonas sp. ICE-L 

(Psychrophile) 

GenBank (GCA_013435795.1) (Zhang et al. 2020) 
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Table 7: Genome characteristics comparison of between UWO241 and closely related 

green algae. 

Genome 
statistics 

C. 
reinhardtii_v5

.5 

V. 
carteri_v2.1 

G. 
pectorale_v1.0 UWO241 

D. 
salina_v

1.0 

C. 
eustigma ICE-L 

Genome 
size (Mb) 111.1 131.1 148.8 211.6 343.7 110 541.8 

Scaffold 
N50 
(Mb)/L50 

7.80/7 2.59/15 1.27/30 0.37/165 0.35/310 0.46/519 19.23/9
46 

GC (%) 64.1 56.1 64.5 60.6 49.1 50.6 49.2 

Number of 
protein 
coding 
genes 

17,741 14,247 16,290/17,984* 16,325** 16,697 14,105 19,870 

Gene 
density 
(genes/Mb) 

159.7 108.6 109.5/120.9* 77.2** 48.5 128.2 36.7 

Average 
intron per 
gene 

7.4 6.3 6.5 10.1 NA NA NA 

Average 
intron 
length (bp) 

279.2 399.5 407.0 934.0 NA 259.8 1951.5 

* Although the genome paper of G. pectorale reported 17,984 genes they found (Hanschen et al. 

2016), the genome assembly from NCBI source was detected 16,290.  

** The draft genome of UWO241 was detected 16,325 genes supported by transcriptomic data 
(Zhang et al. 2021), while the NCBI source filtered the dataset to 16,018 genes for downloading. 
 

3.3 Conclusions 
Utilizing the highly contiguous nuclear assembly and well-annotated genomes of a 

psychrophilic green alga, namely, UWO241, I have presented the first nucleotide-level 

comparative genomic framework for this important model organism. I explored some of 

key questions, such as the following: How to improve the nuclear genome assembly for 

UWO241 by using both NGS and TGS sequencing reads? How to optimize the training 

sets to have this genome been accurately and thoroughly annotated? How to decipher the 

data in a comparative genomic framework to better understand the evolution of 

psychrophily? Specifically, I, first, developed an assembly pipeline for processing high-

throughput DNA sequencing reads into genomic contigs. These contigs, alongside RNA-
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Seq data, are fed into an annotation pipeline, which is designed based on state-of-the-art 

eukaryotic bioinformatic gene-profiling software. Last but not least, computational 

analyses are carried out on an in-house computer as well as a supercomputing network, 

which yielded the draft nuclear genome (~212 Mb, 16,325 protein-coding genes) sequence 

of the psychrophilic green algae UWO241. This comparative genomic framework across 

psychrophilic chlamydomonads is able to be conducted via comparison to the mesophilic 

and psychrophilic relatives C. reinhardtii, V. carteri, D. salina and ICE-L, among others. 

I hope that this work will aid in studies of other psychrophiles and provide insights into the 

evolution of psychrophily. 

3.4 Methods and Experiments 

3.4.1 Strains and Growth Conditions 

UWO241 is available from the National Center for Marine Algae and Microbiota (NCMA; 

strain CCMP 1619). The strain used for genome sequencing is the original isolate, obtained 

directly from Priscu (Pocock et al. 2004). UWO241 was grown axenically in Bold’s Basal 

Medium (BBM) supplemented with 70 mM NaCl. Cultures were grown at 5 °C in 3-layer 

BD FalconTM Multi Flasks with agitation at a continuous light of 150 μmol photons m-2 

s-1 measured with a quantum sensor attached to a radiometer (Model LI-189; Li-Cor, 

Lincoln, NE, USA). Cultures were grown to mid-log phase prior to harvesting. 

3.4.2 DNA and RNA Extraction and Library Construction 

Genomic DNA (gDNA) for Illumina HiSeq2000 sequencing was extracted using the 

Qiagen Plant DNeasy Maxi Kit (Qiagen) following manufacturer’s instructions. UWO241 

was harvested by centrifugation (6000 g, 5 min, 4 °C), flash-frozen in liquid nitrogen, and 

stored at 80 °C. The DNA was purified by ethanol precipitation using standard methods 

and resuspended in 10 mM Tris, pH 7.5. DNA quality was monitored using wavelength 

absorbance scan and electrophoresis on a 1% (w/v) TBE agarose gel.  

For single-molecule, real-time (SMRT) sequencing (Pacific Biosciences, Menlo Park, CA, 

USA), gDNA was extracted using a modified CTAB protocol. In short, cell pellets were 

resuspended in 1 ml of lysis buffer (50 mM Tris-HCl, pH 8.0; 200 mM NaCl, 20 mM 
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EDTA, 2% (w/v) SDS, 20 mg/ml Proteinase K) and mixed by inversion. Equal volume of 

pre-heated CTAB buffer (2% (w/v) CTAB, 1.4 M sodium chloride, 20 mM EDTA, 100 

mM Tris, 2% (w/v) polyvinylpyrrolidone (M.W. 40000), 1% (v/v) β-mercaptoethanol, pH 

8.0) was added, and the cells were incubated at 65 °C for 30 min, followed by 

centrifugation (14,000 g, 5 min) to remove the insoluble materials. The supernatant was 

treated with RNase A (100 mg/ml) for 30 min at 37 °C, and nucleic acids were extracted 

2x with equal volume of phenol:chloroform:isoamyl alcohol (25:24:1). The extract was 

centrifuged (16,000 g, 10 min) and nucleic acids were precipitated with 1x volume of ice-

cold isopropanol and incubated at -20 °C for 1 hour. The samples were centrifuged (16,000 

g, 15 min, 4 °C) and the pellet was washed 3x with ice-cold 70% (v/v) ethanol. DNA was 

precipitated with 1/10th volume 3M sodium acetate (pH 5.2) and 2 volumes 100% ethanol, 

samples were incubated at -20 °C for 1hour, centrifuged (16000 g, 4 °C, 30 min), and the 

resulting DNA pellets washed with 70% (v/v) ethanol. The pellets were air-dried and 

resuspended in 10 mM Tris (pH 7.8) by incubating them for 24 hours at 4 °C.  

Complementary DNA of UWO241 was performed using 125 bp paired-end (PE) reads on 

an Illumina HiSeq 2500 v4 sequencing platform. Three biological replicate cultures of 

UWO241 were grown at 15 °C. Algal cells were harvested by centrifugation (6,000 g, 5 

min, 4 °C), flash frozen in liquid nitrogen, and stored at -80 °C. RNA was isolated using a 

modified CTAB protocol (Possmayer et al. 2016) and sequenced at the Génome Québec 

Innovation Centre (Montreal, QC, Canada). Total RNA was quantified using a NanoDrop 

Spectrophotometer ND-1000 (NanoDrop Technologies, Inc.) and its integrity was assessed 

using a 2100 Bioanalyzer (Agilent Technologies). Libraries were generated from 250 ng 

of total RNA using the TruSeq stranded mRNA Sample Preparation Kit (Illumina), as per 

manufacturer’s recommendations. Libraries were quantified using the Kapa Illumina GA 

with Revised Primers-SYBR Fast Universal kit (Kapa Biosystems). Average size fragment 

was determined using a LabChip GX (PerkinElmer) instrument. 

3.4.3 Genome Sequencing 

Genomic HiSeq 2000 sequencing was performed at the Princess Margaret Genomics 

Centre (Toronto, ON, Canada), using 101-cycle PE reads at 100x coverage. DNA was 

fragmented using a Covaris M220 Focused-Ultrasonicator (Covaris Inc., Woburn, MA, 
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USA) and libraries were constructed with the TruSeq DNA HT Sample Preparation Kit 

(FC-121-2003; Illumina, San Diego, CA, USA). PacBio SMRT sequencing was performed 

by Génome Québec on an RSII instrument, using 19 cells at 81x coverage. 7.5 μg of high-

molecular-weight gDNA was sheared using the Covaris g-TUBES (Covaris Inc.). DNA 

libraries were prepared using the SMRTbell Template Prep Kit 1.0 reagents (Pacific 

Biosciences). The DNA library was size-selected on a BluePippin system (Sage Science 

Inc., Beverly, MA, USA) using a cut-off range of 10-50 kb. Complementary DNA of 

UWO241 for Illumina HiSeq 2500 was sequenced by Génome Québec. 

3.4.4 Estimation of Genome Size 

The nuclear genome size of UWO241 was estimated using k-mer analysis and flow 

cytometry. Approximately ~30 Gb of high-quality, short-insert reads (250 bp) were used 

to estimate genome size via the k-mer analysis tool Jellyfish (Arumuganathan and Earle 

1991). The k-mer frequency followed a Poisson distribution. The k-mer depth (i.e., mean 

coverage) was divided by the total k-mer number, giving a genome-size estimate of 210Mb 

(± 10Mb; mean ± standard error) when using a default k-mer size 65, 70 and 75. The 

genome size estimation via k-mer is followed through the tutorial with the link 

(https://bioinformatics.uconn.edu/genome-size-estimation-tutorial/). 

Flow cytometry predicted the UWO241 genome size to be 250 Mb (± 2Mb; mean ± 

standard error), following a modified protocol by Arumuganathan and Earle 

(Arumuganathan and Earle 1991). Briefly, intact nuclei were suspended in MgSO4 buffer 

mixed with DNA standards and stained with propidium iodide (PI) in a solution containing 

DNAase-free RNAase (Arumuganathan and Earle 1991). Fluorescence intensities of the 

stained nuclei were measured by a flow cytometer. Values for nuclear DNA content were 

estimated by comparing fluorescence intensities of the nuclei of UWO241 with those of 

various internal DNA standards, including nuclei from C. reinhardtii (0.35 pg/2C), mixed 

cell culture of UWO241 (0.53 pg/2C), large cell culture of UWO241 (0.53 pg/2C), medium 

cell culture of UWO241 (0.49 pg/2C) and small cell culture of UWO241 (0.51 pg/2C). 

Specifically, for flow cytometric analysis, one mL of UWO241 was placed in microfuge 

tubes and centrifuged for 5 sec.  The pellet was suspended by vortexing vigorously in 0.5 

mL solution containing 10 mM MgSO4.7H2O, 50mM KCl, 5 mM Hepes, pH 8.0, 3 mM 
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dithiothreitol, 0.1 mg / mL propidium iodide, 1.5 mg / mL DNAse free RNAse (Rhoche, 

Indionapolis, IN) and 0.25% Triton X-100. The suspended nuclei were withdrawn using a 

pipettor, filtered through 30-µm nylon mesh, and incubated at 37 °C for 30 min before 

flow-cytometric analysis.  Suspensions of sample nuclei was spiked with suspension of 

standard nuclei (prepared in above solution) and analyzed with a FACScalibur flow 

cytometer (Becton-Dickinson, San Jose, CA). For each measurement, the propidium iodide 

fluorescence area signals (FL2-A) from 1000 nuclei were collected and analyzed by 

CellQuest software (Becton-Dickinson, San Jose, CA) on a Macintosh computer 

(Dickinson and Dickinson 1998). The mean position of the G0/G1 (nuclei) peak of the 

sample and the internal standard were determined by CellQuest software. The mean nuclear 

DNA content of each plant sample, measured in picograms, was based on 1000 scanned 

nuclei. 

3.4.5 Nuclear Genome Assembly 

The nuclear genome of UWO241 was assembled de novo using Illumina and PacBio 

SMRT sequencing reads. The Illumina read quality was evaluated using FastQC v0.11.8 

(Andrews 2010), and the PacBio sequencing reads were assessed via the error-correction 

step of Canu v1.7.1 (Koren et al. 2017). The hybrid de novo assembly was carried out with 

MaSuRCA v3.3.2 (Zimin et al. 2017), using an automatically determined k-mer size (i.e., 

GRAPH_KMER_SIZE = auto), which computes the optimal size based on the read data 

and GC content; a cgwErrorRate of 0.15; and a KMER_COUNT_THRESHOLD of 1. 

Scaffolding and gap-filling algorithms were then applied to all hybrid-assembled contigs 

to extend the length of the assembly and to minimize mismatches. SSPACE v3.0 (Boetzer 

et al. 2010) was used to extend and scaffold pre-assembled contigs by using Illumina PE 

libraries. GapFiller v2.1.1 (Boetzer and Pirovano 2012) was used to close the gaps (’N’) in 

the scaffolds by mapping with long PacBio reads. The genome assembly was further 

polished with highly accurate Illumina reads via Pilon v1.22 (Walker et al. 2014). 

Assemblies of the plastid and mitochondrial genomes were produced independently 

(Cvetkovska et al. 2019). The Illumina HiSeq transcriptomic data were de novo assembled 

via Trinity v2.8.4 (Haas et al. 2013). Adapters and low-quality bases were trimmed from 
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each RNA-seq dataset using Trimmomatic v0.38 (Bolger et al. 2014). Genome assembly 

metrics were generated using QUAST v5.0.0 (Gurevich et al. 2013). 

3.4.6 De novo Repeat Finding and Repeat Masking  

A de novo repeat library was created with RepeatModeler v1.0.8 (Smit and Hubley 2008), 

RepeatScout v1.0.5 (Price et al. 2005), LTR_FINDER (Xu and Wang 2007), and 

LTR_retriever (Ou and Jiang 2018) using default parameters. Unknown elements were 

screened with BLASTX (Altschul et al. 1997) (E-value < 1e-5) against UniRef90 database 

(Suzek et al. 2015) (subset Viridiplantae) and removed from the repeat library if necessary. 

The repeat library of UWO241 was used by RepeatMasker (4.0.7) (rmblastn version 

2.2.27+) (Tarailo-Graovac and Chen 2009) to mask the repetitive elements in the assembly, 

which resulted in 104 Mb (~49 %) of the UWO241 genome being masked. The masked 

regions were further inspected for overlaps with UWO241 RNA-Seq transcripts via 

GENEIOUS v10.1 (Biomatters Ltd, Auckland, New Zealand) (Kearse et al. 2012). 

Considering some genes such as TE-related can partially overlap with repeat regions, it is 

not uncommon to have some “noise” when inspecting the masked regions. RepeatMasker 

(Tarailo-Graovac and Chen 2009) allows for a soft-masked genome to help prevent over-

masking. 

3.4.7 Gene Prediction 

Coding regions were annotated by incorporating RNA-seq data with the ab initio gene 

prediction tool AUGUSTUS v3.0.3 (Stanke et al. 2008). RNA-Seq transcripts were fed 

into the pipeline of AUGUSTUS as hints using the “--UTR=on” and “--alternatives-from-

evidence=true” options. UTR flag was set to “on” to perform untranslated region 

annotations. The alternative-evidence flag was set to “true” to predict alternative splicing. 

The training sets of AUGUSTUS were acquired from the first run of EVidenceModeler 

(aka EVM) (Haas et al. 2008) gene models. The extrinsic evidence for EVM were acquired 

from transcript alignments and homolog-based predictions. The RNA-Seq data were first 

used to reconstruct the transcripts via Trinity v2.8.4 (Haas et al. 2013), then the transcripts 

alignments for EVM were created using PASA v2.3.3 (Haas et al. 2003). To create the 

evidence of homolog-based predictions, the protein sequences of closely related species 
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(C. reinhardtii (Merchant et al. 2007), G. pectorale (Hanschen et al. 2016), C. eustigma 

(Hirooka et al. 2017), D. salina (Polle et al. 2017) and V. carteri (Prochnik et al. 2010)) 

were downloaded from JGI (https://phytozome.jgi.doe.gov/pz/portal.html) or NCBI 

(https://www.ncbi.nlm.nih.gov) database. Then the evidence of protein alignments for 

EVM were created with Exonerate (Slater and Birney 2005), seeded by Diamond 

(Buchfink et al. 2015). The list of numeric weight values was set to default for each type 

of “evidence” for EVM.  

Functional annotation of protein-coding genes was obtained from the best blast hit by 

BLASTP (E-value < 1e-5) against SwissProt (Boutet et al. 2007), TrEMBL (Boeckmann 

et al. 2003), and NCBI NR databases (non-redundant protein sequence database with 

entries from GenPept, SwissProt, PIR, PDF, PDB, and RefSeq). I developed a tool called 

NoBadWordsCombiner v1.0 (Zhang et al. 2020), which can automatically merge the 

BLAST results from the databases of SwissProt (Boutet et al. 2007), TrEMBL 

(Boeckmann et al. 2003) and NCBI NR databases. More importantly, it can strengthen the 

gene definition by filtering those protein function descriptions containing ‘bad words’, 

such as hypothetical and uncharacterized proteins. GENEIOUS v10.1 (Biomatters Ltd, 

Auckland, New Zealand) was used to visualize the gene models and manually trim short 

gene models. The gene models were manually filtered if genes contained internal stop 

codons, deduced protein sequences less than 35 amino acids, or coding regions with > 70% 

of elements from low complexity regions and simple repeats. Pfam domains were 

annotated by using InterProScan (v4.7) (Zdobnov and Apweiler 2001), which integrates 

predictive information about protein function from a number of partner resources, such as 

the InterPro (Quevillon et al. 2005) and Pfam (Finn et al. 2014) databases. Gene Ontology 

(GO) terms (Ashburner et al. 2000) for each gene were retrieved from the corresponding 

InterPro or Pfam descriptions. Gene sets were mapped to a KEGG (Kanehisa and Goto 

2000) pathways to identify the best match classification for each gene. Genome annotation 

quality was evaluated by BUSCO (Simão et al. 2015), which gave a quantitative measures 

for single-copy orthologous genes from the dataset Chlorophyta odb10 (Zdobnov et al. 

2017). 
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The tRNA genes were predicted by tRNAscan-SE v1.3.1 (Lowe and Eddy 1997) using 

default parameters for eukaryotes. The miRNA and snRNA fragments were identified by 

INFERNAL (Nawrocki et al. 2009) software against the Rfam (release 12.0) database 

(Griffiths-Jones et al. 2003). Homology-based rRNA fragments were annotated by 

mapping algal rRNAs to the UWO241 genome using BLASTN with parameters (E-value 

< 1e-5). Transcription factors (TF) and transcriptional regulators (TR) were annotated by 

first screening the proteins for domains and then applying a domain-based rule set (Lang 

et al. 2010; Wilhelmsson et al. 2017). 

3.5 Data Availability 
The assembled genome sequences and the raw sequencing data of UWO241 were 

deposited at US National Center for Biotechnology Information (NCBI) database under 

BioProject accession PRJNA547753 and BioSample accessions SAMN11975472 and 

SAMN11975511. 
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3.7 Supplementary Information 
Table 8: Comparison of repeats in the genome of selected green algae. 

Species 
Chlamydomonas sp. 

UWO241 

Chlamydomonas 
reinhardtii Dunaliella salina Gonium pectorale Volvox carteri Chlamydomonas sp. ICE-

L 

Repeats 

category 
Numbers 

Length(bp)/ 

percentage 
Numbers 

length(bp)/ 

percentage 
Numbers 

length(bp)/ 

percentage 
Numbers 

length(bp)/ 

percentage 
Numbers 

length(bp)/ 

percentage 
Numbers 

length(bp)/ 

percentage 

SINEs 1966 
286,815/0.14

% 
288 

95,696/0.09

% 
- - 919 

68,293/0.05

% 
- - 9,325 

1,408,737/0.2

6% 

LINEs 72,637 
25,259,586/11.

94% 
14,905 

5,451,206/4

.91% 
115,742 

47,084,016/1

3.70% 
6251 

1,827,383/1.

23% 
- - 50,041 

25,334,170/4.

68% 

LTR 

elements 
4549 

1,358,609/0.64

% 
1358 

514,334/0.4

6% 
14,425 

5,819,049/1.

69% 
3583 

1,008,765/0.

68% 
- - 52,043 

46,458,114/8.

57% 

DNA 

elements 
34,763 

5,064,215/2.39

% 
16,948 

3,587,707/3

.23% 
10,102 

2,226,438/0.

65% 
1365 

191,356/0.1

3% 
- - 29,364 

10,823,438/2.

0% 

Unclassified 282,664 
60,449,198/28.

56% 
30,781 

4,334,103/3

.90% 
298,034 

62,119,743/1

8.07% 
46,926 

8,545,222/5.

74% 
102,273 

27,262,548/

20.79% 
751,814 

159,882,493/2

9.51% 

Total 

transposable 

elements 

396,579 
92,418,423/43.

67% 
64,280 

13,983,046/

12.59% 
438,303 

117,249,246/

34.11% 
59,004 

11,641,019/

7.82% 
102,273 

27,262,548/

20.79% 
892,587 

243,906,952/4

5.01% 

Simple 

repeats/Satell

ites 

417,034 
31,185,848/14.

74% 
129,144 

8,278,494/7

.45% 
147,030 

9,850,665/2.

86% 
87,793 

4,997,301/3.

36% 
147,623 

7,485,528/5

.71% 
515,710 

44,023,155/8.

13% 

Low 

complexity 
23,564 

1,538,790/0.73

% 
12,368 

774,505/0.7

0% 
4288 

268,195/0.08

% 
12,993 

741,080/0.5

0% 
- - 53,522 

4,971,406/0.9

2% 

Total repeats 
1,233,75

6 

112,319,356/5

3.07% 
205,792 

23,527,046/

21.18% 
1,028,754 

126,979,512/

36.94% 
218,857 

17,374,479/

11.68% 
352,169 

33,773,474/

25.75% 
1,461,819 

293,495,403/5

4.16 
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Table 9: Statistics of BUSCO assessment of the green algae genome assembly and 

genome annotation. 

BUSCO mode: genome assembly (No. of genes/Percentage) 

Species 
No. of 
total 
BUSCOs 

Complete 
BUSCOs 

Complete 
and single-
copy 
BUSCOs 

Complete 
and 
duplicated 
BUSCOs 

Fragmented 
BUSCOs 

Missing 
BUSCOs 

Chlamydomonas 
sp. UWO241 2168 1840/84.9% 1706/78.7% 134/6.2% 77/3.6% 251/11.5% 

Chlamydomonas 
reinhardtii 2168 2079/95.9% 2069/95.4% 10/0.5% 47/2.2% 42/1.9% 

Dunaliella 
salina 2168 1400/64.6% 1377/63.5% 23/1.1% 224/10.3% 544/25.1% 

Gonium 
pectorale 2168 1844/85.0% 1826/84.2% 18/0.8% 117/5.4% 207/9.6% 

Volvox carteri 2168 2061/95.0% 2045/94.3% 16/0.7% 68/3.1% 39/1.9% 

Chlamydomonas 
sp. ICE-L 2168 1684/77.7% 1519/70.1% 165/7.6% 142/6.5% 342/15.8% 

BUSCO mode: genome annotation (No. of genes/Percentage) 

Species 
No. of 
total 
BUSCOs 

Complete 
BUSCOs 

Complete 
and single-
copy 
BUSCOs 

Complete 
and 
duplicated 
BUSCOs 

Fragmented 
BUSCOs 

Missing 
BUSCOs 

Chlamydomonas 
sp. UWO241 2168 1652/76.2% 1196/55.2% 456/21.0% 113/5.2% 403/18.6% 

Chlamydomonas 
reinhardtii 2168 2105/97.1% 1964/90.6% 141/6.5% 53/2.4% 10/0.5% 

Dunaliella 
salina 2168 1319/60.9% 1229/56.7% 90/4.2% 333/15.4% 516/23.7% 

Gonium 
pectorale 2168 1640/75.6% 1618/74.6% 22/1.0% 245/11.3% 283/13.1% 

Volvox carteri 2168 2087/96.2% 1898/87.5% 189/8.7% 47/2.2% 34/1.6% 

Chlamydomonas 
sp. ICE-L 2168 1656/76.4% 1416/65.3% 240/11.1% 175/8.1% 337/15.5% 
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Chapter 4  

4 Comparative Genomic Analysis of the Antarctic 
Psychrophilic Green Alga Chlamydomonas sp. UWO241 
Provides Insights into Gene Duplication Driving Cold 
Adaptation 

This chapter was adapted from the publication entitled “Draft genome sequence of the 

Antarctic green alga Chlamydomonas sp. UWO241” published on iScience in 2021 by X. 

Zhang, M. Cvetkovska, R. Morgan-Kiss, N. P. A. Hüner and D. R. Smith (Zhang et al. 

2021).  

The introduction of this chapter was adapted in part from the publication entitled 

“HSDFinder: an integrated tool for predicting highly similar duplicates in eukaryotic 

genomes” in 2021 by X. Zhang, Y. Hu and D. R. Smith (Appendix C). 

4.1 Introduction 
What is the role of gene duplicates? 

It is often disadvantageous to retain highly similar expressed sequences; therefore, it should 

be rare to have duplicates encoding the same functions maintained in the genome (Kubiak 

and Makałowska 2017). However, Zhang suggested that the generation of large-scale 

duplicates was possible only if they were genes in high demand, such as gene for rRNAs 

and histones (Zhang 2003). Thereafter, Libuda and Winston discovered that the appearance 

of pairs of adjacent paralogous proteins arose from a compensatory mechanism restoring 

normal dosage when one locus was deleted (Libuda and Winston 2006). Recently, the 

controversy has been in whether the evolution of duplicate genes affects fitness (Innan and 

Kondrashov 2010). Some duplication models assume that the fixation of the duplicate copy 

is a neutral process, while others support the gene dosage hypothesis, where if an increase 

in the dosage of a particular gene is beneficial, then a duplication of this gene may be fixed 

by positive selection (Qian and Zhang 2008). Nevertheless, mechanisms that do not require 

the evolution of new functions (e.g., dosage balance) may play an important role in the 

initial retention of duplicate genes (Panchy et al. 2016). Indeed, many examples have 
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accumulated in the literature suggesting that stress response genes, sensory genes, transport 

genes and genes that have a metabolism-related function are likely to be fixed as duplicate 

copies under certain environmental conditions (Kondrashov 2012). In addition, genes 

encoding the protein products requiring large doses, such as ribosomal or histone genes, 

are also maintained in the genome (Innan and Kondrashov 2010). In Chlamydomonas sp. 

UWO241, many ribosomal protein duplicates were detected, which might benefit gene 

expression. However, the gene dosage hypothesis could be further tested by determining 

whether retrogene-parental gene pairs with overlapping expression show a higher 

combined transcription level than parental genes in multiple closely related outgroup 

species lacking those retrogenes (Casola and Betrán 2017).  

How do gene duplicates arise? 

The next key question is how these duplicates arise. There are five main broad classes of 

duplication events in genomes: whole-genome duplication (WGD), tandem duplication, 

transposon-mediated duplication, segmental duplication and retroduplication (Panchy et 

al. 2016). Polyploidization or WGD, is a straightforward gene duplication mechanism that 

increases both genome size and entire gene sets. However, it is not the only mechanism 

that generates duplicate genes. A cluster of two to many paralogous sequences with no or 

few intervening gene sequences is a pattern of tandem (or local) duplication that results 

from unequal crossing-over of chromosomes or transposable-element-(TE)-mediated 

duplication. Furthermore, transposon-mediated duplication usually contains the hallmarks 

of two terminal inverted repeats (TIRs) less than 5 kb long. Segmental duplication usually 

arises from non-LTR (long terminal repeats) retrotransposons, such as LINEs (intact 

LINE1s are up to 6 kb in length and contain internal promoters). Retroduplication refers to 

retrogenes generated via 5~9 kb LTR-retrotransposons, such as gypsy LTR elements 

(Panchy et al. 2016). Notably, if a gene is duplicated via reverse transcription of mRNA 

and then inserts into the genome, it is referred to as retrocopy, and the original gene is 

referred to as the parental gene. Although a retrocopy can arise from both LTR and non-

LTR retrotransposable elements (e.g., LINE1), the expression of the retrocopy is largely 

dependent on the regulatory region (i.e., promoters, binding sites for the RNA polymerase, 

and/or enhancers) (Kubiak and Makałowska 2017).  
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What are TE-generated gene duplicates? 

Given the multiple mechanisms of duplicate/retrocopy generation, WGDs and tandem 

duplications usually account for the majority of plant duplicates. However, TE-based 

mechanisms (i.e., retroduplication and transposon-mediated duplication) also generate a 

significant number of duplicates (Lisch 2013; Zhang et al. 2013; Tan et al. 2016; Casola 

and Betrán 2017; Cerbin and Jiang 2018). TEs are categorized into two classes. Class I TEs 

(retrotransposons) are RNA-mediated and operate via a copy-and-paste transposition 

mechanism, while class II TEs (DNA transposons) use a DNA-mediated mechanism with 

a cut-and-paste process (Wicker et al. 2007; Del Angel et al. 2018). Based on the 

appearance of LTRs, class I TEs are further classified as LTR retrotransposons, including 

the superfamily of copia and gypsy retrotransposons, and non-LTR retrotransposons 

containing elements such as SINEs and LINEs (Han 2010). DNA transposon could result 

in vast amounts of duplication and reshuffling the surrounding host sequences via the high 

frequent cut-and-paste process (Bourque et al. 2018). In the rice genome, Jiang et al. 

identified over 3,000 DNA transposons (Pack-MULEs) containing fragments derived from 

more than 1,000 cellular genes (Jiang et al. 2004). In humans, most retrotransposons are 

non-LTRs, but in plants, the genome size is expanded significantly due to the large size 

and number of LTR retrotransposons. For instance, retrotransposons contribute to 

approximately 75% of the size of the maize (Zea mays) genome (Schnable et al. 2009). 

Indeed, the redundancy of the duplicate genes (i.e., retrocopies) in the genome is largely 

attributed to the retrotransposition. Because the regulatory regions (e.g., promoters) cannot 

be duplicated together with coding regions via retrotransposition, most retrocopies lack 

expression, resulting in extreme redundancy (Kubiak and Makałowska 2017). However, 

some retrogenes have successfully acquired regulatory regions (e.g., promoters, enhancers, 

and binding sites for the RNA polymerase) in different ways. For example, in mice and 

humans, the majority (86%) of retrogenes appear to be transcribed from newly evolved 

regulatory regions, while only 3% of retrogenes inherited regulatory regions from their 

parental genes, and 11% are transcribed from bidirectional regulatory regions of upstream 

genes in head-to-head orientation (Carelli et al. 2016). Consistent with the ability to acquire 

the regulatory regions, the fate of the duplicates varies dramatically. There are generally 

three potential outcomes for gene duplicates. Gene duplication most often results in a 
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nonfunctional duplicate gene copy (nonfunctionalization). Some duplicate genes, however, 

undergo functional divergence. For example, one of the gene copies evolves a new 

beneficial function while the parental copy retains the original function 

(neofunctionalization) or both the original and the duplicate genes evolve to fulfill 

complementary functions previously performed by the original gene (subfunctionalization) 

(Conrad and Antonarakis 2007).  

Recently, it was shown that UWO241, unlike other surveyed algae, produces two near-

identical copies of photosynthetic ferredoxin (PETF), resulting from a duplication of the 

nuclear petf gene (Cvetkovska et al. 2018). The retention and expression of this duplicate 

gene is hypothesized to be an adaptation to the cold, leading to higher protein accumulation 

(i.e., gene dosage); indeed, UWO241 accumulates greater amounts of PETF than its 

mesophilic close relative Chlamydomonas reinhardtii (Merchant et al. 2007; Cvetkovska 

et al. 2018). Similarly, UWO241 expresses three isoforms of an unusual bidomain enzyme, 

allowing it to produce high levels of osmoprotectant glycerol (>400 mM) (Kalra et al. 

2020). If gene dosage is contributing to psychrophily in UWO241, one might expect other 

genes to be duplicated.  

Comparative genomic analysis across species has been widely used to identify new genes 

and functional coding sequences, and for a long period of time (Nobrega and Pennacchio 

2004). These analyses have undoubtedly made important contributions in understanding 

differences in gene content, such as intron length and abundance as well as the numbers 

and types of repeats. Nonetheless, the further comparisons of gene families, pathways and 

conserved domains are limited due to the lack of an appropriate comprehensive genomic 

framework. Fortunately, UWO241 is nested together with numerous mesophilic algal 

species in the order Chlamydomonadales, including C. reinhardtii, which is an excellent 

comparison target for the investigations of psychrophilic chlamydomonads (Cvetkovska et 

al. 2017). Many comparative genomic analyses, such as comparisons of gene family 

expansion and contraction, pathway loss and gain, and substitution rates at synonymous 

and nonsynonymous sites of protein-coding genes can help further understand the role of 

UWO241 as a psychrophile. 
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In this chapter, the UWO241 genome is compared with those of other model green algae, 

including C. reinhardtii, Volvox carteri, Dunaliella salina, Chlamydomonas eustigma, 

Chlamydomonas sp. ICE-L and Gonium pectorale. Some of the questions I try to address 

are as follows: Does the UWO241 genome harbor large numbers of duplicate genes? Has 

it acquired any genes via HGT, such as ice-binding proteins (IBPs) genes? Does UWO241 

contains unique or expanded/contracted gene families compared to its close relatives? 

Preliminary findings show that the genomic architecture of UWO241 is very different from 

that of C. reinhardtii. For example, the genome size of the UWO241 is double that of the 

model alga C. reinhardtii. The predicted gene numbers are roughly the same as that in the 

other species, and the number of gene families is slightly lower than that in other 

Chlorophyceae, including the volvocine algae (Chlamydomonas, Gonium, and Volvox). 

Given all the previous assessments, UWO241, as a psychrophilic alga, has been widely 

explored and has generated wide interest. Here, genome sequencing of UWO241 exposed 

hundreds of gene duplicates for crucial cellular pathways and dozens of genes encoding 

IBPs. These findings for UWO241 (isolated from a constantly cold but non-freezing 

environment) mirror many of those from the recent genomic analysis of the psychrophiles, 

Chlamydomonas sp. ICE-L (Zhang et al. 2020), which originates from a cold but 

fluctuating Antarctic sea ice environment, and enhance our understanding of 

photopsychrophily and the evolutionary dynamics within Antarctic lakes. 

4.2 Results and Discussion 

4.2.1 Gene Duplication Analysis Across Species 

Generally, genome or gene duplication is widely considered to facilitate environmental 

adaptation because redundancy allows the evolution of novel beneficial gene functions 

(Kondrashov 2012). Plant genomes are thought to be rich in gene duplicates due to ancient 

duplication events (Panchy et al. 2016). As previously reported (Cvetkovska et al. 2018), 

the photosynthetic ferredoxin gene (Fd) 1A and 1B in the UWO241 genome are quite 

similar to each other, with 91% identity in coding regions (both have a length of 1,114 bp, 

3 introns, and 4 exons); however, the Fd gene of C. reinhardtii is only 593 bp in length (1 

intron and 2 exons). By exploring the gene content, it is not difficult to detect the higher 

abundance of noncoding regions attributed to differences in the two species. It is likely that 
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the UWO241 Fd gene has undergone a gene duplication event, and the coding DNA 

sequences remaining similar due to selective pressure operating at the protein level. More 

importantly, Cvetkovska et al. further discovered that the two ferredoxin proteins in 

UWO241 were novel class of cold-adapted enzymes, which were shown to have the 

unusual feature of both high activity at low temperatures and high stability at moderate 

temperatures compared to its mesophilic orthologue (Cvetkovska et al. 2018).  

Given the previous assessment of the duplicate genes in UWO241, I hypothesized that 

genes that are crucial for the extremophilic lifestyle of UWO241 are likely present as 

highly conserved copies. Indeed, the identification of these gene copies has improved our 

understanding of gene duplications as a mechanism of adaptation. Functional annotation 

of the 16,325 RNA-supported gene models revealed the standard cohort of proteins 

typically encoded in green algal nuclear genomes (Appendix A: Table S4) as well as many 

hypothetical proteins (21.8%), paralleling the trends from other available 

chlamydomonadalean nuclear gene sets, which are generally 20-30% hypothetical. There 

were no obvious signs of contamination in the annotations and, with one conspicuous 

exception (discussed below), little evidence of horizontal gene transfer (HGT). Examining 

the annotations in detail, it became obvious that many were represented two or more times 

within the genome. To explore the validity of these multi-copy genes, I performed a series 

of BLAST-based analyses with strict downstream filtering. Specifically, to count the 

number of gene duplicates in UWO241 genome, a protein BLAST of the UWO241 gene 

models against themselves (E-value < 1e-5) detected 901 putative duplicates 

(encompassing 2,012 gene copies) all with pairwise amino acid identities ³80%. I filtered 

this gene set to only those with near-identical protein lengths (within 10 amino acids) and 

³90% pairwise identities, giving a pared-down list of 336 highly similar duplicates (HSDs), 

totaling 1,339 gene copies (Table 10 and Appendix A: Table S5). By setting such a strict 

cut-off, I have undoubtedly removed some genuine duplicates from this list, but I would 

rather be conservative in our approach, ensuring that the gene pairs in question are bona 

fide duplicates rather than spurious ones. The protein sequences of the HSDs were searched 

against the KEGG and Pfam databases, providing a functional breakdown (Table 10 and 

Appendix A: Table S5). HSDs in UWO241 are involved in various cellular pathways, 



78 

 

including gene expression, cell growth, membrane transport, and energy metabolism 

(Table 10 and Appendix A: Table S5), but also include hypothetical proteins (~37%) and 

reverse transcriptases (11%). HSDs for protein translation, DNA packaging, and 

photosynthesis were particularly prevalent, with 19 duplications of genes for ribosomal 

proteins, 10 for histones, and 7 for proteins of the chlorophyll a/b binding light harvesting 

complex (LHCB) (Table 10). As with the previously described petf duplication 

(Cvetkovska et al. 2018), many of these HSDs are virtually indistinguishable from each 

other at the amino acid level, and 65 are identical across their nucleotide coding regions 

(Appendix A: Table S5). 

Surprisingly, these large gene duplicate numbers are quite unusual compared to the 

numbers in their close mesophilic green algal relatives. Subsequently, I followed the 

similar gene duplicate detection protocol and obtained duplicates in other closely related 

algal species. However, the number of gene duplicates was not nearly as large as that in 

UWO241. Although the other close relatives also contain duplicates, such as glycolysis 

genes involved in sugar metabolism, genes encoding antenna proteins important for 

photosynthesis, and genes for purine relative to nucleotide metabolism, the duplication 

level is not nearly as high as that in UWO241. Noticeably, the duplicate genes could be 

involved in all fundamental pathways of the cell, many of which might be linked to how 

this organism survives its harsh environment. It is currently not immediately obvious if 

these genes are linked to cold adaptation, and connection between growth rate and the 

expression of cold adapted enzymes are required to be verified by wet laboratory 

approaches, such as over-expression or knock-out experiments. Nonetheless, there are 

some examples of gene duplicates worth exploring further, such as previously discussed 

photosynthetic ferredoxin proteins, which have been related to cold adaptation 

experimentally (Cvetkovska et al. 2018). There are a few other gene duplicates encoding 

important functions, for example, antenna proteins involved in the photosynthetic light 

harvesting system (Dolhi et al. 2013), the histones that package DNA (Tariq and 

Paszkowski 2004), the transporter involved in nutrient uptake that might be necessary for 

extreme environments (Saier 2000), and even the ribosomal proteins involved in DNA 

translation (McIntosh and Bonham-Smith 2006). As displayed in Table 10, UWO241 was 
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identified as having many duplicates in energy metabolism (10 HSDs), lipid metabolism 

(3 HSDs) and translation (27 HSDs).   

Table 10: Summary statistic of highly similar duplicate genes (HSDs) in UWO241. 

 

How does RNA-mediated duplication work? 

While the current literature has advanced our knowledge of the mechanisms of gene 

duplication, many of them remain to be determined. In Arabidopsis, 30% of duplicates 

could not be assigned to any known mechanisms, while the other approximately 70% of 

the duplicate genes could be attributed to WGD, tandem duplication and segmental 

duplication, among other processes. Given the complexity of gene duplication 

mechanisms, gene duplication analysis of the UWO241 genome was performed here. A 

large number of retrocopies were detected in the UWO241 genome (See Methods section). 

In total, 77 autonomous virus-like LTR retrotransposons and 324 non-LTR 

retrotransposons (e.g., LINE1) were detected (Appendix A: Table S4 and Figure 15D). It 

should be noted that the real number might be higher because the TE elements could be 

subject to erosion and yield incomplete TE fragments (Kubiak and Makałowska 2017). 

Indeed, some RNA-mediated TE elements were also detected in the intronic and intergenic 

regions of the UWO241 genome. Considering these factors, I filtered the retrocopies with 

the criteria of an aligned length of at least 50 amino acids and a greater than 80% amino 

Table 1. Summary statistic of highly similar duplicate genes (HSDs) in UWO241. 
Database Identifiers Number of 

HSDs (%)a 
Number of gene 
copies (%)a 

Pfam    

Chlorophyll A-B binding 
protein 

PF00504 4 (1%) 25 (2%) 

Ribosomal protein PF01015; PF01775; PF00828 19 (5%) 42 (3%) 
Core histone 
H2A/H2B/H3/H4 

PF00125 5 (1%) 99 (7%) 

Ice-binding protein 
(DUF3494) 

PF11999 8 (2%) 21 (2%) 

Reverse transcriptases PF00078 38 (11%) 151 (11%) 
KEGG 

  

09101 Carbohydrate 
metabolism 

K13979 (alcohol dehydrogenase) 12 (4%) 89 (7%) 

09102 Energy metabolism K02639 (ferredoxin); K08913(light-harvesting complex II 
chlorophyll a/b binding protein 2) 

10 (3%) 51 (4%) 

09103 Lipid metabolism K01054 (acylglycerol lipase) 3 (1%) 15 (1%) 

09122 Translation K02868 (large subunit ribosomal protein L11e) 27 (8%) 47 (4%) 

Hypothetical Proteins NA 125 (37%) 357 (27%) 

a A total of 336 HSDs were identified within the UWO241 genome, encompassing 1,339 gene copies. HSDs share ≥90% pairwise amino 
acid identity and have lengths within 10 amino acids of each other. 
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acid length identity to detect more recent retrocopies, because young TE elements do not 

have sufficient time to accumulate deleterious mutations (Panchy et al. 2016). One of the 

young TE elements maintained intact is a non-LTR retrotransposon (LINE1) adjacent to a 

group of antenna protein duplicates. As outlined in a simplified graph (Figure 12), six 

photosynthetic light-harvesting system gene duplicates were lettered from A to F and 

located on two different contigs. The non-LTR retrotransposon (LINE1) of contig 1 

remained intact with the complete structures of a short remnant poly(A) tail at the 3’ end, 

5-10 bp target site duplications (TSDs), and 2 ORFs containing reverse transcriptase (RT), 

while the LINE1 on contig 2 was fragmented but retained the partial non-LTR 

retrotransposon structure of RTs and a poly (A) tail. RNA-mediated transposition is a 

“copy and paste process” (Tan et al. 2016), but after looking closely into the gene contents 

of the two contigs, I found that A, B and C shared the same number of exons and introns, 

while D, E and F had similar exon and intron structures. Furthermore, the B and C and the 

E and F genes were inverted in a head-to-head orientation. This is certainly not something 

unheard of; for example, in the mice and humans, 11% of retrocopies are transcribed from 

bidirectional regulatory regions of upstream genes in a head-to-head orientation (Carelli et 

al. 2016). Additionally, on contig 1, the gene length of D was greater, and the distance of 

D was farther than those of A, B and C, suggesting that shorter tandem duplicate gene 

clusters are duplicated earlier. Indeed, in the maize genome, a higher than expected 

proportion of single-exon genes in tandemly duplicate gene clusters was potentially 

attributed to duplication efficiency (Kono et al. 2018). Relative to the retrocopies D, E and 

F, A, B, and C exhibited shorter introns, suggesting that D, E, and F are more ancient 

duplicates that accumulated novel introns. Actually, retrocopies may acquire introns via 

different strategies. First and foremost, they can inherit introns from their parental genes. 

Second, they may acquire novel introns via de novo exons from flanking genomic DNA or 

intronization of their original coding sequences. Third, retrocopies can acquire novel 

introns by the formation of fusion (chimeric) transcripts that include exons from nearby 

genes (Nefedova and Kim 2017). Taken together, these results suggested that this is an 

ongoing duplication event, with recently duplicated copies A, B and C and the ancient 

duplicated copies E, F and D.  
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Figure 12: Simplified graph of antenna protein genes in UWO241 genome.  

(A) Four distinct copies of lhcb2 (A: g12385.t1, B: g12386.t1, C: g12388.t1, D: g12389.t1) 

and a non-LTR retrotransposon (LINE1) (black), all located on scaffold 

scf7180000014917. (B) Two distinct copies of lhcb2 (E: g2060.t1, F: g2062.t1) and a non-

LTR retrotransposon (LINE1) (black), located on scaffold scf7180000011443. 

What is the potential driving force of gene duplication? 

The arrangements of the HSDs are informative. Approximately 20% contain gene copies 

that are situated close to one another, often in a head-to-head or head-to-tail orientation, 

and have very similar intron numbers and intronic sequences, implying that they result 

from recent tandem duplication events (Figure 13 and Appendix A: Table S5). A clear 

example of this is the duplication of the lhcb2 gene (Figure 13A). The remaining HSDs are 

generally far apart (most on distinct scaffolds) and, despite their matching coding regions, 

many (~50%) have un-alignable intronic sequences and differing numbers of introns, 

suggesting that they derive from more ancient duplication events (Figure 13 and Appendix 

A: Table S5). This is the case for petf  (Cvetkovska et al. 2018) as well as for hspa5 

(encoding heat shock 70-kDa protein 5), the two copies of which are found in the middle 

of distinct scaffolds, share 93% coding sequence identity but <12% similarity across their 

introns (Figure 13B, C).  
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Figure 13: Examples of duplicate genes in Chlamydomonas sp. UWO241.  

(A) Four distinct copies of lhcb2, all located on scaffold scf7180000014917 (B) Two 

distinct copies of hspa5, located on scaffolds scf7180000011611 (hspa5-1) and 

scf7180000015050 (hspa5-2). (C) Pairwise alignment of the deduced amino acid 

sequences of hspa5-1 and hspa5-2. 
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Figure 14: The distribution of nonsynonymous to synonymous substitution rates 

(dN/dS) among 316 HSDs in UWO241. 

Unlike elusive duplicate structure, nonsynonymous (dN) and synonymous (dS) substitution 

rates (dN/dS) are of great significance for understanding the evolutionary dynamics of 

protein-coding sequences across closely related and recently diverged species (Fay and 

Wu, 2003). The dN/dS (ω) ratio can provide a measure of selection pressure at the amino 

acid level (Yang and Bielawski 2000). Previous studies have explored how ω can be used 

to determine whether the Fd enzymes of UWO241 are under evolutionary pressure to gain 

cold adaptation characteristics (Cvetkovska et al. 2018). Here, I conducted a selection 

pressure analysis of duplicated genes in the UWO241 genome. The pairwise model of the 

PAML 4 package (Yang 2007) was used on the duplicates (approximately 1000 highly 

similar duplicate genes were selected). As displayed in Figure 14, if the dN/dS rate 

approaches zero, that is a sign of purifying selection, which refers to the evolutionary force 

maintaining the same function for a pair of sequences. The exonic sequences of more than 

half of the HSDs (~190) are under strong purifying selection as evidenced by very low 

(<<1) nonsynonymous to synonymous substitution rates (dN/dS), ranging from 0-0.5 (avg. 
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= 0.2) (Figure 14). This leaves open the possibility that natural selection is, in at least some 

instances, maintaining the expression of similar (if not identical) proteins in UWO241, as 

it is for PETF, which could aid its survival in Lake Bonney, perhaps due to increased gene 

dosage, as previously suggested (Innan and Kondrashov 2010; Kondrashov 2012). The 

HSDs, however, represent only a fraction of duplicated regions within the genome.   

Why partial gene duplicates make the genome more complex? 

The UWO241 nucDNA contains thousands of partial gene duplicates, characterized by 

gene fragments and pseudogenes, as well as duplicated segments of intergenic and intronic 

DNA (Figure 15 and Appendix A: Table S6). These incomplete duplicates range in size 

from ~100-12,000 bp, can exist in high copy numbers (>6) and, like the HSDs, can be 

found in tandem or on different scaffolds (Figure 15 and Appendix A: Table S6). But unlike 

the HSDs, they are in various states of decay, possibly reflecting an ongoing birth-death 

process, which is supported by the fact that many of the complete and partial duplicates are 

directly associated with or occur near to retrotransposons (RTs) (Figure 15 and Appendix 

A: Table S6), as outlined for the duplication of lhcb2 in Figure 13A.  

RT-mediated gene duplication is a recurring theme within nuclear genomes (Qian and 

Zhang 2014; Panchy et al. 2016; Casola and Betrán 2017; Kubiak and Makałowska 2017), 

including those of green algae (Jąkalski et al. 2016), and the UWO241 genome contains 

the standard hallmarks of such a phenomenon, such as poly(A) tail insertions and target-

site duplications (Figure 15D). But this certainly does not rule out the possibility that other 

processes, such as unequal crossing-over (Zhang 2003), are contributing to gene 

duplication within UWO241. Do note that 83% of the HSDs contain introns, a 

characteristic not generally associated with RT-mediated duplications, but not 

unprecedented (Casola and Betrán 2017; Kubiak and Makałowska 2017). Retrocopies 

often inherit introns from parental genes, flanking genomic DNA, or the fusion of 

transcripts (Catania and Lynch 2008; Zhu et al. 2009; Szcześniak et al. 2011; Kang et al. 

2012; Zhang et al. 2014). Altogether, I identified 401 putatively functional RTs in the 

nucDNA, including 77 long terminal repeat (LTR) and 324 non-LTR RTs. These numbers 

do not include retropseudogenes, partial retroelements, or identified RTs with no RNA-seq 

support, which together account for >10% of the assembly. What’s more, there are >480 
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duplicated regions containing a reverse-transcriptase domain, including ones in noncoding 

DNA. UWO241 has more retroelements than all other surveyed chlorophytes (4-times that 

of C. reinhardtii) with the exception of ICE-L, for which non-LTR RTs account for a 

staggering ~23% of the genome (Zhang et al. 2020). In addition to RTs, the UWO241 and 

ICE-L genomes share another atypical feature—genes for IBPs.  

 

Figure 15: Partial gene duplicates, retrogenes, and retrotransposons in UWO241.  

(A) The line graph of duplicates set to different thresholds of amino acid pairwise identity 

and deduced amino acid length. The X-axis indicates the deduced amino acid length (aa) 

of each duplicate, the Y-axis tells the number of gene copies. (B) The table of total gene 

copies number at different thresholds of amino acid pairwise identity and deduced amino 

acid length. (C) The rough gauge of the proportion of partial duplicates in UWO241. (D) 

(a) The structure example of LTR-retrotransposon (Ty1- copia). The LTR retrotransposon 

is flanked by long terminal repeats (LTRs, grey) and short black triangles indicate target 

site duplications (TSDs, black). (D) (b) The structure example of non-LTR retrotransposon 
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(LINE1) which is terminated by a 3’ poly(A) tail (A(n), white arrow). The Pfam domains 

(green) are detailed here (PF14223: gag-polypeptide of LTR copia-type; PF13976: gag-

pre-integrase domain; PF00665: Integrase core domain; PF07727: Reverse transcriptase; 

PF00078: Reverse transcriptase). 

4.2.2 Acquisition of Ice-Binding Proteins (IBPs) through Horizontal 
Gene Transfer (HGT) 

Environmental adaptation seems to have been facilitated by HGT from various bacteria 

and archaea (Keeling and Palmer 2008). IBPs usually maintain the unknown functional 

domain DUF3494 with the Pfam identifier PF11999, which has been detected in more than 

170 microorganisms from various habitats (Mock et al. 2017). Previous studies reported a 

common trend regarding the existence of IBPs in cold-adapted algal species. For example, 

Raymond and Morgan-Kiss detected at least 12 isoforms of IBPs in the Antarctic lake alga 

Chlamydomonas sp. UWO241 (Raymond and Morgan-Kiss 2013). A few years later, as 

many as 50 isoforms of IBPs were found in another polar alga, Chlamydomonas sp. ICE-

MDV (Raymond and Morgan-Kiss 2017). More importantly, it is revealed that the IBPs 

are more closely related to bacterial IBP sequences than other chlorophyte IBP sequences, 

suggesting that IBP genes were acquired from other microorganisms by HGT (Raymond 

and Kim 2012; Raymond and Morgan-Kiss 2017).   

Here, to verify whether the genes have a bacterial origin, a BLAST search of the UWO241 

proteome (BLASTP, E-value < 1e-5 and at least 50 amino acids overlapping) was carried 

out against the NCBI-nr database. Approximately 100 top hits with a bacterial origin were 

selected. Alternatively, candidate IBP genes were obtained via BLAST searches against 

the genome using known UWO241 IBP sequences as the query. The UWO241 genome 

encodes no fewer than 37 proteins with an ice-binding domain (DUF3494) (Figure 16A), 

which is among largest number of IBPs ever recorded in a photosynthetic protist. This 

wealth of IBPs appears to be the consequence of HGT events in combination with gene 

duplication. Phylogenetic analyses of the IBP genes, which range in size from 483-37,549 

bp, show their grouping with psychrophilic bacterial and archaeal IBPs (Figure 16B), 

which is consistent with previous work (Raymond and Morgan-Kiss 2013). Nuclear genes 

acquired via recent HGT events from bacteria usually lack introns (Keeling and Palmer 
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2008), as do 14 of the IBP genes from UWO241; the remaining genes, with 4 exceptions, 

all have a single, short intron at their 3’ ends. The largest IBP gene, however, contains 29 

introns. The IBP genes show varying degrees of similarity with each other (Figure 16C), 

including 8 groupings of almost identical genes, suggesting a complicated history of IBP 

gene acquisition and duplication within UWO241. The presence of pseudogenes and gene 

fragments with similarity to IBPs (Appendix A: Table S6) indicates that some previously 

functional IBP coding regions might have been lost.  

These findings add to the growing list of psychrophilic and psychrotolerant algae encoding 

IBPs (Blanc et al. 2012; Raymond and Morgan-Kiss 2013; Mock et al. 2017; Raymond 

and Morgan-Kiss 2017), mirroring the pattern of ice-associated bacteria and fungi 

(Margesin et al. 2008). Genome sequencing of the psychrophilic, polar diatom 

Fragilariopsis cylindrus identified 11 IBPs (Mock et al. 2017), almost as many as found 

in ICE-L (12)(Zhang et al. 2020). Chlamydomonas sp. ICE-MDV, a close relative of ICE-

L and a resident of Lake Bonney (Figure 9A, C, D), currently holds the record for the 

greatest number of IBP isoforms (50) in a green alga (Raymond and Morgan-Kiss 2017). 

In all these examples, the IBPs are believed to have been acquired from bacteria via HGT, 

and their existence is thought to be an adaptation to polar environments (Raymond and 

Kim 2012). It might seem obvious why a species that lives in the Antarctic would acquire 

IBPs, which can have ice recrystallization inhibition activities and, thus, protect cells from 

freezing damage (Davies 2014). However, the potential benefits bestowed upon UWO241 

by having these genes is not immediately clear. Unlike ICE-L, UWO241 does not live on 

ice or snow (Morgan-Kiss et al. 2006) but deep within lake water, which remains at ~5 °C 

year-round. 

Given the striking number of IBP genes, however, this is not the only case of HGT in 

UWO241 genome. Genes encoding for ribosomal proteins were also detected in the HGT 

list, which is certainly not unheard of (Kondrashov 2012). In addition, stress response-

related genes (DnaJ and DnaK) and transporter genes (ABC transporters, sugar transporters 

and ammonium transporters) appeared at higher frequencies. This suggests that these 

important biological functions have been enriched by HGT from prokaryotes. The 

possibility of bacterial contamination can be excluded because most genes of bacterial or 
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archaeal origin were located on large contigs. Moreover, many genes of bacterial or 

archaeal origin had acquired introns, further excluding the possibility of contamination. 

 

Figure 16: Ice-binding proteins from UWO241. 

(A) The Maximum likelihood (ML) phylogenetic trees phylogenetic based on the amino 

acid alignments of 37 IBPs in UWO241. (B) Phylogenetic relationships of IBPs in 
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UWO241 (red), ICE-L (green), Archaea (blue) and Bacteria (black). (C) Amino acid 

alignment of 37 IBPs in UWO241 via Clustal Omega v1.2.4 with default parameters. 

To conclude, it is widely believed that IBPs improve survival in sea ice by modifying the 

structure of the sea ice, trapping water in small brine pockets, and thus preventing the water 

from draining (Raymond and Kim 2012). This supports the hypothesis that acquisition of 

IBPs through HGT could improve the survival of UWO241 in cold environments. 

However, it is interesting to note that despite being localized 17 m below the bottom of the 

permanent ice surface of Lake Bonney where the water never freezes, UWO241 has 

retained an impressive number of IBP genes in its genome. 

4.2.3 Genome Evolution in a Permanently Ice-covered Antarctic 
Lake 

One must be mindful not to instantly invoke positive selection when trying to explain the 

evolution of genomic architecture (Lynch 2007; Brunet and Doolittle 2018). It is tempting 

to propose that pervasive gene duplication within the UWO241 genome is an adaptation to 

life in Lake Bonney. But one could also reason that these features are neutral (or slightly 

deleterious) outcomes of random genetic events, such as the whims of selfish elements. As 

with many aspects of molecular evolution, the truth likely falls somewhere in-between 

these two extremes.  

It is my belief that the underlying mechanisms behind the duplications within the UWO241 

nucDNA, be it retrotransposition and/or other processes, are neutral or even maladaptive. 

Likewise, I contend that most of the observed duplicates in the genome, such as those 

encoding reverse transcriptases, were fixed through random genetic drift, perhaps 

exacerbated by the hermetic environment of Lake Bonney. (Unfortunately, there are no 

data on the effective population size of UWO241 and how it compares to that of other 

green algae, but it does appear to be rare (Dolhi et al. 2015)). But if enough duplicates are 

generated, eventually one will arise that results in an increase in fitness and, thus, could be 

maintained through positive selection. For instance, if an increase in dosage of a particular 

gene is beneficial, then the duplication of this gene could be fixed by positive selection 

(Innan and Kondrashov 2010; Kondrashov 2012). This is arguably the best explanation for 
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the existence of the petf duplicates (Cvetkovska et al. 2018) as well as some of the other 

HSDs in UWO241, including the IBP genes. It is noteworthy in this context that neither 

the UWO241 mitochondrial or chloroplast genomes (Cvetkovska et al. 2019), contain 

duplicate genes or retroelement-like sequences. This is different from another 

chlamydomonadalean green alga Haematococcus lacustris with the same repetitive 

elements spreading throughout the mitochondrial and chloroplast (or plastid) DNA (Zhang 

et al. 2019).  

Gene duplication is increasingly being identified as a means for adaptation to extreme 

environments (Kondrashov 2012; Qian and Zhang 2014). Moreover, duplication events 

resulting in increased gene dosage are known to play important roles in the initial retention 

of duplicate genes (Innan and Kondrashov 2010). The data presented here add to this theme. 

But something neutral can sometimes give rise to something useful. Remarkably, similar 

evolutionary processes appear to be operating in the ICE-L genome, in which gene 

duplication, potentially driven by RTs, has led to large expansions in various gene families, 

including IBP genes (Zhang et al. 2020), as well as many HSDs (265 duplicates covering 

717 gene copies) (Figure 9D and Appendix A: Table S6). Many of the HSDs in ICE-L have 

similar functions to those in UWO241 (Appendix A: Table S6). This stands in stark 

contrast to other green algal nucDNAs, which do not have large numbers of HSDs. Indeed, 

when the same bioinformatics procedures used to identify and classify HSDs in UWO241 

were carried out on available chlamydomonadalean genomes, small to moderate numbers 

of gene duplications were identified (Figure 9D and Appendix A: Table S6), which is 

consistent with previous analyses of these genomes and underscores just how unusual the 

UWO241 and ICE-L genomes are. When comparing the novel impact of HSDs in two 

psychrophiles UWO241 and ICE-L, the HSDs per Mb are almost 3-fold greater in 

UWO241 (1.59) than ICE-L (0.49) (Figure 9D). It will be interesting to see if the ICE-

MDV genome also harbours expanded gene families and HSDs. 
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Figure 17: Comparative genomic analysis across algae species.  
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(A) and (B) The UpSet plot and Venn diagram displaying unique and shared gene families 

between UWO241 and selected algae species. (C) Number of HSDs across various 

chlamydomonadalean species grouped based on their KEGG functional category. 

Finally, large number of RTs and rampant gene duplication can cause errors during genome 

assembly (Zimin et al. 2017). I performed multiple iterations of the UWO241 assembly, 

using different protocols and algorithms, and am confident that the available draft genome 

sequence in GenBank is of good quality. The HSDs, in particular, are supported by RNA-

seq, meaning there exists a specific transcript corresponding to each duplicate gene. But 

given the massive extent of duplications in the UWO241 genome, it is likely that some 

regions were misassembled, especially segments of duplicated noncoding DNA, and will 

need to be resolved through subsequent sequencing projects. That said, the overall 

conclusions presented here should remain the same.  

4.2.4 Gene Family Expansions and Contractions Across Species 

To explore the gene family evolution in UWO241 and other green algal species, I 

performed orthologous group analysis among seven species (Chlamydomonas sp. 

UWO241, C. reinhardtii, D. salina， V. carteri, G. pectorale, C. eustigma and 

Chlamydomonas sp. ICE-L), which resulted in 14932 orthogroups (Figure 17A, B). The 

majority of orthogroups (5,594) were shared by all species, with the second most abundant 

category (1,748) shared by V. carteri and C. reinhardtii. The orthogroups included sets of 

genes descended from a common ancestor and encoding the same function in different 

species. As presented in Figure 17A, considering that UWO241 survives in an environment 

differing from those of mesophiles, it contains fewer classified orthogroups (8083) with 

428 unique categories. Not surprisingly, the previously discussed IBP genes were included 

within the species-specific orthogroups. More lineage-specific orthogroups and the 

relationships between the species are illustrated in Venn diagrams (Figure 17B).  

Furthermore, to explore the considerable number of genes contributing to gene family 

expansion, the typical orthogroups associated with functional domains are summarized in 

the Table 9. Expansions and contractions of orthologous gene families were determined 

using a birth and death process to model gene gain and loss over a phylogeny (Han et al. 
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2013). UWO241 orthogroups that harbored several domains have expanded in comparison 

to those in the mesophilic species. For example, reverse transcriptase gene families were 

expanded in the UWO241 genome; these genes are involved in RNA-mediated 

transposition, suggesting the availability to generate large numbers of retrocopies. 

Moreover, the expansion of antenna protein domains in the species increased from lowest 

(8) in C. eustigma to highest (36) in UWO241, but it should be noteworthy that UWO241 

is rich of duplicates (as many as six HSDs belong to antenna proteins). The higher number 

of gene copies might not reflect the real polypeptide level, although 36 genes were 

classified into families of antenna protein genes with conserved functional domains, which 

led to the number in the other species. In Figure 17C, the yellow color in the matrix 

indicates duplicates, and the dark red and purple color indicate the presence of many 

duplicates. In UWO241, broadscale of red and purple cells are observed.  

Table 11: The key expanded gene families in UWO241 genome. 

Gene family 
identifier UWO241 

C. 
reinhardtii 

D. 
salina 

C. 
eustigma 

G. 
pectorale ICE-L 

V. 
carteri 

Pfam 
identifier 

Pfam domain 
description 

OG0000021, 
OG0000040, 
OG0000168, 
OG0000461, 
OG0000742, 
OG0001396 

129 10 2 56 8 2 1 PF00078 Reverse 
transcriptase 

OG0000010, 
OG0000012 

55 59 26 5 53 42 24 PF00125 Core histone 
H2A/H2B/H3/H4 

OG0000218, 
OG0000026, 
OG0000080 

36 11 10 8 16 28 29 PF00504 Antenna protein 

OG0004015, 
OG0004435, 
OG0000156, 
OG0000047, 
OG0000288, 
OG0000109, 
OG0000222 

34 12 2 9 31 4 14 PF00069 Protein kinase 
domain 

OG0000103, 
OG0000121 37 0 0 0 0 12 0 PF11999 

Ice-binding 
proteins 
(DUF3494) 

Although many of the expanded orthogroups were related to functional domains, it is once 

again very difficult to interpret these results without comparison of the gene expression 

levels. Nonetheless, the exploration of a comparative framework between UWO241 and 
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its close mesophilic relatives will greatly aid in the understanding of psychrophily for the 

future researchers. 

4.3 Conclusions 
As one of the most comprehensively studied photosynthetic psychrophiles, UWO241 has 

been studied in detail for 25 years in relation to several important aspects of its biology, 

including physiology and the molecular biology of photosynthesis. Like its close relative 

ICE-L, UWO241 encodes a large number (³37) of ice-binding proteins, putatively 

originating from horizontal gene transfer. Even more striking, UWO241 harbors hundreds 

of highly similar duplicate genes involved in diverse cellular processes, some of which I 

argue are aiding its survival in the Antarctic via gene dosage. Gene and partial gene 

duplication appear to be an ongoing phenomenon within UWO241, one which might be 

mediated by retrotransposons. Also, within a comparative genomics framework, UWO241 

have the expansion of gene families such as RT, IBPs and antenna protein gene families. 

Ultimately, I explored how such a process could be associated with adaptation to low 

temperatures and hypersalinity. 

4.4 Methods 

4.4.1 Comparative Genomic Analyses  

Protein sequences from the nuclear genomes of 7 green algae belonging to the Chlorophyta 

(C. reinhardtii (Merchant et al. 2007), G. pectorale (Hanschen et al. 2016), C. eustigma 

(Hirooka et al. 2017), D. salina (Polle et al. 2017), V. carteri (Prochnik et al. 2010), 

Chlamydomonas sp. ICE-L (Zhang et al. 2020) and Chlamydomonas sp. UWO241) were 

used to construct homologous gene clusters (orthogroups) by OrthoFinder v2.1.2 (Emms 

and Kelly 2015). The longest transcript of each gene was retained to remove redundancy 

resulting from alternative splicing variations, and genes encoding protein sequences shorter 

than 50 amino acids were filtered to exclude putative fragmented genes. Orthogroups with 

single-copy genes shared by all 7 genomes were retained for further analyses. 2123 single-

copy genes were retrieved to create a phylogenetic tree. Expansions and contractions of 

orthologous gene families were determined using CAFÉ v4.1 (Han et al. 2013). The 
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program uses a birth and death process to model gene gain and loss over a phylogeny. 

Multiple sequence alignments were performed for each orthogroup using Clustal Omega 

v1.2.4 (Sievers et al. 2011) with default parameters. Poorly aligned regions were further 

trimmed using the trimAl v1.4 (Capella-Gutiérrez et al. 2009). Maximum likelihood trees 

were generated using RAxML v7.0.4 (Stamatakis et al. 2004) with the PROTCATJTT 

model.  

4.4.2 Highly Similar Duplicate Genes (HSDs) Predictions 

A protein BLAST (Altschul et al. 1997) of the UWO241 gene models against themselves 

(E-value < 1e-5) was filtered to only those with near-identical protein lengths (within 10 

amino acids) and ³90% pairwise identities. This gave a list of highly similar duplicates 

(HSDs). The deduced amino acid sequences of the HSDs were searched against the KEGG 

(Kanehisa and Goto 2000) and Pfam databases (Finn et al. 2014), providing a functional 

breakdown. To extensively identify HSDs with high accuracy and reliability, I developed 

a web-based tool HSDFinder (http://hsdfinder.com) (Zhang et al. 2021), which I also used 

to predict HSDs in other chlorophyte algae. The predicted results are documented in the 

database of HSDatabase (http://hsdfinder.com/database/) (Zhang et al. 2021), which 

contain total of 28,214 HSDs in fifteen eukaryotes so far. Using HSDFinder, users have 

the option to employ different parameters (from 50% to 100% identity and from within 0-

100 aa variances) for identifying HSDs. 

4.4.3 Substitution Rate Analysis of Highly Similar Duplicate Genes 
(HSDs) 

The protein sequences of each HSD gene copy were aligned using Clustal Omega v1.2.4 

(Sievers et al. 2011); and poorly aligned regions were trimmed with trimAl v1.4 (Capella-

Gutiérrez et al. 2009). Nonsynonymous (dN) and synonymous (dS) substitution rates were 

calculated for each HSD group by reverse-translating the amino acid alignments to the 

corresponding codon-based nucleotide alignments using PAL2NAL (Suyama et al. 2006). 

Maximum likelihood (ML) phylogenetic trees were inferred based on protein and codon 

alignments using FastTree v2.1 (Price et al. 2010) with default parameters. I then applied 
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the one-ratio model in the codeml program of PAML v4.9 (Yang 2007) to estimate the 

dN/dS substitution rates (ω value) with the parameters “runmode = 0” and “model =0”.  

4.4.4 Horizontal Gene Transfer (Ice-Binding Proteins) 

Preliminary BLAST analyses (BLASTP, E-value < 1e-5) showed that a small proportion 

of genes in the UWO241genome had a top hit to sequences from non-green algae sources, 

suggesting that these genes might have been acquired through horizontal gene transfer 

(HGT). Several steps were taken to estimate the overall reliability of HGT. I checked all 

annotated genes based on their non-redundant annotations, and extracted genes with non-

plant annotations (i.e., those matching to fungi, bacteria, archaea and virus) as candidate 

for further analyses. The BLAST protein databases labeled as fungi, bacteria, archaea, and 

viruses were downloaded from UniProt (https://www.uniprot.org/downloads) and used to 

perform BLASTP searches with an E-value < 1e-5. The bit-score of the top ten BLAST 

hits were extracted as the candidate HGT genes for further analysis. The Clustal Omega 

v1.2.4 (Capella-Gutiérrez et al. 2009) was used to align the candidate HGT genes. Each 

alignment was trimmed to exclude regions where only one of the sequences was present, 

and maximum likelihood phylogenetic trees were built using FastTree v2.1 (Price et al. 

2010) from amino-acids sequences using a WAG+G model (1,000 replicates). The genes 

for which gene tree supported a sister grouping between UWO241 and a non-plant with 

support value ≥ 80 were retained as candidate HGT genes. 

4.4.5 Reverse Transcriptase Identification (RT) 

The standard hallmarks of LTR retrotransposons and non-LTR retrotransposons (e.g., 

LINE1), such as poly(A) tail insertions and target-site duplications were manually 

identified in GENEIOUS v10.1 (Kearse et al. 2012) based on the sequence alignments and 

Pfam domains patterns (PF0078 and PF07727) for reverse transcriptase. 
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Chapter 5  

5 Conclusions and Perspectives 
Previous findings mainly focused on the physiology and molecular biology of 

photosynthetic acclimation and adaptation of Chlamydomonas sp. UWO241 to low 

temperature. However, new insights into what makes UWO241 a psychrophile at the 

genome level, especially nuclear genome, required genome sequencing and gene 

annotation. I explored the following questions: Does the UWO241 nuclear genome harbor 

large numbers of duplicate genes? Has it acquired any genes via HGT, such as IBP genes? 

Does UWO241 contain expanded gene families compared to its close relatives? To answer 

these questions, I accomplished the following: (1) I acquired a high-quality nuclear genome 

assembly for UWO241 using next generation sequencing (NGS) and third generation 

sequencing (TGS) data and (2) I accurately and thoroughly annotated this genome. 

Therefore, the genome assembly and gene annotation pipelines fed with the best software 

and algorithms were applied. The nuclear draft genome of approximately 212Mb and as 

many as 16,325 protein-coding genes were determined. With these data in hand, a 

comparative genomics framework was established to better understand the evolution of 

psychrophily. This included a comparison of gene content, such as coding and noncoding 

DNA, as well as other major genomic architectural features, including duplicate genes, 

KEGG pathways, Pfam domains and gene families.  

I performed a wide range of comparative genomic analyses of the UWO241 genome with 

those of other model green algae, including Chlamydomonas reinhardtii, Volvox carteri, 

Dunaliella salina, Gonium pectorale, Chlamydomonas eustigma and Chlamydomonas sp. 

ICE-L. My novel findings turn out to be very impressive: (1) UWO241 harbors hundreds 

of highly similar duplicate genes involved in diverse cellular processes, some of which I 

argue may aid in the survival of UWO241 in the Antarctic via gene dosage; (2) UWO241 

encodes a large number (³37) of ice-binding proteins, putatively originating from 

horizontal gene transfer; (3) UWO241 exhibits expanded orthologous gene families of 

reverse transcriptases, IBPs and antenna proteins. These features suggest the existence of 

common mechanisms in the adaptation to cold environments and will also help to guide 
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future investigations of UWO241 and related species. For example, the existence of 

multiple gene copies encoding cold adapted enzymes can potentially increase the amount 

of gene product, which might aid the survival availability of UWO241 in cold temperatures. 

Large scale of IBPs seems to protect the cells from freezing damage due to the ice 

recrystallization inhibition activities, but it is not immediately clear how the potential 

benefits are bestowed upon UWO241 by having these genes. Since UWO241 does not live 

on ice or snow but deep within lake water, which remains at ~5 °C year-round. The 

expanded gene families of reverse transcriptases potentially contribute to an ongoing 

phenomenon of partial gene duplication. Most of these reverse transcriptases might be 

fixed through random genetic drift and perhaps exacerbated by the hermetic environment 

of Lake Bonney. Notably, UWO241 lives in an environment tolerating multiple stresses: 

low or high light, excessive ultraviolet (UV) radiation, high or low pH, high osmotic 

pressure and low nutrients. The expansion of specific gene families might not be associated 

with single stress. The future comparison of expanded gene families with differentially 

expressed genes (via experiments under different stresses) can provide more about how 

gene family expansion might be associated with the adaptation to different stresses of 

UWO241. In this final chapter, I explored the challenges and opportunities for 

bioinformatics researchers. 

5.1 The Challenges of a Bioinformatics Project 

5.1.1 Self-teaching Resources 

In Chapter 2, I developed a step-by-step user guide providing a basic bioinformatics 

foundation in a genome project. It definitely cannot cover everything, but an introduction 

to the bioinformatic methods used in eukaryotic genome assembly and annotation, enabling 

a user to gain familiarity with basic analysis steps. Although the technical aspects of 

genome tools are changing very quickly, it is my hope that this user guide will provide a 

comprehensive bioinformatics foundation for genome projects specifically for those 

researchers who have diverse backgrounds but no prior experience in programming. 

Nevertheless, there are many bioinformatics workshops operated annually targeting for the 

ambitious researchers involved in different genome projects. During my Ph.D., I have been 
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honing my bioinformatics skills by taking graduate courses on the topic as well as two 

multi-day, hands-on bioinformatics workshops. During the workshop, I was able to work 

one-on-one with faculty to help draft an appropriate assembly pipeline for the genome 

project. There are a series of bioinformatic workshops run by the Canadian Bioinformatics 

Association (CBA) (https://bioinformatics.ca), such as the ones I have attended: 

“Informatics on High throughput sequencing data” and “Informatics for RNA-Seq 

analysis”.  

5.1.2 Intense Computing Clusters 

 

Figure 18: The multicore server of Smith Laboratory server (“in-house” genomics 

workstation). 

Given the confident user guide on a genome project, the importance of computing clusters 

should not be underestimated. It is commonly known that the sequence coverage relies on 

the amount of DNA to be sequenced, and the computing hours highly depend on the 

computing cluster performance. Although smaller data sets can be processed in computing 

environments with reduced memory resources, such as on a Mac OS X laptop with 8 GB 

of RAM, it is not enough for a green algal genome with ~230 Mb genome size yielding 

~1.6 million PacBio reads (~20 GB compressed document size) and ~193 million Illumina 

reads (~40 GB compressed document size). Therefore, it is recommended to have ~1 GB 

of RAM per 1 million paired-end reads. A typical configuration is a multicore server with 
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256 GB to 1 TB of RAM, and such systems have become more affordable in recent years 

($15,000 to $40,000) (Haas et al. 2013).  

As for the UWO241 genome project, a multicore server (“in-house” genomics workstation) 

was built with 32 cores, 384 GB RAM and 1TB solid-state drive (Figure 18). Furthermore, 

there are commercial clusters for researchers who need the required computing resources 

(e.g., the Amazon cloud http://aws.amazon.com/ec2/). Besides, many universities have the 

supercomputing clusters available in-house as well, such as SHARCNET 

(https://www.sharcnet.ca) which I accessed via Ontario of Compute Canada.  

5.1.3 Genome Project Pipelines 

There are various reputable pipelines and software for the genome project. For instance, 

MAKER (Cantarel et al. 2008) is a portable and easily configurable genome annotation 

pipeline. MAKER identifies repeats, aligns ESTs and proteins to a genome, produces ab 

initio gene predictions and automatically synthesizes these data into gene annotations 

having evidence-based quality values. BRAKER2 (Hoff et al. 2015) mainly features semi-

unsupervised, extrinsic evidence data (RNA-Seq and/or protein spliced alignment 

information) supported training of GeneMark (Besemer and Borodovsky 2005) and 

subsequent training of AUGUSTUS (Stanke et al. 2006) with integration of extrinsic 

evidence in the final gene prediction step. The detailed pipelines of the genome projects 

are always summarized before or after in the supplementary documents. Pipelines might 

vary among different genome projects due to the differences in software and procedures. 

It is the responsibility of the author to detail each step, tools and even the parameters to 

ensure that, other researchers are able to repeat the results and follow the steps properly.  

However, researchers easily fall into the trap of chasing the "perfect" data via consistently 

rerunning the software rather than trying another tool or an additional setting which might 

produce better results. Any changes to a genome assembly will unfortunately restart the 

genome annotation from scratch. Therefore, most researchers wish to assemble as 

completely as possible (frozen assembly) before moving on to genome annotation. To 

conclude, one stops when the draft genome assembly or/and annotation are able to answer 
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the biological questions posed. The updated versions of genome can be released 

subsequently. 

5.2 Bonus Pay for Bioinformatics Project 
Dealing with bioinformatics projects can produce many challenges. Overcoming these 

challenges means progress. And surely, there is bonus pay throughout this process. When 

I explored the duplicates in UWO241 genome, it was challenging to classify the protein 

BLAST result of the UWO241 gene models against themselves. Especially I wanted to 

filter to only those duplicates with near-identical protein lengths (within certain amino 

acids) and certain pairwise identities. Therefore, to extensively identify highly similar 

duplicates (HSDs) with high accuracy and reliability, I developed a web-based tool 

HSDFinder (http://hsdfinder.com) (Zhang et al. 2021). Using HSDFinder, users have the 

option to employ different parameters (from 30% to 100% identity and from within 0-100 

aa variances) for identifying HSDs. What’s more, I also used the tool to predict HSDs in 

other chlorophyte algae. The predicted results are documented in the database of 

HSDatabase (Zhang et al. 2021), which contain a total of 28,214 HSDs in fifteen 

eukaryotes so far (http://hsdfinder.com/database/).  

Functional annotations of protein-coding genes can be annoying when obtaining the best 

BLAST hits from some non-redundant protein sequence database such as NCBI NR 

databases, SwissProt (Consortium 2019) and TrEMBL (Boeckmann et al. 2003), because 

of the hypothetical and uncharacterized proteins might pop up at the top list. I developed a 

tool called NoBadWordsCombiner v1.0 (http://hsdfinder.com/combiner/) (Zhang et al. 

2021), which can automatically merge the BLAST results from the databases of SwissProt 

(Consortium 2019), TrEMBL (Boeckmann et al. 2003) and NCBI NR databases. More 

importantly, it can strengthen the gene definition by filtering those protein function 

descriptions containing ‘bad words’, such as hypothetical and uncharacterized proteins. 

5.3 Bioinformatics as A Career 
Researchers with bioinformatics expertise are thought to be an asset in today’s job market, 

especially with the increasing demand for the large NGS and TGS datasets analysis. A 
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bioinformatics job often requires candidates with certain backgrounds or skills. This is 

usually not limited to a degree in Life Science, but a quantitative discipline, such as 

Bioinformatics, Computer Science, Statistics or Molecular Biology. If this job is targeted 

for specialized projects such as precision medicine and regulatory genomics in cancer and 

COVID-19, the candidates better hope that they are equipped with the knowledge of 

Cancer Genomics or Virology. If this is a senior position, the prospective employee has to 

prove certain minimum years’ experience of bioinformatics projects. 

The responsibility of a bioinformatics job might vary between the different positions. The 

investigations of the bioinformatics job market have given me some common insights into 

these issues, such as being able to write or assist manuscripts for publication, present the 

project in lab meeting or scientific conferences, and collaborate with local or international 

wet-lab researchers. If the job needs you to be comfortable with the coding environment, 

you have to be proficient in programming (e.g., Python, Perl, and C++) and have 

experience working in a Unix/Linux computing environment with large datasets. Apart 

from the technical levels, employers usually prefer candidates who exhibit independent 

thinking and involvement in the design of future research projects, have a fellowship or 

have applied for and successfully obtained a fellowship, or even experience in a 

supervisory role.  

The qualification of a bioinformatics job is for candidates to evaluate themselves whether 

meeting the employer’s requirements or not. This is also why candidates are eager to 

improve their curriculum vitae (CV). Firstly, a degree in related field is usually needed 

(e.g., Biology, Computer Science, Statistics, Bioinformatics etc.). Then, the previous 

experience of published work in peer-reviewed journals (e.g., the number of first author 

publication(s) in good journals). Lastly, the strong background or minimum years’ 

experience of programming related projects. Whether you believe or not, the area of 

bioinformatics is booming and continuing to grow with high demand and excellent salaries 

in the coming years. 
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Appendices 

Appendix A: List of supplementary tables for each chapter. 

Table S1: A list of selected bacterial, archaeal and eukaryotic psychrophiles and psychrotrophs (Chapter 1).  
Species Temperat

ure Range 
Environ
ment 

 Phylum Class Order GOLD 
Organism 
ID* 

NCBI 
Taxonomy 
ID** 

References 

Prokaryotes 
Cenarchaeum symbiosum 
A 

Psychrop
hile 

Marine Thauma
rchaeota 

unclassified 
Thaumarchaeo
ta 

Cenarchaeales Go000022
0 

414004 (Hallam et al. 
2006) 

Flavobacterium 
psychrophilum ATCC 
49418 

Psychroto
lerant 

Unclassif
ied 

Bacteroi
detes 

Flavobacteriia Flavobacteriales Go009522
0 

96345 (Wu et al. 
2015) 

Flavobacterium 
psychrophilum JIP02/86 

Psychrop
hile 

Excretor
y system 

Bacteroi
detes 

Flavobacteriia Flavobacteriales Go000012
7 

402612 (Duchaud et 
al. 2007) 

Glaciecola sp. HTCC 
2999 

Psychrop
hile 

Unclassif
ied 

Proteob
acteria 

Gammaproteo
bacteria 

Alteromonadale
s 

Go000134
2 

455436 (Beier et al. 
2015) 

Lacinutrix 
jangbogonensis PAMC 
27137 

Psychrop
hile 

Unclassif
ied 

Bacteroi
detes 

Flavobacteriia Flavobacteriales Go010912
8 

1469557 (Lee et al. 
2014) 

Methanococcoides 
burtonii DSM 6242 

Psychrop
hile 

Freshwat
er 

Euryarc
haeota 

Methanomicro
bia 

Methanosarcinal
es 

Go000036
7 

259564 (Byrne-Steele 
et al. 2009) 

Methanogenium frigidum 
Ace-2 

Psychrop
hile 

Unclassif
ied 

Euryarc
haeota 

Methanomicro
bia 

Methanomicrobi
ales 

Go000232
0 

313587 (Franzmann 
et al. 1997) 

Polaribacter filamentus Psychrop
hile 

Unclassif
ied 

Bacteroi
detes 

Flavobacteriia Flavobacteriales Go000178
0 

53483 (Yoon et al. 
2006) 

Pseudoalteromonas 
haloplanktis TAC125 

Psychrop
hile 

Marine Proteob
acteria 

Gammaproteo
bacteria 

Alteromonadale
s 

Go000045
6 

326442 (Médigue et 
al. 2005) 
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Pseudomonas 
psychrophila HA-4 

Psychroto
lerant 

Activated 
Sludge 

Proteob
acteria 

Gammaproteo
bacteria 

Pseudomonadale
s 

Go002400
1 

1211112 (Jiang et al. 
2012) 

Psychrobacter arcticus 
273-4 

Psychrop
hile 

Soil Proteob
acteria 

Gammaproteo
bacteria 

Pseudomonadale
s 

Go000046
7 

259536 (Ayala-del-
Río et al. 
2010) 

Psychrobacter 
phenylpyruvicus 

Psychroto
lerant 

Circulato
ry system 

Proteob
acteria 

Gammaproteo
bacteria 

Pseudomonadale
s 

Go002372
6 

1123034 (Deschaght et 
al. 2012) 

Psychrobacter sp. PAMC 
21119 

Psychrop
hile 

Soil Proteob
acteria 

Gammaproteo
bacteria 

Pseudomonadale
s 

Go001761
0 

1112209 (Kim et al. 
2012) 

Psychroflexus torquis 
ATCC 700755 

Psychrop
hile 

Marine Bacteroi
detes 

Flavobacteriia Flavobacteriales Go000180
3 

313595 (Bowman et 
al. 2006) 

Psychromonas ingrahamii 
37 

Psychrop
hile 

Marine Proteob
acteria 

Gammaproteo
bacteria 

Alteromonadale
s 

Go000023
8 

357804 (Riley et al. 
2008) 

Rhodoferax antarcticus 
ANT.BR 

Psychroto
lerant 

Unclassif
ied 

Proteob
acteria 

Betaproteobact
eria 

Burkholderiales Go000633
8 

1111071 (Zhao 2011) 

Rhodonellum 
psychrophilum GCM71, 
DSM 17998 

Psychrop
hile 

Geologic Bacteroi
detes 

Cytophagia Cytophagales Go001322
0 

1123057 (Schmidt et 
al. 2006) 

Eukaryotes 
Chlamydomonas sp. ICE-
L 

Psychrop
hile 

Marine Chlorop
hyta 

Chlorophyceae Chlamydomona
dales 

NA 309537 (Zhang et al. 
2020) 

Coccomyxa 
subellipsoidea C-169  

Psychroto
lerant 

Marine Chlorop
hyta 

Trebouxiophy
ceae 

Trebouxiophyce
ae incertae sedis  

Gs000007
0 

574566 (Blanc et al. 
2012) 

Fragilariopsis cylindrus Psychrop
hile 

Marine Ochrop
hyta 

Bacillariophyc
eae 

Bacillariales Gs001461
9 

186039 (Mock et al. 
2017) 

Chlamydomonas sp. 
UWO241 

Psychrop
hile 

Freshwat
er 

Chlorop
hyta 

Chlorophyceae Chlamydomona
dales 

NA 1653778 (Pocock et al. 
2004) 

Chlamydomonas nivalis Psychrop
hile 

Freshwat
er 

Chlorop
hyta 

Chlorophyceae Chlamydomona
dales 

NA 47906 (Remias et al. 
2005) 

* GOLD Organism ID is from the US Genomes OnLine database (GOLD), which collects the information of sequencing genome projects. 

** NCBI Taxonomy ID is the identifier for a taxon in the Taxonomy Database by the US National Center for Biotechnology Information (NCBI) 
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Table S2: A list of published green algal genomes predicted from whole-genome sequencing projects (as of Oct. 2020). 

Accession numbers are from the US National Center for Biotechnology Information (NCBI) (adapted from (Blaby-Haas and 

Merchant 2019)) (Chapter 1). 
Taxonomy General features Source 

Phylu
m 

Class Order Organism* Genome 
size (Mb) 

Morph
ology 

Enviro
nment 

Mesophiles vs 
Extremophiles 

Accession 
number** 

References 

Chlor
ophyta 

Chloroph
yceae 

Chlamydomonad
ales 

Chlamydomonas 
reinhardtii 

111.1 Unicel
lular 

Fresh 
water 

Mesophile V5.6 
(Phytozome
) 

(Merchant et 
al. 2007) 

Volvox carteri 131.2 Multic
ellular 

Fresh 
water 

Mesophile V2.1 
(Phytozome
) 

(Prochnik et 
al. 2010) 

Chlamydomonas 
eustigma 

66.6 Unicel
lular 

Acidic Acidophile GCA_0023
35675.1 

(Hirooka et al. 
2017) 

Dunaliella salina 343.7 Unicel
lular 

Salt 
water 

Halophile GCA_0022
84615.1 

(Polle et al. 
2017) 

Gonium pectorale 148.8 Coloni
al 

Fresh 
water 

Mesophile GCA_0015
84585.1 

(Hanschen et 
al. 2016) 

Chlamydomonas 
sp. ICE-L 

541.8 Unicel
lular 

Salt 
water 

Psychrophile GCA_0134
35795.1 

(Zhang et al. 
2020) 

Tetrabaena 
socialis 

135.7 Coloni
al 

Fresh 
water 

Mesophile GCA_0028
91735.1 

(Featherston et 
al. 2016) 

Sphaeropleales Monoraphidium 
neglectum 

69.7 Unicel
lular 

Fresh 
water 

Mesophile GCA_0006
11645.1 

(Bogen et al. 
2013) 

Chromochloris 
zofingiensis 

60.1 Unicel
lular 

Soil Mesophile V5.2.3.2 
(Phytozome
) 

(Roth et al. 
2017) 

Raphidocelis 
subcapitata 

51.2 Unicel
lular 

Fresh 
water 

Mesophile GCA_0032
03535.1 

(Suzuki et al. 
2018) 

Mamiello
phyceae 

Mamiellales Bathycoccus 
prasinos 

15.1 Unicel
lular 

Salt 
water 

Halophile GCA_0022
20235.1 

(Moreau et al. 
2012) 
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Micromonas sp. 
RCC299 

21.1 Unicel
lular 

Salt 
water 

Halophile GCA_0000
90985.2 

(Worden et al. 
2009) 

Micromonas sp. 
CCMP1545 

21.9 Unicel
lular 

Salt 
water 

Halophile GCA_0001
51265.1 

(Worden et al. 
2009) 

Micromonas sp. 
ASP10–01a 

19.6 Unicel
lular 

Salt 
water 

Halophile GCA_0014
30725.1 

(Benites et al. 
2019) 

Ostreococcus 
lucimarinus 

13.2 Unicel
lular 

Salt 
water 

Halophile GCA_0000
92065.1 

(Palenik et al. 
2007) 

Ostreococcus 
tauri RCC4221 

13.0 Unicel
lular 

Salt 
water 

Halophile GCF_0002
14015.3 

(Blanc-
Mathieu et al. 
2014) 

Ostreococcus 
tauri RCC1115 

14.8 Unicel
lular 

Salt 
water 

Halophile GCA_0021
58475.1 

(Clerissi et al. 
2012) 

Trebouxi
ophyceae 

Chlorellales Chlorella 
variabilis 

46.2 Unicel
lular 

Fresh 
water 

Mesophile GCA_0001
47415.1 

(Blanc et al. 
2010) 

Auxenochlorella 
protothecoides 

22.9 Unicel
lular 

Soil Mesophile GCA_0007
33215.1 

(Gao et al. 
2014) 

Chlorella 
sorokiniana 

59.6 Unicel
lular 

Fresh 
water 

Mesophile GCA_0022
45835.2 

(Arriola et al. 
2018) 

Micractinium 
conductrix 

61.0 Unicel
lular 

Fresh 
water 

Mesophile GCA_0022
45815.1 

(Arriola et al. 
2018) 

Helicosporidium 
sp. ATCC 50920 

12.4 Unicel
lular 

Insect 
larva 

Mesophile GCA_0006
90575.1 

(Pombert et al. 
2014) 

 
Trebouxiophycea
e incertae sedis 

Chloroidium sp. 
JM 

60.4 Unicel
lular 

Fresh 
water 

Mesophile GCA_0043
35615.1 

(Nelson et al. 
2019) 

Chloroidium sp. 
CF 

54.3 Unicel
lular 

Fresh 
water 

Mesophile GCA_0043
35625.1 

(Nelson et al. 
2019) 

Coccomyxa 
subellipsoidea C-
169 

48.8 Unicel
lular 

Fresh 
water 

Psychrotroph GCA_0002
58705.1 

(Blanc et al. 
2012) 

Picochlorum 
SENEW3 

13.4 Unicel
lular 

Salt 
water 

Halophile GCA_0008
76415.1 

(Foflonker et 
al. 2015) 
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Picochlorum 
soloecismus 

15.2 Unicel
lular 

Salt 
water 

Halophile GCA_0028
18215.1 

(Huesemann et 
al. 2017) 

* The published green algae genomes are collected upon the day of written (Oct. 2020). 

** Accession numbers are from the US National Center for Biotechnology Information (NCBI) GenBank assembly accession numbers or the US 
Department of Energy's Joint Genome Institute Phytozome assembly version numbers. 
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Table S3: Gene and partial gene duplicates in UWO241 and their proximity to reverse transcriptase (RT) genes. Download the 
complete table via the link: https://drive.google.com/file/d/1HTr-E3fFYj8eAkM6kRJLiF16Y80FTF8p/view?usp=sharing (Chapter 
3, 4) 

 

  

HSDs or RTs or Partial duplicates Gene model identifier Gene copies Amino acid length of gene copies (aa)Pfam identifier Pfam Description
Partial duplicates g12.t1 g12.t1; g15096.t1; g13.t1; g14453.t1 ; PF00651; PF00651; PF00651 ; BTB/POZ domain; BTB/POZ domain; BTB/POZ domain; IPR000210; IPR000210; IPR000210
Partial duplicates g26.t1 g26.t1; g4563.t1
HSD g38.t1 g38.t1; g7812.t1; g8958.t1; g9137.t1; g11389.t1; g1396.t1; g7823.t1; g13557.t1; g12917.t2; g10812.t3PF00690; ; ; PF02696; PF00580; PF12146; ; PF06087; ; PF06728, PF05007Cation transporter/ATPase, N-terminus; ; ; Uncharacterized ACR, YdiU/UPF0061 family; UvrD/REP helicase N-terminal domain; Serine aminopeptidase, S33; ; Tyrosyl-DNA phosphodiesterase; ; GPI transamidase subunit PIG-U, Mannosyltransferase (PIG-M)IPR004014; ; ; IPR003846; IPR034739; IPR022742; ; IPR010347; ; IPR009600, IPR007704
Partial duplicates g43.t1 g43.t1; g12410.t1 PF12165; PF12165 Alfin; Alfin IPR021998; IPR021998
Partial duplicates g56.t1 g56.t1; g3339.t1; g2866.t1
HSD g62.t1 g62.t1; g306.t1; g458.t1; g539.t1; g541.t1; g574.t1; g580.t1; g634.t1; g934.t1; g938.t1; g951.t1; g1163.t1; g1278.t1; g1379.t1; g1807.t2; g2027.t1; g2075.t1; g2210.t1; g2259.t1; g2286.t1; g2287.t1; g2393.t1; g2561.t1; g2748.t1; g3094.t1; g3138.t1; g3296.t1; g3342.t1; g3362.t1; g3662.t1; g3691.t1; g3713.t1; g3868.t1; g4004.t1; g4043.t1; g4218.t1; g4414.t1; g4421.t1; g4424.t1; g4482.t1; g4644.t1; g4826.t1; g4865.t1; g4949.t1; g5166.t1; g5226.t1; g5245.t1; g5262.t1; g5321.t1; g5326.t1; g5685.t1; g5852.t1; g5984.t1; g6011.t1; g6399.t1; g6404.t1; g6436.t1; g6471.t1; g6521.t1; g6592.t3; g6794.t1; g6814.t1; g7010.t1; g7179.t1; g7405.t1; g7681.t1; g7733.t1; g7739.t1; g7987.t1; g8036.t1; g8075.t1; g8393.t1; g8479.t1; g8599.t1; g8898.t2; g8944.t1; g9209.t1; g9454.t1; g9694.t1; g9795.t1; g9830.t1; g10099.t1; g10186.t1; g10320.t1; g10410.t1; g10492.t1; g10538.t1; g10624.t1; g10682.t1; g10790.t1; g10905.t1; g11088.t1; g11298.t1; g11378.t1; g11400.t1; g11974.t1; g12179.t1; g12370.t1; g12387.t1; g12885.t1; g12948.t1; g12959PF14360;  ;  ; PF00078; PF00078; PF00078;  ; PF01769; PF00078; PF00078; PF00078; PF00078; PF00078;  ;  ; PF00078; PF00078; PF02517; PF00069; PF00650; PF00397;  ; PF00400,PF12894; PF00078; PF12796; PF00078; PF00078;  ; PF00731; PF00078;  ;  ; PF00078; PF00078;  ;  ; PF00078; PF00504;  ; PF00078;  ; PF00078;  ;  ;  ; PF00078;  ;  ; PF00796,PF01988; PF00078; PF00078; PF00078;  ;  ; PF00078;  ;  ; PF00078; PF00078; PF10313; PF00078; PF00078;  ;  ;  ; PF00078; PF00078; PF00078;  ; PF00078; PF00078; PF00078; PF00078; PF00078;  ; PF00078; PF00078,PF01399,PF10602; PF00078; PF00078;  ;  ; PF01329; PF00078; PF00293; PF00078; PF00078;  ; PF00078; PF00078;  ; PF00078; PF00078; PF00078; PF00078; PF00078;  ; PF00078; PF00078; PF00078; PF00078; PF00078;  ;  ; PF00078;  ; PF00078; PF00078; PF00078; PF00078; PF00078; PF02140; PF00078;  ;  ;  ;  ; PF08373; PF00078; PF00078; PF00078;  ; PF00078; PF00078;  ; PF00249; PF00078;  ;  ; PF00899;  ; PF00078; PF00078; PF00078PAP2 superfamily C-terminal;  ;  ; Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase);  ; Divalent cation transporter; Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase);  ;  ; Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); CPBP intramembrane metalloprotease; Protein kinase domain; CRAL/TRIO domain; WW domain;  ; WD domain, G-beta repeat,Anaphase-promoting complex subunit 4 WD40 domain; Reverse transcriptase (RNA-dependent DNA polymerase); Ankyrin repeats (3 copies); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase);  ; AIR carboxylase; Reverse transcriptase (RNA-dependenIPR025749;  ;  ; IPR000477; IPR000477; IPR000477;  ; IPR006667; IPR000477; IPR000477; IPR000477; IPR000477; IPR000477;  ;  ; IPR000477; IPR000477; IPR003675; IPR000719; IPR001251; IPR001202;  ; IPR001680,IPR024977; IPR000477; IPR020683; IPR000477; IPR000477;  ; IPR000031; IPR000477;  ;  ; IPR000477; IPR000477;  ;  ; IPR000477; IPR022796;  ; IPR000477;  ; IPR000477;  ;  ;  ; IPR000477;  ;  ; IPR001302,IPR008217; IPR000477; IPR000477; IPR000477;  ;  ; IPR000477;  ;  ; IPR000477; IPR000477; IPR019417; IPR000477; IPR000477;  ;  ;  ; IPR000477; IPR000477; IPR000477;  ; IPR000477; IPR000477; IPR000477; IPR000477; IPR000477;  ; IPR000477; IPR000477,IPR000717,IPR019585; IPR000477; IPR000477;  ;  ; IPR001533; IPR000477; IPR000086; IPR000477; IPR000477;  ; IPR000477; IPR000477;  ; IPR000477; IPR000477; IPR000477; IPR000477; IPR000477;  ; IPR000477; IPR000477; IPR000477; IPR000477; IPR000477;  ;  ; IPR000477;  ; IPR000477; IPR000477; IPR000477; IPR000477; IPR000477; IPR000922; IPR000477;  ;  ;  ;  ; IPR013584; IPR000477
Partial duplicates g70.t1 g70.t1; g4419.t1; g10898.t1; g136.t1; g494.t1; g7340.t1; g7433.t1; g14468.t1PF00067; ; PF13344; PF00962; ; PF05517; PF00168, PF13499; Cytochrome P450; ; Haloacid dehalogenase-like hydrolase; Adenosine/AMP deaminase; ; p25-alpha; C2 domain, EF-hand domain pair; IPR001128; ; IPR006357; IPR001365; ; IPR008907; IPR000008, IPR002048; 
Partial duplicates g71.t1 g71.t1; g5045.t2 PF00211, PF13416; PF01547, PF00211Adenylate and Guanylate cyclase catalytic domain, Bacterial extracellular solute-binding protein; Bacterial extracellular solute-binding protein, Adenylate and Guanylate cyclase catalytic domainIPR001054, IPR006059; IPR006059, IPR001054
HSD g79.t1 g79.t1; g13636.t1; g6911.t1; g4525.t1; g13518.t1PF14931, PF00078; PF00078; PF00078, PF01549; PF00078; PF00078, PF00999Intraflagellar transport complex B, subunit 20, Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase), ShK domain-like; Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase), Sodium/hydrogen exchanger familyIPR028172, IPR000477; IPR000477; IPR000477, IPR003582; IPR000477; IPR000477, IPR006153
RT g79.t1 PF00078,PF14931 Reverse transcriptase (RNA-dependent DNA polymerase),Intraflagellar transport complex B, subunit 20Cre11.g467523.t1.1
HSD g94.t1 g94.t1; g499.t1 PF00673, PF00281; PF00673, PF00281ribosomal L5P family C-terminus, Ribosomal protein L5; ribosomal L5P family C-terminus, Ribosomal protein L5IPR031309, IPR031310; IPR031309, IPR031310
HSD g95.t1 g95.t1; g500.t1 PF00467, PF08071, PF01479, PF00900, PF16121; PF16121, PF00900, PF00467, PF08071, PF01479KOW motif, RS4NT (NUC023) domain, S4 domain, Ribosomal family S4e, 40S ribosomal protein S4 C-terminus; 40S ribosomal protein S4 C-terminus, Ribosomal family S4e, KOW motif, RS4NT (NUC023) domain, S4 domainIPR005824, IPR013843, IPR002942, IPR013845, IPR032277; IPR032277, IPR013845, IPR005824, IPR013843, IPR002942
Partial duplicates g104.t2 g104.t2; g3155.t1
Partial duplicates g111.t1 g111.t1; g10839.t1; g2208.t1; g2398.t1; g12705.t1; g9997.t1; g6096.t1; g3640.t1PF00443; PF00034, PF00078; PF00078; PF00078; PF00078; PF00078; PF00078; PF04511Ubiquitin carboxyl-terminal hydrolase; Cytochrome c, Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Der1-like familyIPR001394; IPR009056, IPR000477; IPR000477; IPR000477; IPR000477; IPR000477; IPR000477; IPR007599
HSD g113.t1 g113.t1; g3523.t3; g15321.t1; g12102.t1; g15551.t1; g12627.t2; g12419.t1; g16149.t1 ; PF00009; PF02373; PF01026;  ;  ; PF00995; PF02130,PF08282 ; Elongation factor Tu GTP binding domain; JmjC domain, hydroxylase; TatD related DNase;  ;  ; Sec1 family; Uncharacterized protein family UPF0054,haloacid dehalogenase-like hydrolase ; IPR000795; IPR003347; IPR001130;  ;  ; IPR001619; IPR002036,
Partial duplicates g118.t1 g118.t1; g1369.t1; g2474.t1; g5130.t1; g7320.t1; g3337.t1; g6308.t1; g10668.t1; g1009.t1; g7846.t1; g6082.t1
Partial duplicates g122.t1 g122.t1; g7023.t2; g14462.t1 PF08392, PF02797; PF02797, PF08392; PF08392, PF02797FAE1/Type III polyketide synthase-like protein, Chalcone and stilbene synthases, C-terminal domain; Chalcone and stilbene synthases, C-terminal domain, FAE1/Type III polyketide synthase-like protein; FAE1/Type III polyketide synthase-like protein, Chalcone and stilbene synthases, C-terminal domainIPR013601, IPR012328; IPR012328, IPR013601; IPR013601, IPR012328
HSD g128.t1 g128.t1; g9992.t1; g8278.t2; g3804.t1; g3803.t1; ; PF01073; ; PF00211 ; ; 3-beta hydroxysteroid dehydrogenase/isomerase family; ; Adenylate and Guanylate cyclase catalytic domain; ; IPR002225; ; IPR001054
Partial duplicates g129.t2 g129.t2; g3104.t1 PF04366; PF04366 Las17-binding protein actin regulator; Las17-binding protein actin regulatorIPR007461; IPR007461
HSD g131.t1 g131.t1; g15093.t1 PF00078; PF00078 Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase)IPR000477; IPR000477
RT g131.t1 PF00078 Reverse transcriptase (RNA-dependent DNA polymerase)Cre11.g467523.t1.1
HSD g132.t1 g132.t1; g3556.t1 PF14775, PF14772; PF03079 Sperm tail C-terminal domain, Sperm tail; ARD/ARD' familyIPR029440, IPR039505; IPR004313
HSD g136.t1 g136.t1; g494.t1; g927.t1; g1329.t1; g1694.t1; g2409.t1; g3254.t1; g3489.t1; g4026.t1; g5281.t1; g6629.t1; g7340.t1; g7433.t1; g8660.t1; g9210.t1; g9868.t1; g10077.t1; g13663.t1; g15198.t2; g15623.t1; g15787.t1PF00962;  ; PF00171; PF00078; PF00078; PF00078; PF00078; PF00078,PF00472,PF03462; PF00078; PF12796;  ; PF05517; PF00168,PF13499; PF00078,PF06552;  ; PF07699; PF03083,PF12796; PF00481; PF00288; PF00078; PF01925Adenosine/AMP deaminase;  ; Aldehyde dehydrogenase family; Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase),RF-1 domain,PCRF domain; Reverse transcriptase (RNA-dependent DNA polymerase); Ankyrin repeats (3 copies);  ; p25-alpha; C2 domain,EF-hand domain pair; Reverse transcriptase (RNA-dependent DNA polymerase),Plant specific mitochondrial import receptor subunit TOM20;  ; Putative ephrin-receptor like; Sugar efflux transporter for intercellular exchange,Ankyrin repeats (3 copies); Protein phosphatase 2C; GHMP kinases N terminal domain; Reverse transcriptase (RNA-dependent DNA polymerase); Sulfite exporter TauE/SafEIPR001365;  ; IPR015590; IPR000477; IPR000477; IPR000477; IPR000477; IPR000477,IPR000352,IPR005139; IPR000477; IPR020683;  ; IPR008907; IPR000008,IPR002048; IPR000477,;  ; IPR011641; IPR004316,IPR020683; IPR001932; IPR006204; IPR000477; IPR002781
HSD g168.t1 g168.t1; g11892.t1 PF00078; PF00078 Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase)IPR000477; IPR000477
RT g168.t1 PF00078 Reverse transcriptase (RNA-dependent DNA polymerase)Cre11.g467523.t1.1
Partial duplicates g181.t1 g181.t1; g7140.t1 PF13640; PF13640 2OG-Fe(II) oxygenase superfamily; 2OG-Fe(II) oxygenase superfamilyIPR005123; IPR005123
HSD g189.t1 g189.t1; g5647.t1 ; ; ;
HSD g198.t1 g200.t1; g199.t1; g198.t1 PF01716; PF01716; PF01716 Manganese-stabilising protein / photosystem II polypeptide; Manganese-stabilising protein / photosystem II polypeptide; Manganese-stabilising protein / photosystem II polypeptideIPR002628; IPR002628; IPR002628
Partial duplicates g198.t1 g200.t1; g199.t1; g198.t1; g7556.t1 PF01716; PF01716; PF01716; PF01716Manganese-stabilising protein / photosystem II polypeptide; Manganese-stabilising protein / photosystem II polypeptide; Manganese-stabilising protein / photosystem II polypeptide; Manganese-stabilising protein / photosystem II polypeptideIPR002628; IPR002628; IPR002628; IPR002628
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Table S4: Gene models and their functional descriptions in the UWO241 genome. Download the complete table via the link: 
https://drive.google.com/file/d/1XzjQNYwWoBNYsCBnQd8LBZZ0n8OdMw4N/view?usp=sharing (Chapter 3, 4) 

  

Gene model identifier (The longest alternative transcript was selected)Length in amino acids (aa) BLASTP hit identifier retrieved from NCBI nr databaseBLASTP hit description retrieved from NCBI nr database BLASTP amino acid identity (%) BLASTP eValue BLASTP hit identifier retrieved from SwissProt database
g1.t1 272 gi|1238995578|dbj|GAX75978.1| hypothetical protein CEUSTIGMA_g3421.t1 [Chlamydomonas eustigma]54.26 1.41E-75
g2.t1 132 gi|1183350135|gb|ORX78377.1| ankyrin, partial [Anaeromyces robustus] 40.23 3.61E-10 sp|Q05921|RN5A_MOUSE
g3.t1 1188 gi|1238995576|dbj|GAX75976.1| hypothetical protein CEUSTIGMA_g3419.t1 [Chlamydomonas eustigma]38.46 1.15E-39 sp|O04716|MSH6_ARATH
g4.t1 320 gi|1238995575|dbj|GAX75975.1| hypothetical protein CEUSTIGMA_g3418.t1 [Chlamydomonas eustigma]89.51 1.17E-97 sp|P15170|ERF3A_HUMAN
g5.t1 118
g6.t1 96 gi|1335042461|gb|PNW77074.1| hypothetical protein CHLRE_10g421079v5 [Chlamydomonas reinhardtii]58.33 1.66E-18
g7.t2 2654 gi|1238994727|dbj|GAX76500.1| hypothetical protein CEUSTIGMA_g3945.t1 [Chlamydomonas eustigma]32.68 7.48E-34
g8.t1 132
g9.t1 156 gi|1238995573|dbj|GAX75973.1| hypothetical protein CEUSTIGMA_g3416.t1 [Chlamydomonas eustigma]62.12 3.00E-49 sp|P72673|Y729_SYNY3
g10.t1 608 gi|1004134917|gb|KXZ42995.1| hypothetical protein GPECTOR_108g190 [Gonium pectorale] 78.83 1.18E-103 sp|O94530|SUA5_SCHPO
g11.t1 89
g12.t1 473 gi|1238987328|dbj|GAX83929.1| hypothetical protein CEUSTIGMA_g11353.t1 [Chlamydomonas eustigma]23.44 5.64E-13
g13.t1 474 gi|1238992126|dbj|GAX79241.1| hypothetical protein CEUSTIGMA_g6681.t1 [Chlamydomonas eustigma]26.91 4.51E-06
g14.t1 332
g15.t1 89 gi|545366047|ref|XP_005647946.1| hypothetical protein COCSUDRAFT_65897 [Coccomyxa subellipsoidea C-169] >gi|384249922|gb|EIE23402.1| hypothetical protein COCSUDRAFT_65897 [Coccomyxa subellipsoidea C-169]59.32 5.40E-14 sp|A8I6P9|SC61B_CHLRE
g16.t1 298 gi|159487763|ref|XP_001701892.1| predicted protein, partial [Chlamydomonas reinhardtii] 52.54 7.95E-74 sp|Q8LAN3|P4H4_ARATH
g17.t1 367 gi|1238991300|dbj|GAX80092.1| hypothetical protein CEUSTIGMA_g7530.t1 [Chlamydomonas eustigma]60.00 1.73E-13 sp|Q8L4M6|GATA3_ARATH
g18.t1 334
g19.t1 1994 gi|1238985607|dbj|GAX85598.1| hypothetical protein CEUSTIGMA_g13013.t1 [Chlamydomonas eustigma]43.85 1.90E-54 sp|Q5QD03|SUVH3_CHLRE
g20.t2 1481
g21.t1 139
g22.t1 2694 gi|1238996294|dbj|GAX75027.1| hypothetical protein CEUSTIGMA_g2473.t1 [Chlamydomonas eustigma]47.76 0.00E+00 sp|Q00808|HETE1_PODAS
g23.t1 713 gi|1238996007|dbj|GAX75537.1| hypothetical protein CEUSTIGMA_g2980.t1 [Chlamydomonas eustigma]43.45 5.73E-147
g24.t1 264
g25.t1 654
g26.t1 70
g27.t1 392 gi|1238989081|dbj|GAX82253.1| hypothetical protein CEUSTIGMA_g9681.t1 [Chlamydomonas eustigma]54.89 1.09E-103 sp|Q7TT23|CT194_MOUSE
g28.t1 1225 gi|1238989081|dbj|GAX82253.1| hypothetical protein CEUSTIGMA_g9681.t1 [Chlamydomonas eustigma]51.52 1.01E-111 sp|Q7TT23|CT194_MOUSE
g29.t1 101
g30.t1 336 gi|1238989080|dbj|GAX82252.1| hypothetical protein CEUSTIGMA_g9680.t1 [Chlamydomonas eustigma]45.09 1.05E-44 sp|Q54KA7|SECG_DICDI
g31.t1 209
g32.t1 944 gi|1238989077|dbj|GAX82249.1| hypothetical protein CEUSTIGMA_g9677.t1 [Chlamydomonas eustigma]67.78 0.00E+00 sp|P42730|CLPB1_ARATH
g33.t3 312 gi|1238989076|dbj|GAX82248.1| hypothetical protein CEUSTIGMA_g9676.t1 [Chlamydomonas eustigma]60.21 2.56E-70
g34.t1 264 gi|929742606|ref|XP_014146287.1| hypothetical protein SARC_15057, partial [Sphaeroforma arctica JP610] >gi|906929943|gb|KNC72385.1| hypothetical protein SARC_15057, partial [Sphaeroforma arctica JP610]54.84 6.17E-35 sp|B1JJB5|KATG_YERPY
g35.t1 1065 gi|1238995997|dbj|GAX75527.1| hypothetical protein CEUSTIGMA_g2970.t1 [Chlamydomonas eustigma]63.94 9.99E-160 sp|Q90640|KIF4_CHICK
g36.t1 435 gi|1238995999|dbj|GAX75529.1| hypothetical protein CEUSTIGMA_g2972.t1 [Chlamydomonas eustigma]77.63 6.93E-118
g37.t1 313 gi|1238994773|dbj|GAX76546.1| hypothetical protein CEUSTIGMA_g3992.t1 [Chlamydomonas eustigma]41.89 3.03E-50
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Table S5: Highly similar duplicate genes (HSDs) in UWO241. Download the complete table via the link:  
https://drive.google.com/file/d/1y4I3FVJQNeJ-36e_4521hRy63Dlv3nO0/view?usp=sharing (Chapter 3, 4) 

  

Highly Similar Duplicates (HSDs) identifiers HSDs gene copies (within 10 amino acids, ≥90% pairwise identities) Amino acid length of HSDs gene copies (aa) Pfam identifier Pfam Description
UWO241_HSD_1 g1516.t1; g15297.t1; g3710.t1; g15900.t1; g12375.t1; g8654.t1; g1945.t1; g1942.t1228; 228; 228; 228; 228; 229; 233; 233 PF00098; PF00098; PF00098; PF00098; PF00098; PF00098; ;Zinc knuckle; Zinc knuckle; Zinc knuckle; Zinc knuckle; Zinc knuckle; Zinc knuckle; ;

UWO241_HSD_2 g11310.t1; g11375.t1 1307; 1312 PF00098, PF00665, PF07727, PF13976; PF00665, PF13976, PF07727Zinc knuckle, Integrase core domain, Reverse transcriptase (RNA-dependent DNA polymerase), GAG-pre-integrase domain; Integrase core domain, GAG-pre-integrase domain, Reverse transcriptase (RNA-dependent DNA polymerase)

UWO241_HSD_3 g807.t1; g4057.t1 464; 469 PF14240; PF14240 YHYH protein; YHYH protein

UWO241_HSD_4 g5701.t1; g9150.t2 884; 885 PF00400; WD domain, G-beta repeat;

UWO241_HSD_5 g15539.t1; g767.t1 231; 231 PF10260; PF10260 Uncharacterized conserved domain (SAYSvFN); Uncharacterized conserved domain (SAYSvFN)

UWO241_HSD_6 g5920.t1; g5844.t1 256; 256 PF02902; PF02902 Ulp1 protease family, C-terminal catalytic domain; Ulp1 protease family, C-terminal catalytic domain

UWO241_HSD_7 g12590.t1; g6100.t1 159; 159 PF00179; PF00179 Ubiquitin-conjugating enzyme; Ubiquitin-conjugating enzyme

UWO241_HSD_8 g3684.t1; g6795.t1 137; 130 PF00240, PF01020; PF00240, PF01020 Ubiquitin family, Ribosomal L40e family; Ubiquitin family, Ribosomal L40e family

UWO241_HSD_9 g5645.t1; g15870.t2 599; 605 PF00443; PF00443 Ubiquitin carboxyl-terminal hydrolase; Ubiquitin carboxyl-terminal hydrolase

UWO241_HSD_10 g2201.t1; g15994.t1; g15997.t1; g15991.t1 442; 442; 442; 442 PF00091, PF03953; PF00091, PF03953; PF00091, PF03953; PF00091, PF03953Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain; Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain; Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain; Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain

UWO241_HSD_11 g4816.t1; g4805.t1; g4802.t1 450; 450; 450 PF00091, PF03953; PF00091, PF03953; PF00091, PF03953Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain; Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain; Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain

UWO241_HSD_12 g1131.t1; g9728.t1 1744; 1743 PF03151; PF00078 Triose-phosphate Transporter family; Reverse transcriptase (RNA-dependent DNA polymerase)

UWO241_HSD_13 g9104.t1; g645.t1 196; 196 PF07500; PF07500 Transcription factor S-II (TFIIS), central domain; Transcription factor S-II (TFIIS), central domain

UWO241_HSD_14 g15800.t1; g12147.t1 1638; 1643 PF14249, PF00211; PF00069 Tocopherol cyclase, Adenylate and Guanylate cyclase catalytic domain; Protein kinase domain

UWO241_HSD_15 g5257.t1; g13535.t1; g7304.t1; g14487.t1 1296; 1305; 1314; 1317 PF04278; PF00078; PF00069, PF00078; PF00069, PF00078Tic22-like family; Reverse transcriptase (RNA-dependent DNA polymerase); Protein kinase domain, Reverse transcriptase (RNA-dependent DNA polymerase); Protein kinase domain, Reverse transcriptase (RNA-dependent DNA polymerase)

UWO241_HSD_16 g8742.t1; g8510.t1 296; 296 PF00082; PF00082 Subtilase family; Subtilase family

UWO241_HSD_17 g13122.t1; g13744.t1; g12836.t1; g4052.t1; g15392.t1; g13707.t1; g13749.t1; g6180.t1; g14787.t1344; 349; 348; 339; 355; 338; 336; 354; 333 PF00588; PF00588; ; ; ; PF00514; ; ; SpoU rRNA Methylase family; SpoU rRNA Methylase family; ; ; ; Armadillo/beta-catenin-like repeat; ; ;

UWO241_HSD_18 g132.t1; g3556.t1 806; 801 PF14775, PF14772; PF03079 Sperm tail C-terminal domain, Sperm tail; ARD/ARD' family

UWO241_HSD_19 g3054.t1; g11238.t1 306; 306 PF16891, PF00149; PF00149, PF16891 Serine-threonine protein phosphatase N-terminal domain, Calcineurin-like phosphoesterase; Calcineurin-like phosphoesterase, Serine-threonine protein phosphatase N-terminal domain

UWO241_HSD_20 g429.t1; g3694.t1 930; 937 PF00530, PF00082; PF00225 Scavenger receptor cysteine-rich domain, Subtilase family; Kinesin motor domain

UWO241_HSD_21 g10399.t1; g10296.t1; g10295.t1; g4237.t1 366; 366; 366; 366 PF13445; PF13445; PF13445; PF13445 RING-type zinc-finger; RING-type zinc-finger; RING-type zinc-finger; RING-type zinc-finger

UWO241_HSD_22 g11990.t1; g4365.t1 284; 284 PF13639; PF13639 Ring finger domain; Ring finger domain

UWO241_HSD_23 g3338.t1; g9313.t1 784; 785 PF13639; PF00078 Ring finger domain; Reverse transcriptase (RNA-dependent DNA polymerase)

UWO241_HSD_24 g4681.t1; g5342.t1; g12113.t1; g5638.t1 570; 575; 575; 567 PF00355, PF00078; PF00078; PF00078; PF00078Rieske [2Fe-2S] domain, Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase)

UWO241_HSD_25 g1206.t1; g13528.t1; g10711.t1 171; 167; 168 PF00101; PF00101; PF00101 Ribulose bisphosphate carboxylase, small chain; Ribulose bisphosphate carboxylase, small chain; Ribulose bisphosphate carboxylase, small chain

UWO241_HSD_26 g14608.t1; g4489.t1 258; 258 PF01015; PF01015 Ribosomal S3Ae family; Ribosomal S3Ae family

UWO241_HSD_27 g417.t1; g8017.t1 190; 190 PF01775; PF01775 Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A; Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A

UWO241_HSD_28 g1892.t1; g15077.t1 147; 147 PF00828; PF00828 Ribosomal proteins 50S-L15, 50S-L18e, 60S-L27A; Ribosomal proteins 50S-L15, 50S-L18e, 60S-L27A

UWO241_HSD_29 g4873.t1; g563.t1 141; 141 PF00380; PF00380 Ribosomal protein S9/S16; Ribosomal protein S9/S16

UWO241_HSD_30 g14344.t1; g14343.t1 204; 204 PF01201; PF01201 Ribosomal protein S8e; Ribosomal protein S8e

UWO241_HSD_31 g5390.t1; g14543.t1; g4216.t1; g853.t1; g6242.t1 221; 231; 213; 215; 220 PF00177; ; ; ; Ribosomal protein S7p/S5e; ; ; ;

UWO241_HSD_32 g3998.t1; g7778.t1 86; 86 PF01667; PF01667 Ribosomal protein S27; Ribosomal protein S27

UWO241_HSD_33 g6869.t1; g11743.t1 107; 108 PF01283; PF01283 Ribosomal protein S26e; Ribosomal protein S26e

UWO241_HSD_34 g3985.t1; g4643.t1 265; 265 PF01248; PF01248 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family; Ribosomal protein L7Ae/L30e/S12e/Gadd45 family

UWO241_HSD_35 g3676.t1; g2014.t1 160; 160 PF00542, PF16320; PF00542, PF16320 Ribosomal protein L7/L12 C-terminal domain, Ribosomal protein L7/L12 dimerisation domain; Ribosomal protein L7/L12 C-terminal domain, Ribosomal protein L7/L12 dimerisation domain

UWO241_HSD_36 g15171.t1; g11536.t1 99; 99 PF00935; PF00935 Ribosomal protein L44; Ribosomal protein L44

UWO241_HSD_37 g6373.t1; g4864.t1 117; 117 PF01198; PF01198 Ribosomal protein L31e; Ribosomal protein L31e

UWO241_HSD_38 g9340.t1; g16479.t1 155; 157 PF01246; PF01246 Ribosomal protein L24e; Ribosomal protein L24e

UWO241_HSD_39 g408.t1; g14240.t1 164; 164 PF01157; PF01157 Ribosomal protein L21e; Ribosomal protein L21e

UWO241_HSD_40 g8280.t1; g8836.t1 136; 134 PF01929; PF01929 Ribosomal protein L14; Ribosomal protein L14

UWO241_HSD_41 g413.t1; g8486.t1 208; 208 PF01294; PF01294 Ribosomal protein L13e; Ribosomal protein L13e

UWO241_HSD_42 g7384.t1; g2186.t1 166; 166 PF00298, PF03946; PF00298, PF03946 Ribosomal protein L11, RNA binding domain, Ribosomal protein L11, N-terminal domain; Ribosomal protein L11, RNA binding domain, Ribosomal protein L11, N-terminal domain

UWO241_HSD_43 g320.t1; g555.t1 187; 187 PF17135; PF17135 Ribosomal protein 60S L18 and 50S L18e; Ribosomal protein 60S L18 and 50S L18e

UWO241_HSD_44 g94.t1; g499.t1 179; 179 PF00673, PF00281; PF00673, PF00281 ribosomal L5P family C-terminus, Ribosomal protein L5; ribosomal L5P family C-terminus, Ribosomal protein L5
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Table S6: Highly similar duplicate genes (HSDs) in ICE-L and the similarity to those in UWO241. Download the complete table 
via the link: https://drive.google.com/file/d/1-ZKHQOTdiEJTzmXs3i0RywFcOPHoaExo/view?usp=sharing (Chapter 3, 4) 

 
  

HSDs identifier HSDs gene copie names (within 10 amino acids difference, ≥90% pairwise identities)Amino acid length of gene copies Pfam identifier Pfam Description
ICE-L_HSD_1 225; 10610 188; 188 PF17135; PF17135 Ribosomal protein 60S L18 and 50S L18e; Ribosomal protein 60S L18 and 50S L18e
ICE-L_HSD_2 7092; 7102; 18025 257; 255; 255 PF16974; PF16974; PF16974 High-affinity nitrate transporter accessory; High-affinity nitrate transporter accessory; High-affinity nitrate transporter accessory
ICE-L_HSD_3 12236; 13158 161; 163 PF16320, PF00542; PF00542, PF16320 Ribosomal protein L7/L12 dimerisation domain, Ribosomal protein L7/L12 C-terminal domain; Ribosomal protein L7/L12 C-terminal domain, Ribosomal protein L7/L12 dimerisation domain
ICE-L_HSD_4 203; 13064; 17129; 18645; 15138; 9012; 18933; 18835; 18947; 19200; 16448; 7635; 5217; 12307; 1564; 10101; 8453; 7693; 6496; 12040; 17706; 1077; 981; 15575; 17722; 1867; 17490; 4647; 2805; 17451; 1096; 4814; 11923; 17312; 4655130; 130; 130; 130; 130; 130; 130; 130; 130; 130; 130; 127; 127; 127; 127; 129; 130; 120; 127; 130; 127; 127; 127; 127; 127; 127; 127; 127; 127; 127; 127; 135; 130; 125; 122PF16211, PF00125; PF00125, PF16211; PF00125, PF16211; PF16211, PF00125; PF16211, PF00125; PF00125, PF16211; PF00125, PF16211; PF00125, PF16211; PF16211, PF00125; PF16211, PF00125; PF16211, PF00125; PF16211, PF00125; PF16211, PF00125; PF00125, PF16211; PF16211, PF00125; PF16211, PF00125; PF16211, PF00125; PF00125, PF16211; PF00125, PF16211; PF00125, PF16211; PF00125, PF16211; PF00125, PF16211; PF16211, PF00125; PF00125, PF16211; PF00125, PF16211; PF00125, PF16211; PF00125, PF16211; PF16211, PF00125; PF00125, PF16211; PF16211, PF00125; PF16211, PF00125; PF16211, PF00125; PF00125; PF16211, PF00125; PF00125, PF16211C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; Core histone H2A/H2B/H3/H4, C-terminus of histone H2A; Core histone H2A/H2B/H3/H4, C-terminus of histone H2A; C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; Core histone H2A/H2B/H3/H4, C-terminus of histone H2A; Core histone H2A/H2B/H3/H4, C-terminus of histone H2A; Core histone H2A/H2B/H3/H4, C-terminus of histone H2A; C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; Core histone H2A/H2B/H3/H4, C-terminus of histone H2A; C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; C-terminus of histone H2A, Core histone H2A/H2B/H3/H4; Core histone H2A/H2B/H3/H4, C-terminus of histone H2A; Core histone H2A/H2B/H3/H4, C-term
ICE-L_HSD_5 2650; 18940; 18808; 18654; 18608; 12000; 11927; 9009; 8072; 3081; 10616; 4830; 8861; 19558104; 104; 104; 104; 104; 104; 104; 104; 104; 104; 104; 104; 104; 104PF15511; PF15511; PF15511; PF15511; PF15511; PF15511; PF15511; PF15511; PF15511; PF15511; PF15511; PF15511; PF15511; PF15511Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold; Centromere kinetochore component CENP-T histone fold
ICE-L_HSD_6 12762; 16382 920; 916 PF14214; Helitron helicase-like domain at N-terminus;
ICE-L_HSD_7 14777; 5152; 8264 304; 304; 302 PF14204, PF17144; PF14204, PF17144; PF14204, PF17144Ribosomal L18 C-terminal region, Ribosomal large subunit proteins 60S L5, and 50S L18; Ribosomal L18 C-terminal region, Ribosomal large subunit proteins 60S L5, and 50S L18; Ribosomal L18 C-terminal region, Ribosomal large subunit proteins 60S L5, and 50S L18
ICE-L_HSD_8 3150; 11209 170; 170 PF13499; PF13499 EF-hand domain pair; EF-hand domain pair
ICE-L_HSD_9 4146; 12251 487; 487 PF13499, PF00069, PF13833; PF00069, PF13499EF-hand domain pair, Protein kinase domain, EF-hand domain pair; Protein kinase domain, EF-hand domain pair
ICE-L_HSD_10 1486; 11159 93; 83 PF12796; Ankyrin repeats (3 copies);
ICE-L_HSD_11 1250; 1125 186; 186 PF10674; PF10674 Protein of unknown function (DUF2488); Protein of unknown function (DUF2488)
ICE-L_HSD_12 1480; 10605 252; 254 PF10211; PF10211 Axonemal dynein light chain; Axonemal dynein light chain
ICE-L_HSD_13 2791; 18687 501; 501 PF08707; PF08707 Primase C terminal 2 (PriCT-2); Primase C terminal 2 (PriCT-2)
ICE-L_HSD_14 996; 19543 822; 827 PF08707, PF08706; PF08707, PF08706 Primase C terminal 2 (PriCT-2), D5 N terminal like; Primase C terminal 2 (PriCT-2), D5 N terminal like
ICE-L_HSD_15 8303; 18145 323; 323 PF08241; PF08241 Methyltransferase domain; Methyltransferase domain
ICE-L_HSD_16 7110; 19341 199; 199 PF07714; PF07714 Protein tyrosine kinase; Protein tyrosine kinase
ICE-L_HSD_17 7103; 18033; 18038 523; 523; 523 PF07690; PF07690; PF07690 Major Facilitator Superfamily; Major Facilitator Superfamily; Major Facilitator Superfamily
ICE-L_HSD_18 16819; 18415 232; 232 PF07650, PF00189; PF07650, PF00189 KH domain, Ribosomal protein S3, C-terminal domain; KH domain, Ribosomal protein S3, C-terminal domain
ICE-L_HSD_19 12973; 14822 267; 258 PF06026; PF06026 Ribose 5-phosphate isomerase A (phosphoriboisomerase A); Ribose 5-phosphate isomerase A (phosphoriboisomerase A)
ICE-L_HSD_20 8175; 19485 621; 621 PF05787; PF05787 Bacterial protein of unknown function (DUF839); Bacterial protein of unknown function (DUF839)
ICE-L_HSD_21 9066; 17145; 15221 305; 305; 305 PF05637; PF05637; PF05637 galactosyl transferase GMA12/MNN10 family; galactosyl transferase GMA12/MNN10 family; galactosyl transferase GMA12/MNN10 family
ICE-L_HSD_22 16272; 16273 205; 205 PF05615; PF05615 Tho complex subunit 7; Tho complex subunit 7
ICE-L_HSD_23 191; 16327; 16002 191; 191; 192 PF05018; PF05018; PF05018 Protein of unknown function (DUF667); Protein of unknown function (DUF667); Protein of unknown function (DUF667)
ICE-L_HSD_24 12588; 18898 164; 166 PF04970; PF04970 Lecithin retinol acyltransferase; Lecithin retinol acyltransferase
ICE-L_HSD_25 195; 16627 390; 386 PF04851; PF04851 Type III restriction enzyme, res subunit; Type III restriction enzyme, res subunit
ICE-L_HSD_26 943; 13115 474; 474 PF04851; PF04851 Type III restriction enzyme, res subunit; Type III restriction enzyme, res subunit
ICE-L_HSD_27 13528; 19704 480; 483 PF04851; PF04851 Type III restriction enzyme, res subunit; Type III restriction enzyme, res subunit
ICE-L_HSD_28 6438; 19053 83; 83 PF04627; PF04627 Mitochondrial ATP synthase epsilon chain; Mitochondrial ATP synthase epsilon chain
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Appendix C: HSDFinder: an integrated tool for predicting highly similar duplicates 

in eukaryotic genomes  

 

Xi Zhang, Yining Hu, David Roy Smith 

Abstract 

Background: Gene duplication as a strategy to adapt to various environmental conditions 

has been documented in a wide range of species. Zhang et al., for example, argued that 

hundreds of highly similar duplicate genes (HSDs) are aiding the survival of an Antarctic 

green alga via gene dosage. However, the numbers of HSDs in other eukaryotic genomes 

are largely unknown, and computational methods for identifying them can be time-

consuming and labor-intensive. 

Results: Here, we present an automated online tool (HSDFinder) for identifying HSDs in 

eukaryotic genomes with high accuracy and reliability annotated with Pfam domains and 

KEGG pathways. HSDFinder can analyze unannotated genome sequences by integrating 

data from InterProScan and KEGG databases. The resulting HSDs are displayed in an 8-

column spreadsheet. To compare HSDs among different species, we developed an online 

heatmap plotting option to visualize the results in different KEGG pathway functional 

categories. The software presented here is the primary selection of HSDs, the manually 

curation can be done to filter the partial or add the novel HSDs when necessary. 

Conclusions: HSDFinder aims to become a useful platform for identification and 

comprehensive analysis of HSDs in the eukaryotic genomes, which can deepen the insights 

into how gene duplications can impact adaptation. The web server is freely available at 

http://hsdfinder.com. The distribution version can be found via the GitHub: 

https://github.com/zx0223winner/HSDFinder.  

Keywords 

Next-generation sequencing, green algae, highly similar duplicates, gene copies, KEGG, 

InterProScan, Pfam 
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Background 

Gene duplication is ubiquitous phenomenon throughout the eukaryotic tree of life [1]. 

Usually, retaining highly similar expressed sequences is disadvantageous; therefore, it 

should be rare to have duplicates encoding the same functions maintained in the genome 

[2]. However, it revealed that the generation of large-scale duplicates was possible if they 

were highly demanded genes, such as rRNAs and histones [1]. Thereafter, Libuda and 

Winston [3] discovered that the appearance of pairs of adjacent paralogous proteins arose 

from a compensatory mechanisms restoring normal dosage when one locus was deleted. 

There is a controversy in whether the evolution of duplicate genes affects fitness [4]. Some 

duplication models assume that the fixation of the duplicate copy is a neutral process, while 

others support the gene dosage hypothesis, where if an increase in the dosage of a particular 

gene is beneficial, then a duplication of this gene may be fixed by positive selection [5]. 

Nevertheless, mechanisms that do not require the evolution of new functions (e.g., dosage 

balance) may play an important role in the initial retention of duplicate genes [6]. Indeed, 

many examples have been accumulated in the literature suggesting that stress response 

genes, sensory genes, transport genes and genes that have a metabolism-related function 

are likely to be fixed as duplicated copies under certain environmental conditions [7]. The 

large-scale gene amplifications were found in the acidophile Chlamydomonas eustigma 

with ~10 copies of genes encoding arsenate reductase (ArsC) and 20 copies of genes 

encoding glutaredoxin (Grx), suggesting the adaptations to acidophilic environments [8]. 

What’s more, many gene copies encoding carotene biosynthesis-related protein (CBR) and 

high intensity light-inducible lhc-like gene (Lhl4) were found in Chlamydomonas sp. ICE-

L, suggesting the adaptation to the highly variable light conditions in Antarctic sea ice [9]. 

Just recently, for example, it was suggested that hundreds of highly similar duplicates 

(HSDs) are aiding the survival of the Antarctic green alga Chlamydomonas sp. UWO241 

via gene dosage [10]. Although the dosage hypothesis can be further tested by experiments, 

it is time-consuming and labor-intensive to carry on large-scale comparative analysis.  

It is important to clarify the origin of duplicate before setting the threshold to identify them 

[4]. There are five main broad classes of duplication events in genomes: whole-genome 

duplication (WGD), tandem duplication, transposon-mediated duplication, segmental 
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duplication and retroduplication [6]. Polyploidization or WGD, is a straightforward gene 

duplication mechanism that increases both genome size and the entire gene sets. However, 

it is not the only mechanism that generates duplicate genes. A cluster of two to many 

paralogous sequences with no or few intervening gene sequences is a pattern of tandem (or 

local) duplication that results from unequal crossing-over of chromosomes or TE-mediated 

duplication. Furthermore, transposon-mediated duplication usually contains the hallmarks 

of two terminal inverted repeats (TIRs) less than 5 kb long. Segmental duplication usually 

arises from non-LTR retrotransposons, such as long interspersed nuclear elements (LINEs) 

(intact LINE1s are up to 6 kb in length and contain internal promoters). Retroduplication 

refers to retrogenes generated via 5~9 kb LTR-retrotransposons, such as gypsy LTR 

elements [6]. Notably, if a gene is duplicated via reverse transcription of mRNA and then 

inserts into the genome, it is referred to as retrocopy, and the original gene is referred to as 

the parental gene. Although a retrocopy can arise from both long LTR and non-LTR 

retrotransposable elements (e.g., LINE1), the expression of the retrocopy is largely 

dependent on the regulatory region (i.e., promoters, binding sites for the RNA polymerase, 

and/or enhancers) [2]. Both gene and partial duplication appear to be an ongoing 

phenomenon within the eukaryotic genome, one which might be mediated by 

retrotransposons [10]. For example, to call a retrogene, the aligned sequence must be at 

least 150 bp long and 50% amino acid identity to parental genes [11]. 

Many tools and software have been developed for identifying duplications in genomes, 

some are targeting for specific duplication event and some can handle with the genomes 

under multiple duplication and rearrangement events [12]. For example, tools such as 

MCScanX-transposed [13], i-ADHoRe [14] and CYNTENATOR [15] are developed to 

search for syntenic blocks (mainly for detecting WGD and segmental duplications), which 

can be defined as two regions of a genome including several homologous genes co-

arranged one another [16]. Since orthologs (derived by speciation) and paralogs (derived 

by duplication) are two types of homologs, which are genes sharing the common ancestry. 

As for those the tools detecting the duplicated genes via the paralogous relationships, the 

sequence similarity and gene structure are usually first considered [12]. Alignment tools 

such as BLAST [17], DIAMOND [18], and nhmmer [19] are commonly chosen to measure 

the sequence similarity via the metrics such as percentage identity, aligned length 
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difference and E-value. Notably, due to amino acid substitutions occur less frequently than 

nucleotide substitutions, the sequence alignments are generally compared among amino 

acid sequences instead of nucleotides, which allows a greater sensitivity [20]. It is difficult 

to set the right cut-off for those metrics when detecting the duplicates in a large scale, 

although lowering the threshold of the metrics might risk of increasing of false positives 

[12].  

To help the scientific community flexibly identify and characterize duplicates in eukaryotic 

genomes, we developed an automated web-based tool called HSDFinder. HSDFinder not 

only categorizes gene copies together via given thresholds but also annotates the duplicates 

via protein functional domains and pathway information from the InterProScan and KEGG 

databases. The results are displayed in an 8-column spreadsheet, which allows for 

alternative visualization forms, including trendlines and heatmaps. The results are 

documented in HSDatabase [21] , which allows users to perform large-scale comparative 

analysis. Although HSDFinder is designed to identify highly similar duplicates, users have 

the option to employ different parameters (e.g., from 30% to 100% identity and from within 

0-100 aa variances). Using HSDFinder, we identified approximately 336 and 265 HSDs in 

the green algae Chlamydomonas sp. UWO241 and Chlamydomonas sp. ICE-L [22] , 

respectively, and employed the software on other chlorophyte algae and model eukaryotic 

genomes. The predicted results are documented in HSDatabase [21] , which currently 

contains 28,214 HSDs from fifteen eukaryotes (http://hsdfinder.com/database/) (Table 1). 

Implementation 

The web server of HSDFinder is implemented on Apache server and the web interface is 

designed using HTML and Python scripts. The algorithms used to predict HSDs and 

visualize the correlations using heatmaps are written in Python. There are three steps to 

implement the software. 

Preparing the input files 

Before running HSDFinder, two spreadsheets in tab-separated values (tsv.) format need to 

be prepared as input files (Figure 1A). Note: Example files are provided for guidance as 

well as frequently asked questions (FAQ) section. A protein BLAST search of the genome 
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models against themselves (E-value cut-off < 10-5, BLASTP -outfmt 6) will yield the first 

input file. The BLAST results should be arranged in 12-column spreadsheets, including the 

key information from the query name to percentage identity, etc. The second spreadsheet 

is acquired from InterProScan, which can provide the protein signatures, such as Pfam 

domain. The output file of InterProsScan is tab-separated values (tsv.) format in default.  

Running the HSDFinder 

The two spreadsheets can be submitted to HSDFinder with some personalized options. The 

default setting of HSDFinder will identify HSDs with near-identical protein lengths (within 

10 amino acids of each other) and ≥ 90% pairwise amino acid identities. Choosing such a 

strict cut-off will undoubtedly remove many genuine duplicates from the list. Thus, users 

have the option to employ different parameters for identifying HSDs (e.g., from 50% to 

100% pairwise amino acid identity and from within 0-100 amino acid length variances). 

The output of this step will be an 8-column spreadsheet containing the information of HSD 

identifier, gene copy number, and Pfam domain. Additionally, the user can conveniently 

set different values to create a trendline graph of the gene copy numbers under different 

criteria (Figure 1B). 

Visualizing the HSDs across species 

For comparative analyses of the HSDs across different species, we developed an online 

heatmap plotting option to visualize the HSDs results in different KEGG pathway 

categories. To do so, the user will need to generate HSDs results following the previous 

steps for the species of interest. The default for plotting the heatmap is at least two species 

and at least two files are needed to plot the heatmap. Examples are given to guide the 

appropriate input files (Figure 1C). The first input file is the outputs of your interest species 

after running HSDFinder; the second file is retrieved from the KEGG database 

documenting the correlation of KEGG Orthology (KO) accession with each gene model 

identifier. Since species usually have unique gene model identifiers, we recommend 

submitting the second KEGG pathway files corresponding to each species. Once the input 

files have been submitted, the HSDs numbers for each species will be displayed in a 

heatmap under different KEGG functional categories. On the left side, the color bar 

indicates a broad category of HSDs who have pathway function matches, such as 
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carbohydrate metabolism, energy metabolism, and translation. The color for the matrix 

reflects the number of HSDs across species.  

Results and Discussion 

The predicted HSDs will be manually curated before submitting to the HSDatabase (Figure 

1A). The strict cut-off is to ensure that the gene-pairs in question are functional duplicates 

rather than spurious ones. Also, the future comparison of substitution rates at synonymous 

and nonsynonymous sites of protein-coding genes (i.e., calculating dN/dS) analysis in 

pairwise mode will require appropriate protein alignments in each HSDs. Nevertheless, 

users always have an option to loosen the cut-off of aligned protein length and percentage 

identity. But that will increase the chances of generating false positive HSDs. Therefore, 

users have to find a balance somewhere in-between these criteria.  

As displayed in Figure 2A, the HSDFinder results are summarized in an 8-column 

spreadsheet. The first column is the unique UWO241 gene identifier, which is used to track 

the HSDs. The second and third column includes different numbers and lengths of gene 

copies in each HSDs. The Pfam domain identifier as well as the InterPro (IPR) identifier 

provide more details about the function of each HSDs. Notably, we prefer using the Pfam 

domain as the functional description. Although the function description of the interested 

genes can be scanned in NCBI-NR or UniProtKB/Swiss-Prot databases, many hypothetical 

proteins or ‘bad name’ proteins may also be included in these databases, which could 

confuse the interpretation of HSDs results. To address that, we have developed another 

software NoBadWordsCombiner (http://hsdfinder.com/combiner/) that can integrate the 

gene function information together without ‘bad name’ including Nr-NCBI, 

UniProtKB/Swiss-Prot, KEGG, Pfam and GO etc [23].  

Trendline figures can be used to interpret the number of total HSD copies based on different 

cut-off values (Figure 2B). We provide an example based on the genome analysis of the 

Antarctic green alga UWO241. The gene sets of the genome are widely explored via 

employing different parameters for identifying HSDs (e.g., from 50% to 90% pairwise 

amino acid identity and from within 0-100 amino acid length variances) (Figure 2C). As 

displayed in Figure 3, comparative analysis of the HSDs across different species can be 
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carried out using an online heatmap tool to visualize the HSD results in different KEGG 

pathway categories. One of the 6-column output files has been displayed as an example to 

indicate the HSDs under the KEGG function categories with matching KO number and 

descriptions (Figure 3A). The first and second columns are the pathway categories, and the 

remaining columns describe the correlations of HSDs with unique KO identifiers. The 

heatmap example based on four species has been presented here (Figure 3C). To create an 

appropriate heatmap, at least two species are needed. For example, HSDs in the green algal 

genomes (UWO241, ICE-L and C. eustigma) are involved in a diversity of cellular 

pathways, including gene expression, cell growth, membrane transport, and energy 

metabolism (Figure 3B and Table 2). The HSDFinder results are categorized into 

HSDatabase after manual curation. The HSDatabase will be updated timely and the latest 

version is HSDatabase v1.5, in which a total of 28,214 HSDs in 15 eukaryotic genomes are 

identified (Table 1). It is our hope to build a comparative analysis framework across species, 

especially for those extremophiles, to understand the role of gene duplication in different 

survival environments. 

Conclusions 

With the decreasing cost of biological analyses (e.g., next-generation sequencing), 

biologists are dealing with larger and greater amounts of data, and many software analysis 

suites require considerable knowledge of computer scripting and microprogramming. 

HSDFinder is designed to fill the demand for custom-made scripts to move from one 

analysis step to another. HSDFinder is able to efficiently analyze duplicated genes from 

unannotated genome sequences by integrating the results from InterProScan and KEGG. 

The result of the predicted HSDs can be visualized in a high resolution heatmap. 

HSDFinder aims to become a useful platform for the identification and comprehensive 

analysis of HSDs in the eukaryotic genomes, which deepen our insights into the gene 

duplication mechanisms driving genome adaptation. In the future, the software will be 

further improved with the continuous updating by taking into account more scientific 

discoveries in the field of gene duplication. 

Availability and requirements 
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Figures and tables 

Figure 1: The workflow and the file examples of HSDFinder. (A) Two spreadsheets in 

tab delimited are displayed as examples for the input files of HSDFinder. One is acquired 

from the BLAST in tabular format (-outfmt 6) and another is the running result in default 

mode via Interproscan. (B) The output of HSDFinder is an 8-column spreadsheet including 

information on gene copies to Pfam domain descriptions. Users have a choice to set 

different cut-off values to acquire potential duplicates. A trendline figures has been used 

as an example to interpret the number of total gene copies based on different cut-off 

thresholds. (C) The output file from step B together with a KEGG KO mapper file will be 

used as the input files to visualize the HSDs distribution across species. To create an 

appropriate heatmap, at least two species are needed. One of the 6-column output files have 

been displayed as an example to indicate the HSDs under the KEGG function categories 

with matching KO number and description. The heatmap example based on four species 

have been presented here. There is an option for users to download the high resolution 

heatmap figure and spreadsheet for future analysis.  

Figure 2: The interpretation of predicted results from HSDFinder. (A) Screenshot of 

8-column spreadsheet example presenting the unique HSDs in each row; the first column 

is the unique UWO241 gene identifier, which is used to track the HSDs. The second and 

third column incudes different number and length of gene copies in each HSDs. The Pfam 
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domain identifier as well as IPR identifier provide more details about the function of each 

HSDs. (B). A trendline figures has been used as an example to interpret the number of total 

gene copies with responding to different cut-off of HSDFinder in duplicates rich genome 

UWO241. (C). The table of gene copy numbers in UWO2421 filtered via different criteria 

of amino acid length and identity. 

Figure 3: The visualization of HSDs results in a heatmap. (A) Example of the 6-column 

output files highlighting HSDs and the KEGG functional categories with matching KO 

number and description. The first and second column are the pathway categories, and the 

remaining columns describe the correlations of HSDs with unique KO identifiers. (B) The 

heatmap example is based on four species (Chlamydomonas sp. UWO241, 

Chlamydomonas reinhardtii, Chlamydomonas eustigma and Chlamydomonas sp. ICE-L). 

To create an appropriate heatmap, at least two species are needed.
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Table 1: The predicted HSDs in selected eukaryotic genomes.  

Domain Kingdom Phylum Class Order Species Accession number* Ref HSDs 
# 

Gene copies 
# 

Eucarya 

Plantae 

Chlorophyta 
Chlorophyceae Chlamydomonadales 

Chlamydomonas sp. UWO241 GenBank 
(PRJNA547753) 

[24] 336 1339 

Chlamydomonas reinhardtii JGI 5.5 (Phytozome 
12.1) 

[25] 54 162 

Volvox carteri JGI 2.0 (Phtyzome 12.1) [26] 124 367 

Chlamydomonas eustigma  GCA_002335675.1 [8] 276 560 

Dunaliella salina JGI 3.0 (Phytozome 
12.1) 

[27] 72 229 

Gonium pectorale GCA_001584585.1 [28] 114 325 

Chlamydomonas sp. ICE-L GCA_013435795.1 [9] 265 717 

Trebouxiophyceae Trebouxiophyceae incertae sedis Coccomyxa subellipsoidea C-169 GCA_000258705.1 [29] 79 272 

Streptophyta 
Brassicaceae Brassicales Arabidopsis thaliana GCA_000001735.2 [30] 628 1500 

Poaceae Poales Zea mays (Maize) GCA_902167145.1 [31] 2570 6297 

Chromista Ochrophyta Bacillariophyceae Bacillariales Fragilariopsis cylindrus (Diatom) GCA_001750085.1 [32] 124 317 

Fungi Ascomycota Saccharomycetes Saccharomycetales Saccharomyces cerevisiae (yeast) GCA_003086655.1 [33] 136 376 

Animalia 

Arthropoda Insecta Diptera Drosophila melanogaster (Fruit fly) GCA_000001215.4 [34] 6894 18482 

Tardigrada Eutardigrada Parachela Hypsibius dujardini (waterbear) GCA_002082055.1 [35] 515 1081 

Chordata Mammalia 
Primates Homo sapiens (Human) GCA_000001405.28 [36] NA NA 

Rodentia Mus musculus (Mouse) GCA_000001635.9 [37] 15993 56802 

*Accession numbers are from the US National Center for Biotechnology Information (NCBI) GenBank assembly accession numbers or the US 
Department of Energy's Joint Genome Institute Phytozome assembly version numbers. 

 
 

 

 
 



139 

 

Table 2. Summary statistics of highly similar duplicate genes (HSDs) in selected eukaryotes (UWO241, ICE-L and C. eustigma). 

 
a Not all identifiers are listed. 
b A total of 336, 265 and 276 HSDs were identified within the eukaryotic genomes of UWO241, ICE-L and C. eustigma encompassing 1,339, 717 
and 560 gene copies, respectively. HSDs share ≥90% pairwise amino acid identity and have lengths within 10 amino acids of each other. 

 

Database Example Identifiersa Number of HSDs (%) / Number of gene copies (%)b 

  UWO241 ICE-L C. eustigma 

Pfam     

Chlorophyll A-B 

binding protein 

PF00504 4 (1%) / 25 (2%) 5 (2%) / 18 (3%) 3 (1%) / 6 (1%) 

Ribosomal protein PF01015; PF01775; PF00828 19 (5%) / 42 (3%)   41 (15%) / 91(13%) 8 (3%) / 16 (3%) 

Core histone 

H2A/H2B/H3/H4 

PF00125 5 (1%) / 99 (7%) 8 (3%) / 93 (13%) 4 (1%) / 13 (2%) 

Ice-binding protein 
(DUF3494) 

PF11999 8 (2%) / 21(2%) NA NA 

Reverse transcriptases PF00078 38 (11%) / 151(11%) NA 2 (0.5%) / 3 (0.5%) 

KEGG 
 

  

09101 Carbohydrate 

metabolism 

K13979 (alcohol dehydrogenase) 12 (4%) / 89 (7%) 9 (3%) / 23(3%) 8 (3%) / 16 (3%)  

09102 Energy 

metabolism 

K02639 (ferredoxin); K08913(light-

harvesting complex II chlorophyll a/b 
binding protein 2) 

10 (3%) / 51 (4%) 10 (4%) / 20 (3%) 6 (2%) / 15 (3%) 

09103 Lipid metabolism K01054 (acylglycerol lipase) 3 (1%) / 15 (1%) 3 (1%) / 6 (1%) 6 (2%) / 12 (2%) 

09122 Translation K02868 (large subunit ribosomal 

protein L11e) 

27 (8%) / 47 (4%) 44 (16%) / 97 (16%) 16 (6%) / 32 (6%) 

Hypothetical Proteins NA 125 (37%) / 357 (27%) 91 (34%) / 220 (31%) 88 (32%) / 177 (32%) 
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Table 3. Estimation of the number of duplicated genes and HSDs in different species. 

Species No. of 
Considered 
Genes 

No. of Estimated 
Duplicated Genes 

% Estimated 
Duplicated 
Genes 

Methodology Duplicated Gene 
Types 

References 

Arabidopsis 
thaliana 

25,557 11,937 46.7% All-against-all 
BLASTN a  

Not specified, all 
paralogous pairs were 
searched 

[38] 

 27334 1500 5.5% HSDFinder b  All paralogous pairs 
were searched 

 

       
Mus musculus 
(mouse) 

21,305 14,034 65.9% All-against-all 
BLASTP c 

Gene families (tandem 
duplications searched 
among families) 

[39] 

 84985 56802 66.8% HSDFinder b All paralogous pairs 
were searched 

 

a All-against-all nucleotide sequence similarity searches using BLASTN among the transcribed sequences. Sequences aligned over >300 bp and 
showing at least 40% identity were defined as pairs of paralogs. 
b All-against-all protein sequence similarity search using BLASTP filtered via the criteria within 10 amino acids difference and ≥90% amino acid 
pairwise identities. 
c All-against-all protein sequence similarity search using BLASTP with the BLOSUM62 matrix and the SEG filter [40], TribeMCL with the default 
parameters. Tandem duplications were then searched for among families 
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Figure 1: The workflow and the file examples of HSDFinder. 
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Figure 2: The interpretation of predicted results from HSDFinder. 
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10 aa 3320 2699 2234 2004 1753

0 aa 1223 1097 999 926 859

UWO241gene identifers HSDs gene copies (aa length identity >=90%, within 10aa ) aa length Pfam identifer Pfam des E-value IPR identifer IPR des

g1516.t1 g1516.t1; g15297.t1; g3710.t1; g15900.t1; g12375.t1; g8654.t1; g1945.t1; g1942.t1228; 228; 228; 228; 228; 229; 233; 233 Pfam PF00098; PF00098; PF00098; PF00098; PF00098; PF00098; ;Zinc knuckle; Zinc knuckle; Zinc knuckle; Zinc knuckle; Zinc knuckle; Zinc knuckle; ;1.1E-4; 3.8E-5; 6.1E-5; 3.8E-5; 3.8E-5; 1.4E-5; ;IPR001878; IPR001878; IPR001878; IPR001878; IPR001878; IPR001878; ;Zinc finger, CCHC-type; Zinc finger, CCHC-type; Zinc finger, CCHC-type; Zinc finger, CCHC-type; Zinc finger, CCHC-type; Zinc finger, CCHC-type; ;
g11310.t1 g11310.t1; g11375.t1 1307; 1312 Pfam PF00098, PF00665, PF07727, PF13976; PF00665, PF13976, PF07727Zinc knuckle, Integrase core domain, Reverse transcriptase (RNA-dependent DNA polymerase), GAG-pre-integrase domain; Integrase core domain, GAG-pre-integrase domain, Reverse transcriptase (RNA-dependent DNA polymerase)3.4E-4, 3.0E-16, 2.5E-59, 1.9E-7; 1.5E-14, 5.4E-9, 2.6E-62IPR001878, IPR001584, IPR013103, IPR025724; IPR001584, IPR025724, IPR013103Zinc finger, CCHC-type, Integrase, catalytic core, Reverse transcriptase, RNA-dependent DNA polymerase, GAG-pre-integrase domain; Integrase, catalytic core, GAG-pre-integrase domain, Reverse transcriptase, RNA-dependent DNA polymerase
g807.t1 g807.t1; g4057.t1 464; 469 Pfam PF14240; PF14240YHYH protein; YHYH protein 6.8E-9; 3.6E-9 IPR025924; IPR025924YHYH domain; YHYH domain
g5701.t1 g5701.t1; g9150.t2 884; 885 Pfam PF00400; WD domain, G-beta repeat; 0.0019; IPR001680; WD40 repeat;
g767.t1 g15539.t1; g767.t1 231; 231 Pfam PF10260; PF10260Uncharacterized conserved domain (SAYSvFN); Uncharacterized conserved domain (SAYSvFN)2.3E-19; 2.3E-19IPR019387; IPR019387Uncharacterised domain SAYSvFN; Uncharacterised domain SAYSvFN
g5844.t1 g5920.t1; g5844.t1 256; 256 Pfam PF02902; PF02902Ulp1 protease family, C-terminal catalytic domain; Ulp1 protease family, C-terminal catalytic domain6.2E-6; 6.2E-6 IPR003653; IPR003653Ulp1 protease family, C-terminal catalytic domain; Ulp1 protease family, C-terminal catalytic domain
g6100.t1 g12590.t1; g6100.t1 159; 159 Pfam PF00179; PF00179Ubiquitin-conjugating enzyme; Ubiquitin-conjugating enzyme7.7E-44; 7.7E-44IPR000608; IPR000608Ubiquitin-conjugating enzyme E2; Ubiquitin-conjugating enzyme E2
g3684.t1 g3684.t1; g6795.t1 137; 130 Pfam PF00240, PF01020; PF00240, PF01020Ubiquitin family, Ribosomal L40e family; Ubiquitin family, Ribosomal L40e family6.5E-34, 5.1E-27; 5.6E-34, 4.5E-27IPR000626, IPR001975; IPR000626, IPR001975Ubiquitin domain, Ribosomal protein L40e; Ubiquitin domain, Ribosomal protein L40e
g5645.t1 g5645.t1; g15870.t2 599; 605 Pfam PF00443; PF00443Ubiquitin carboxyl-terminal hydrolase; Ubiquitin carboxyl-terminal hydrolase4.3E-24; 7.0E-44IPR001394; IPR001394Peptidase C19, ubiquitin carboxyl-terminal hydrolase; Peptidase C19, ubiquitin carboxyl-terminal hydrolase
g2201.t1 g2201.t1; g15994.t1; g15997.t1; g15991.t1 442; 442; 442; 442 Pfam PF00091, PF03953; PF00091, PF03953; PF00091, PF03953; PF00091, PF03953Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain; Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain; Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain; Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain5.1E-68, 2.1E-41; 5.1E-68, 2.1E-41; 5.1E-68, 2.1E-41; 5.1E-68, 2.1E-41IPR003008, IPR018316; IPR003008, IPR018316; IPR003008, IPR018316; IPR003008, IPR018316Tubulin/FtsZ, GTPase domain, Tubulin/FtsZ, 2-layer sandwich domain; Tubulin/FtsZ, GTPase domain, Tubulin/FtsZ, 2-layer sandwich domain; Tubulin/FtsZ, GTPase domain, Tubulin/FtsZ, 2-layer sandwich domain; Tubulin/FtsZ, GTPase domain, Tubulin/FtsZ, 2-layer sandwich domain
g4802.t1 g4816.t1; g4805.t1; g4802.t1 450; 450; 450 Pfam PF00091, PF03953; PF00091, PF03953; PF00091, PF03953Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain; Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain; Tubulin/FtsZ family, GTPase domain, Tubulin C-terminal domain7.6E-67, 1.8E-50; 7.6E-67, 1.8E-50; 7.6E-67, 1.8E-50IPR003008, IPR018316; IPR003008, IPR018316; IPR003008, IPR018316Tubulin/FtsZ, GTPase domain, Tubulin/FtsZ, 2-layer sandwich domain; Tubulin/FtsZ, GTPase domain, Tubulin/FtsZ, 2-layer sandwich domain; Tubulin/FtsZ, GTPase domain, Tubulin/FtsZ, 2-layer sandwich domain
g1131.t1 g1131.t1; g9728.t1 1744; 1743 Pfam PF03151; PF00078Triose-phosphate Transporter family; Reverse transcriptase (RNA-dependent DNA polymerase)6.4E-11; 1.3E-24IPR004853; IPR000477Sugar phosphate transporter domain; Reverse transcriptase domain
g645.t1 g9104.t1; g645.t1 196; 196 Pfam PF07500; PF07500Transcription factor S-II (TFIIS), central domain; Transcription factor S-II (TFIIS), central domain4.1E-11; 4.1E-11IPR003618; IPR003618Transcription elongation factor S-II, central domain; Transcription elongation factor S-II, central domain
g15800.t1 g15800.t1; g12147.t1 1638; 1643 Pfam PF14249, PF00211; PF00069Tocopherol cyclase, Adenylate and Guanylate cyclase catalytic domain; Protein kinase domain1.7E-23, 3.9E-42; 3.3E-9IPR025893, IPR001054; IPR000719Tocopherol cyclase, Adenylyl cyclase class-3/4/guanylyl cyclase; Protein kinase domain
g5257.t1 g5257.t1; g13535.t1; g7304.t1; g14487.t1 1296; 1305; 1314; 1317 Pfam PF04278; PF00078; PF00069, PF00078; PF00069, PF00078Tic22-like family; Reverse transcriptase (RNA-dependent DNA polymerase); Protein kinase domain, Reverse transcriptase (RNA-dependent DNA polymerase); Protein kinase domain, Reverse transcriptase (RNA-dependent DNA polymerase)3.3E-39; 5.6E-23; 1.8E-13, 3.6E-26; 1.7E-9, 2.7E-7IPR007378; IPR000477; IPR000719, IPR000477; IPR000719, IPR000477Tic22-like; Reverse transcriptase domain; Protein kinase domain, Reverse transcriptase domain; Protein kinase domain, Reverse transcriptase domain
g8510.t1 g8742.t1; g8510.t1 296; 296 Pfam PF00082; PF00082Subtilase family; Subtilase family 1.8E-45; 1.8E-45IPR000209; IPR000209Peptidase S8/S53 domain; Peptidase S8/S53 domain
g13122.t1 g13122.t1; g13744.t1; g12836.t1; g4052.t1; g15392.t1; g13707.t1; g13749.t1; g6180.t1; g14787.t1344; 349; 348; 339; 355; 338; 336; 354; 333Pfam PF00588; PF00588; ; ; ; PF00514; ; ;SpoU rRNA Methylase family; SpoU rRNA Methylase family; ; ; ; Armadillo/beta-catenin-like repeat; ; ;4.1E-8; 4.2E-10; ; ; ; 1.4E-7; ; ;IPR001537; IPR001537; ; ; ; IPR000225; ; ;tRNA/rRNA methyltransferase, SpoU type; tRNA/rRNA methyltransferase, SpoU type; ; ; ; Armadillo; ; ;
g132.t1 g132.t1; g3556.t1 806; 801 Pfam PF14775, PF14772; PF03079Sperm tail C-terminal domain, Sperm tail; ARD/ARD' family2.6E-8, 1.3E-19; 7.6E-45IPR029440, IPR039505; IPR004313Dynein regulatory complex protein 1, C-terminal, Dynein regulatory complex protein 1/2, N-terminal; Acireductone dioxygenase ARD family
g3054.t1 g3054.t1; g11238.t1 306; 306 Pfam PF16891, PF00149; PF00149, PF16891Serine-threonine protein phosphatase N-terminal domain, Calcineurin-like phosphoesterase; Calcineurin-like phosphoesterase, Serine-threonine protein phosphatase N-terminal domain1.6E-19, 2.7E-42; 5.2E-43, 1.2E-16IPR031675, IPR004843; IPR004843, IPR031675Serine-threonine protein phosphatase, N-terminal, Calcineurin-like phosphoesterase domain, ApaH type; Calcineurin-like phosphoesterase domain, ApaH type, Serine-threonine protein phosphatase, N-terminal
g429.t1 g429.t1; g3694.t1 930; 937 Pfam PF00530, PF00082; PF00225Scavenger receptor cysteine-rich domain, Subtilase family; Kinesin motor domain2.7E-8, 7.4E-44; 1.1E-20IPR001190, IPR000209; IPR001752SRCR domain, Peptidase S8/S53 domain; Kinesin motor domain
g4237.t1 g10399.t1; g10296.t1; g10295.t1; g4237.t1 366; 366; 366; 366 Pfam PF13445; PF13445; PF13445; PF13445RING-type zinc-finger; RING-type zinc-finger; RING-type zinc-finger; RING-type zinc-finger3.7E-9; 3.7E-9; 3.7E-9; 3.7E-9IPR027370; IPR027370; IPR027370; IPR027370RING-type zinc-finger, LisH dimerisation motif; RING-type zinc-finger, LisH dimerisation motif; RING-type zinc-finger, LisH dimerisation motif; RING-type zinc-finger, LisH dimerisation motif
g4365.t1 g11990.t1; g4365.t1 284; 284 Pfam PF13639; PF13639Ring finger domain; Ring finger domain 2.5E-6; 2.5E-6 IPR001841; IPR001841Zinc finger, RING-type; Zinc finger, RING-type
g3338.t1 g3338.t1; g9313.t1 784; 785 Pfam PF13639; PF00078Ring finger domain; Reverse transcriptase (RNA-dependent DNA polymerase)2.9E-10; 1.2E-14IPR001841; IPR000477Zinc finger, RING-type; Reverse transcriptase domain
g4681.t1 g4681.t1; g5342.t1; g12113.t1; g5638.t1 570; 575; 575; 567 Pfam PF00355, PF00078; PF00078; PF00078; PF00078Rieske [2Fe-2S] domain, Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase); Reverse transcriptase (RNA-dependent DNA polymerase)6.0E-15, 1.4E-25; 7.5E-27; 1.1E-26; 6.6E-18IPR017941, IPR000477; IPR000477; IPR000477; IPR000477Rieske [2Fe-2S] iron-sulphur domain, Reverse transcriptase domain; Reverse transcriptase domain; Reverse transcriptase domain; Reverse transcriptase domain
g1206.t1 g1206.t1; g13528.t1; g10711.t1 171; 167; 168 Pfam PF00101; PF00101; PF00101Ribulose bisphosphate carboxylase, small chain; Ribulose bisphosphate carboxylase, small chain; Ribulose bisphosphate carboxylase, small chain3.0E-42; 2.8E-42; 2.8E-42IPR000894; IPR000894; IPR000894Ribulose bisphosphate carboxylase small chain, domain; Ribulose bisphosphate carboxylase small chain, domain; Ribulose bisphosphate carboxylase small chain, domain
g4489.t1 g14608.t1; g4489.t1 258; 258 Pfam PF01015; PF01015Ribosomal S3Ae family; Ribosomal S3Ae family 6.9E-93; 6.9E-93IPR001593; IPR001593Ribosomal protein S3Ae; Ribosomal protein S3Ae
g417.t1 g417.t1; g8017.t1 190; 190 Pfam PF01775; PF01775Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A; Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A1.2E-51; 1.2E-51IPR023573; IPR023573Ribosomal protein 50S-L18Ae/60S-L20/60S-L18A; Ribosomal protein 50S-L18Ae/60S-L20/60S-L18A
g1892.t1 g1892.t1; g15077.t1 147; 147 Pfam PF00828; PF00828Ribosomal proteins 50S-L15, 50S-L18e, 60S-L27A; Ribosomal proteins 50S-L15, 50S-L18e, 60S-L27A1.6E-23; 1.7E-23IPR021131; IPR021131Ribosomal protein L18e/L15P; Ribosomal protein L18e/L15P

A
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Figure 3: The visualization of HSDs results in a heatmap. 

 

 

 

 

uwo241 aa length

Carbohydrate 
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00010 Glycolysis / 
Gluconeogenesis (5) K00121

frmA; S-
(hydroxymethyl)glutathi
one dehydrogenase / 

g5779.t1, g8291.t1, 
g10382.t1 340, 380, 391

00010 Glycolysis / 
Gluconeogenesis (5) K00162

PDHB; pyruvate 
dehydrogenase E1 
component beta 

g5515.t1, g10654.t1 284, 1250

00010 Glycolysis / 
Gluconeogenesis (5) K00627

DLAT; pyruvate 
dehydrogenase E2 
component 

g3352.t1, g10467.t1, 
g11435.t1 643, 436, 1581

00010 Glycolysis / 
Gluconeogenesis (5) K00873 PK; pyruvate kinase 

[EC:2.7.1.40] g4065.t1, g7107.t1 508, 152

00010 Glycolysis / 
Gluconeogenesis (5) K00927

PGK; 
phosphoglycerate 
kinase [EC:2.7.2.3]

g5036.t1, g6745.t1 174, 301

00020 Citrate cycle 
(TCA cycle) (6) K00031

IDH1; isocitrate 
dehydrogenase [EC:
1.1.1.42]

g114.t1, g1446.t1, 
g1540.t1, g2217.t1, 
g2628.t1, g2810.t1, 

159, 156, 159, 159, 
159, 162, 159, 159, 
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00020 Citrate cycle 
(TCA cycle) (6) K01676

E4.2.1.2A; fumarate 
hydratase, class I [EC:
4.2.1.2]

g789.t1, g5752.t1, 
g13413.t1 738, 598, 93

00020 Citrate cycle 
(TCA cycle) (6) K01958

PC; pyruvate 
carboxylase [EC:
6.4.1.1]

g4041.t1, g7907.t1 243, 1277

00051 Fructose and 
mannose metabolism 
(1)

K19355
MAN; mannan 
endo-1,4-beta-
mannosidase [EC:

g3766.t1, g8252.t1 459, 459

00053 Ascorbate and 
aldarate metabolism 
(2)

K00434
E1.11.1.11; L-
ascorbate peroxidase 
[EC:1.11.1.11]

g15877.t1, g15878.t1 413, 405

00500 Starch and 
sucrose metabolism (8) K00688

PYG; glycogen 
phosphorylase [EC:
2.4.1.1]

g4896.t1, g14940.t1 518, 175

Folding, sorting and 
degradation

00500 Starch and 
sucrose metabolism (8) K00703 glgA; starch synthase 

[EC:2.4.1.21] g6999.t2, g12919.t1 852, 855

00500 Starch and 
sucrose metabolism (8) K01179

E3.2.1.4; 
endoglucanase [EC:
3.2.1.4]

g7994.t1, g7995.t1 446, 610

00630 Glyoxylate and 
dicarboxylate 
metabolism (6)

K01602
rbcS; ribulose-
bisphosphate 
carboxylase small 

g1206.t1, g10711.t1, 
g13528.t1 171, 168, 167

00630 Glyoxylate and 
dicarboxylate 
metabolism (6)

K19269
PGP; 
phosphoglycolate 
phosphatase [EC:

g3281.t1, g9851.t1, 
g16042.t1 154, 348, 300

00640 Propanoate 
metabolism (5) K00140

mmsA; malonate-
semialdehyde 
dehydrogenase 

g6608.t1, g6615.t1, 
g6616.t1, g6617.t1 552, 84, 84, 84

00640 Propanoate 
metabolism (5) K00166

BCKDHA; 2-
oxoisovalerate 
dehydrogenase E1 

g6185.t1, g8492.t1 428, 148

00640 Propanoate 
metabolism (5) K00167

BCKDHB; 2-
oxoisovalerate 
dehydrogenase E1 

g5907.t1, g13837.t1 394, 85

00562 Inositol 
phosphate metabolism 
(6)

K00999
CDIPT; CDP-
diacylglycerol--inositol 
3-

g9130.t1, g13028.t1 268, 268

00562 Inositol 
phosphate metabolism 
(6)

K01858
INO1; myo-inositol-1-
phosphate synthase 
[EC:5.5.1.4]

g1123.t1, g11073.t2 1503, 520

A B

UWO241 C. reinhardtii C. eustigma
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