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Abstract 

The research described in this thesis concerns with the visual exploration of gene expression 

in bio-molecular networks. Our focus is on investigating the merits of different visualizations 

as visual analysis methods with the eventual objective of hypotheses deduction. When 

designing each visualization, we focused on concept model visualization, i.e. each 

visualization is designed to capture a perspective of the biologist's understanding in 

molecular biology. 

Our contributions span four areas: visual analysis, visualization methods, user evaluation, 

and analysis of hepatocellular carcinoma biology. In visual analysis, we contributed a visual 

analysis framework which captures the biologist's practice of incremental investigation (see 

Chapter I). We demonstrate that the approach of "filter first, zoom and details, overview if 
necessary" can support hypotheses deduction in biology. As such, our visual analysis 

framework can provide an engineering framework for bioinformatics software designers in 

future. 

In visualization methods, we designed the clustered circular layout for capturing the 

'network within network' organization of a GO _Process-defined Protein Interaction Network 

(see Chapter 4). We also designed the three-parallel plane layout as a novel method for 

visualizing the two-overlapping network (see Chapter 5). The uniqueness of our design is 

that, apart from the two heterogeneous bio-molecular networks G1 and G2, the overlap layer 

G3 is explicitly visualized in the middle plane. The node set V3 of G3 is commonly shared by 

the node sets of G1 and G2, i.e. V1 n V2• Finally, we designed the circular plane layout as a 

novel method for visualizing the three-overlapping network (see Chapter 6). The uniqueness 

of our design is that the mappings between the three heterogeneous bio-molecular networks 

G, G2, and G3 are being explicitly visualized as inter-plane edges. 

In user evaluation methods, we brought to the bioinformatics community the first set of 

benchmark tasks for evaluating usability of visualizations that display gene_ cluster-GO 

relationships (see Chapter 3). These tasks define usability in terms readability and 

effectiveness in assisting analytical reasoning. They can be modified for evaluating data 

object-to-ontology relationships in any clustering pattern visualizations. 

In cancer biology, we proposed a tentative explanation on how the protein-based gene 

regulatory interactions may co-operate with RNA-based gene silencing interactions and the 

TGFBI (transforming growth factor beta)-signaling interactions in promoting cancer growth 

(see Chapter 6). Our hypothesis can provide a direction to the cancer research community for 

future laboratory-based investigations. 



In conclusion, we hope that this thesis will provide interested experts from the fields of 

bioinformatics, information visualization, and visual analytics, with a starting point for 

investigating visualization-related problems in molecular biology. 
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CHAPTER 1 

Introduction 

"A Picture means A Thousand Words"-otDCHINESESAYING 

1.1. Motivation 

One great advancement brought f01ward by the Human Genome Project in the last decade 

has been the increasingly routine application of high throughput technologies, e.g. DNA 

microarrays [97], protein-protein affinity microarray [115], CHiP-Chip array [13] and high­

throughput mass spectrometry [165], in biological research. Their extensive application turns 

molecular cell biology from a data-poor to a data-intensive science within a decade. The 

copious amount of data generated continues to challenge the biologist's cognitive capacity to 

gain a holistic understanding on its biological meaning. The problem is two-folded. 

The first has to do with the general conceptual view assumed by most biologists. Most of 

them have been trained in the reductionist approach towards biology. The term 'biologist' 

used in this thesis is defined as experts who research and study biology at the molecular and 

cellular level. They are often known as molecular biologists and cell biologists respectively. 

This view assumes that we can understand the biological meaning of a complete single-cell 

network by having it dissected down to its individual components. In other words, we can 

understand the whole if we know how many molecules there are and more importantly, the 

supposed biological function of each molecule. Such an assumption leads to the emphasis on 

the choice of data mining methods available to biologists. The rationale has been that the 

biological meaning of a large-scale gene expression dataset can largely be explained by a 

handful of differentially expressed genes. However, recent discoveries that many low-copy 

expressed genes are functionally important to cancer progression show the fallacy of this 

rationale [94]. 

The second reason has to do with the multi-disciplinary approach required. Each of the 

disciplines, i.e. statistics, data mining, information visualization, and molecular biology, 

contributes to parts of the solution in the process of biological research (see FIGURE 1.1). Yet 

very few professionals in any of these disciplines are practitioners of adjacent disciplines. 

For example, researchers in bioinforrnatics visualization often focus on designing new 

visualizations of data generated by statistical or data mining algorithms, rather than capturing 

one or more concept models in biology. To achieve the latter will require a background in 

biology. 
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. Laboratory 
Data Analysos ~ Experimentation 

Visualizatio~Data Curation 

FIGURE 1. 1. Key steps in a typical molecular biology research project in the post Human Genome 
Project era. A biologist represented by the ball-and-stick model needs to participate in a research 
process of four broad steps, i.e. (1) Laboratory experimentation, (2) Data curation, (3) Data and bio­
informatics visualization, and (4) Data analysis. Computing supports every step in this process, and 
visualization serves as the medium for the biologist to proceed from data curation to data analysis. 

Some visualization systems address the above problem partially by allowing the biologists to 

overlay gene expression values or expression correlation scores onto the nodes of a 

molecular network as colour hues. The protein interaction network (PIN) and metabolic­

network (MN) are the two most commonly used. The assumption behind has been that such 

an integration should provide a glimpse on the systems-level interaction dynamics within a 

single cell. The molecular network is then generated as a node-edge network visualization in 

a variety of layouts, e.g. force-directed layout, circular layout, or grid layout. The same 

visualization also allows the biologist to integrate biological ontologies with the network in 

order to give it a functional context [104]. Without which, biologists will have difficulty 

deducing the meaning of the data, let alone hypothesis formulation. The latter is central to 

knowledge discovery [ 117]. 

While it is true that network visualization has indeed facilitated the conceptual shift from 

reductionist to systems biology, the current network visualizations have two limitations. The 

first is that most visualization systems provide a whole-cell molecular network as the first 

step in network exploration. This idea is deeply rooted in the information visualization 

mantra of "overview, zoom and filter, details on demand'' [141] rather than the biologist's 

work practice of incremental investigation. Furthermore, the network visualizations are 

generated using generic layout algorithms commonly used for addressing the issue of 

scalability. Yet the layout algorithm does not account for any biological context such as 

biological processes, molecular function, intracellular distribution, pathways, and disease 

association. 
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Introduction 

.. 

fiGURE 1.2. A computer-generated visualization of a human protein interaction network (PIN) 
superimposed on a cellular organization plan. Reproduced from Kojima et al. 2007 [87]. 

The result is often an unreadable network visualization that contains substantial edge 

crossings and node overlaps. The second is that most network visualizations can handle only 

one type of molecular interaction. The expanding variety of interaction types raises many 

practical and theoretical problems related to how these datasets should be integrated into the 

network representations (or models), how best to visualize the integrated network and how 

the network should be explored [ 148]. 

Using an integrated network of gene regulatory and protein-protein interactions as an 

example, the fact that the latter occur between proteins which are at least transiently co­

localized in a particular cellular component may favour an approach that seeks to generate a 

visualization that mimics sub-cellular components (see FIGURE 1.2). However the same 

approach may be unsuitable for gene regulatory interactions where the interacting proteins 

may be involved in multiple distinct and distally located biological processes [148]. One can 

argue that this can be resolved by simply changing layouts. Yet there is very little 

understanding on how different network layouts influence biological reasoning. 

The limitations discussed above impose a steep learning curve on bench biologists. They 

also expose the misalignment between the designer' s intention and the biologist's analytical 
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thinking. Amar and Stasko [4] called this the wor/dview gap. This is reflected in some 

biologists' comments given during a heuristic evaluation [134] that the network 

visualizations provided by Cytoscape [104] and similar systems are the computer scientist's 

view on molecular networks. As a result, network visualizations are mostly used by bio­

informaticians who already have a background in data mining or statistics, rather than bench 

biologists. 

In summary, we identify significant challenges in molecular network visualization and 

visual analysis that further contributions are needed to overcome them. These limitations are: 

I. Current visualizations are mainly designed for representing data patterns in graphical 

form rather than representing concept models. Yet it is the latter that is more attuned to 

the biologist's analytical thinking. 

2. The visualization of molecular networks on a very large scale is cognitively challenging 

to the biologists and discourages the use of networks in data exploration. 

3. The lack of visualizations that integrate heterogeneous molecular interactions and allow 

the biologist to explore each of them simultaneously or in parallel. 

If there are limitations with the existing network visualizations, what are the challenges in 

designing visualizations or determining which visualization to use for analyzing gene 

expression? There are at least four challenges to answer. 

I. The first challenge is the "curse of scale". While molecular interactions can be mapped 

to network representations, network visualizations worked well for small networks. As 

the molecular network approaches a few thousand nodes, node overlaps, node label 

overlaps, and edge crossings make the network visualization confusing and unreadable 

[61]. Protein interaction network (PIN) is the case to the point. Though it can be 

represented by a simple node-edge graph, the scale of even a bacterial PIN 

( lVI;, 5000,1£1;, 6000 ) is beyond the human cognitive capacity to comprehend and 

therefore presents a steep challenge to layout design and interactivity design. 

2. Filtering is often used as a solution for reducing scale. Network reduction inevitably 

leads to the Joss of information but will also reduce visual complexity. The challenge is 

to find a trade off between information Joss and visual complexity, that is acceptable to 

biologists with diverse motivations. 

3. Biologists like to cluster data according to their ontological classification, e.g. Gene 

Ontology (GO). However, explicit visualization of the original network as inter­

connected clusters of molecules demands a change in network layout, which may affect 

the biologist's analytical reasoning. 
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4. There can be more than one concept model for interpreting the same integrated 

network. An integrated molecular network is one that integrates different interaction 

types, e.g. signaling interactions, metabolic reactions, and gene regulatory interactions, 

into one network. For example, bench biologists conventionally use the cascade model 

for depicting the integrated signal transduction (or signaling) and the gene regulatory 

network. This model depicts the two sets of interactions as two inter-connected sub­

networks, with the signal transduction sub-network being the input layer and the gene 

regulatory sub-network being the output layer. The emerging concept model is the 

systems model in which the two sets of interactions are considered to be one integrated 

network. It is not a straightforward decision to determine which concept model is 

'better' and should be visualized. As such, there is often a need to present both. 

Furthermore, each model may require a different network layout or even visual design. 

Knowing that more than one visualization are needed to assist biologists in analyzing gene 

expression data to a depth that can lead to hypothesis formulation, this thesis focuses on 

using a series of different visualizations to meet the above challenges. We attempt to answer 

these challenges in four research problems and conduct our research in a coherent manner 

using a visual analysis framework as introduced in the next section. 

1.2. A Visual Analysis Framework for Molecular Biology 

Nowadays, biologists perform microarray experiments for measuring gene expression on the 

genome-wide scale. He/she will then perform the two pre-processing steps, i.e. normalization 

and filtering to extract a set of quality data amendable to data mining or statistical analysis 

[145]. Following that, the biologist may want to extract a set of co-expressed genes. Then 

he/she will apply pairwise correlation coefficients such as Pearson or Spearman correlations 

to the dataset. Our framework is designed to mimic a series of visual analysis tasks with the 

assumption that a bench biologist would like to investigate gene co-expression as the first 

step (see FIGURE 1.3). 

The objective of our proposed framework is to assist biologists in deducing biological 

hypotheses incrementally using visual analysis, The motivation behind is to provide a 

framework that is based on modeling the biologist's work practice, i.e. filter first, zoom and 

details, and overview if necessary. The visual analysis framework consists of three steps, 

with each step focusing on a different type of network visualization, i.e. 

I. visual analysis of co-expressed gene clusters; 

2. visual analysis of protein interaction networks; 

3. visual analysis of integrated network. 
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Each step is a visual analysis task that employs one or more computer-generated 

visualizations. The purpose of each task is to support biological deductions through visual 

analyses. The level of abstraction represented by the visualization decreases with each step 

but increases in scale and visual complexity (see FIGURE 1.3). Therefore, the biologist uses 

increasingly informative but complex network visualization to extract biological meaning 

from the dataset on hand. In this way, any deductions made in one visual analysis step 

should assist the visual analysis in next step and so forth. This should reduce the cognitive 

challenge that the biologist has to face when analyzing a large gene expression dataset, while 

at the same time, allow them to perform progressively in-depth biological analysis. In this 

way, hypothesis formulation is achieved by the collaborative use of multiple visualizations. 

In the following sub-sections, the objective that each visual analysis step can achieve for the 

biologist and its role in the entire framework will be explained. During our elaboration, the 

various research problems will also be brought out followed with our proposed solutions. 

1.2.1. Research Objectives and Rationale 

1.2.1.1. Visualization and Analysis of Gene Ontology-annotated Co-expressed Gene Clusters 

Co-expression analysis is often performed on gene expression data as the first step, simply 

because it implies synchronized expression of genes. Furthermore, the selection of co­

expressed genes using correlation coefficients has the side benefit of filtering down a large 

dataset by 90%. When clustered in groups using shared GO Process category as the criterion, 

the resulting set of clusters informs the biologist on the set of co-regulated biological 

processes. This provides an abstraction on the functional organization of a cell at a level 

higher than any bio-molecular network visualizations. In other words, GO-annotated co­

expressed gene clusters is to give the biologist a glimpse of the functional organization 

within a single cell without having to examine the underlying molecular network. The 

significance of this step is that it assists the biologist to prioritize the biological processes for 

further investigation in the next visual analysis step because the clustering pattern when 

visualized will inform the biologist on the relative activity between different biological 

processes. Therefore, any visualization applied in this step must effectively display the gene­

to-gene co-expression and the gene_cluster-biological_process relationships. 

The issue of contention, however, is that the same set of gene clusters can be viewed in 

two different presumed biological concept models. The first is the gene-centric model. 

Simply speaking, this model assumes that knowing the biological process(es) a particular 

cluster of genes belongs to is adequate for making biological deductions. The second is the 

network model which assumes that the biological processes are inter-connected and are held 

together by the co-expressed gene clusters. These diverse views call for two different 

representations to be visualized. We introduce a non-graph matrix-like representation for 
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capturing the first concept model and a clustered bipartite graph for capturing the second 

model. As a consequence, a few questions arise. 

How do different representations affect biological reasoning? Which representation when 

visualized is better in assisting biological deduction? What analytical tasks does each 

visualization analysis support? The last two questions define the meaning of usability in the 

context of biological analysis. Answering these questions is crucial as the outcome will 

either validate the currently popular approach of color matrix visualization or the alternative 

approach of network visualization. As such, the outcome will either support or challenge the 

use of network visualizations in the last two steps of our framework (see FIGURE 1.3). In the 

light of this, we attempt to answer the posed questions using a case study and a task-oriented 

user evaluation. In the case study, visual analysis will be conducted using a published set of 

co-expressed genes which came in two sample sets, hepatocellular carcinoma (HCC) and 

normal hepatocytes [58]. In the user evaluation, we evaluate the usability of each 

representation by measuring user performance in three different variables, task completion 

time, accuracy and user satisfaction score. The user evaluation studies published to date are 

limited to visualizations in microarray analytical software [134, 135]. This is the first time 

that a comparative evaluation on concept-based visualizations bas been conducted. 

1.2.1.2. Visualization and Analysis of GO-defined Protein Interaction Networks 

Since biological processes are largely driven by protein-protein interactions, the next step is 

to examine the protein interaction network (PIN) that drives each of the biological processes 

identified in the previous step. The rationale behind visualizing gene co-expression in the 

context of a protein interaction network (PIN) is to provide a more detailed view on the 

protein-protein interactions required for the functioning of co-regulated biological processes. 

More importantly, the biologist wants to identify proteins that are coded by co-expressed 

genes. Co-expressed genes often imply comparable molecular abundance of their respective 

proteins. If a pair of co-expressed genes is shown to interact with each other in the PIN, that 

implies their protein-protein interaction is active and the proteins are co-regulated. 

Another important piece of information is the intracellular distribution of the proteins, i.e. 

the spatial information for a biological process-defined PIN. For many biological processes 

to occur, their protein-protein interactions have to be co-localized in certain cell components, 

e.g. nucleus, cytoplasm, mitochondrion, and etc. When clustered in groups using the GO Cell 

Component ontology, the resulting clusters inform the biologists on the spatial organization 

of a particular biological process. Therefore, visualizations used in this step must display not 

only the protein-protein interactions and the gene-gene co-expression relationship but also 

the gene _c/uster-cell_component relationship. 
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The significance of this step is to provide the biologist with the first glimpse on the 

network dynamics of each biological process. If the biologist examines a set of related 

process-specific PINs, he/she will be able to deduce the intersecting subset of protein-protein 

interactions that connects the set of biological processes of interest. Any co-expression 

between interacting proteins will suggest that they are co-regulated such that the processes 

can be co-activated. The intracellular distribution of co-expressed genes in multiple cell 

components often raises questions about protein transportation which is often used for 

regulating the activity of biological processes. The limitation of this approach is that the 

biologist is viewing a canonical PIN with a gene expression correlation score overlay rather 

than a real time PIN because the latter cannot be detected by microarray technology. 

There are currently two challenges in PIN visualizations. The first challenge is the 

network scale that needs to be visualized. Current solutions can be categorized to two 

approaches. One approach employs layouts that took biological knowledge into account [71, 

148]. Another approach uses data filtering [178]. The second challenge is to integrate the GO 

annotations with the PIN visualization, in especially for capturing the functional 

modularization of the PIN. Proteins belonging to a functional module can be defined by their 

membership in a biological process. Such a functional module can itself be subdivided into 

smaller modules (or sub-networks) if its proteins co-exist in multiple cellular components. 

This type of modularization is known as 'network within network' or 'module within 

module'. The use of colour coding in correspondence to GO category membership has been 

the most common solution. If a protein is annotated with terms from multiple GO categories, 

the node will be coloured as a pie chart [178]. However, this approach faces the challenges 

of readability and colourability. Another solution is to partition the PIN according to GO 

category membership [7]. However, this approach can only present partitioning according to 

a single GO category and is suitable only for visualizing a PIN with only a few hundred 

nodes. 

To answer the first challenge, we will filter the human PIN using the GO Biological 

Process ontology. We called the filtered PIN a GO_Process-defmed PIN. We then visualized 

the same GO _Process-defined PIN using two different methods, i.e. non-clustered PIN and 

clustered PIN visualizations. The first method is to visualize the GO Process-<lefined PIN in 

a force-directed layout. This is the layout generally used for PIN visualizations. As the 

second method for visualizing the GO _Process-defined PIN, we design and implement the 

clustered circular layout as a new layout. On the one hand, the non-clustered PIN 

visualization uses a generic layout that does not take into account any further partitioning by 

biological knowledge. On the other hand, the clustered PIN visualization uses a clustered 

layout that represents the distribution of proteins in a variety of cellular components. Each 
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cellular component is represented by a cluster node label derived from the GO Cell 

Component ontology. By this method, we can present the physical localization of the 

protein-protein interactions for every known GO _Process in a human cell. The result will be 

a visualization that models closely to the 'network within network' property of PIN. This will 

be a crucial feature for expanding the biologist's cognitive ability. 

The availability of two different visualizations for the same GO _Process-defined PIN 

brought to our attention a few questions. How do different visualizations affect biological 

reasoning? Which visualization is better in assisting biological deduction? What analytical 

tasks can each visualization support? What biological insights can be generated out of PIN 

visualizations with gene expression overlay? To investigate these questions, we conduct a 

case study on HCC again and also a domain expert evaluation on the non-clustered PIN and 

the clustered PIN visualizations. In the case study, the co-expressed genes of the HCC 

sample set are overlaid onto the full-scale human PIN. We then select seven GO Process­

defined PINs and perform a visual analysis on each using both the non-clustered and the 

clustered PIN. These GO Processes are biological processes underlying the characteristics 

defined by the current cancer model [68]. 

1.2.1.3. Visualization and Analysis of Two-Overlapping Integrated Networks 

PIN visualization allows the biologist to make deductions based on physical interactions 

between proteins. However, it is not a complete view of the cellular molecular network for 

two reasons. The first reason is that protein-protein interactions have specialized molecular 

functions. Some are signaling proteins which relay an activation/de-activation signal from 

protein to protein. Others are metabolic enzymes which catalyze the conversion of 

metabolites. The second reason is that there are other interaction types besides protein­

protein interactions. For example gene regulation requires protein-DNA interactions. With 

the discovery of non-coding genes (also known as RNA genes), RNA-RNA interactions 

become the latest addition to the full-scale molecular network. 

To provide the biologist with a more complete view of the molecular network, a 

visualization which integrates the variety of interaction types becomes necessary. We 

called such a network an integrated network. The significance of this step is to provide the 

biologist with an overview of the molecular network so that he/she can add further details to 

the deductions made in the previous steps. This should assist the biologist in finalizing 

hypotheses formulation. 

When trying to visualize an integrated network, the issues of scale and scalability will 

arise. If all the interaction types are visualized in a single large network, the biologist will be 

faced with a myriad of edges in a variety of visual encoding. The other problem is how to 
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visualize proteins that have multiple molecular functions and are expected to participate in 

multiple interaction types. For example, a certain bacterial protein can be both a metabolic 

enzyme and a gene regulator. In this case, the protein has to be visually represented as 

separate nodes, each in a distinct colour hue or in a unique shape. In addition, an undirected 

edge, also distinctly coloured, has to be included to show that the two nodes are in fact 

representations of the same protein. Even more problematic is trying to identify such 

proteins in a large and complex network visualization. 

In view of these problems, we introduce the 2.5-dimensional two-overlapping network 

visualization in which each of the heterogeneous networks is drawn on a separate plane. 

Each heterogeneous network is of a distinct interaction type. The nodes and edges of each 

network are distinctly coloured. The planes are stacked in parallel in the 2.5-dimension. The 

two-overlapping network can also come in the two-plane and the three-plane representations. 

The difference between them lies in the additional overlap layer in the latter representation. 

The two-plane representation requires the two-parallel plane layout. The three-plane 

representation requires the three-parallel plane layout. Both are new layouts designed and 

implemented for visualizing the two-overlapping network. 

Here again, we ask the questions: which of the two visualizations is better in assisting 

biological deduction? Which of them are more readable at different network sizes? What 

analytical tasks can each visualization support? In a more general scope, we also ask whether 

the two-overlapping network visualization, no matter which representation, is able to capture 

the current biological knowledge, i.e. as a visual knowledge representation. Furthermore, we 

ask whether it is effective for formulating new hypotheses, i.e. as a knowledge discovery 

method. 

To answer the above questions, we conduct two case studies to find anecdotal evidence 

for supporting our choice of using the two-overlapping network as a method for visualizing 

an integrated network. The first case study employs network data from E. coli. Since it has 

been very well studied, E. coli is an excellent case for testing the effectiveness of any 

visualization as a visual concept model. The second case study is an extension of the HCC 

study conducted with the GO Process-defined PINs. The intention is to make new deductions 

that should be complementary with the latter. In each case study, we also compare the two 

visualization methods for their usability. 

1.2.1.4. Visualization and Analysis of Three-Overlapping Integrated Networks 

The rationale behind visualizing the three-overlapping network is that the two-overlapping 

network visualization is still not a complete view of an integrated network. Like its two­

overlapping counterpart, each sub-network in the three-overlapping network is of a distinct 
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interaction type drawn on separate planes. However, the three-overlapping network can 

come in two different representations, a parallel plane representation and a circular plane 

representation. Each captures a different biological concept model. The parallel plane 

representation captures the cascade model. This model assumes that the three sub-networks 

have a linear functional order. In other words, the interactions within network G1 will 

influence interactions within network G2 which in turn will influence interactions within 

network G3 and vice versa. The circular plane representation captures the systems model 

which assumes that the three sub-networks function co-operatively. That means the 

interactions within each network will influence those in the other two networks. Each 

representation requires a different layout when visualized. The parallel plane representation 

requires the parallel plane layout much like the one seen in the two-overlapping network 

visualization. The circular plane representation requires the circular plane layout which has 

the three planes arranged in a triangular formation. 

With two different visualization methods capturing two different biological concept 

models, a number of questions arise. With more inter-connected networks to analyse, what 

combination of networks can help the biologist to initiate the analytical process? Which 

visualization is better in assisting biological deduction? What analytical tasks can each 

visualization support? Again, we investigate these questions using E. coli and human 

networks as case studies. It is noteworthy to state that our work on the two- and three­

overlapping networks is highly experimental. Although multi-plane (or level) biological 

networks have been investigated before [14], the use of heterogeneous networks as multi­

layers has yet to be experimented. 

1.3. Research Methodology 

The research methodology followed the three-step process of design, implementation and 

evaluation. 

1.3.1. Design 

We first design a visual analysis framework that captures the biologist's practice of 

incremental investigation. We then design the visualization methods for each step of the 

visual analysis framework. The choice of visualization design is based on the concept 

models used by biologists in their analytical reasoning. Each design is intended to capture 

either a certain biological concept model or to capture two different perspectives of the same 

concept model (see FIGURE 1.3). In Chapter 3, we design the block matrix to capture the 

gene-centric view of the cell's functional organization, and the clustered bipartite graph to 

capture the network view of the same functional organization. In Chapter 4, we design the 

clustered circular layout for visualizing the GO_ Process-defined PIN. The design is intended 
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to capture the nested modular organization of the PIN. In Chapter 5, we design two methods 

for visualizing the two-overlapping network, i.e. two-parallel and three-parallel layouts. The 

two-parallel layout captures the direct mapping between the two heterogeneous bio­

molecular networks using inter-plane edges. The three-parallel layout includes an overlap 

layer that explicitly represents the nodes commonly represented by the two heterogeneous 

bio-molecular networks. In Chapter 6, we designed two methods for visualizing the three­

overlapping network, i.e. three-parallel plane and circular plane layouts. The three-parallel 

plane is designed to capture three bio-molecular networks as a path whereas the circular 

plane layout is designed to capture the same networks as a cycle. 

1.3.2. Implementation 

The drawing algorithms are implemented as plug-ins to the network visualization tool 

GEOMI [2]. All the visualizations are implemented as prototypes. For the first step in our 

visual analysis framework (see FIGURE 1.3), the prototypic implementations of GO­

annotated gene clusters generate static visualizations. This is intentionally done to satisfy the 

design requirements of the user evaluation. However, the implementations in the subsequent 

visual analysis steps become more sophisticated. For the final step in the framework, 

navigation by rotation and zooming are provided with the overlapping network 

visualizations. Case studies are performed on the implemented visualizations to evaluate 

their effectiveness as visual analysis methods. Each study involves experimenting and 

analyzing a visualization with one or more publicly available biological datasets as the input. 

Each visual analysis relates the biological deductions to the design of the visualization used. 

The overall objective here is to evaluate the merits (strength and limitations) of each design 

as a visual analysis method. 

1.3.3. Evaluation 

Of the three visual analysis steps in our framework, we conduct user evaluations on the 

prototypic implementations for the first two steps. Since clustering gene expression data 

using GO Process as a criterion has been widely practiced, we have accumulated enough 

understanding on the biologist's analytical objectives in general. This allows us to design 

analytical tasks that closely mimic those in the real life scenario, and in addition able to 

recruit a pool of biologists for the evaluation'. All these allow us to collect user performance 

data and opinions useful for deducing design guidelines. We make an additional survey on 

the same group of biologists and find that none had experience in reading PIN visualizations. 

For this reason, we conduct an expert evaluation in which the biologist will be asked to 

evaluate a GO _Process-defined PIN visualization according to a set of evaluation criteria. 

• The Human Research Ethics Committee approval number 9418. 
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They are modified from the published heuristics originally designed for evaluating pathway 

visualizations [ 135]. Because the two- and the three-overlapping network visualizations are 

relatively new, there are no biologists experienced in applying them to visual analysis. 

Furthermore, they are intended for in-depth analysis. Any analytical task will require long 

hours to complete. Hence, it is not practical for us to conduct a user evaluation. Instead, we 

rely on the case studies to provide anecdotal evidence on the usability of the two-and the 

three-overlapping network visualization. 

1.4. Contributions 

The contributions of tbis thesis fall into four areas: visual analysis, visualization methods, 

user evaluation, and analysis of hepatocellular carcinoma biology. 

1.4.1. Visual Analysis 

We made two contributions to visual analysis as follows. 

• The visual analysis framework (see FIGURE 1.3) which models after the biologist's 

practice of incremental investigation. We changed the conventional information 

visualization mantra of"overview, zoom and filter, details on demand' [141] to "filter 

first, zoom and details, overview if necessary". Using a series of visualizations with 

decreasing levels of abstraction, our framework has the advantage of guiding the 

biologist step-by-step into network exploration. Hypotheses deduced tbis way are more 

likely to be based on one or more biological concept models than on statistical scoring 

or data mining output alone. 

• The experimentation of different visualizations in each step of the visual analysis 

framework also provides an understanding on how 'design itifluences reasoning' in 

biological analysis. 

1.4.2. Visualization Methods 

In regards to visualization, we contribute new methods for visualizing bio-molecular 

networks as follows: 

• We design the clustered circular layout for capturing the 'network within network' 

organization of a GO _process-<lefined PIN (see Chapter 4). Our algorithm 

automatically generates sub-networks enclosed within cluster nodes with each cluster 

node representing a sub-cellular component. 

• We design the three-parallel plane layout as a novel method for visualizing the two­

overlapping network (see Chapter 5). The uniqueness of our design is that, apart from 

the two heterogeneous bio-molecular networks G1 and G2, the overlap layer G3 is 
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explicitly visualized in the middle plane. The node set V3 of G3 is conunonly shared by 

the node sets of Gl and G,, i.e. VI n v,. 

• We design the circular plane layout as a novel method for visualizing the three­

overlapping network (see Chapter 6). The uniqueness of our design is that the mapping 

between the three heterogeneous bio-molecular networks G~o G2, and G3 is being 

explicitly visualized as inter-plane edges. Two algorithms are designed for handling two 

possible cases. The first case is fu:ed-freefixed where G1 and G3 are drawn in a given 

layout whereas is drawn using the force-directed layout [44). The second case is free­

fixed-free where only G2 is drawn in a given layout whereas G1 and G3 drawn in the 

force-directed layout [ 44). 

Our visualization methods on overlapping networks resolve the issue of scale and visual 

complexity that arise from integrating multiple interaction types and node types in a single 

network visualization. This contribution is not only applicable to molecular networks but 

also in other domains. 

1.4.3. User Evaluation 

We also make two contributions to user evaluation. 

• We bring to the bioinformatics conununity the first set of benchmark tasks for 

evaluating usability of visualizations that display gene_ cluster-GO relationships. These 

tasks define usability in terms readability and effectiveness in assisting analytical 

reasoning. They are also designed with an understanding on how biologists interpret 

gene_ cluster-GO relationships (see Chapter 3). 

• Our experience in conducting user evaluation may inform other practitioners what 

measurements are useful for assessing user performance when the tasks involve 

analytical reasoning in a knowledge-intensive domain like biology. 

1.4.4. Analysis of Hepatocellular Carcinoma Biology 

Our contribution to hepatocellular carcinoma (HCC) biology is the hypothesis generated 

from our visual analyses (see Chapters 4, 5 and 6). Our hypothesis provides a tentative 

explanation on how the protein-based gene regulatory interactions co-operate with RNA­

based gene silencing interactions and the TGFBJ (transfonning growth factor beta)-signaling 

interactions in promoting cancer growth. This hypothesis should provide a direction to the 

cancer research conununity for future laboratory-based investigations. 



16 Introduction 

1.5. Thesis Organization 

This thesis is organized in seven chapters. In Chapter 2, the general background knowledge 

on information visual analysis, molecular network visualization, user evaluation studies, and 

systems biology is given. 

In Chapter 3, the two visual representations of GO-annotated co-expressed gene clusters 

are described. The design criteria and the drawing algorithm of each representation are 

introduced and also the case study on HCC is presented. We also present the design and 

results of the task-oriented user evaluation. These results have been presented in a 

visualization conference [54]. 

In Chapter 4, the non-clustered and the clustered visualizations of the GO Process­

defined PIN are described. The drawing algorithm for the layout of each visualization is 

introduced. The concept model of cancer biology [ 68] is introduced in the case study which 

served as a guide for our visual analysis. The HCC dataset used in Chapter 3 is re-applied to 

the case study. This is followed with an elaboration on the results of a domain expert 

evaluation. 

Chapters 5 and 6 are where we introduce the visualization problem of overlapping 

network. In Chapter 5, the two representations of the two-overlapping network are 

elaborated. The drawing algorithm for visualizing each representation is introduced. Two 

case studies are presented. The first concerns with E. coli networks in two combinations and 

the second concerns with human cancer-related networks in two combinations. The result of 

the visual analysis conducted in each case study is also presented. This work has been 

published in a bioinformatics journal [55]. 

In Chapter 6, the two representations of the three-overlapping networks, the drawing 

algorithms and the two use cases are elaborated. The first use case concerns with the 

integration of three E. coli networks. The second concerns with the integration of three 

human cancer-related networks. This work has been accepted for oral presentation in a 

visualization conference paper [56]. 

Finally, general conclusions on the research results in Chapters 3 to 6 are presented in 

Chapter 7 and so are the directions for future work. 

{End of Chapter I} 



CHAPTER 2 

Background 

"Graphics reveal Data" -EDWARD R. rum 

2.1. Information Visualization 

Visualization is the translation of data or information into graphics whereas computer-generated 

visualization is a multidisciplinary science that involves computer science, psychology, graphics 

design, and human-computer interaction. The most concise definition of visualization was given 

by Card eta/. [22]. 

'Visualization is the use of computer-supported, interactive, visual representations of data to 

amplifY cognition.' 

Its purpose is to enhance the comprehension of data and/or information by exploiting the 

human cognitive capacity in rapid visual pattern recognition [159]. Effective visualization should 

enable us to observe, manipulate, search, navigate, explore, filter, discover, understand, and 

interact with large volumes of data more effectively to discover hidden patterns [ 61]. The 

mandate of visualization research is to search for new methods for encoding data in graphical 

forms so that the human user can comprehend, navigate and manipulate the data. 

Visualization is historically divided into two categories, i.e. scientific visualization and 

information visualization [22]. Their categorization is primarily based on three criteria: 

I. Domain: Is the domain scientific or non-scientific? 

2. Data: Is the data physically based? The primacy of scientific visualization is to impart a 

visual representation to data that are measurements of physical objects, e.g. wind tunnel 

vector data. In contrast, the primacy of information visualization is to impart a visual 

representation to data that are an abstraction of information, e.g. document collections. 

3. Spatialization: Is the spatialization given or chosen? In scientific visualization, the data is 

inherently spatial because of its physical nature. Therefore, the visual representation has a 

given spatialization. In information visualization, the data involved is not inherently spatial. 

For this reason, there is the need to design a spatial topology for the synthetic visual 

representation. In this case, the objective of spatialization is often to leverage the user's 

cognitive ability to unpack information out of the visual representation. In other words, the 

spatialization is chosen rather than given [127]. 
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(a) (b) 

FIGURE 2.1. The earliest forms of visualization in biology. (a) Anatomy of the human arm drawn by 
Leonardo Da Vinci in the 16th century (circa 1510). (b) The phylogenetic tree of the animal and plant 
kingdoms. 

In summary, scientific visualization focuses on visualizing physical data that are inherently 

spatial. On the other hand, information visualization focuses on information which is often 

abstract and in many cases does not automatically map to the physical world. 

2.2. Bioinformatics Visualization 

Visualization has been applied to biology and medicine for a long time. There are examples in 

scientific visualization and also examples in information visualization. The manual drawing of the 

human anatomy was the earliest form of scientific visualization (see FIGURE 2.1 (a)) because it 

visually represents the physical and spatial structure of the human body. The drawing of the 

taxonomy in the animal and plant kingdoms is the earliest example of a combined scientific and 

information visualization (see FIGURE 2.1 (b)). It is a scientific visualization because the plants 

and animals are physical objects. It is also information visualization because the evolutionary 

relationships between the objects are a human projection. 

[n modern medicine, the most prominent examples of pure scientific visualization have been 

medical imaging. Technologies such as computerized tomographic (CT) scan, magnetic resonance 

imaging (MRI) and ultrasound scan render a visual representation of the tomographic volume data 

generated by electromagnetic emitting devices. 
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FIGURE 2.2. Visualization ofmicroarray data in the context of the Gene Ontology hierarchy using Treemap. 
Reproduced from Baehrecke 2004 [5). 

In molecular biology, the best example is the visualization of protein molecules constructed 

from X-ray diffraction data. In these examples, spatial information is crucial to the biologist's 

understanding of biology. There are a few if uncommon examples of pure information 

visualization in medicine and biology e.g. Gene Ontology visualized in Treemap [5] (see FIGURE 

2.2), and medical literature visualized in three-dimensional contour map [117] (see FIGURE 2.3). 

Rhyne [127] commented that information visualization is no less important than scientific 

visualization when it comes to genornics simply because of the qualitative and transient nature of 

the knowledge. Indeed, scientific visualization alone cannot enhance the user's understanding of 

the data generated by high-throughput technologies such as DNA microarray, protein array, and 

DNA sequencing because the spatial information inherent with the dataset has no biological 

meaning and the numerical or nominal values within the dataset are uninformative without some 

form of abstract (or contextual) data attached to it. That is because the abstract data assist the 

biologists in explaining the scientific data. In the view of this, we can give bioinformatics 

visualization a concise definition. 

' Bioinformatics visualization is scientific visualization that involves biological information 

visualization.' 

Because bioinformatics visualization contains both scientific and abstract data, it will serve as 

a tool for communicating a biological concept to the biologist and for exploring the data to the 

point where hypotheses can be formulated. Usually, the hypotheses are based on novel biological-
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FIGURE 2.3. Parallel visualization of the therapeutic chemical clusters in (I) OmniViz Galaxy in relation to 
(2) pharmaceutical citation volume in the three-dimensional contour map. Reproduced from Saffer 2004 
[ 117]. 

relationships uncovered from the visualization. This is by far the most important pre-requisite to 

biological knowledge discovery [ 117]. Therefore the mandate in bioinformatics visualization is to 

search for new methods for capturing the biologist's concept model(s) in graphical forms so as to 

enable the visual analysis of biological data [106]. The biological data here means the scientific 

data generated from experimental data collected during biological research. 

2.3. Visual Information Analysis 

Proponents of visualization argued that by exploiting human visual perception, computer 

generated images can assist users to explore and comprehend data. Indeed, human vision is very 

adapted to pattern recognition in especially pattern anomaly. The emerging area of visual data 

mining aims at leveraging this perceptual capability by mapping data to different visual 

representations. The hope is that unexpected properties of the data set will get augmented by a 

particular visual representation thereby not only to enhance the user's understanding of the 

experimental data, but also to encourage one to explore the data to the point where hypotheses can 

be formulated. This exploratory aspect of visualization is often known as visual analysis [ 143]. 

Therefore, visualization is more than just a tool for communicating information about data to the 

users. It is also a tool for generating new knowledge from data. 

Put simply, visual information analysis is the application of information visualization on 

investigative or exploratory data analysis [ 143]. Visual ana/ytics is the science of analytical 

reasoning supported by interactive visualizations as interfaces. The purpose is to highlight hidden 

patterns of the dataset so that the user can generate insights that would otherwise be impossible . 

In this sense, visual analytics can be seen as a data mining method because data mining is 

commonly defined as the extraction of patterns or concept models from experimental data [173]. 

Concept model visualization is the process of using visualization methods to make the discovered 

knowledge understandable by the human user. Because the cognitive process of extracting high-
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level potentially useful knowledge from low-level data is crucial to knowledge discovery, visual 

data exploration plays an important role in this. Furthermore, visual data exploration is especially 

useful when little is known about the data and/or the analytical objective is vague. Hence, it is of 

value as a hypothesis generation method [174]. Visual data exploration in the form of concept 

model visualization is more intuitive than statistics-based data mining methods. For this reason, it 

suits domain experts whose lack background in statistics and mathematics. 

Several researchers have outlined visual analytical frameworks that describe how users apply 

information visualization to data analysis. These frameworks share the common characteristic of 

modeling a user's participation in the visual analytical process as an iterative sequence of steps. 

Each step has a different focus and a different the level of abstraction. 

The model proposed by Card et a/. [22] put forward a high-level model of human analytical 

activity. They called it the knowledge crystallization cycle where the objective is to gain insights 

from data relative to some tasks. The analytical steps involved in this model range from 'foraging 

for data' to 'deciding or acting on the findings'. Spence [144] extended Card et al.'s model by 

specifically investigating the 'foraging for data' step in terms of visual navigation. He related 

visual navigation to cognitive activities such as concept model formation and information 

interpretation, and argued that the way users navigate, explore, and visualize a dataset will 

influence how they think about the dataset. 

The cognitive process of visual analysis has also been investigated from a task-centric 

perspective. Shneiderman [141] proposed a two-step visual analysis framework, i.e. "overview 

then detaif'. He further suggested that information visualization systems need to support seven 

tasks in order to facilitate the problem-solving process. These tasks are overview, zoom, filter, 

details on demand, relate, history, and extract. They are obviously an extension of his well known 

information visualization mantra of"overview, zoom,filter, and details-on-demand'. 

A more recently proposed framework [4] considered data analytical tasks as high-level 

knowledge-based analytical activities. Therefore, the Amar and Stasko's framework emphasized 

heavily on supporting decision making and domain learning by identifying useful relationships 

from data. It presented analytical steps that users of a visualization system would typically 

perform, e.g. complex decision making, domain learning, identifying, explaining, and predicting 

trends. However, visualization systems that employ Amar and Stasko's framework are yet to be 

seen. 

2.4. Graph Drawing and Network Visualization 

Network visualization has emerged in recent years as an actively research area in information 

visualization. In chemistry and biology, network visualization has been applied to evolutionary 

trees, phylogenetic trees, molecular interaction networks, genetic maps, and biochemical 
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pathways [175]. It is especially important to molecular biology since molecules that interact or 

regulate one another are readily visualized as a network (or graph) [32]. Therefore, one can argue 

that network visualization concerns mainly with graph drawing. 

At the simplest level, biological molecules within a single cell can be displayed as nodes (or 

vertices) and interactions can be represented as edges. The edges can be undirected or directed, 

i.e. specifying a source and a target. The biological molecules come in different types, i.e. genes 

(DNA sequences), gene products (proteins and RNA), and metabolites (glucose, pentose 

phosphates, and lipids). Thus the interactions among genes, gene products, and metabolites can be 

visualized as networks with directed or undirected edges. Directed edges are suitable for 

visualizing the flow of metabolites in a metabolic reaction or the flow of information from a gene 

regulator to the target gene which expression it regulates. Undirected edges are suitable for 

visualizing physical interactions between molecules such as protein-protein interactions. 

The visual encoding and topology of the graph can be presented in a variety of ways. Nodes 

can be represented by spheres, boxes, circles, squares, and a combination of these or none of the 

above but implicitly by their name labels. Edges can be displayed as straight line, Bezier curves, 

and etc. Additional information on a node or an edge can be represented by using the properties of 

visual entities such as colour and size or using text labels positioned next to the node or the edge. 

A network can be drawn on a two-dimensional plane or in a three-dimensional space. A 

combination of these visual design elements forms the visual representation of a network [ 49]. 

After deciding on the visual representation needed, the next question to be resolved is how to 

automatically position the nodes and edges in a readable form (layout). The layout of a graph is 

the geometrical mapping of the nodes and edges onto a two-dimensional plane or three­

dimensional space. The choice of layout often determines how comprehensible the graph is to 

human cognition. Different applications may require different layouts and therefore different 

criteria for determining whether the layout is good or bad. These criteria are appropriately called 

aesthetics criteria. There have been a few general aesthetics criteria applicable to a wide range 

of graph drawing [176]. They are listed as follows: 

I. Crossing minimization 

2. Bend minimization 

3. Area minimization (2D layout) 

4. Volume minimization (3D layout) 

5. Good angular resolution 

6. Total edge length minimization 

7. Symmetries maximization 
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FIGURE 2.4. Visualizations of the yeast protein interaction network using (a) two-level circular layout, and 
(b) hub-satellite spherical layout. Reproduced !Tom Lee and Megeney 2005 [90]. 

Not all of these criteria are important to the layout of every biological network. For example, bend 

minimization will be more important than area minimization to the graph layout of metabolic 

network because the emphasis is on the flow of metabolites through a series of reactions. It is 

easier for the human eye to follow an edge with only a few or no bends than one with frequent 

zig-zags. 

In large scale graphs containing a few thousand nodes and edges, it is difficult to satisfy more 

than one criterion simultaneously because the criteria may contradict each other. More evaluation 

on the aesthetics criteria of graph drawing in the field of bio-information visualization is required. 

To date, most bioinfonnatics tools automatically draw static layouts of networks that roughly fall 

into three categories: circular layout, force-directed layout, and hierarchical layout. The fourth 

category known as the multi-plane 2.50 layout has not yet been widely used and is in an 

experimental stage for bioinfonnatics applications. 

2.4.1. Circular Layout 

In its simplest fonn, each node is placed on the circumference of a circle and edges are drawn as 

straight lines. The drawing algorithm consists of three basic steps: 

I. Crossing reduction: This step computes the ordering of the nodes such that the number of 

edge crossings is minimized [ 1 0]. 

2. Node positioning: This step assigns the XJI-coordinates to every node such the nodes are 

arranged in a circle. 

3. Edge drawing: This step draws the edges, usually straight lines, between nodes. 
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A more complex variation is the concentric layout [140]. Each concentric level contains nodes 

with a higher degree than those in the adjacent outer level. As a result, nodes with the lowest 

degree are being arranged in the innermost level and the ones with the highest degree are being 

placed on the outermost level (see FIGURE 2.4(a)). The purpose is to expose the highly connected 

nodes within the network while revealing their connection with the rest of the network. This 

approach is particularly suitable for representing scale-free networks, e.g. canonical proteome and 

metabolic networks. Its limitation is that substantial edge crossings may occur in large-scale 

networks and will make identifying k-neighbours per node difficult. 

The three-dimensional variation of the circular layout is the concentric hemispheres [90]. The 

nodes are being ranked by their node degrees and divided into three groups. Nodes within each 

group are being placed on the surface of three concentric hemispheres. The nodes with the highest 

range of node degrees are being placed on the outermost layer whereas those with the lowest 

range of node degrees are being placed on the innermost layer (see FIGURE 2.4(b)). This layout 

also has the advantage of separating the high degree nodes from the low degree ones while 

reducing edge crossings. Its limitation is the occlusion formed by the aggregation of high degree 

hubs. 

2.4.2. Force-directed Layout 

This method models the nodes in an undirected graph as repelling charged balls. This is the 

repelling force. In order to limit the distance between the repelling nodes, the edges in the graph 

are modeled as springs. This is the attraction force or the spring force [177]. The original force­

directed algorithm now known as spring embedder was proposed by Eades [44]. Given an 

undirected graph G = (V, E), let p=(pJ~vbe the vector of node co-ordinatesp, =(x,,y,). 

Eades' algorithm (44] defines the repelling force between every pair of non-adjacent nodes 

u,v E Vas: 

liP,-P,ll'. p,p, 

where c8 is the repulsion constant, liP,- P,ll is the length of the difference vector p,- p, 

which is the Euclidean distance between positions p, and p, and p,p, is the unit length vector 

P,- P. pointing from p, top,. 
liP,- P.ll 

The edge connecting the pair of non-adjacent nodes u, v E V is modeled as the spring force which 

is defined as: 
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IIP.-P,II-
J,p,inJP •• p,)=c~·log , ·P,Pu 

where c~ is the constant controlling the strength of the spring, I is the natural length of the spring. 

The placement of the nodes is computed iteratively until force equilibrium is attained when the 

spring force and the repelling force almost cancel out each other. 

Force-directed layouts are ubiquitous in visualization tools because of their ease of 

implementation. One limitation of force-directed algorithms is that they require O(n2
) time to 

attain equilibrium where n is the number of nodes. For this reason, some implementation allows 

users to terminate the algorithm at will. Yet its biggest limitation is poor predictability. Repeated 

running of the algorithm does not necessarily generate the same layouts, therefore, demanding the 

reconstruction of a new mental model on the user's part. At the large scale, the force-directed 

layout algorithm generated the 'hair ball' effect typically seen in many PIN visualizations [148]. 

2.4.3. Hierarchical Layout 

The hierarchical layout is used for directed graphs. A hierarchical graph is a graph that exhibits a 

hierarchy of parent-child relationships. Because the nodes within the hierarchical graph are 

organized into a hierarchy, they can be drawn on k-levels such that the hierarchy is displayed as a 

series of parallel and horizontal levels [149]. Each inter-level edge represents the parent-child 

relationship between two nodes. The drawing algorithm usually consists of four main steps: 

I. Level assigmnent: This step assigns each node with a y-coordinate. The node set within each 

level has a distinct y-coordinate to ensure the clear separation of levels. 

2. Crossing minimization: This step computes the ordering of the nodes in each level such that 

the number of inter-level edge crossings is minimized or otherwise reduced. This is usually 

done by examining adjacent levels and the inter-level edges (see below). 

3. Node positioning: This step converts the node ordering of each level into x-coordinates. 

4. Edge drawing: This step draws the edges, usually straight lines, connecting nodes within 

different levels. 

For step 2, one commonly used method is the barycenter heuristic which is also called averaging 

[ 149]. Because it is easy to implement, linear time complexity, and generally gives good results, 

the barycenter heuristic is a very popular crossing minimization method. Given a bipartite graph 

G = ( V~o V2, E) in which u E V, and v E V2 , the position of the node u is defined as the average of 

the x-coordinates of its neighbours N(u) where N(u) := {v: {u, v} E £}. The barycenter score of 

node u can be computed as the follows: 
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where pos(v) is the relative ordering node v. The nodeset V1 is then sorted by the barycenter 

scores. For every node u, its barycenter can be computed in O(N(u)) time. Hence, the barycenters 

of all nodes can be computed in linear time. 

The greatest strength of the hierarchical layout is the clear layout of the parent-child 

relationship structure between objects. However, visual complexity due to edge crossings 

increases with the number of nodes in each level. 

2.4.4. Multi-Plane (or Level) 2.5D Layont 

All the above layout methods discussed so far are used for 20 graph drawings. These methods 

tend to have one or more of the following limitations: 

I. Lack of scalability: 20 layouts can at best accommodate a few thousand nodes without 

running into two constraints. The first is computational efficiency. The runtime of the 20 

layouts becomes increasingly prolonged with the increase in the number of nodes and edges 

by an order of magnitude. The second is visual complexity. The inclusion of over ten 

thousand nodes in a graph will be cluttered due to the high levels of edge crossing and node 

overlaps. This will certainly reduce readability making it difficult to recognize patterns and 

inhibiting good insight on the data set. 

2. Restricted capacity for domain complexity: There are certain network properties pertaining to 

a particular knowledge domain that requires multiple visual encoding and multiple layout 

conventions. Molecular biology is a knowledge intensive domain. It is difficult to produce a 

readable biological network that has multiple glyphs for representing different types of 

molecules and multi-colour edges for representing different types of interactions between 

molecules (also see section 2.6.5). 

The 2.50 multi-plane layout resolves the limitations of 20 layout by using a divide-and-conquer 

approach [183]. A graph (or network) is first divided into a series of sub-graphs (or sub-network), 

and then each sub-graph is drawn on a separate plane using one or more of the 20 layout methods 

listed in the previous sections. In general, the drawing algorithm consists of four steps: 

I. 

2. 

Graph partitioning: This step partitions a graph G into a set of sub-graphs Et- : I ,;; i ,;; m ·. ' . 

Sub-graph drawing: This step draws each sub-graph G,, for each i in the range 1 ~ i,;; m, on a 

plane P, using a certain 20 drawing algorithm. 

3. Plane arrangement: This step arranges each plane P, in a 30 or 2.50 formation by satisfying 

some chosen criteria. 
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4. Inter-plane connection: This step draws all the edges in between planes. 

This algorithm is very flexible since arbitrary choices can be made according to some domain 

knowledge or computational optimization criterion. For step I, the appropriate partitioning can be 

determined by the domain application. In molecular biology, this partitioning can be determined 

by the functionality of different molecular interaction networks. Otherwise, graph partitioning can 

be a classic optimization problem, e.g. finding triangular motifs, finding minimum cuts, or a 

balanced partitioning. In most cases, such problems are NP-hard. However, linear time heuristics 

are available [ 184, 185]. For step 2, one can select a preferred 20 graph drawing algorithm based 

on the application domain [176, 186]. For step 3, some criteria are involved. For example, the 

number of planes should be kept to the minimum. Otherwise, the visualization will lose its 2.50 

attitude. The other criterion is to avoid intersection between planes. There is also the need to 

minimize inter-plane edge crossing, i.e. where at least one crossing edge has endpoints in two 

different planes. In the same theme, one can also consider other criteria such as minimizing the 

total inter-plane edge length in the drawing. 

The time complexity of the multi-plane layout algorithm depends on the time complexity of 

the method chosen for each step. At present, multi-plane layout is not generally available in 

visualization tools but has been experimented successfully on metabolic networks [14, 187]. 

2.5. Visualization of Gene Expression Pattern 

The existing methods for visualizing gene expression data generated from microarray 

technologies come in four main approaches. 

Visualization of gene expression patterns. This is the visualization of the data pattern as an 

output of a certain clustering algorithm. The resulting visual pattern is entirely determined by the 

grouping of gene expression values. The aim is to assist the biologist in the task of identifYing 

groups of co-expressed genes and groups of differentially expressed genes throughout a series of 

experimental conditions or time points. 

Contextual visualization of gene expression. This is the visualization of gene expression data 

being mapped to the restricted controlled vocabulary schema curated by the Gene Ontology 

Consortium [60]. 

Visualization of gene co-expression network. This is the visualization of gene expression data 

that have been filtered according to a statistical correlation score, e.g. Pearson correlation. 

Visualization of gene expression in molecular networks. This is the visualization of a 

biological network being overlaid with gene expression data. 
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FIGURE 2.5. Visualization pipeline for mapping data to a network representation and then visualizing the 
network as a picture. 

Of the above approaches, the last three employs variations of the visualization pipeline shown in 

FIGURE 2.5. It is a process for mapping abstract data to a visual representation and broadly 

involves two essential steps. The first is the analysis step which extracts an information model 

from the abstract data. This infonnation model can be a type of ontology schema or a type of 

graph-theoretic representation. The second is the visualization step which generates either a non­

graph or graph visualization. In the following sub-sections, the methods used in each approach 

and the strength and weaknesses of each will be elaborated. 

2.5.1. Visualization of Gene Expression Patterns 

By far, the earliest visualization method and the most widely used is the 'dendrogram + colour 

matrix' (see FIGURE 2.6). ln order to give the colour matrix a visible pattern, the dataset is 

analysed with a data mining algorithm and gene expression profiles arc organized into a 

' dendrogram + colour matrix'. A gene expression profile is the vector of gene expression values 

represented by each column on the matrix. The colour matrix is being used to visualize clusters of 

similar expression profiles whereas the dendrogram indicates the degree of similarity (or distance) 

between clusters. 

The underlying data pattern for the ' dendrogram + colour matrix ' visualization is usually an 

output of the hierarchical clustering algorithm [145]. Other data mining algorithms, e.g. Spearman 

correlation, Pearson correlation, and Self-Organising Map have also been used [ 145]. This 

approach basically employs the visualization pipeline shown in FIGURE 2.5 and is predominant 

among microarray analysis applications. It is particularly strong in presenting an overview on the 

hierarchical and modular structure of the gene expression pattern, and makes full use of the 

available screen space. 

Many colour matrices provide interactions to facilitate exploration. For example, a brush over 

on a colour spot in maxdView [67] can show the corresponding expression value and gene 

symbol and a click on the right mouse button on the same spot can trigger a menu that provides 

hyperlinks to public databases. 
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FIGURE 2.6. Visualization of microarray data using dendrogram+ colour matrix. Reproduced from Chen et 
al. 2002 [29]. 

The 'dendrogram + colour matrix' visualization has four limitations. 

l. The visualization is stronger in revealing positive correlations than is otherwise because the 

immediate neighbour of each expression profile is always the one with the highest similarity 

scoring and the same trend applies on the cluster level. In other words, it is easier for users to 

identify clusters of positively co-expressed genes rather than the opposite. 

2. Given the same dataset and the same hierarchical clustering algorithm, the resulting 

dendrogram can be drawn in 2""1 ways. Thus the order of the clusters within the dendrogram 

can vary from one instance to another. 

3. The drawing of the dendrogram next to the colour matrix leads to the misinterpretation that 

all clusters are non-intersecting [133]. 

4. Colour hue is not the best visual encoding for nwnerical data because hue variation at the 

extreme ends of the data range is often too subtle to be detected by human vision. Rather, 

size and length coding is more effective. 

The latest visualization on the clustered gene expression pattern is the bicluster visualization in 

the force-directed layout [133]. It resolved one of the limitations seen with the 'dendrogram + 

colour matrix ' visualization, i.e. the lack of explicit visualization of multiple intersecting clusters. 

The visualization resembles a zone graph [88, 109] with each semi-transparent cluster node 

containing a node set of genes and a node set of experimental conditions (see FIGURE 2. 7). They 

are visually represented in different glyphs. If the same node belongs to multiple clusters, it is 

visually represented by overlap nodes (also called hub nodes) and is positioned in the intersection 

areas of the cluster nodes (see FIGURE 2.7). Instead of using the convention of colouring gene 

nodes in green for representing down-regulated genes and colouring in red for representing up­

regulated genes, the minus and plus signs are used as node labels. The bicluster visualization 

therefore provides a more readable and aesthetic visual representation of the gene expression 
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pattern than the conventional 'dendrogram + colour matrix ' visualization. It also enhances the 

biologist's analytical reasoning by explicitly visualizing overlap nodes. Gene nodes that belong to 

multiple clusters can potentially be gene regulators which may regulate multiple groups of genes 

[ 133]. 

2.5.2. Contextual Visualization of Gene Expression 

The visualization of Gene Ontology (GO) is truly a type of information visualization since it is a 

controlled vocabulary that describes the accumulated human knowledge on every discovered 

gene. Visualizing rnicroarray dataset in GO-annotated clusters is therefore valuable to biologists 

because it provides the means for identifying sets of genes that share the same biological 

process(es). The overlaying of gene expression correlation values on GO-annotated clusters 

further assists the identification of functioning biological processes. Such an analytical task is 

based on the biologist's presumption that genes involved in the same biological process arc more 

likely to be highly correlated in their expression level. Biologists called this type of gene 

expression dynamics as gene co-expression [147]. 

FIGURE 2.7. Visualization m1croarray data on yeast gene expression profiles. Two groups 
can be seen at the (I) top and (2) bottom, and (3) a small number of genes connecting both groups. Subsets 
of nodes are clustered together in (a) three, (b) four, or (c) six biclusters. Circular nodes represent genes and 
square-shaped nodes represent experimental conditions. Reproduced from Santamaria et al. [ 133]. 
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The visualization pipeline employed here is basically the same as that shown in FIGURE 2.5 

except the information model is GO instead of a molecular network. To date, the visualization 

generated by microarray analysis tools such as GenMapp [ 41, 131] and GOTree [ 171] are 

predominantly dendrograms and the n:m gene-GO relationships are often obscured (see FIGURE 

2.8). Furthermore, as a one-dimensional solution, dendrograms can not present intersecting 

clusters where the same set of genes is associated with more than one ontology terms [82]. 

HTP-GOMiner™ [ 169] and Exploratory Visual Analysis [ 125] provide visualizations of the 

gene-GO and gene_cluster-GO relationships respectively while hiding the parent-child 

relationships between GO terms. The cluster map presented in HTP-GOMiner™ is a form of 

colour matrix designed to represent individual gene-GO relationship. The cluster pattern is 

formed by the aggregation of red coloured squares with no clear cluster boundaries (see FIGURE 

2.9(a)). Exploratory Visual Analysis (EVA) is another form of colour matrix (see FIGURE 2.9(b)). 

The global cluster pattern is formed by a series of clearly bounded GO-annotated clusters 

arranged in a grid layout. Within each cluster is a matrix of nodes representing the subset of 

genes. Co-expressed genes are the nodes that share the same colour hue. In EVA, the m:n gene­

GO relationship is being visualized as a I: I relationship leading to the same gene being drawn 

into multiple clusters. Therefore, unlike GOMiner™, the visual semantics of EVA is GO-centric 

rather than gene-centric. 

The GO hierarchy has also been visualized as Treemaps (see FIGURE 2.2). Treemap is a space­

filling visual representation designed for visualizing hierarchies. Each GO-annotated gene cluster 

is visually encoded as a rectangle with an area proportional to the cluster size, i.e. the number of 

member genes [5]. Each cluster is a leaf node in the GO hierarchy. Biologists can also gain a 

global view on the differential expression of biological processes by overlaying correlation scores 

on to the Treemap. The limitation of using Treemap is that the GO schema is a directed acyclic 

graph. Yet Treemap is designed for visualizing hierarchical data. Therefore an extra data 

processing step that maps the GO schema to a hierarchical structure is required. As a result, any 

n:m gene-ontology relationships are lost in the mapping process. Nevertheless, Treemaps are 

better than dendrograms because it preserves the biologist's modular view of molecular biology. 

More importantly, the treemap captures the 'module within module' structure of a molecular 

biological system. Using treemaps, biologists can distinguish between up-regulated and down­

regulated biological processes easier than reading dendrograms. 

An alternative to Treemaps is the Venn diagram [82]. Similar to the Treemap, each GO cluster 

is visually encoded as a distinctly coloured polygon with an area directly proportional to the 

cluster size. Both Venn diagram and Treemap do not explicitly display the gene nodes in each 

cluster but that is where their similarity ends. The Venn diagram presents genes shared by 

multiple GO clusters as intersections between polygons (see FIGURE 2.10). 
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FIGURE 2.9. Visualization of the gene-GO relationship in (a) GOMiner™. Reproduced from Zeeberg 2006 
[ 169), and (b) Exploratory Visual Analysis. Reproduced from Reif2005 [125) . 
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The intersecting area is again directly proportional to the number of overlap gene nodes. As 

such, the Venn diagram is better than the Treemap in revealing the complex inter-dependency 

between GO clusters, especially if each cluster represents a biological process. As an example, 

FIGURE 2.1 O(a) shows the biological processes that are up-regulated in pancreatic ductal 

carcinoma when compared to normal pancreatic duct cells. The intersection of the ontology term 

"regulation of cell cycle" with the two other terms "response to wounding" and "GTPase activity" 

suggested that a malfunctioning signal transduction process that bas a functional role in wound 

healing could be the cause. 
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FIGURE 2. 1 0. Visualization of differentially expressed gene clusters in Venn diagram. (a) GO Process­
annotated gene clusters that are up-regulated in pancreatic ductal carcinoma compared to normal pancreatic 
cells, and (b) gene clusters that are down-regulated. 

The Venn diagram also bas its limitation. It collapses the parent-child hierarchy of a particular 

class of biological processes to a set of overlapping clusters. FIGURE 2.1 O(b) shows the biological 

processes that are down-regulated in pancreatic ductal carcinoma. The sets in each cluster belong 

to a single class of biological processes and there are no intersections between any of the clusters. 

For example, the cluster on the top left-band comer contains four intersecting sets of genes all 

belonging to ontology hierarchy of the nucleotide binding biological process. The term 

"nucleotide binding" is the parent of "purine nucleotide binding" which in turn is the parent of 

"ATP binding". The intersection here simply represents genes that have been fully annotated in all 

levels of the "nucleotide binding" hierarchy. Since many biological processes such as DNA 

transcription, ion channel activity, protein degradation, glucose metabolism and etc, require "ATP 

binding" to function, the significance of down-regulated "ATP binding" could not be understood 

unless it intersects with some other biological processes. 

2.5.3. Visualization of Gene Co-expression Network 

In distinction to a dendrogram generated by hierarchical clustering in which a given gene can 

have at most one neighbour, any given gene in a graph-theoretic representation can have multiple 
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neighbours [ 1 00]. It is also easier to integrate qualitative information, e.g. gene ontology and gene 

names, with graphs. 

One visualization of the gene expression pattern as a network is the co-expression network 

[ 130]. Each gene is visually represented as a node. Each edge representing co-expression is 

encoded as a coloured line. Positive co-expression is represented by red colour whereas negative 

co-expression is represented by green colour. To impart biological meaning to the network, the 

gene nodes can be clustered using GO terms as a criterion. The result is a network visualization of 

GO-annotated co-expressed gene clusters. 

FIGURE 2.11 . Visualization of the gene co-expression network in the circular layout. Reproduced from 
Rougemont 2003 [ 130]. 

In terms of layout, the gene co-expression network has been drawn using the circular layout 

[130]. Each cluster of gene nodes is being arranged in a circular layout (see FIGURE 2. 11). In 

terms of interactivity, users can isolate a particular cluster in a separate window by 

simultaneously pointing and clicking each node. Zooming mechanism is provided so that the 

biologist can inspect the network at different level of details. Although over-represented GO 

terms are being displayed within each cluster, it is difficult for the biologists to tell which subsets 

of genes are related to which particular GO term because the labels arc being displayed at the 

centre of each cluster. When more than five GO labels are being displayed, label overlaps are 

frequently observed. Hence the clustered gene co-expression network visualization is good for 

displaying intra- or inter-cluster gene co-expression, but very limited in presenting the gene-GO 

relationship. 
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(d) 

FIGURE 2 .12. Visualization of the metabolic network (MN) in (a) the bipartite graph representation with an 
orthogonal layout. Reproduced from KEGG [79], (b) the tripartite graph representation. Reproduced from 
Christensen 2007 [32], {c) the hierarchical clustered graph. Reproduced from Ho 2005 [187], and (d) the 
temporal dynamics visualization of glycolysis in parallel planes. Reproduced from Brandes 2004 [14]. 
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2.5.4. Visualization of Gene Expression in Molecular Networks 

In this approach, expression data is being overlaid onto a graph-theoretic model representing a 

molecular network. This is a variant of the visualization pipeline shown in FIGURE 2.5 in which 

two sets of data are required, the gene expression data and the molecular network data. Here the 

molecular network data, which is available from public data sources, is mapped to the graph­

theoretic model. This model is in turn visualized as a network. The gene expression data or gene 

expression correlation scores are usually represented by node colour hues. Because there are a 

variety of methods for visualizing molecular networks, this subject is presented in a separate 

section. 

2.6. Visualization of Bio-Molecular Networks 

Metabolic network, protein interaction network, gene regulatory network, and signal transduction 

network are the most commonly visualized in molecular biology. In this section, visualization 

methods applied to these molecular networks are introduced. 

2.6.1. Metabolic Network 

A metabolic network (MN) is the entire collection of metabolic reactions within a single cell. 

Metabolic reactions are a combination of anabolic and catabolic reactions. In an anabolic reaction, 

new chemical compounds are created and energy is being consumed in the process. In a 

catabolic reaction, chemical compounds are being degraded and energy is being released in some 

processes while being consumed in others. 

From the biological point of view, the representation primacy of a metabolic network is the 

flow of metabolites. Biologists often call a particular network path which metabolizes a certain 

class of compounds as a metabolic pathway. In practice, MNs are most commonly visualized as 

directed bipartite graphs in which one node set represents the metabolites and the other node set 

represents the metabolic proteins called enzymes [14]. It also contains an edge set representing 

metabolic reactions. One directed edge connects a metabolite node to an enzyme node and a 

second directed edge connects an enzyme node to another metabolite (see FIGURE 2.12(a)). This 

approach has the advantage of separating the metabolites that commonly react with most enzymes 

from those that react specifically with a small set of enzymes. 

To distinguish between metabolite nodes and enzyme nodes in the bipartite graph, they are 

often represented as different glyphs. For example, the metabolite nodes can be represented as 

circles and the enzyme nodes as squares [63, 73]. In terms of visual representation, bipartite 

graphs belong to the 'connectivity + context' category. The context here means the temporal flow 

of metabolites through the network and the inter-connections between metabolic pathways. 

However, a bipartite graph of over 1000 nodes and edges is cognitively challenging for the 

biologist to comprehend. 
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Another visual representation for MNs is the weighted tripartite graph [32] but is seldom used. 

It contains three node sets representing the metabolites, the metabolic reactions, and enzymes 

respectively. It also contains two directed edge sets representing metabolite flow and enzyme 

catalysis. For the metabolite flow, each directed edge connects the metabolite node to the 

metabolic reaction node. For the enzyme catalysis, each directed edge connects the enzyme node 

to the metabolic reaction node (see FIGURE 2.12(b)). 

The visual encoding required for the tripartite graph visualization is more complex than its 

bipartite graph counterpart. Three types of glyphs are needed for representing the three node types 

and two edge formats for representing the two edge types. For example, the metabolite nodes can 

be represented as circles, the enzyme nodes as squares and the metabolic reaction nodes as ovals. 

The metabolic flow can be represented by solid lines whereas the enzyme catalysis can be 

represented by broken lines (see FIGURE 2.12(b )). 

The greatest strength of the tripartite graph over its bipartite graph counterpart is the explicit 

visualization of the metabolic reaction equation as a node label (see '2A + B --> C' in FIGURE 

2.12(b)). This greatly reduces the biologist's cognitive loading since there is no need for him/her 

to cognitively extract a mental picture of a certain metabolic reaction from the visualization. The 

same task is necessary with the use of the bipartite graph visualization. 

The limitation of MN visualizations, regardless of the visual representation, is the lack of 

explicit display of the enzyme-enzyme interactions. These are the specialized protein-protein 

interactions that mediate all metabolic reactions [83]. In terms of layout, the KEGG layout is 

commonly used which resembles the orthogonal layout [79] (see FIGURE 2.12(a)). Force-directed 

layout has also been used but is mainly for exposing the high degree hubs in the MN [6]. 

By far, the most novel layout is the multi-plane layout in 2.5D. One design is the hierarchical 

clustered graph on multiple planes. This method has been experimented on the metabolic network 

to visualize its modularity and the relationship between modules [ 187]. The visualization shows 

the metabolic pathways involved in glucose metabolism from the KEGG database (see FIGURE 

2.12(c)). The top plane contains the glycolysis and gluconeogenesis network. The networks on the 

next plane are those that are directly connected to the glycolysis and gluconeogenesis network. 

The networks on the furthest plane at the fourth level are the most distant from the glycolysis and 

gluconeogenesis network. At this level, all the networks are involved in amino acid metabolism 

(see FIGURE 2.12(c)). Another design is have a series of networks stacked in parallel planes (see 

FIGURE 2.12( d)). Each plane represents a time point and the network drawn on each plane 

represents the glycolytic metabolic network at that time point. The resulting supergraph shows the 

changing topology of the same metabolic network as a representation of the temporal dynamics of 

glycolysis [14]. 
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2.6.2. Protein Interaction Network 

A protein interaction network (PIN) is the collection of all physical interactions between proteins. 

The most basic graph representation of a protein interaction network is an undirected graph and 

most commonly drawn using the force-directed layout [52]. This method produces readable 

network visualization up to a few hundred nodes. For a full-scale PIN of an organism that 

typically has several thousand nodes, the force-directed layout gives the 'hair ball' appearance 

which makes the visualization unreadable [148]. 

To resolve the limitation of the force-directed layout, an alternative layout for visualizing 

medium to large PINs called the large graph layout algorithm has been proposed [!]. This 

algorithm uses a tree as a guide to determine the order in which nodes are included in the spring 

force calculation. Nodes from a single connected network are laid out iteratively starting with a 

root node and incorporating additional nodes as guided by a minimum spanning tree of the 

network. The minimum spanning tree is defined as the minimum edge set necessary to keep the 

network connected and the sum of all the weights of the edges is minimized, where each edge is 

weighted by its associated statistical significance score. The statistical significance score is the 

calculated by the sequence comparison program BLAST [91]. 

The resulting visualization positions the largest connected component that has the highest edge 

density at the centre of the network drawing. An example of the large graph layout visualization is 

the protein homology network constructed by comparing 40 different bacterial genomes [I]. The 

visualization contains Ill ,604 protein nodes and I ,912,684 protein-protein interaction edges 

organized in 11,516 connected components (see FIGURE 2.13(a)). More importantly, the largest 

connected component at the core of the PIN visualization consists of clusters of essential proteins. 

Each cluster represents a biological process that is important to cell viability (see FIGURE 2.13(b) 

and (c)). Hence the large graph layout represents the self-organization property of the PIN that is 

natural to bacterial species. 

PIN has also been visualized in the two-level circular layout [ 140] in which the low-degree 

nodes are in the inner level and the high-degree nodes are being arranged on the outer level (see 

FIGURE 2.4(a)). This approach has the advantage of separating the protein hubs from the sparsely 

connected proteins while the connectivity between the two remains clearly displayed. Node 

overlapping frequently seen in the force-directed layout is also resolved in the circular layout 

since all nodes are arranged side by side along a circular circumference. However, the substantial 

edge crossings in the centre space can make identifYing k-neighbours per node difficult (see 

FIGURE 2.4). This limitation can be compensated by adding interactivity, e.g. highlighting 

neighbours by brushing the pointer over a certain node. The three-dimensional version of the two­

level circular layout is the Satellite-Hub layout [90] (see FIGURE 2.4(b)). 
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(a) 

FIGURE 2. 13. Visualization of full-scale protein interaction network common to 40 bacterial species in the 
large graph layout. (a) Overview of the PIN. The largest connected component is bound by the red box. 
(b) A zoom in view of the largest connected component representing 30,727 proteins. (c) Specific protein 
complexes in the largest connected component are shown. Reproduced from Adai 2004 [I]. 
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FIGURE 2.14. Visualization of the protein interaction network generated by the Cytoscape plug-in Cerebral. 
Each parallel partition represents a cell component. Reproduced from Suderman 2007 [ 148). 
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FIGURE 2. I 5. Visualization of the mouse protein interaction network using the betweenness fast layout 
(BFL). The size of the blue nodes corresponds to the magnitude of the node betweenness centrality. 
Reproduced from Hashimoto 2009 [71]. 

The greatest strength of this layout lies in being able to expose the protein interactions between 

high-degree nodes. These nodes are thought to represent proteins that coordinate the activities of 

various biological processes and are crucial to the viability of the living cell. 

Recently, a number of layouts for PIN visualizations have been published. They share the 

common design criterion of accounting for biological knowledge in the layout. One approach 

takes biological ontology into account, e.g. the visualization of a PIN in a parallel level layout [7]. 

Each level defines a partition that represents a cellular component or a biological process (see 

FIGURE 2.14). With each partition, member nodes and edges presenting protein-protein 

interactions are drawn. This approach provides with the biologist a clear visual separation of 

proteins by their ontological classification, but is only suitable for visualizing PINs with a few 

hundred nodes. The other approach uses the biological significance of node or edge betweenness 

centrality as a layout optimization criterion. 

In PIN, a high node betweenness centrality is often associated with bottleneck proteins, and 

systems biologists have been suggesting that the expression of these proteins fluctuate more 

frequently than others [ 168]. On the other hand, a high edge betweenness centrality is often 

associated with hubs that are central to other hubs. Systems biologists often associate such hubs as 

essential proteins [75]. Given that betweenness centrality is useful in identifying functionally 

important proteins, the betweenness fast layout algorithm (BFL algorithm) optimizes the 

positioning of high-betweenness nodes (see FIGURE 2.15) [71]. For a PIN with n nodes, BFL 

algorithm can achieve 0(n2
) runtime when only edge crossings minimization is considered, and 

O(n log n) runtime when only edge length and edge density minimization are considered. 
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fiGURE 2.16. Visualization of the gene regulatory network (GRN) in two different layouts. (a) The human 
microRNA GRN in the hierarchal layout. Reproduced from Shalgi 2007 [138]. (b) The£. coli GRN in the 
Kamada-Kawai layout. Reproduced from Wong 2006 [164]. 

The limitation of this algorithm is that, at present, only biologists who arc studying networks will 

understand the meaning of the node and edge betweenness. In this regard, the current biological 

knowledge is mostly projected from the yeast PIN. It is not clear whether the same understanding 

on the biological meaning of node and edge betweenness is projectable to human PIN or to other 

networks such as the MN. These are biological problems yet to be investigated. 

2.6.3. Gene Regulatory Network 

A gene regulatory network (GRN) is a collection of gene-gene interactions. It is often visualized 

as a multi-level hierarchal graph in the parallel level layout [ 149]. The nodes at the top level 

represent the master gene regulators which connect to their target genes at the lower level with a 

directed edge. Directed edges are particularly important to the visualization of regulatory 

networks because they present the control flow through the regulatory hierarchy (see FIGURE 

2.16(a)). 

GRN has also been visualized in a force-directed layout [78] but this approach does not 

explicitly separate the master regulators from their target genes by level assignment (see FIGURE 

2.16(b )). Instead, high degree nodes tend to localize near the centre of the network. To identify 

the master regulators, the biologist bas to exercise his/her reasoning that high degree nodes are 

more likely to be the master gene regulators. This path of reasoning is applicable only to bacteria 

because their GRNs contain few master regulators. For example, half of the E. coli genes are 

directly regulated by only seven master regulators [101]. The same is not true in multi-cellular 

organisms such as humans. In the human GRN, high degree nodes are not necessarily master gene 

regulators but could be co-factors, i.e. co-activators or co-repressors. 
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FIGURE 2.17. Visualization of the human signal transduction network (STN) in two different layouts. (a) 
The human STN in the hierarchal layout with orthogonal edge routing and (b) in the orthogonal layout. 
Reproduced from Raza 2008 [123]. 

They are proteins which interact with the gene regulators in order to facilitate the gene regulatory 

process [83]. Therefore the force-directed layout is not always the most effective visualization for 

biological analysis. 

2.6.4. Signal Transduction Network 

A signal transduction network (STN) is a collection of specialized protein-protein interactions 

which serve the purpose of signal relay and propagation. As with the GRN, STN is a directed 

network in order to account for the flow of signals. Therefore the visualization methods 

applicable to GRN can also be applied to the STN. For example, human STN bas recently been 

visualized in the hierarchal layout [ 123] (see FIGURE 2.17(a)). Another approach is the orthogonal 

layout [123] (see FIGURE 2.17(b)). Both approaches provide a readable view on the directional 

flow of an STN. STN has also been visualized in the force-directed layout [34]. This approach is 

effective in exposing signaling hubs, i.e. nodes that have relatively high node degrees in a 

network of several hundred nodes [34]. Biologists can identify which hubs are convergent points 

and which are divergent points based on the combination of incoming and outgoing edges to and 

from the hub respectively. 
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FIGURE 2.18. Visualization of the human mitogen-activated kinase signal transduction network generated 
by PATIKA [42]. The visualization contains different types of nodes and edges. Oval nodes represent 
proteins. Hexagonal nodes represent metabolites. Square-shaped nodes represent common molecular 
functions. Rectangular nodes with round comers represent cluster nodes containing a protein complex. 
Undirected edges represent physical interactions (blue colour). Directed edges with solid arrows represent 
signaling interactions (blue colour). Directed edges with hollow arrows represent metabolic reactions (green 
colour). Rectangular nodes bound by dotted edges represent biological processes. Rectangular nodes bound 
by solid light blue edges represent cell components. 

However, edge crossings in the force-directed layout often disrupt the directional flow displayed 

in the visualization and reduce the effectiveness of this layout as a visual analysis method. 

2.6.5. Integrated Network 

An integrated network is one that combines different types of bio-molccular interactions. There 

have been very few examples of integrated networks which display multiple interaction types in 

one network visualization. The motivation is often based on the rationale that just visualizing a 

single interaction type fails to capture the biological reality. The reality is that biological 

processes usually involve more than one interaction type. Therefore, an integrated network which 

captures multiple interaction types should enhance biological analysis. 

To date, only a few studies have been done on the automatic visualization of integrated 

networks, such as the Patika system [ 42] (see FIGURE 2.18). The challenges in visualizing 

integrated networks are the issues of scalability and complexity. Because the different interaction 

types are visualized in the same network drawing, complex visual encoding is required to 
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distinguish between molecular species (node types) and also between interaction types (edge 

types). For example, it requires six different glyphs in FIGURE 2.18 to distinguish between 

different molecular species, and requires three different edges to distinguish between different 

interaction types. Yet the human mitogen-activated kinase signal transduction network 

represented in FIGURE 2.18 contains only 44 nodes and 40 edges. If the network visualized in 

FIGURE 2.18 contains two times more nodes and edges, the visualized network will be cognitively 

challenging to interpret. Because of their visual complexity, readable visualization of integrated 

networks is limited in size. As a result, integrated networks are used mostly by biologists who 

come from computer science or other physical sciences. 

2. 7. Evaluation Methods on Visualization 

A large number of studies have been conducted to evaluate usability and effectiveness of 

visualization using different methods. 

Many studies evaluated visualizations using controlled experiments [27]. In these studies, 

typical independent variables are the types of tools, tasks, data, and participant classes. Dependent 

variables include accuracy and efficiency. Accuracy measures include precision, error rates, 

number of correct and incorrect responses, whereas efficiency includes measurements of task 

completion time where the tasks are pre-defined benchmark tasks. A classic example is the 

comparison among three different visualization systems on different tasks in terms of task 

completion time and accuracy published by Kobsa [86]. 

Usability tests usually evaluate visualizations to identify and solve user interface problems. 

The method involves observing the participants as they perform designated tasks using a 'think 

aloud' protocol, noting the usability incidents that may suggest incorrect use of interface, and 

comparing results against a pre-defined usability specification [69]. An example of a usability test 

is published by Rao and Mingay [ 122]. 

Different from empirical evaluations are inspections of user interfaces by experts, e.g. 

heuristics. Heuristic evaluation is a well known discount evaluation method used for finding 

usability problems at different developmental stages of a user interface. The procedure involves a 

small number of participants visually inspecting a user interface or visualization system according 

to a set of heuristics or guidelines. The heuristics used are relevant to the selected user interface 

and they exist as a shared knowledge on its design. To date, there are three known sets of 

heuristics proposed for information visualization, i.e. (I) selection of perceptual and cognitive 

heuristics [172], (2) visual information-seeking mantra [141], and (3) knowledge and task-based 

framework [4]. An example on evaluating a visualization system using these three heuristics is 

presented by Zuk et al. [172]. 
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Longitudinal study examines the user's long-term exploratory learning of a user interface. The 

process involves noting usability incidents and recording the user's learning process. This type of 

evaluation usually takes a few days to accomplish rather than a few hours. An example of 

longitudinal study is presented by Rieman [ 128). 

There were a few evaluations conducted with biologists to understand either their analytical 

tasks in biological research [ 134, 146] or the effectiveness of a visualization system in supporting 

analytical reasoning and hypotheses formulation [134, 135]. The earliest work was a survey of 

bioinformatics tasks commonly performed by biologists (146]. By using a combination of 

interviews and heuristic evaluations, a list of user requirements for an effective pathway 

visualization system was elucidated in another study [134]. 

2.8. Introduction to Molecular Systems Biology 

From the computer science viewpoint, a single cell molecular system can be viewed as a state 

machine made of molecules that form a large and complex network. Within this network, cellular 

components and processes emerge from complex interactions among biological molecules. A 

biological process is a recognized series of events accomplished by one or more ordered 

assemblies of molecular functions [60]. The molecules in a single cell network can belong to one 

of the four classes: carbohydrates, lipids, proteins and nuclei acids [83]. It has been widely 

recognized by biologists that a majority of biological processes rely on the functioning of proteins 

and the information for encoding the chemical (amino acid) sequence of each protein is stored in 

the deoxyribonucleic acid (DNA). For this reasoning, it is worth elaborating of the biological 

roles of these two classes of molecules. 

DNA is a form of digital encoding much like the magnetic storage tape that stores data in a 

linear sequence. Its primary function is to encode the instruction sets for synthesizing proteins. 

Each instruction set is encoded by a DNA sequence known as a gene. The two biological 

processes by which the information in a gene becomes a protein are known as transcription and 

translation. Biologists often called the decoding of the DNA instruction set which leads to the 

eventual synthesis of proteins as gene expression. The first step is transcription, i.e. the DNA is 

transcribed into mRNA. In essence, the mRNA is a template for synthesizing a particular protein. 

The production plant is embodied by a combination of proteins and tRNA. Together they form a 

protein complex known as the ribosome. The second step is translation, i.e. the ribosome 

translates the mRNA to proteins. If we compare gene expression to code compilation in software 

engineering, we will see similarities between the two (see FIGURE 2.19). 
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FIGURE 2.19. Similarities between (a) biological process function and (b) computer program execution. 
Both linear sequences progress from information to function. The acronym 'HLL' stands for high level 
language. Reproduced from Feitelson 2002 [48). 

Because the initiation of transcription requires the direct physical interactions between proteins 

and DNA, the latter has to encode more than just the instruction sets for synthesizing proteins. It 

has to contain also a DNA sequence which serves as a docking site for proteins known as gene 

regulators. Such a special sequence is known as the promoter. The promoter is a control point 

that couples the DNA with its environment. Therefore the intracellular environment influences 

which proteins to synthesize within what extracellular environment. A living cell generally does 

not need to synthesize all the proteins encoded in its DNA. Only a small subset is synthesized. 

Which subset is synthesized will depend on which subset of gene regulators is present in the cell 

compartment called nucleus. 

In computer science terms, a gene is therefore similar to the transition rule of a state machine 

[48]. The composition of the cell's interior, i.e. the protein set in all the cell compartments, 

determines the current state of the cell . The initiation of transcription by some members of the 

protein set will lead to the synthesis of new proteins thereby altering the state of the cell (see 

FIGURE 2.20). Hence, we can model a single cell molecular system as a state machine. This state 

is a snapshot of the system at a given time point that contains enough information to predict the 

behaviour of the system for future times [83]. 

A genome is therefore a library of transition rules [ 48]. From any given state, a cell can transit 

to any other states according to the currently enabled transition rules, i.e. the set of promoters 

being utilized. We can further simplify the state of a cellular molecular system as a string of bits 

indicating for each gene whether it is expressed (state = ' I ' ) or not expressed (state = '0'). The 

length of this string will be equal to the number of genes in a particular genome, i.e. the size of 

the genome. The two sub-domains in molecular ceU biology, functional genomics and proteornics, 

are devoted to deciphering the cellular state machine. In functional genomics, microarrays are 

being used for measuring the cell's state by surveying the expression state of the genome. 
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FIGURE 2.20. A simplistic concept model of a cell being a state machine. The expressed proteins are the 
state, and their interaction with the DNA causes new proteins to be expressed, thus changing the cell's state. 
Reproduced from Feitelson 2002 [48]. 

An event in which genes adopt similar expression states are known as a co-expression. Biologists 

often search for co-expression because co-expressed genes are more likely to function within the 

same biological processes (see Chapter 3). 

In proteomics, high throughput mass spectrometry is being used for measuring the output of 

the genome. This way the expression state of the genome can be confirmed by examining the 

molecular abundance of each detectable protein. Different laboratory techniques, e.g. yeast two­

hybrid, have been used to detect the protein-protein interactions in a cell. lf two proteins are 

expressed and are known to interact with each other, the protein-protein interaction is in operation 

(see Chapter 4). Because a cell's state is associated with the various normal and disease 

conditions, the sub-domain of molecular medicine serves the objective of identifying abnormal 

cell states that can become our diagnostic marker. 

The description of a single cell as a state machine so far ignores many biological complexities 

known to biologists. For example, proteins form protein complexes whose formation depends on 

the delicate quantitative balances that integrate inputs from many signalling paths, might regulate 

transcription. Nevertheless, the most basic concept model of a single cell molecular system is one 

which functioning requires the interaction between two fundamental types of information. The 

transition rules are largely encoded in the genome and the cellular state is largely encoded in the 

proteome. Most bio-molecular systems models are based on this principle. 

{End of Chapter 2} 
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"There is no Life without Organization" 

3.1. Introduction 

CHAPTER 3 

Gene Ontology (GO) has been used as a proxy for biological function and has increasingly 

been used for annotation and as a data mining dimension [ 121]. Because GO provides a 

higher level of abstraction than the network models of bio-molecular interactions, biologists 

often used a set of GO Process terms as a cryptic description on the functional organization 

of a cell. For this reason, the visualization of GO-annotated co-expressed gene clusters often 

serves as an entry point in microarray analytics. As a start, the biologist determines the set of 

co-expressed genes by computing pairwise correlation coefficients using Pearson or 

Spearman correlations [145]. This is then followed by clustering the co-expressed genes 

according to their commonly shared GO Process labels. 

Co-expression between a pair of genes means that they have similar expression dynamics. 

This implies that they have a comparable functional context. If GO Process ontology is being 

used as an abstraction for such a functional context, then co-expressed genes are more likely 

to be involved in the same set of biological processes. The level of correlation as measured 

by the correlation coefficient is therefore an indication of their functional relatedness. 

Recent studies suggest that genes which are exclusively clustered with a unique set of 

biological processes tend to co-express, giving rise to a functional module that exists in a 

steady state [147, 168]. A functional module is defined as a set of genes or their products 

(proteins or RNAs) which are related by one or more molecular interactions, e.g. co­

regulation, co-expression, or membership of a protein complex, of a metabolic pathway, of a 

signal transduction pathway, or of a cellular component [70]. Many metabolic enzymes, e.g. 

glycolytic enzymes, are co-expressed because metabolic processes rely on the linear 

processing of metabolites. Many signaling proteins also exhibit similar expression dynamics 

under certain conditions because of the need to propagate an on/off signal through a specific 

path. In both cases, the co-expressed genes are induced or repressed by a specific set of gene 

regulators. Hence, the biological implication of co-expression is genetic co-regulation. 
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Most visualization provided as part of a software package is simply designed for 

capturing data structure not biological perspectives [53]. For this reason, we designed two 

prototype representations, i.e. the block matrix and the clustered bipartite graph, to capture 

one of the two current perspectives in molecular biology. The first perspective has its roots 

in reductionism and genetic determinism, i.e. 'DNA is the blueprint of life' [12]. This is the 

conventional perspective among biologists. They consider genes as the basic building blocks 

of biology and so the functional organization of a cell is dictated by the information content 

of its genome. It is based on the presumption that one can understand the biology of a cell if 

one knows the function of every gene or different groups of genes within the genome. 

Biologists found that genes with similar functions are likely to be involved in the same 

biological process(es). This gene-centric perspective is being captured by the block matrix 

representation. 

The second perspective, captured by the clustered bipartite graph, is the network view 

which stemmed from the emerging systems thinking. This view states that any attempts to 

reduce the whole system to smaller parts will destroy the properties emerged from the 

original scale of the system. Furthermore, this view regards molecular interactions as the 

building blocks of life, i.e. the network is the biology. Therefore all biological processes are 

operated by molecular interactions. The biological processes are themselves inter-connected 

because the entire molecular network is comprised of a highly inter-connected group of 

nested networks [3]. Each of these networks is involved in a particular biological process. As 

such, this view recognizes that it is the self-organizing property of the molecular network 

that gives rise to the cellular functional organization [6]. This network consumes information 

stored in the genome which in tum imposes a system constraint on the interaction types and 

the upper and lower limits of the network size. 

Despite the frequent need to visualize co-expressed gene clusters in microarray analysis, 

the question on how different representations affect biological reasoning and usability is yet 

to be investigated. To answer the first part, a case study involving visual experimentation 

and biological analysis was performed on both representations. The domain application is 

hepatocellular carcinoma (HCC). The objective was to compare their effect on biological 

reasoning. Any hypotheses deduced in the case study also conveniently fulfill the auxiliary 

objective of understanding the biology of HCC based on its different functional organization 

from normal hepatocytes. To answer the second part, a usability evaluation was conducted 

with a group of bench biologists. The results obtained can fulfill two objectives. The first 

objective was to find out which representation is more suitable for microarray analytics. The 

second was to derive a set of design guidelines for visualizing GO-annotated gene clusters. 
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Our user evaluation is the first comparative evaluation on a specific pair of concept-based 

visualizations with the aim of testing their effectiveness in representing alternative biological 

concept models. It differs very much from the evaluations published by Saraiya et a/. [ 134, 

135] which aims at testing the effectiveness of the visualization choices provided by the 

various microarray analysis tools in hypothesis deduction. As such, our evaluations will 

answer the fundamental question as to whether a bioinformatics visualization should support 

the gene-centric or the network view, whereas Saraiya eta/. answered the pragmatic question 

of which microarray software supports visual analytics better. 

The rest of this chapter is divided into five sections. The representations are defined in 

section 3.2. The design criteria and the drawing algorithm of each representation are listed in 

section 3.3. The biological analysis on HCC is introduced in section 3.4. The design of the 

usability evaluation, the participants' background, and the results of the evaluation are 

elaborated in section 3.5. Of note, the analytical tasks listed in section 3.5.2 are the first 

benchmark tasks designed specifically for evaluating GO-annotated gene clusters and can be 

modified for evaluating any visualization of ontology-based clusters. Finally, section 3.6 

serves as a concluding remark for this chapter. 

3.2. Representation of Co-expressed Gene Clusters 

3.2.1. Block Matrix 

Given a set of co-expressed genes which are clustered by their common set of GO Process 

term(s), the block matrix is simply a set of non-intersecting clusters, i.e. each cluster has a 

unique set of co-expressed genes. Each gene is represented by a gene node. Each cluster is 

represented by a cluster node and has at least one GO Process as its node label. If the same 

GO Process term is common to more than one cluster, it will be redundantly displayed in 

multiple clusters. Hence, the m:n gene cluster-to-GO relationship is decomposed to a I :n 

relationship. An identifier for each cluster CLUSTER~ ID has been manually assigned to each 

cluster to facilitate their identification. 

3.2.2. Clustered Bipartite Graph 

From the same set of clusters mentioned in section 3.2.1, a unique set of GO Process terms 

have been derived and are represented explicitly by a set of nodes. The gene~ cluster-GO 

relationships are then represented by edges connecting the cluster nodes and the GO nodes. 

The graph theoretic model of the clustered bipartite graph is defined as the following: 

Definition 3.1. A clustered bipartite graph is a graph G = (", c, E: in which V and Care the 

two finite and disjoint node sets. V denotes the set of GO nodes and C denotes the set of 

clusters. Each cluster c e C contains a unique set of gene nodes. It is possible that some 
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clusters may share the same set of genes. Suppose C; and c1 are any two clusters of gene 

nodes within the set of the clusters C, the intersection between C; and c1 is non-empty, i.e. 

c nc -:1: o. E denotes the set of gene cluster-GO relationships. 
I I 

When visualized, there is no redundant display of the GO Process terms as node labels. This 

is the biggest difference between the clustered bipartite graph represenlation and its block 

matrix counterpart. 

Gene 

FIGURE 3.1. Visual representation ofthe block matrix. 

3.3. Visualization of Co-expressed Gene Clusters 

3.3.1. Block Matrix 

When visualized, the block matrix is a set of matrices drawn within a grid layout (see 

FIGURE 3.1 ). Many grid layout algorithms were designed for maximizing space usage [ 17]. 

They generally gave a highly compartmentalized grid that is challenging to read. Our design 

emphasized on readability rather than optimum space usage. 

The design criteria are: 

I. The GO Process labels must be of a readable font size (12 points); 

2. A maximum string size of30 characters per GO Process label is allowed; 

3. Each cluster must be homogeneously coloured and is in sharp contrast to the node colour; 

4 . Each cluster must be clearly bounded, and 

5. No overlapping between clusters. 
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To highlight the cluster pattern, the cluster nodes and the gene nodes are assigned 

different shapes and colour. Each cluster node is a blue coloured square. Each gene node 

within a cluster is a red coloured circle meaning that the expression level of the represented 

gene has been detected. The size of each cluster is displayed on the upper left-hand comer of 

the corresponding square. If the area of the cluster is too small, the cluster size value will be 

drawn on the right-hand side of the square. This design requirement was recommended by 

two biologists in the preliminary user evaluation. While it lowers the information-to-ink 

ratio, the present design does fit the biologist's mental model of a gene cluster. They identify 

a red coloured node with an actively expressed gene. A group of red nodes within a square 

means that the genes in the cluster are also positively correlated in their expression levels. 

This design is also supported by the 'common field' principle proposed by Chmielewski et 

a/. [31]. It stated that the user tends to see a set of objects as a group if they are being drawn 

within an explicitly bounded, homogeneously coloured or textured region. 

The drawing algorithm involves four steps: 

Algorithm 3.1. Block matrix algorithm 

l. Sort the clusters by their sizes in the descending order using mergeSort. 

2. Compute the grid formation (rows x columns). This is done by rounding the square root 

of the number of clusters to the nearest integer. If the initial number of rectangular 

partitions computed is smaller than the total number of clusters, an additional column is 

added. 

3. For the largest cluster, compute the maximum width of the square area that can fit into 

the rectangular partition on the upper left-hand comer. 

4. For the other clusters, compute the width of the square area in proportion to its relative 

size to the largest cluster. The origin of each cluster is the (x, y) Cartesian coordinates of 

the upper left-hand comer of each rectangular partition. 

5. Reduce the vertical distance between clusters in each column so that the width of the 

resulting drawing becomes more compact. 

6. Draw the clusters as blue-colored squares and in the descending order of their size across 

the grid from the left to the right. 

7. For each cluster, compute the grid formation (rows x columns) required for positioning 

the gene nodes within. This is done by rounding the square root of the number of genes to 

the nearest integer. If the initial number of square partitions computed is smaller than the 

cluster size, an additional column is added. 
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8. Within each cluster, draw the gene nodes on the grid formation. The origin of each gene 

is the (x, y) Cartesian coordinates of the upper left-hand comer of each square partition. 

9. Draw the GO Process labels under each rectangular cluster node. 

3.3.2. Clustered Bipartite Graph 

The clustered bipartite graph is drawn in a two parallel level layout (see FIGURE 3.2). The 

GO nodes and the gene cluster nodes are assigned to the upper and the lower levels 

respectively. The upper level is displayed as a black coloured line. The purpose is to impart a 

visual separation between the two node types. Each cluster of co-expressed genes is being 

enclosed within a circular node in green colour. The size of each cluster is written in 

parentheses at the bottom of the corresponding circle in a vertical orientation. Co-expressed 

genes within a cluster are being represented as circular nodes in red colour and GO nodes in 

blue colour. Edges between the GO nodes and the cluster nodes are in green colour. Its 

design criteria include those for the block matrix representation and the two additional 

criteria: 

I. The edges between the GO nodes and the cluster nodes must be clearly displayed. 

2. Edge crossing should be kept to the minimum with the cluster nodes being fixed in the 

descending order according to their size. 

The drawing algorithm involved five steps. 

Algorithm 3.2. Clustered bipartite graph algorithm 

I. Arrange the gene clusters in the descending order of their size from left to right. For 

clusters of the same size, they will be laid out by random ordering. 

2. Compute the area of each cluster node which is directly proportional to the size of the 

gene cluster. 

3. Pack the gene nodes of each cluster into the appropriate cluster node using a phyllotactic 

layout [23) which has the advantages of spatial compactness and algorithmic simplicity. 

For the k-th gene node, it has the polar coordinates (r, llfl). 

r =q.Jk 
!18 = k · 0. 753 radians 

where q is the packing factor. The Cartesian coordinates of the k-th node can then be 

computed as: 

x, =x0 +r·cos(D.B) 

y, =Yo +r·sin(D.B) 
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where (x0, y0) is the Cartesian coordinates of the centre of the cluster node, and r is the 

distance of the k-th node from the centre of the cluster node. 

4. Minjmize edge crossings by applying the barycenter algorithm [ 149]. The barycenter 

score b(v) of every GO node v e V is defined as the average of the relative positions of 

its neighbouring cluster nodes. Thus, 

I n 

b(v) =-I -~Ipos(w, ) 
N(v) 1e l 

where N(v) is the number of neighbours to the GO node v and pos(w;) is the relative 

ordering of the cluster node w, . The GO nodes are then sorted according lo the ascending 

order of their barycenter scores and are drawn from left to right in regular spacing. 

5. Draw the inter-level edges between the GO nodes and the cluster nodes. 
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FIGURE 3.2. Visual representation of the clustered bipartite graph. 

3.3.3. Implementation 

The drawing algorithms for both representations were implemented using the Processing 

TOE version 1.15 [124]. Data for constructing each representation can be loaded into the 

Processing application as a tab-delimited file containing column values of the three 
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attributes: CLUSTER_ID, GENE_ID, and GO_PROCESS. Each attribute eventually became the 

labels for cluster, gene, and GO nodes respectively. 

3.4. Case Study: Functional Organization of Hepatocellular Carcinoma 

To compare the effect of the two representations on biological reasoning, the co-expression 

profiles of HCC and normal hepatocytes were applied to each. Through visual 

experimentation, the overall functional organization of each cellular phenotype was deduced. 

Because the visualizations were prototypes, interactivity for identifying the gene symbol' of 

each gene node was not yet available. However, the cluster patterns and the GO Process 

labels in each representation should provide a glimpse into the possible roles of the various 

biological processes in HCC and how the difference in functional organization as compared 

to normal hepatocytes could play a role in cancer development. 

3.4.1. DataSet 

3.4.1.1. Human liver gene expression data 

The gene co-expression profiles of HCC and normal hepatocytes were obtained from a series 

of 176 dual-channel eDNA microarray experiments originally published by Chen eta/. [29]. 

The experiments were performed on l 02 primary HCC samples obtained from 82 patients 

and 74 normal liver samples obtained from 74 patients. The microarray experiments were 

performed using a common reference design [145] in which one channel records the signal 

intensity of every gene in a primary HCC or a normal liver sample. The other channel 

records the signal intensity of every gene in a common reference RNA collection. Thus the 

expression level of every gene in each microarray experiment was measured as the log2 ratio 

between the two channels. The expression level of a gene in a tissue sample was deemed 

significant if the log2 ratio 2: 1.5. 

From Chen et a/. 's data, a subset containing 95 HCC and 66 normal samples was re­

analyzed by Gamberoni et a/. [58]. The gene expression matrix contains data representing 

7449 genes x 161 samples. From this, they extracted a set of genes that had expression levels 

falling within the range of log2 ratio = 1.5 ± 3 standard deviations and that at least 75% of 

the microarrays have positive spot intensities. The pairwise Pearson correlation was then 

computed for every possible gene pair in each of the two sample sets, i.e. HCC samples as 

one and normal liver samples as another. Gamberoni et a/. then extracted a set of co­

expressed genes by filtering out gene pairs which Pearson correlation coefficients (PCC) are 

statistically insignificant, i.e. p < 10·9• At a significance of p 2: 10·9, the PCC 2: 0.57617 for 

the HCC sample set and the PCC 2: 0.66657 for the normal liver sample set. Finally, they 

a The gene symbol is the standard nomenclature assigned to every human gene by the Human 
Genome Organization. 
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constructed a gene list from each sample set in which every pair of co-expressed genes share 

a common GO Process term. The gene lists are available as comma-delimited files in which 

the first column contains the GO identifiers, the second and the third columns contain the 

CloneiDs of the co-expressed gene pairs. 

For the HCC sample set, the final gene list contains 163 genes annotated with 87 GO 

Process terms in 827 pairwise correlations. For the normal liver sample set, the final gene list 

contains 205 genes annotated with 88 GO Process terms in 419 pairwise correlations. For 

both gene lists, the GO Process terms were derived from levels 3-I I of the GO hierarchy in 

the Process category. Thus in each gene list, the same gene pair can be annotated with more 

than one GO term. 

3.4.1.2. Data extraction 

For the visual representations mentioned in this chapter, only gene clusters annotated with 

terms from levels 6 and 8 of the GO Process hierarchy were being visualized. This was 

because the GO Process terms at these levels accounted for 74% (128111732) of the pairwise 

correlation in the current dataset. Furthermore, this range of depth represented the middle 

segment of the GO Process hierarchy. Therefore it provided the best compromise between 

informativeness and coverage for exploring the biology ofHCC [58]. 

We first downloaded the GO annotated gene lists provided by Gamberoni et al. [58] 

mentioned in the previous section. The gene pairs annotated with either level 6 or 8 of the 

GO hierarchy was extracted. The filtered gene list was first sorted by GO Process identifiers. 

This exposed the gene pairs that share multiple GO Processes. If a set of gene pairs shared 

the same GO Process term, the gene pairs were manually assigned to a cluster. A unique 

alphanumeric label was assigned to each cluster for the ease of identification. For each 

cluster, the gene pairs were normalized to a single column containing a non-redundant list of 

genes. The gene list was then sorted by the Gene Symbols. If a set of genes shares the same 

set of GO Process terms, the set was manually assigned to a new cluster. The result was a 

tab-delimited file containing three columns in which the first column contains the GO 

Process terms, the second column contains the gene list, and the last column contains the 

cluster identifiers. To further normalize the data, the tab-delimited file was split into two 

files with each containing two columns. One file contains the non-redundant cluster-to-GO 

Process mapping and the other contains the non-redundant cluster-to-gene mapping. These 

were the input files used for generating the visualizations described in the next section. 

3.4.2. Visualization and Analysis 

This section is divided into three subsections. In section 3.4.2.1, we described the visual 

effect of the block matrix and the clustered bipartite graph representations after the HCC 
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data was applied to each representation as an input. In section 3.4.2.2, we first described the 

rationale behind the visual analysis conducted and then the results of the analysis in relation 

to overview of the cluster pattern. In section 3.4.2.3, we described the rationale behind the 

visual analysis followed with the results of the analysis in relation to specific clusters. 

Finally, our conclusion to section 3.4.2 was given in section 3.4.2.4. In the following 

sections the HCC dataset was referred to as the 'disease' sample whereas the normal , 
hepatocyte dataset is referred to as the 'normal' sample. Where available, the Gene Ontology 

(60] identifier was given in parentheses for every biological process mentioned. Similarly, 

the Entrez Gene [99] identifier was given in parentheses for every human gene mentioned. 

3.4.2.1. Visual effect of different representations 

I. Block matrix 

FIGURE 3.3 showed the block matrix representations of the two sample sets annotated 

with GO labels at level 6 of the GO Process hierarchy. FIGURE 3.3(a) showed the cluster 

pattern of the normal sample and FIGURE 3.3(b) showed the cluster pattern of the disease 

sample. FIGURE 3.4 showed the block matrix representations of the same sample sets but 

were annotated with GO labels at level 8. For the normal sample, the cluster pattern 

annotated with level 6 GO Process labels was visually less complex than its counterpart 

annotated with level 8 GO Process labels (see FIGUREs 3.3(a) and 3.4(a)). This was 

suggesting that as the set of GO labels became more informative, more functional 

relationships between gene clusters were being revealed. For the disease sample, the visual 

complexity between the cluster pattern annotated with level 6 GO Process labels and its 

counterpart annotated with level 8 GO Process labels were comparable (see FIGUREs 3.3(b) 

and 3.4(b)). For each sample, FIGUREs 3.3 and 3.4 clearly displayed the functional clustering 

of the co-expressed gene set. To identify the biological process(es) that the co-expressed 

genes in each cluster was involved in, we simply inspected the GO Process labels underneath 

the cluster. Therefore the block matrix representation effectively captured the functional 

modularity of gene co-expression. The block matrix representation was also visually simpler 

than the clustered bipartite graph representation (see FIGUREs 3.5 and 3.6) and therefore 

more readable. 

II. Clustered bipartite graph 

FIGURE 3.5 showed the clustered bipartite graph representations of the two sample sets 

annotated with GO labels at level 6 of the GO Process hierarchy. FIGURE 3.5(a) showed the 

connectivity between the gene clusters and the GO nodes of the normal sample and FIGURE 

3.5(b) showed the case of the disease sample. 
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FIGURE 3.3. Visualization of co-expressed gene clusters in the block matrix representation with Level 
6 GO Process annotation. (a) Nonnal hepatocyte. (b) Hepatocellular carcinoma. 
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FIGURE 3.4. Visualization of co-expressed gene clusters in the block matrix representation with Level 
8 GO Process annotation. (a) Normal hepatocyte. (b) Hepatocellular carcinoma. 
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FIGURE 3.6 showed the clustered bipartite graph representations of the same sample sets 

but was annotated with GO labels at level 8. For the normal sample, the clustered bipartite 

graph representation annotated with level 6 GO Process labels was visually less complex 

than its counterpart annotated with level 8 GO Process labels (see FIGUREs 3.5(a) and 

3.6(a)). There were fewer edge crossings in FIGURE 3.5(a) as compared to FIGURE 3.6(a). 

We noticed that there were more GO nodes but fewer gene clusters in FIGURE 3.5(a) than in 

FIGURE 3.6(a). That was because some of the co-expressed genes in the normal sample did 

not have level 6 GO Process annotations. For the disease sample, the visual complexity 

between the representation annotated with level 6 GO Process labels and its counterpart 

annotated with level 8 GO Process labels were similar (see FIGUREs 3.5(b) and 3.6(b)). We 

also noticed that there were similar numbers of GO nodes and gene clusters in FIGUREs 

3.5(b) and 3.6(b). 

For each sample, FIGUREs 3.5 and 3.6 clearly displayed the connectivity between the GO 

nodes and the cluster nodes as inter-level edges. The inter-level edges allowed us to deduce 

functional relationships between two or more biological processes. First, we could traverse a 

certain inter-level edge originating from a GO node to its neighbouring gene cluster on the 

lower level to identify the biological process the gene cluster was involved in. We could then 

traverse another inter-level edge originating from the same gene cluster to another GO node 

to identify the next biological process. In this way, we could deduce that the two biological 

processes identified must be functionally related because they shared the same gene cluster. 

Therefore the clustered bipartite graph was a better representation for capturing the 

connectivity between biological processes without losing the modular organization of gene 

expression. For this reason, it could provide us with an initial high-level abstract view of the 

molecular network in a normal human hepatocyte or an HCC cell. 

III. Summary 

By comparison, the two representations captured two different biological conceptual models. 

The block matrix representation captured the modular organization of a gene co-expression 

dataset whereas the clustered bipartite graph captured the connectivity between biological 

processes. 

3.4.2.2. Visual analysis using the overview of each representation 

Currently, there are broadly two schools of molecular biologists. One school of biologists 

studies molecular biology on the systems level. They tend to deduce the functional 

organization of a single living cell as a system of biological processes held together by a 

network of co-regulated genes. The other school studies molecular biology in the 

reductionist approach. 
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with Level 6 GO Process annotation. (a) Normal hepatocyte. (b) Hepatocellular carcinoma. 

. n 
:; 

• 
i 
il 



63 Visualization of Gene Ontology Clusters 

\ .,. \ . \ \\ ~\ \ 
\\\\\\ ,\\'\' \ ~\\ 

' ., \ \ \ \ \\ \ \~ ~ \\ ~ \\ 
\\\\\\ \\\\ \\ 

i-............. 

~ •' 
; 

_- ' .... /·~ "'- 1 ~·· ·' >/ ,.j" y~:.~1 -• . ~ 
. ~~ ~! ~ • •: 

-~,.-~ r r .-. • • . • • 
H K 

g i ~ ~ ~ i g a " a i ~ i i 2 I i ! ~ ' ~ i ~ ~ i 3 I l i i g g s <! : ; : ~ - ~ ~ ~ ~ ~ 

(a) 

\ \, \ \ ' ~ \\ 
\ \ \. \ \ \ \ '· 

\\'-\\\'\\ \\\\ '\ 
'\\\\ \\'~\\\\~~\\ ~ 
\\\\\\\.\\\\\\\\ 

• 

. . • • -• ~ • • • • • . 
0 ! ¥ • 2 i ~ ll i ¥ 2 i i z • , 

' ~ 
9 a ~ 

g !I g I g g i 
;; • i ~ i ;; 

(b) 

FIGURE 3.6. Visualization of co-expressed gene clusters in the clustered bipartite graph representation 
with Level 8 GO Process annotation. (a) Normal hepatocyte. (b) Hepatocellular carcinoma. 
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They will focus on those biological processes that they have special knowledge about and 

then identify gene clusters that have the GO Process labels of interest. 

For the visual analysis in this section, we took the systems biologist's viewpoint and tried 

to make deductions from the overview of each representation presented in the normal and 

disease samples. Based on our literature research on systems biology, we assumed that a 

systems biologist would most likely perform the following analytical tasks. 

I. Deduce the functional organization of a sample set based on the distribution of cluster 

sizes and the GO Process labels. Functional organization here means the combination 

and the number of biological processes that are likely to be co-regulated. This deduction 

will allow the systems biologist to make a preliminary deduction on the biological 

property of a sample set, i.e. normal or disease. 

2. Deduce the similarity and differences between two sample sets in terms of functional 

organization. This deduction is based on comparing two cluster patterns for their 

similarities and differences in the combination of GO Process labels. Furthermore, the 

cluster sizes will also inform the biologist as to which biological processes are more 

active in one sample than the other. 

The second analytical task is especially important for understanding the biological 

differences between two sample sets. 

I. Block matrix 

We used the block matrix representations in FIGUREs 3.3 and 3.4 in our visual analyses. The 

objective was to evaluate their effectiveness in supporting the two analytical tasks mentioned 

above. 

1. Deduce the jUnctional organization of each sample 

We first compared the overall cluster pattern of FIGURE 3.3(a) with that of FIGURE 3.3(b). 

The former representing the normal sample with level 6 GO Process annotation had six out 

of the twenty one clusters labeled with more than one GO Process label. If a cluster had only 

one GO Process label, it informed us that its member genes were specialized in functioning 

within one particular biological process. If a cluster had multiple GO Process labels, its 

member genes were very likely to express proteins that were gene regulators of multiple 

biological processes. 

We found that deducing the number of co-regulated biological processes in each sample 

is very easy. In the disease sample, none of the clusters had multiple GO Process labels (see 

FIGURE 3.3(b)) suggesting that there were no gene regulators being expressed. Therefore 

none of the biological processes in the disease sample was co-regulated. This deduction lent 
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support to the recent proposition that malfunctioning genes in human diseases were not 

necessarily biological process-specific but could be genes that function within multiple 

biological processes [98]. 

We also compared the overall cluster pattern of FIGURE 3.4(a) with that of FIGURE 3.4(b). 

In the normal sample (see FIGURE 3.4(a)), fifteen out of the twenty six clusters had more 

than one GO Process label. In the disease sample (see FIGURE 3.4(b)), there were only two 

out of the sixteen clusters having more than one GO Process label. This observation 

reinforced our previous deduction that the biological processes in the disease sample lacked 

co-regulation. Hepatocellular carcinoma (HCC) is therefore a highly abnormal cell state in 

which biological processes can operate independently. The underlying cause of such 

abnormality is still poorly understood. One suggestion from the cancer research community 

is genome instability [68]. 

We also noticed in FIGURE 3.4(a) that those clusters with only one GO Process label 

tended to be larger than those with multiple GO Process labels. This observation suggested 

that genes which functioning was biological process-specific were more likely to co-express 

than those that could be regulators of multiple biological processes. A deduction supported 

by the current biological knowledge that genes which functioning was biological process­

specific tended to be co-regulated because they tended to share the same set of gene 

regulators [ 14 7]. 

While we had no difficulty in identifying the combination of GO Process labels from the 

disease sample, we had difficulty doing so with the normal sample. This was because most 

of the clusters in the disease sample had only one GO Process label. The same was not true 

with the normal sample. The same GO Process label in one cluster of the normal sample was 

also displayed in another. For example, we could identifY clearly that the first cluster (cluster 

C438) in the normal sample had the GO Process label 'G0:0006355fregulation of 

transcription' (see FIGURE 3.4(a)) but to find out whether this GO Process label was unique 

to cluster C438, we had to search for the 'G0:0006355fregulation of transcription' label in 

all other clusters. This became tedious when we needed to perform the same action with 

every GO Process label. Therefore, the block matrix was ineffective for identifYing the 

combination of GO Process labels in complex cluster patterns where the majority of clusters 

had more than one GO Process labels. 

2. Compare the similarity and difference between samples 

We tried to identifY every GO Process labels that were either commonly shared or different 

in between the normal and disease sample sets using the block matrix representations in 

FIGURE 3.4, but found the analytical process tedious. It involved comparing each cluster in 
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the normal sample (see FIGURE 3.4(a)) with every cluster in the disease sample (see FIGURE 

3.4(b)) for commonly shared as well as outstanding GO Process labels. After comparing the 

each of the first five clusters with every cluster in the disease sample, we decided to abandon 

the process and used the clustered bipartite graph representation instead (see the next 

section). 

Thus far, we found that the block matrix representation did give us a glimpse on the 

functional organization of the normal and the HCC cells, but it did not support the 

comparative analysis between samples. 

II. Clustered bipartite graph 

After using the block matrix representations, we performed the same analytical tasks using 

the clustered bipartite graph representations in FIGUREs 3.5 and 3.6. 

1. Deduce the jUnctional organization of each sample 

We compared the clustered bipartite graph representation in FIGURE 3.5(a) with that in 

FIGURE 3.5(b). FIGURE 3.5(a) showed that nine out of the twenty GO nodes were connected 

to more than one gene cluster with inter-level edges. By traversing inter-level edges 

originating from different GO nodes in FIGURE 3.5(a), we found that each of the nine GO 

nodes shared a co-expressed gene cluster with at least two other GO nodes. This finding 

suggested that some of the biological processes in the normal sample were co-regulated. On 

the other hand, by examining the node degree of the various gene clusters in the same figure, 

we found that seven out of the twenty two gene clusters were connected to more than one 

GO node. This finding suggests that those seven gene clusters were functionally related. 

FIGURE 3.5(b) showed that each GO node in the disease sample was connected to a single 

gene cluster by an inter-level edge. Therefore, we deduced that the gene clusters in the 

disease sample were not functionally related and none of the biological processes were co­

regulated. We could also identify the combination of GO Process labels readily for each 

sample because the GO nodes were clearly laid out on the first level and they were not 

redundantly represented. 

We performed the same analyses using FIGUREs 3.6(a) and 3.6(b). We found that it was 

more difficult to identify GO nodes that shared the same co-expressed gene clusters with one 

another in the normal sample (see FIGURE 3.6(a)) because of the increased number of inter­

level edges and edge crossings. We did not have any difficulties using the disease sample 

(see FIGURE 3.6(b)) to perform the same task owing to their visual simplicity. Therefore the 

increase in visual complexity due to the edge crossings reduced the usability of the clustered 



67 Visualization of Gene Ontology Clusters 

bipartite graph representation somewhat even though it could still be used for identifYing GO 

nodes that shared the same co-expressed gene clusters. 

2. Compare the similarity and difference between samples 

To compare the similarity and difference in functional organization between samples, we 

used FIGURE 3.6 because the normal sample gave a more complex clustered bipartite graph 

representation at level 8 GO annotation (see FIGURE 3.6(a)). We first identified in the normal 

sample those GO nodes that had a node degree ~ 4. The rationale was that the higher was the 

node degree of a GO node, the more important was the represented biological process to the 

integrity of the cell's functional organization. We identified six such nodes. They were 

labeled 'G0:0006512jubiquitin cycle', 'G0:0006886/intracel/ular protein transport', 

'G0:0006355jregulation of transcription, DNA-dependent', 'G0:0008380IRNA splicing', 

'G0:00064701Protein amino acid dephosphorylation', and 'G0:00064681J1rotein amino acid 

phosphorylation'. We then tried to identify GO nodes that had the same GO Process labels 

and found all six of them in the disease sample. We therefore deduced that the above six 

biological processes were essential to cell survival whether in normal cells or HCC cells. 

When we compared the same six biological processes between samples for their 

differences in node degrees, we immediately recognized that in the disease sample, three of 

them had node degrees of two and the other three had node degrees of one (see FIGURE 

3.6(b)). In other words, each of the six GO nodes connected to at most two gene clusters. 

This was markedly different from what we observed with the normal sample. 

The deduction that could be drawn from this between-sample comparison was that these 

six biological processes were more actively co-regulated in the normal cell than in the HCC 

cell. This conclusion supported the notion that cancer is a state of systems failure [161]. We 

could also identify GO Process nodes that were unique in the normal sample but not in the 

disease sample using the same clustered bipartite graph representations (see FIGURE 3.7). To 

achieve this, we compared the GO node labels on the first level between the two sample sets. 

We found that there were four GO Process labels unique to the normal sample (see FIGURE 

3.7(a)). They were 'G0:0007088jregulation of mitosis', 'G0:0006325jmaintainence of 

chromatin', 'G0:0009060jaerobic respiration', and 'GO:OOJ5986IATP synthesis coupled 

proton transport'. The first GO Process label represented the biological process for 

regulating cell division. The second GO Process label represented the biological process for 

maintaining genome integrity. The last two represented biological processes for generating 

the energy molecules ATP (adenosine triphosphate). On the other hand, we found that there 

were four GO Process labels unique to the disease sample. They were 'G0:0000080/Gl 

phase of mitotic cycle', 'G0:0007050jcel/ cycle arrest', 'G0:0006633ifatty acid synthetic-
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FIGURE 3.7. Visualization of the GO nodes unique to each sample seen in FIGURE 3.6. (a) The GO 
nodes unique to the ' nonnal' sample are circled in green and (b) those unique to the 'disease' sample 
are ci rcled in red. 

process' and ' G0:0006695Icholesterol biosynthetic process' (see FIGURE 3.7(b)). 

The first GO Process label represented the biological process for initiating cell division 

since G 1 phase was the first phase of the cell cycle [83]. The second GO Process label 

represented the biological process for arresting cell division. The last two represented 

biological processes for synthesizing lipid molecules which were the main structural 

ingredients for the cell membrane and organelles [83]. 
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Together, the different sets of sample-specific GO Processes suggested to us the different 

biological properties between normal cells and HCC cells. There could be a loss in genome 

stability in HCC cells because there were no co-expressed genes involved in chromatin 

maintenance (G0:0006325). Furthermore, there could be a loss in co-ordination between cell 

division initiation (G0:0000080) and its arrest (G0:0007050) in HCC cells. Cancer 

biologists had long suspected that uncontrolled cell division could lead to genome instability 

[43] and new evidence had been forthcoming [24]. They had also suggested that 

uncontrolled cell division could also lead to the increase in lipid biosynthesis (00:0006633) 

because new cell membrane and organelles needed to be synthesized frequently [40]. We 

therefore deduced that HCC cells required active synthesis of new cellular components in 

order to prolong cell survival. 

In general, the above analytical tasks were better supported by the clustered bipartite 

graph representation than by its block matrix counterpart. We conducted the same analyses 

with the block matrix representation, and had to tediously compare all possible pairs of 

clusters for their similarity in GO Process labels. This demonstrated the advantage of the 

clustered bipartite graph representation in preserving the original m:n gene~cluster-GO 

relationship as opposed to decomposing it to a I :n relationship in the block matrix 

representation. That said, we relied heavily on inter-level edge traversal to confirm the 

gene~ cluster-GO relationships seen in the clustered bipartite graph representations. 

Therefore the inter-level edges were the visual entities that enhanced our analytical 

reasoning during the visual analyses. 

III. Summary 

In summary, we found that the overview of the clustered bipartite graph representation 

allowed us to make the following tasks easier than using its block matrix counterpart. 

I. Deduce the functional organization of each sample. 

2. Deduce the biological differences between the samples. 

In terms of HCC biology, the most important deduction here was that HCC is a highly 

abnormal cell state in which the co-regulation of biological processes is being lost. 

3.4.2.3. Visual analysis using clusters pairs 

As mentioned before, many biologists preferred examining those biological processes that 

they are familiar with and then identify gene clusters that have the GO Process labels of 

interest. They do not use overviews as their initial step of analysis. They tend to use a gene 

cluster set for two analytical tasks. 
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I. Identity co-expressed genes with similar biological functions. This is given by the GO 

Process labels of each cluster alone, but the relevance of these gene_ cluster-GO 

relationships grow if two clusters share one or two identical GO Process labels. The 

relevance is that the clusters of concern are likely to be functionally related. Each 

cluster of genes could be responsible for a sub-process in a larger biological process. 

2. Identity pairwise relationships between two samples. This involves examining a pair of 

gene clusters that are related in different samples, e.g. normal and disease. These 

clusters may have different GO Process labels but also share some identical GO Process 

labels. 

For the visual analysis in this section, we took the reductionist biologist's viewpoint and 

tried to make deductions from selected clusters in each representation presented in the 

normal and disease samples. 

I. Block matrix 

We used the block matrix representations in FIGUREs 3.3 and 3.4 in our visual analyses. The 

objective was to evaluate their effectiveness in supporting the two analytical tasks mentioned 

above. 

1. Identify co-expressed genes with similar biological JUnctions 

Since uncontrolled cell division is one hallmark of HCC [68], cancer biologists are often 

interested in identifYing gene clusters that are involved in the regulation of mitosis 

(G0:0007088). Using the block matrix representations annotated with level 8 GO Process, 

we identified in the normal sample (see FIGURE 3.4(a)) that cluster C542 had three GO 

Process labels: 'G0:00064701protein amino acid dephosphorylation', 'G0:0007088\ 

regulation of mitosis', and 'G0:0008380\RNA splicing' (see also FIGURE 3.8(a)). The 

proximity of the GO Process labels allowed us to identifY the biological processes of which 

the co-expressed genes in C542 were involved in. 

In the disease sample (see FIGURE 3.4(b)), we identified that cluster C572 had two GO 

Process labels: 'G0:00064681protein amino acid phosphorylation' and 'G0:0000080\Gl 

phase of mitotic cell cycle' (also see FIGURE 3.9(a)). Because the two biological process-­

the regulation of mitosis ( 00:0007088) biological process and G I phase of mitotic cell cycle 

(G0:0000080) biological process, are sub-processes of the larger biological process known 

as mitosis (G0:0007067) [60], we deduced that cluster C542 in the normal sample was 

functionally related to cluster 572 in the disease sample. We found that the block matrix 

representation was also useful for comparing juxtaposing clusters for their functional 

relatedness. 
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FIGURE 3.8. Visualization of the gene cluster C542 in different representations. (a) The zoom-in views 
of cluster C542 in FIGURE 3.4(a) (blue box) and in FIGURE 3.6(a) (green box) are shown in the insets. 
(b) The C542 is circled in red and its neighbouring GO nodes are circled in blue. 
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FIGURE 3.9. Visualization of the gene cluster C572 in different representations. (a) The zoom-in view 
of cluster C572 in FIGURE 3.4(b). (b) The zoom-in view of C572 in FIGURE 3.6(b). In the bipartite 
graph representation, Cluster C572 is circled in red and its neighbouring GO nodes are circled in blue. 
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This feature was especially applicable to the more complex cluster pattern of the normal 

sample (see FIGURE 3.10(a)). For example, we identified that 'G0:00063551regulation of 

transcription' was the GO Process label commonly shared between clusters C098 and Cl24 

in the block matrix. Their close proximity enhances their identification. We also noticed that 

the associated GO Process label of G0:0006355 was different in each cluster (see FIGURE 

3.10(a)). 

In cluster C098, 'G0:0000188Iinactivation of MAPK activity' was the associated GO 

Process label whereas in cluster Cl24, 'G0:0006366Itranscriptionfrom Polii promoter' was 

the associated GO Process label. This observation prompted us to deduce that the co­

expressed genes in the two clusters may play different roles in the regulation of transcription 

(G0:0006355) biological process. Genes that were involved in the inactivation of MAPK 

activity (G0:0000188) biological process were either part of the signal transduction network 

(STN) or the gene regulatory network (GRN) and its downstream effect was the negative 

regulation of transcription [ 158]. Genes that were involved in the transcription from Po !II 

promoter (G0:0006366) biological process were cofactors crucial to the initiation of gene 

transcription [12]. 

2. IdentifY pairwise relationships between different samples 

Using the block matrix representations annotated with level 6 GO Process, we compared the 

largest cluster C406 in the normal sample (see FIGURE 3.ll(a)) with the largest cluster CI08 

in the disease sample (see Figure 3.ll(b)). Both clusters were labeled with the same GO 

Process, i.e. 'G0:0006118Ielectron transport'. We therefore deduced that each cluster 

contained co-expressed genes that were functionally specific to the electron transport 

(G0:0006118) biological process. This was supported by the consensus knowledge that the 

electron transport biological process was operated by a series of specialized proteins in the 

mitochondrion [83]. The difference in their cluster sizes revealed to us the metabolic 

difference between normal cells and HCC cells (see FIGURE 3.11 ). There were 28 co­

expressed genes in C406 (normal sample) as compared to 18 in CI08 (disease sample). The 

smaller size of cluster CI08 suggested that the electron transport (G0:0006118) biological 

process in the HCC cell was operating at "'60% (18/28) of the normal capacity. Because 

generating energy molecules ATP (adenosine triphosphate) was the main function of the 

electron transport biological process [83], we deduced that energy production in HCC has 

reduced. This was in agreement with the latest proposition in cancer research on cancer 

metabolism. 
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F IGURE 3.10. Visual ization of the gene clusters C098 and C l 24 in different representations. (a) The 
zoom-in view of clusters C098 and C124 in FIGURE 3.4(a). (b) The zoom-in view ofC098 and C124 
in FIGURE 3.6(a). The two clusters are circled red and its neighbouring GO nodes are circled blue. 



74 

(a) 

(b) 

Visualization of Gene Ontology Clusters 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

FIGURE 3. 11 . Visualization of the electron transport-specific gene clusters in the block matrix 
representations of FIGURE 3 .3. (a) A zoom-in view of cluster C406 for normal hcpatocytes (green box) 
and (b) cluster C I 08 for hepatocellular carcinoma (red box) are shown in the insets. 



75 Visualization of Gene Ontology Clusters 

The slowdown in energy production could be caused by a metabolic shift from oxidative 

phosphorylation to anaerobic glycolysis resulting in a reduced production of ATP from 90% 

to 50% and an increase in glycolysis-based production from I 0% to 50%. Cancer biologists 

had been suspecting that this metabolic shift could promote cancer cell survival by reducing 

oxygen consumption [40]. 

At this point, we found that the block matrix representation could effectively support 

analyses that involved specific pairs of gene clusters and allowed us to make biologically 

meaningful deductions. 

II. Clustered bipartite graph 

We performed the same analyses that we did with the block matrix representations. Here, we 

used the clustered bipartite representations in FIGUREs 3.5 and 3.6 for our visual analyses. 

1. identifY co-expressed genes with similar biological jUnctions 

Using the clustered bipartite graph annotated with level 8 GO Processes (see FIGURE 3.6(a)), 

we could also identify cluster C542 and its GO Process nodes and labels in the normal 

sample (see FIGURE 3.8(b)). However, we had to traverse the inter-plane edges originating 

from cluster C542 to the GO nodes through numerous edge crossings (see FIGURE 3.8(b)). 

On the other hand, we had no difficulty identifying cluster C572 and its GO Process nodes 

and labels in the disease sample (see FIGURE 3.9(b)) because we only had to traverse the 

inter-plane edges originating from cluster C572 through two edge crossings. 

We then tried comparing clusters C098 and Cl24 in the normal sample for their 

functional relatedness (see FIGURE 3.10(b)). We first traversed the inter-level edges 

originating from cluster node C098 to the GO node labeled 'G0:0000188! inactivation of 

MAPK activity' and to the GO node labeled 'G0:0006355! regulation of transcription'. We 

then traversed the inter-level edges originating from cluster node Cl24 to the GO node 

labeled 'G0:0006355! regulation of transcription' and to the GO node labeled 

'G0:0006366! transcription from Pol I! promotor'. In this two-step process, we encountered 

not only edge crossings but also the need to traverse the long edge connecting cluster C 124 

and the GO node labeled 'G0:0006355! regulation of transcription'. The use of clustered 

bipartite graph representation did not alter our previous deduction made with the block 

matrix representation, i.e. the co-expressed genes in clusters C098 and Cl24 might play 

different roles in the regulation of transcription (G0:0006355) biological process. However, 

through this analysis, we recognized that the absence of edges in the block matrix 

representation made it a better choice for pairwise cluster comparison. 

2. IdentifY pairwise relationships between different samples 
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Using the clustered bipartite graph annotated with level 6 GO Processes (see FIGURE 3.5), 

we could identity cluster C406 in the normal sample (see FIGURE 3.5(a)) and cluster Cl08 in 

the disease sample readily (see FIGURE 3.5(b)). In each sample, the respective cluster was the 

leftmost cluster and was connected to a GO node labeled 'G0:00061181 electron transport'. 

In the normal sample, we traversed the inter-level edge originating from cluster C406 

through only five edge crossings. In the disease sample, there were no edge crossings 

between C I 08 and its neighbouring GO node. Therefore, the visual simplicity in both 

representations allowed the ready identification of the selected gene_cluster-GO_Process 

relationship. Therefore, the clustered bipartite graph was as usable as its block matrix 

counterpart, only when there were few edge crossings interfering with inter-level edge 

traversal. 

III. Summary 

In summary, we found that the block matrix representation supported the following tasks 

better than using its clustered bipartite graph counterpart. This could due to the absence of 

edges in the block matrix representation. 

I. Identity pairwise functional relationship between clusters within the same sample. 

2. IdentifY pairwise relationships between clusters of different samples. 

In terms of HCC biology, the most important deduction here was that HCC has a reduced 

energy production compared to normal cells. 

3.4.2.4. Conclusion 

In conclusion, both representations had their strengths and limitations. On the one hand, the 

block matrix seemed to be more suitable for examining the biological processes of an 

individual cluster and pairwise inter-cluster comparison for functional relationships. On the 

other hand, the clustered bipartite graph seemed to be more suitable for comparing between 

sample sets thereby facilitating the deduction of biological differences between different 

samples. Since this was the deduction fundamental to hypothesis formulation, the clustered 

bipartite graph would be better suited to microarray analysis than the block matrix 

representation. 

In the next section, a usability evaluation conducted with a group of biologists was being 

presented. The purpose was to examine empirically their experience in using each 

representation in biological analysis. The results should inform us as to whether they 

identified the same strength and limitations in each visual representation. 
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3.5. Usability Evaluation 

A task-oriented evaluation was performed to systemically quantify the biologist's 

performance and experience with each representation. The evaluation was designed to 

identify the strength and limitation of each representation. We anticipated that the 

participants evaluating the block matrix representation should perform better than its 

clustered bipartite graph counterpart. The reason behind was that the block-matrix 

representation captures the gene-centric model that biologists were most familiar with. We 

further hypothesized that edge crossing in the clustered bipartite graph representation will 

impede the participant's performance in the competency tasks and the conceptual tasks. 

3.5.1. Experimental Design 

This experiment was setup to examine three independent variables and three between-subject 

dependent variables. The three independent variables were: microarray datasets (normal 

hepatocytes and HCC [58]), representations (block matrix and clustered bipartite graph), and 

task types (competency and conceptual tasks). The three dependent variables were: task 

completion time, accuracy, and user confidence score. Accuracy was defined as the 

percentage of the total number of tasks being correctly answered. Each representation was 

presented as a static visualization without any interactivity to ensure that the participant's 

performance was influenced only by the cluster pattern of each representation. 

Based on our understanding of microarray analysis, the tasks were designed with an 

emphasis on finding and interpreting the visual features of GO-annotated gene clusters that a 

typical microarray user will perform. There were ten analytical tasks. The first five (tasks A­

E) were competency tasks designed to test the readability of each representation. The last 

five (tasks F-J) were conceptual tasks designed to test the usability of each representation in 

analytical reasoning. The analytical tasks and the use case scenario of each task were 

presented in the following section. 

3.5.2. Analytical Tasks 

3.5.2.1. Competency tasks 

The five competency tasks are listed as in the following: 

A. Find the gene cluster that is linked to the largest number of GO IDs (Questions I for 

normal sample; Question 2 for disease sample). 

Use case scenario. A biologist may want to identify co-expressed genes that are involved in 

multiple biological processes. A cluster linked to multiple biological processes is an 

indication that its member genes could be control points for coupling or decoupling some of 

the biological processes associated with a cellular phenotype. 
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B. Find the gene cluster that is linked to the smallest number of GO IDs from each sample 

set (Question 3 for normal sample; Question 4 for disease sample). 

Use case scenario. A biologist may want to identify co-expressed genes that are functioning 

in a particular biological pathway. A cluster linked to only one or two biological processes is 

an indication that its member genes are functionally specific. 

C. Find the GO ID(s) that has the largest number of co-expressed genes from each sample 

set (Question 5 for normal sample; Question 6 for disease sample). 

Use case scenario. A biologist may want to identify the biological processes that are the 

most active in the normal or the disease sample. A biological process with a larger number of 

co-expressed genes than others often indicates that it is relatively more active. 

D. Find the GO ID(s) that has the smallest number of co-expressed genes from each sample 

set (Question 7 for normal sample; Question 8 for disease sample). 

Use case scenario. A biologist may want to identify the biological processes that are the 

least active in the normal or the disease sample. The rationale is the opposite of task C. 

E. Find the GO IDs that are active only in the NORMAL or DISEASE sample set (Question 

9 for normal sample; Question I 0 for disease sample). 

Use case scenario. A biologist may want to identify the biological processes that are specific 

to a particular phenotype. This task is frequently performed not only in bio-technology and 

medicine but also in agriculture where biologists want to compare the functional differences 

between plant or livestock species. 

3.5.2.2. Conceptual tasks 

The five conceptual tasks are listed as in the following: 

F. Deduce which biological process is the most highly regulated (Question II for normal 

sample; Question 12 for disease sample). 

Use case scenario. A biologist may want to identify biological processes that are highly 

regulated relative to others. Biologists interpret co-expression as synchronized activity 

among a group of genes and therefore must be co-regulated. The number of co-expressed 

genes linked to a biological process is an indicator of how highly regulated it may be. 

G. Deduce which biological process is likely to be the least regulated (Question 13 for 

normal sample; Question 14 for disease sample). 
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Use case scenario. A biologist may want to identify which biological process( es) is the least 

regulated relative to others. The rationale is the opposite of task F. 

H. Deduce which biological processes are likely to be co-regulated with the ubiquitin cycle 

(G0:0006512) and has the largest number of co-expressed genes (Question 15 for normal 

sample; Question 16 for disease sample). 

Use case scenario. A biologist may want to use a particular biological process as a focus for 

investigating its connection with the other biological processes. 

I. Deduce which human tissue the diagrams could most likely represent (Question 17 for 

both samples). 

Use case scenario. While this task is not a reflection of the real-world scenario, it was 

designed to test the usefulness of GO-annotated gene clustering in biological deduction. In 

particular, it is a test on whether the GO terms in the visualization are representative of liver 

physiology. 

J. Deduce which disease could the DISEASE TISSUE most likely represent (Question 18 for 

both samples). 

Use case scenario. The rationale is similar to task I. In this case, it is a test on whether the 

GO terms in the visualization are representative of liver cancer. 

3.5.3. Participants 

Since the representations had been designed for use in biological research, results obtained 

from the evaluation were informative only if the participants were expert biologists with 

different research interests. Our choice of participants emphasized on their quality as domain 

experts in biology. Fourteen participants were recruited from four medical research institutes 

and two university biology departments. They had research interests in various fields of 

biology, e.g. biochemistry, cardiology, immunology, oncology, pharmacology, and virology. 

The group consisted of two group leaders who were also holding lecturer positions, four 

postdoctoral fellows, two research assistants, and six doctorate degree students. Among 

them, three were also practicing clinicians from two teaching hospitals. All of them were 

practicing bench biologists with no formal qualifications in computer science or information 

technology. 

3.5.4. Procedure 

Each session started with the evaluator explaining to the participant the design of the 

representation, the nature of each task and how to fill out the questionnaire. The participant 
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was given a trial session to familiarize oneself with the procedure using a synthetic dataset. 

In the proper session, each participant performed tasks A to H twice, once on the normal 

sample set and once on the disease sample set. The exceptions are tasks I and J. They were 

performed once because the tasks demand the participants to compare both samples using the 

same representation. This gave rise to 18 questions on the questionnaire. For each task, the 

participant was timed, observations were gathered, and the answers to the questionnaire were 

collected At the end of each session, the participant was asked to provide a subjective rating 

on a five-point scale (0 to 4) to indicate one's confidence in performing each task. The 

higher the score, the higher is the participant's confidence. The participant was also free to 

express one's opinion about the evaluated representation in writing. 

In the following sections, the group of participants in the block matrix evaluation was 

referred to as the 'block matrix group' and those in the clustered bipartite graph evaluation 

were referred to as the 'bipartite graph group'. 

3.5.5. Results 

3.5.5.1. Competency tasks 

A. Find the gene cluster that is linked to the largest number of GO IDs (Questions I and 2). 

Evaluation result. The median time spent by both groups on questions I (normal sample 

set) and 2 (disease sample set) was comparable (see FIGURE 3.12(a)). Both groups gave the 

same number of correct responses to questions 1 and 2 (see FIGURE 3.12(b)). When asked to 

give a user satisfaction score on a 5-point scale, both groups gave a median score of 3 to 

question 1 and a median score of 4 to question 2 (see FIGURE 3.12(c)). Thus participants 

within each group were quite confident in performing task A with their confidence in 

answering question 2 slightly higher than question 1. In general, user performance on task A 

by both groups was comparable. Therefore neither representation has an advantage over the 

other when being used to perform task A. 

B. Find the gene cluster that is linked to the smallest number of GO IDs from each sample 

set (Questions 3 and 4). 

Evaluation result. The median time spent by both groups on questions 3 and 4 was 

comparable (see FIGURE 3.12(a)). For question 3 (normal sample set), the number of correct 

responses given by the bipartite graph group was higher than its block matrix counterpart ( 6 

cf 4). With respect to user confidence scores, the bipartite graph and block matrix groups 

gave median scores of2 and 3 respectively. Thus the block matrix group was more confident 

in finding a solution to question 3 than its bipartite graph counterpart even though the latter 

group gave a higher number of correct responses. 
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FIGURE 3. 12. Participants' performance in competency tasks. The data for the bipartite graph group 
and its block matrix counterpart are shown in dark and grey bars respectively. (a) Median time spent 
per question. (b) Number of correct responses per question. (c) Participant's confidence score per 
question. 

There was little performance discrepancy between the two groups for question 4 (disease 

sample set). The bipartite graph group gave a slightly higher number of correct responses 

than its block matrix counterpart (FIGURE 3.12(b)). Both groups gave the same median 

confidence score of 3 indicating that they were equally confident in answering the question 

(FIGURE 3.12(c)). In general, the bipartite graph helped improving the number of correct 

responses but not in task completion time and user confidence when used to perform task B 

on the normal sample set. 

C. Find the GO ID(s) that bas the largest number of co-expressed genes from each sample 

set (Questions 5 and 6). 

Evaluation result. To complete task C, the bipartite graph group spent nearly twice the time 

on question 5 but spent only half the time on question 6 compared to that of the block matrix 

group (see FIGURE 3.12(a)). For question 5 (normal sample set), the block matrix group gave 

a slightly higher number of correct responses than its bipartite group counterpart (7 cj 6). 

For question 6 (disease sample set), both groups gave the same number of correct responses 

(see FIGURE 3.12(b)). For both questions, both groups gave the same median confidence 

score of 3 indicating that they were equally confident in performing task C (see FIGURE 

3.12(c)). In general, both groups were comparable in terms of the number of correct 

responses and user confidence score. Results on the task completion time suggested that the 

bipartite graph group encountered greater difficulty in performing the task on the normal 
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sample set. In general, neither representation had an advantage over the other when being 

used to perform task C. 

D. Find the GO ID(s) that has the smallest number of co-expressed genes from each sample 

set (Questions 7 and 8). 

Evaluation result. To complete task D, the block matrix group spent more than twice the 

time on both questions compared to that of the bipartite graph group (see FIGURE 3.12(a)). 

Yet it was the latter that gave a higher number of correct responses to question 7 (see FIGURE 

3.12(b)). Both groups gave a confidence score of 2. This means that even though their 

performance in answering question 7 (normal sample set) was obviously better, participants 

in the bipartite graph group did not feel particularly confident in answering this question. For 

question 8 (disease sample set), only one participant in the block matrix group answered the 

question correctly as compared to two in the bipartite graph group. In terms of the 

confidence score, the bipartite graph and block matrix groups gave a median score of 3 and 2 

respectively (see FIGURE 3.12(c)). Thus, participants in the bipartite graph group were more 

confident than their block matrix counterpart in answering this question. In general, the 

bipartite graph helped improving the participant's overall performance in task D. 

E. Find the GO IDs that are active only in the NORMAL or the DISEASE sample set 

(Questions 9 and 10). 

Evaluation result. To complete task E, the block matrix group spent 38% and 47% longer 

on questions 9 (normal sample set) and 10 (disease sample set) than the bipartite graph group 

respectively (see FIGURE 3.12(a)). For question 9, both groups gave the same number of 

correct responses. For question I 0, the block matrix group gave a higher number of correct 

responses (see FIGURE 3.12(b)). For both questions, both groups gave the same median 

confidence score of 2 indicating that they are neutral in their level of confidence on 

performing task E (see FIGURE 3.12(c)). 

To answer question 9, the participant was required to compare the normal tissue with the 

disease tissue and vice versa for question I 0. The results indicated that the clustered bipartite 

graph was more suitable for answering question 9 by reducing the task completion time, 

whereas the block matrix was more suitable for answering question 10 by improving the 

number of correct responses. Therefore, the block matrix does not have an absolute 

advantage over the bipartite graph for deducing the biological differences between 

phenotypes. 
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FIGURE 3. 13 . Participants' performance in conceptual tasks. The data for the bipartite graph group and 
its block matrix counterpart are shown in dark and grey bars respectively. (a) Median time spent per 
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3.5.5.2. Conceptual tasks 

F. Deduce which biological process is the most highly regulated (Questions ll and 12). 

Evaluation result. To complete task F, the bipartite graph group spent three times the 

median time on question 11 (normal sample set) and spent twice the time on question 12 

(disease sample set) compared to that of the block matrix group (see FIGURE 3.13(a)). 

However, the two groups were comparable in the number of correct responses (see FIGURE 

3.13(b)). In this respect, the participants ' performance on accuracy was comparable to task C 

(questions 5 and 6). For both questions, the block matrix group gave a higher confidence 

score than its bipartite graph counterpart (see FIGURE 3.13(c)). Therefore participants in the 

block matrix group were more confident than their bipartite graph counterparts in performing 

task F. In general, the results were obviously indicating that the block matrix helped 

improving the task completion time and user confidence when used to perform task F. 

G. Deduce which biological process is likely to be the least regulated (Questions 13 and 14). 

Evaluation result. To complete task G, the block matrix group spent 32% longer on 

question 13 (normal sample set) and spent 17% longer on question 14 (disease sample set) 

than the bipartite graph group (see FIGURE 3.13(a)). Yet it was the latter that gave a higher 

number of correct responses to question 13 (see FIGURE 3.13(b)). For question 14, only one 

in the block matrix group answered the question correctly as compared to two in the bipartite 

graph group. However, it was the block matrix group that gave a higher confidence score 
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than its bipartite graph counterpart for questions 13 and 14 (see FIGURE 3.13(c)). Therefore, 

participants in the block matrix group were more confident than their bipartite graph 

counterparts in performing task G even though their performance was actually behind their 

bipartite graph counterparts. In general, the bipartite graph helped improving the number of 

correct responses and task completion time but not user confidence when used to perform 

task G. 

H. Deduce which biological processes are likely to be co-regulated with the ubiquitin cycle 

(G0:0006512) and has the largest number of co-expressed genes (Questions 15 and 16). 

Evaluation result. To complete task H, the bipartite graph group spent three times the 

median time on question 15 (normal sample set) and comparable median time on question 16 

(disease sample set) compared to that of the block matrix group (see FIGURE 3.13(a)). For 

question 15, the bipartite graph group gave a higher number of correct responses (6 cf 2). 

For question 16, the bipartite graph group gave a slightly higher number of correct responses 

(see FIGURE 3.13(b)). 

For question 15, the block matrix group gave a higher confidence score than its bipartite 

graph counterpart (3 cf 1). For question 16, the bipartite graph group gave a higher 

confidence score than its block matrix counterpart (see FIGURE 3.13(c)). Thus participants in 

the block matrix group are equally confident in performing task H on both sample sets, 

whereas the participants in the bipartite graph group are more confident in performing the 

same task only on the disease sample set. 

With the block matrix, task H involved identifYing all the gene clusters that had 

G0:0006512 as a listed GO Process label and then comparing between clusters for the GO 

Process labels associated with G0:0006512 in each sample set. The shorter median task 

completion time given by the block matrix group did support the view that the block matrix 

facilitated pairwise inter-cluster comparison for functional relationships. However, it might 

not improve the number of correct responses if the cluster pattern is visually complex as seen 

in the normal sample set. 

With the bipartite graph representation, task H involved traversing edges that link 

G0:0006512 with other GO nodes via the gene clusters. The longer median task completion 

time by the bipartite graph group could be due to the numerous edge crossings present in the 

normal sample set, but that did not result in a lower number of correct responses than the 

block matrix group. With the lower visual complexity of the disease sample set, both groups 

became more comparable in their median task completion time and the number of correct 

responses for question 16. Thus the bipartite graph might help improving the task completion 
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time and the number of correct responses but not user confidence when used to perform on 

visually complex patterns. 

I. Deduce which human tissue the diagrams could most likely represent (Question 17). 

Evaluation result. To complete task I, the bipartite graph group spent 9% longer than the 

block matrix group (see FIGURE 3.13(a)). Only two participants were able to answer 

questions 17 correctly. Both are participants in the bipartite graph group (see FIGURE 

3.13(b)). One of them was a biologist with 20 years experience in liver diseases. The other 

was a postgraduate student with clinical experience and expertise in cervical cancer. 

Both groups gave a confidence scoring of I indicating that both groups found this task 

difficult to perform (see FIGURE 3.13(c)). Furthermore, one participant in the bipartite graph 

group and two in the block matrix group failed to find a solution. One of them in the block 

matrix group answered task I as 'The tissue type is not evident from the range of GO 

classifications represented as they are too general to draw an assumption.' The answers 

deduced by all participants and their scientific interests are listed in TABLE I. 

J. Deduce which disease could the DISEASE TISSUE most likely represent (Question 18). 

Evaluation result. To complete task J, the bipartite group spent 1.6 times the median time 

compared to that of the block matrix group (see FIGURE 3.13(a)). Only two participants were 

able to answer question 18 correctly. Both were participants in the bipartite graph group (see 

FIGURE 3.13(b)). One of them was an expert in liver disease who also answered question 17 

correctly. The other was a postgraduate student who was a practicing clinician with expertise 

in Marfan's syndrome. One participant in the bipartite graph group and one in the block 

matrix group failed to find a solution. Both groups gave a confidence scoring of I indicating 

that both groups found this task difficult to perform. The answers deduced by all participants 

and their scientific interests are listed in TABLE 2. 

3.5.6. Participants' Post-Task Comments 

In the post-task briefing, participants in each group were asked to give their opinion about 

their respective representation and whether the representation was relevant to their research 

interest in biology. Four participants from the bipartite graph group commented that the edge 

crossings in the normal sample set were interfering with their graph reading. However, five 

of the six participants thought that with some improvements such as colour-coded edges, 

colour-coded GO Process labels or more readable font size, the bipartite graph would be still 

be useful for their microarray analysis. 
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TABLE I. Participants' deductions for question 17 (Task I) 

No. of Participants' 
participants deduction 

2 Blood 

Kidney 

Liver 

Lung 

Muscle 

Thyroid 

2 Heart 

Immune cells 

Vascular 

3 Don't know 

Participants' rationale 

Presence of complement pathway (involved in 
immune cell function) and Rho protein 
expression. 

There is a lot of fatty acid biosynthesis and 
cholesterol and etc. 

Not stated. 

Less cell growth in the disease. 

There are ion transport genes, as well as aerobic 

Participants' domain 
expertise 

Virology 
Cardiology 

Immunology 

Hepatology 
Phannacolo 

Clinical genetics 

respiration, and cell cycle, protein biosynthesis Cardiology 
gene clusters. Significant co-expression of Population genetics 
protein metabolic processes involved. 

Not stated 

Diseased tissue has cholesterol biosynthesis. 

Presence of mitochondria components, need of 
aerobic respiration and maintenance of 
chromatin to maintain contractility. 

Oncology 
Microbiology 
Virolo 

Virology 
Immunology 

Because of the presence of RNA molecular biology 
G0:0006958[complement activation pathway. Lipid biochemistry 

Energy production is strong in normal tissue, 
whereas fat accumulation seems to be 
predominant in disease tissue. 

The tissue type is not evident from the range of 
GO classifications represented as they are too 
general to draw assumptions. 

Virology 
Oncology 

Oncology 
Clinical genetics 
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TABLE 2. Participants' deductions for question 18 (Task J) 

No. of Participants' 

3 

2 

2 

participants deduction 

Atherosclerosis 

Endocrine disease 

Hepatocellular 
carcinoma 

Pulmonary 
carcinoma 

Herpes viral 
infection 

Leukemia 

Muscle-related 
mitochondrial 
disease 

Nephritis 

Thyroid disease 

Don'tknow 

Participants' rationale 

Due to the increased fatty acid and cholesterol biosynthesis 
and the increased expression of complement activation 
genes signifies inflammation. These processes are all 
characteristics of the development of atherosclerotic 
plaques. 

Diseased tissue has fatty acid and cholesterol biosynthesis, 
and sodium ion transport, whereas the nonnal tissue 
doesn't. 

The disease tissue may be a connective tissue and fat 
accumulation seems to be predominant in disease tissue. 

Macrophages turning into foam cells. 

Because genes in cholesterol and fatty acid synthesis are 
involved. I thought there may have been problems in the 
production of hormones which require these substances. 

Not stated. 

Impaired cell growth and division and repair. 

Herpes virus infection as this virus shuts down cellular 
transcription and there are far few genes expressed in the 
disease tissue than the normal tissue. 

Due to the increased number of complement activation 
pathway genes. 

Regulation of transcription has become 'detached' from 
other GO terms related to cell transformation. 

Genes that are co expressed are involved in protein 
transport, phosphorylation processes. 

Participants' 
domain 
expertise 

Immunology 
Lipid 

biochemistry 
Oncology 
Virology 

Immunology 
Cardiology 

Hepatology 
Pharmacology 
Microbiology 
Immunology 

Virology 

RNA molecular 
biology 

Oncology 

Cardiology 
Population 

:enetics 

Due to the up-regulation of complement activation and cell Immunology 
cycle arrest genes. Microbiology 

This is due to regulation of immune function via the Oncology 
classical complement activation pathway, and cholesterol Microbiology 
biosynthesis. Virology 

Not stated 
Oncology 
Clinical genetics 
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Only one participant in this group expressed the negative view that the bipartite graph 

presented was not usable at all. Of note, one of the participants pointed out the limitation of 

using GO Process labels for visualizing biomedical microarray data (participant no. 3; see 

TABLE 3). In his opinion, GO did not describe the relationship between the various 

biological processes and human diseases and thus had very little use in biomedical research. 

Two participants from the block matrix group commented that the redundant GO Process 

labels confused the functional relationships between the co-expressed gene clusters. One 

participant in this group found that the block matrix was difficult to use for comparing 

between sample sets (participant no. I 0; see TABLE 3). However, the same participants still 

thought that the representation in its current form was useful to their microarray analysis 

work. Another three participants commented that the representation was easy to read and to 

understand. Collectively, participants' opinion indicated that the block matrix in its current 

form was acceptable in terms of usability but the clustered bipartite graph required further 

work. 

3.5.7. Discussion 

The evaluation results are summarized in FIGURE 3.14. With the competency tasks, the 

median accuracy (see FIGURE 3.14(c)) and the median user confidence score (see FIGURE 

3.14(b)) of the bipartite graph group was comparable with its block matrix counterpart. A 

comparison between the worst cases showed that participants in the bipartite graph group 

gave a 50% higher accuracy than those in the block matrix group (see FIGURE 3.14(c)). Also, 

it took the block matrix group 40% longer to complete the competency tasks than the 

bipartite graph group (see FIGURE 3.14(a)). Thus the advantage of the clustered bipartite 

graph representation over its block matrix counterpart lay in faster task completion and, for 

some participants, reading accuracy. 

A task-to-task analysis showed that the previously mentioned advantages of the clustered 

bipartite graph over the block matrix were evident mainly in tasks D and E (Questions 7 to 

10; see FIGURE 3.12(a)). Indeed, it had been observed that an immediate stalling happened 

when the participants in the block matrix group were looking for a solution to question 7 of 

task D. This could be due to the redundant representation of the GO Process labels in the 

normal sample set which made the block matrix confusing to read, a view expressed by a 

few participants (see TABLE 3). On the other hand, four participants in the bipartite graph 

group were finger tracing the edges to confirm any perceived relationships between a gene 

cluster and its neighbouring GO nodes or vice versa. The same behaviour was absent with 

the block matrix group. The presence of edges seemed to give the participants a visual mean 

to confirm the presence of any perceived relationships. 
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TABLE 3. Participants' post-task comments 

Group: Clustered bipartite graph 

p Comments p--=!'_artlcpants 

I Visually easy to look at but the line crossings may be a bit confusing if the number of connections 
increases. It is a good visualization tool for array data. 

2 The fonts of the GO terms are difficult to read. Recommend colour-coded lines and text for each GO term. 
I would like to have a 3D spherical arrangement of the correlated gene clusters to complement the 20 
visualization so that I can interpret the data for tasks I and J. 

3 The visualization is helpful because it does give you some idea of gene co-expression in the context of GO 
terms. However, when the relationship between various GO terms becomes more complex, the appeal of 
the visualization diminishes. The visualization is not a great deal relevant to my research because GO 
terms describe a lot of generic processes and bear very little relationship to the actual pathophysiological 
data described in the literature. 

4 Spontaneously, I would say that the GO clusters are not very accessible. It requires a certain amount of 
dedication to understand them. We use microarrays in several ways to understand gene regulation on the 
post-transcriptional level. Several projects have come up with gene lists in which GO terms are 
significantly enriched. 

5 The 'normal' diagram was more difficult to read than the 'disease' diagram because of the increase in the 
number of lines causing congestion in the diagram. It would be good to have a function where clicking 
on a gene cluster changes the colour of the lines to the GO terms. I haven't used a data visualisation 
program on my data yet, so this looks good and will be helpful. 

6 Summarize the results nicely by showing all the relationships between gene groups and the related GO 
terms. However when there are a lot of interactions between groups it's a little hard to read the results. 

7 
The lines were a bit vague when interpreting the correlations but the visualization could be relevant in the 

future for interpreting data. 

Group: Block matrix 

8 These GO clusters are quite easy to understand and analyse. It can get a bit tricky when looking for a gene 
ontology that comes up not only in one cluster but multiple ones. If the dataset of the normal tissue is 
bigger than what has been shown, it will be even more difficult to do task D. Yes, it is relevant. I need to 
use gene ontology annotation in all my microarray experiments. At present, I have to compare the gene 
ontology terms between two datasets by visually inspecting them on Excel spreadsheets. 

9 It was difficult to relate GO terms that were represented more than once in the diagram. The visualization 
is very relevant. We are doing a lot of microarray work and have large datasets which we would like to 
relate to functional outcomes. 

10 A bit confusing trying to understanding the difference between co-expressed and co-regulated, and being 
able to compare disease to normal tissue using the cluster patterns. However, it provided a good way to 
visually inspect the groups of genes regulated in each tissue, as well as between tissue types, I think a 
spreadsheet would also have to be provided for the comparison between disease and normal. 

II I understood the concepts behind the visualisation graphics. It was quite easy to follow and then draw 
conclusions from what is being presented. 

12 Easy to visualise. Perhaps might even be better if each of the bioprocesses had a different colour code. 

13 A few questions were difficult without any experience in microarrays. 

14 The graphs were easy enough to understand for a person who has no previous experience with gene arrays. 
--
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FIGURF 3.14. Summary of evaluation results. The data for the bipartite graph group and its block 
matrix counterpart arc shown in dark and grey bars respectively. (a) Median completion time for each 
task type. (b) Median confidence score per task type. (c) Overall median accuracy of competency 
tasks. (d) Overall median accuracy of conceptual tasks. 

However, some participants found that the edge crossings in the normal sample set were 

interfering with graph reading (see TABLE 3). This might explain why it took the bipartite 

graph group a longer median completion time on the normal sample set than that on the 

disease sample set, except for tasks A and D. Edge crossings should have very little impact 

on tasks A and D since task A did not require edge traversal. With task D, most of the gene 

clusters containing two genes or fewer were located at the far right end of the screen where 

the distribution of edge crossings was sparse (sec FIGURE 3.6(a)). 

With the conceptual tasks, the median accuracy in the bipartite graph group was twice of 

the block matrix group (see FIGURE 3.14(d)). However, the bipartite graph group took 36% 

longer to complete the conceptual tasks than the block matrix group (see FIGURE 3.14(d)). 

This was because several participants in the bipartite graph group seemed to realize that 

some of the competency and conceptual tasks are related. They were re-examining not only 

the representation but also their answers made to the competency tasks repeatedly. 

The median user confidence score showed that the bipartite graph group had a less 

positive user experience than the block matrix group (see FIGURE 3.14(b)). This was 

suggesting a case of perception/performance mismatch. In other words, participants in the 

bipartite graph group did not realize that they were giving a higher number of correct 

responses than its block matrix counterpart. A task-to-task analysis revealed that 

perception/performance mismatch occurred not only with tasks G and H, but also with the 

competency tasks B and D. More importantly, it occurred only with questions that were 
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based on the normal sample set suggesting that visual complexity could be the cause. Taken 

together, the advantage of the bipartite graph over block matrix laid in enhancing the 

biologist's analytical accuracy but in its current form was perceptually less usable than the 

block matrix. The participants' post-task comments reflected this. 

Another important observation was that the number of correct responses for task F was 

comparable to that of task C, and the number of correct responses for task G was comparable 

to that of task D (questions 7 and 8). Because tasks F and G were designed to complement 

tasks C and D respectively, the participant's correctness in answering the conceptual tasks 

should depend on his/her correctness in answering the complementary competency tasks. 

Therefore, the results indicated that reading accuracy could influence the biologist's 

analytical accuracy. 

Of all the conceptual tasks, tasks I and J were the most challenging. The poor number of 

correct responses and the poor user confidence score given by both groups were a reflection 

of this (see FIGUREs 3.14(b) and (c)). Both tasks challenged the participants to make 

deductions based on their expertise in biology. This might suggest that the GO Process labels 

presented were not informative enough for the participants to draw an accurate conclusion to 

either task. During the performance of task I, several participants in the block matrix group 

had verbally expressed that the co-existence or the absence of certain GO Process labels was 

in conflict with their knowledge on liver physiology. However, the same did not occur with 

the bipartite graph group. This difference could be a result of the different layout of GO 

Process labels in each representation. The display of GO Process labels beneath each cluster 

in the block matrix might give the participants a stronger impression that the biological 

processes of a particular cluster were functionally related as compared to the single level 

layout of GO Process labels in the clustered bipartite graph. 

The conflict between what was being perceived and what was the participant's own 

knowledge precept could be happening to all the participants, because the answers given 

seemed to be deduced from a selected few rather than the entire set of GO Process labels (see 

TABLEs 2 and 3). It was possible that the participants were exhibiting cognitive bias towards 

the biological processes that they were most familiar with. In the best case, one participant 

based his deduction for task I on four GO Process labels and another participant based his 

deduction for task J on three GO Process labels. This would suggest that a systems-level 

understanding of HCC was achievable only if the dataset has been cross examined by 

biologists from different areas of expertise. 
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3.6. Remarks 

This chapter exposed the different strength and limitations of the two visual representations, 

i.e. the block matrix and the clustered bipartite graph, as visual analysis methods. The 

strength of the block matrix representation laid in its visual simplicity and its gene centric 

semantics. However, this apparent advantage over the clustered bipartite graph did not 

translate into real performance enhancement in either the task completion time or in 

analytical accuracy. The underlying reason could be its redundant representation of the GO 

Process labels. Readability was further compromised when the redundant GO Process labels 

were scattered throughout the visualization. In its current form, block matrix was only 

suitable for pairwise comparison between clusters for their functional differences. 

The strength of the clustered bipartite graph representation laid in its graphical semantics 

which emphasized on connectivity between two sets of nodes. It was a faithful representation 

of the m:n gene_ cluster-GO relationship. The better performance of the clustered bipartite 

graph group in reading and analytical accuracy might imply that capturing the network view 

was more relevant to biologists than preserving their gene-centric view using the block 

matrix, even though the usability of the former representation decreased with the increase in 

edge crossings. This finding was especially relevant in the present day when experimental 

biologists increasingly needed to adopt the network view in order to make a better use of 

high-throughput data for hypotheses deduction. 

Based on the evaluation results, several design requirements for visualizing GO­

annotated gene clusters could be recommended. Listed in their order of priority are: 

I. The m:n gene _cluster-GO relationship has to be faithfully represented. The usability 

evaluation showed that the biologist's analytical reasoning cannot be enhanced by 

emphasizing the functional partitioning of genes. The representation of the m:n gene_ 

cluster-GO relationship is of equal importance if not more. 

2. The representation of GO Process labels in the block matrix has to be non-redundant. 

This will allow the biologist to quickly deduce the biological differences between 

phenotypes. 

3. Edge crossing minimization in the clustered bipartite graph representation is necessary 

for enhancing graph readability. 

4. It may be important to represent the co-expressed genes explicitly to preserve the 

biologist's mental model of a gene cluster even though this will increase the ink-to­

information ratio. 
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Most participants indicated that the visualization was relevant to their research despite 

that only a few were able to deduce correctly the tissue of origin from which the dataset was 

derived and the pathological condition of the tissue based solely on the visual 

representations. 

Finally, the usability evaluation exposed two challenges facing today's biologists when 

analyzing high-throughput data. The first one was cognitive bias. The biologist would tend to 

deduce hypothesis based on those GO Process terms that he/she was familiar with. The most 

appropriate solution for alleviating this problem was to increase collaboration within the 

biological research community. The second one was the informational scope of GO. It is a 

controlled vocabulary for representing what biologists have historically studied about the 

functions of certain genes. The knowledge about these genes can be biased by the fact that 

their functionality has only been studied by experts within a particular domain, say 

embryonic development, and not in any other domains, e.g. metabolic diseases. An added 

concern is that computational prediction of gene function based on comparative genomics 

could result in misleading GO annotations. The basis of comparative genomics is specie 

orthogonality. For example, gene a found in mouse should have a similar function to gene A 

in human since their 70% or more of their DNA sequences are identical. They are known as 

orthologs. By this rationale, it should be able to predict the function of an unknown human 

gene if we know its mouse ortholog. However, the function of a gene is defined by what 

other genes or proteins it interacts with and its position in the gene regulatory and the 

protein-protein interaction networks. These could vary from specie to specie. Therefore GO 

terms sourced from computational predictions are highly hypothetical. Their use in GO 

cluster visualizations should be restricted. In the light of these, when investigating 

biomedical questions, GO annotation on high-throughput data might not be informative 

enough for the purpose of hypothesis deduction and the use of some other biomedical 

ontologies such as the OMIM Morbid Map [ 136] or NCI Thesaurus [ 136] might be 

necessary. 

{End of Chapter 3} 



Visualization and Analysis 
of Gene Ontology-Defined 
Protein Interaction 
Networks 

'"No proteins, No work" 

4.1. Introduction 

CHAPTER 4 

In the previous chapter, the visualization of Gene Ontology (GO)-annotated gene clusters 

showed the modular organization of gene expression [3]. This modularity is defined by the 

biological processes in which the co-expressed genes are involved in. A functional module 

can be understood as a network path or a sub-network of the single cell molecular network 

[ 116]. Such a module has a defined biological function which is comprised of one or more 

biological processes. Based on this understanding, we seek to explore molecular networks as 

the means for biological research in the coming chapters. Since co-regulated biological 

processes require protein-protein interactions to function, visualizing gene co-expression in 

the context of a protein interaction network (PIN) becomes the second step of our visual 

analysis framework (see Chapter I, section 1.2). 

In this chapter, we explore the problem of PIN visualization. The challenges to this 

problem are two-fold. The first one is scale. The single cell PIN of a particular organism is 

cognitively challenging when visualized. For example, the latest version of the human PIN 

contains approximately 25,000 proteins and the number of interactions could exceed 40,000 

[15]. The second one is to capture the functional modularity of PIN. As mentioned in 

Chapter 3 (see section 3.1), proteins belonging to a functional module can be defined by their 

membership in a cellular component or in a biological process. Furthermore, a PIN 

corresponding to a biological process can itself be subdivided into smaller modules (or sub­

networks) if its proteins co-exist in multiple cellular components. In other words, if we 

extract a sub-network as a functional module out of the single cell PIN, that sub-network can 

be made of smaller sub-networks or functional modules. This property of 'network within 

network' or 'module within module' is universal to all molecular networks [3]. 

In an attempt to meet these challenges, we present two methods for visualizing the human 

PIN, i.e. the non-clustered PIN and the clustered PIN visualizations. We implemented them 

as part of a visualization system that allows the biologist to select the criterion, i.e. GO 

Biological Process (also known as the GO Process) or the GO Cellular Component (also 
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known as the GO Component), for filtering the single cell human protein network to a 

smaller network. Each network contains only the protein-protein interactions that correspond 

to the selected GO Process or GO Component. We called this network a GO-defined PIN. If 

it is a result of using the GO Process as the filtering criterion, we called the network a 

GO _Process-defined PIN. If it is a result of using the GO Component as the filtering 

criterion, we called the network a GO_ Component-defined PIN. 

A GO-defined PIN can be visualized using two methods. In the non-clustered 

visualization, the PIN is visualized using the force-directed layout which has been the 

conventional method [44, 52]. This is a generic layout which does not take any biological 

context into account. In the clustered visualization, the PIN is visualized as a set of inter­

connected clusters using a circular layout. The clustering criterion applied is a GO category 

complementary to that for the filtering criterion. For example, if the GO Process is applied as 

a filtering criterion, the GO Component will be applied as a clustering criterion. The 

resulting visualization will consist of clusters labeled with GO Component terms. This 

should capture the functional modularity of the GO_ Process-defined PIN. 

The use of filtering or clustering by domain knowledge has been used in PIN 

visualization before. For example, in ProViz, the user can filter the entire PIN by GO 

categories or other ontologies [178]. In PATIKAweb [42], a PIN is being drawn as a 

compound graph using a force-directed layout. Each sub-network is visually confined in a 

rectangular partition representing a biological process. In tum, each partition is being 

superimposed on a grid where the partitions represent various cellular compartments. This 

approach is in effect a kind of clustering and is closest to the ideal of exposing the nested 

modularity of PIN. The limitation is that PATIKAweb requires pre-defined pathway data as 

the input. It does not provide network filtering like Pro Viz. 

Our approach is different in a way that we applied the 'filter-and-cluster' combination 

with the specific aim of not only exposing the nested modularity of a PIN [116] but also 

preserving the biologist's analytical approach of ''filter first, zoom and details, overview if 
necessary". This has been the motivation behind using one GO category as a filtering 

criterion and another as a clustering criterion. The filtering step allows the user to pre-select 

a particular functional module whereas the clustering step further exposes its modular 

structure. 

To evaluate the merits of using the non-clustered and the clustered PIN visualizations as 

visual analysis methods, we employed the hepatocellular carcinoma (HCC) gene expression 

dataset [58] as the input for each PIN visualization in our case study. The objective is to 

identify which biological processes are the most affected in HCC. In the visual analysis, we 

also addressed some of the HCC-specific biological processes found in the previous chapter. 
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To evaluate if the visualizations meet the biologist's expectation in terms of usability, we 

conducted a domain expert evaluation with an expert biologist who has research interests in 

proteomics and bioinformatics. We asked him to evaluate the visualizations based on a set of 

evaluation criteria derived from published pathway visualization heuristics [134]. 

The rest of this chapter is divided into five sections. The graph-theoretic models of three 

types of PINs are defined in section 4.2. The drawing algorithms for the non-clustered PIN 

and clustered PIN visualizations are presented in section 4.3. The HCC case study is 

introduced in section 4.4. This is the most important section since the strength and 

limitations of each visualization are tested here. Furthermore, some of the protein-protein 

interactions and biological processes mentioned here later become the subjects for further 

analysis using the two- and three-overlapping networks (see Chapters 5 and 6). The domain 

expert evaluation conducted with an expert biologist is elaborated in section 4.5. This 

includes the evaluation criteria, the biologist's background, and the evaluation results. 

Finally, the advantage of applying two complementary visualizations on the same PIN is 

discussed in section 4.6 as a conclusion to this chapter. 

4.2. Representation of Protein Interaction Network 

4.2.1. General Protein Interaction Network 

The graph theoretic model of a PIN is an undirected graph in which the node set represents 

the proteins and the edge set represents the physical interactions between proteins. The 

graph-theoretic defmition of the PIN is defined as the following: 

Definition 4.1. A protein interaction network is an undirected network Gp ~ (Vp, Ep) in 

which Vp denotes the node set of proteins and Ep denotes the edge set of protein-protein 

interactions. The edge e ~ ( v1, v2) represents the pairwise interaction between two proteins v 1 

and v2 where eeEp, v1 E Vp andv2 E Vp. 

4.2.2. Gene Ontology-defined Protein Interaction Network 

Because the single cell PIN often exceeds 10,000 nodes, there is a need to filter it to a 

smaller scale. Furthermore, the single cell PIN does not have any biological context in itself. 

To provide biological context to the filtered PIN, ontology identifiers from either the GO 

Process category or the GO Component category are used as the filtering criterion. The GO 

Process category is often used as the abstraction for biological processes. The GO 

Component category is used as the abstraction for cellular components [ 60]. It should be 

noted that the GO Component category provides ontology at four different levels of 

abstraction. At the highest level, the GO Component category provides ontologies for 

describing sub-cellular regions, e.g. intracellular (G0:0005622). At the middle level, it 

provides ontologies for describing organelles, e.g. nucleus (G0:0005634). The next level is 
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the ontologies for describing sub-organelles, e.g. nucleolus (G0:0005730). At the lowest 

level, it provides the ontologies for protein complexes, e.g. ribosome (G0:0005840). 

The graph-theoretic definition of the GO-defined PIN is defined as the following: 

Definition 4.2. A GO-defined PIN is an undirected network GF = (VF, EF) where VF~ Vp, 

EF~ Ep. Each v1 E VF has two node attributes, i.e. BP_ I D and cc_I D. Each attribute 

contains a tuple of unique GO identifiers. BP ID contains identifiers for the GO Process 

terms. CC ID contains identifiers for the GO Component terms. 

If BP _ ID is used as the filtering criterion, all nodes in VF will have the same GO identifier 

for the node attribute BP _ID. If cc_r o is used as the filtering criterion, all nodes in VF will 

have the same GO identifier for the node attribute c c ID . 
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FIGURE 4.1 . An example of a non-clustered PfN visualization using the force-directed layout. 

4.2.3. Clustered Protein Interaction Network 

After filtering, the node set VF can be grouped to multiple clusters using the GO category 

that is complementary to the one used for filtering. For example, if the GO Process is applied 

as a filtering criterion, the GO Component will be applied as a clustering criterion. The 

graph-theoretic definition of a clustered PIN is defined as the following: 

Definition 4.3. A clustered PIN is an undirected network Gc containing a cluster set C of 

subgraphs, i.e. C = {G1, G2. ... ,Gd where G, = (VA, EA). Vk denotes the node set of proteins. 

Ek denotes the intra-cluster edge set of protein-protein interactions. Furthermore, Ec denotes 

the inter-cluster edge set of protein-protein interactions. Given two subgraphs G, = ( V,, E;) 

and G1 = ( ~. E), where i :f: j, if there are edges between V; and ~' then there are edges 

between G, and G1. 
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If cc _ ID is used as the clustering criterion, all nodes in a given subgrapb GA will share the 

same GO identifier for cc_ro, and similarly for BP_ID. It should be noted that some 

subgraphs can share some common nodes and edges. Given two subgraphs G; and G1 where i 

# j, their intersection is non-empty, i.e. G, n G
1 

:~; 0 . Therefore, proteins that belong to 

multiple clusters are redundantly represented in the clustered PIN visualization in order to 

avoid overlapping clusters. 

FIGURE 4.2. An example of a clustered PIN visualization using the clustered circular layout. 

4.3. Visualization of Gene Ontology-defined Protein Interaction Network 

4.3.1. Non-Clustered PIN Visualization 

The non-clustered PIN visualization is an undirected network drawn in the force-directed 

layout [ 44]. The design criteria for this visualization are (1) to display the interaction 

between proteins, and (2) to highlight the proteins of co-expressed genes. 

The second criterion is to support the rationale that a pair of proteins should be similar in 

their molecular abundance if they are co-expressed. If they are interacting neighbours at the 

same time, their protein-protein interaction is likely to be functional. The distance between 

each pair of nodes is determined by the equilibrium between the spring and the repulsive 

forces. 

Each protein is represented by a spherical node. To satisfy the second criterion, nodes that 

represent co-expressed proteins are coloured red. Nodes representing proteins that are not co-
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expressing are colored blue (see FIGURE 4.1). Edges are represented by straight lines. An 

appropriate color gradient is being applied to each edge with its ends sharing the colours of 

the end nodes. For example, an edge between an expressed protein and a protein that did not 

co-express will be half in red and another half in blue. 

4.3.2. Clustered PIN Visualization 

The design criteria of this layout are (I) to display the modular structure of the GO-defined 

PIN with each module defined by a GO Process or a GO Component, (2) to provide a fixed 

layout of the nodes (protein and cluster nodes), (3) to minimize intra- and inter-cluster edge 

crossings, and ( 4) to highlight the proteins of co-expressed genes. 

Each cluster is represented by a circular node and is coloured with a different hue to 

differentiate between clusters of individual GO terms. Within each cluster node, the protein 

nodes are arranged along its circumference and the edges are represented by straight lines 

(see FIGURE 4.2). The cluster nodes are arranged in a circular layout. The colour coding of 

the protein nodes and edges is the same as that in the non-clustered PIN. 

The drawing algorithm involves six steps. 

Algorithm 4.1. Clustered circular layout algorithm 

I. Compute the ordering of the cluster nodes such that the inter-cluster edge crossing is 

minimized. This is achieved with the use of the circular shifting algorithm [10]. 

2. Compute the Cartesian coordinates of each cluster node. For the i-th cluster node C;, it has 

the polar coordinates (r, t!.IJ) where r is the radius of the circular layout and MJ is the polar 

angle in radians. Hence, 

s 
r=-

271" 

d 
!!.(} "'....l.x 271" 

s 

S"'c+ f_d; 
j=(} 

where c is the spacing factor, Sis the circumference of the circular layout, and d; is the 

diameter of c;. 

The Cartesian coordinates (x;, y;) for C; can be computed as: 

X; = Xo + r COS (!!.{}) 

Y; =Yo+ r sin (!lB) 
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where (x0, y0) is the centre of the drawing area. 

3. Compute the ordering of the protein nodes in each cluster such that the intra-cluster edge 

crossing is minimized. Thjs is acrueved with the use of the circular shifting algorithm 

[l 0]. 

4. Compute the Cartesian co-ordinates of the protein nodes withln each cluster. This step is 

sirrular to step 2. The difference is that the 118 of the polar co-ordinates (r , 118) for each 

member node is constant. The Cartesian coordinates for each protein nodes are computed 

relative to the centre coordinates of the cluster node. 

5. Draw the cluster nodes in the circular layout. 

6. Draw the protein nodes withjn each cluster node in the circular layout. 

7. Draw all the edges. 
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FIGURE 4 .3. User interface of the PIN visualization system. 

4.3.3. Implementation 

In order to generate the user interface for selecting individual GO terms under the GO 

Process or GO Component category, a new plug-in is added to the network visualization and 

analysis tool GEOMl [2]. A right-hand panel is added that contains a drop-down menu for 

selecting either the GO Process and GO Component category. Beneath the drop-down menu 

box is a tree menu for selecting individual GO terms (see FIGURE 4.3). The tree menu also 

reveals the parent-cillld relationsillp between GO terms. The algorithms for generating the 

PIN visualizations are implemented using the Java3D library as new plug-ins to GEOMI. 
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4.4. Case Study: Proteomics of Hepatocellular Carcinoma 

To generate insights into the biological implications of gene co-expression, in the context of 

PIN visualizations, we overlaid the HCC dataset used in the previous chapter onto the human 

PIN. We then investigated PINs that were filtered by selected GO Process terms. The 

objective was to identify the biological processes that are the most affected in HCC cells. 

4.4.1. Network Construction 

4.4.1.1. Datasets 

Human protein interaction data. The human protein interaction data was collected from 

the BIOGRID download version 2[1].0.20 [15]. Many of the protein interactions in the 

BIOGRID data had been verified by more than one laboratory technique. Hence it was more 

reliable than data generated solely by the yeast two- hybrid method. 

Gene expression data. The gene expression data for HCC was identical to that used in 

Chapter 3 section 3.4.1. Only the list of co-expressed genes found in the 95 HCC samples 

provided by Gamberoni eta/. [58] is being applied to the PIN visualizations. 

Gene Ontology. The three categories of GO-Component, Process, and Function, were 

obtained from the Gene Ontology Consortium [60]. 

4.4.1.2. Data mapping 

The human protein interaction data was downloaded from the BIOGRID database as a tab­

delimited file. Each record contained a pair of gene symbols representing the interacting 

protein partners. Each gene symbol was mapped to a node. If a pair of gene symbols 

belonged to the same record, they were mapped to the nodes of an edge. For the clustered 

PIN visualization, a GO term was mapped to each cluster node. 

4.4.2. Visualization and Analysis 

In order to ensure that the biological processes selected for visual analysis was of relevance 

to our subject of study, i.e. HCC, we used the latest understanding in cancer biology as the 

conceptual guide. According to Hanahan and Weinberg [68], cancer cells have six 

characteristics. These are (I) self-sufficiency in growth signals, (2) insensitivity to anti­

growth signals, (3) evasion of apoptosis, (4) limitless replicative potential, (5) sustained 

angiogenesis, and ( 6) tissue invasion and metastasis. 

We then selected the biological processes that were thought to give rise to each 

characteristic. We performed visual analysis on each GO _Process-defined PIN in a way that 

was close to the biologist's preferred practise. Given a non-clustered PIN visualization, 

biologists were likely to perform the following tasks. 



103 Visualization and Analysis of GO-defined PIN 

I. Identify co-expressed proteins based on node colour. If two red nodes co-exist in the 

same PIN, they represent co-expressed proteins and are likely to be co-regulated. Blue 

nodes represent proteins that are not co-expressed. It is possible that some of these 

proteins did not co-express because their level of expression detected are below the 

sensitivity of the microarrays used by Chen eta/. [29]. 

2. Identify protein-protein interactions between co-expressed proteins. If two red coloured 

nodes are connected to each other with a red coloured edge, it implies that the protein­

protein interaction is functioning. 

3. Identify unique node topologies in the PIN. This step is also optional. It may be used by 

systems biologists who make use of node topologies to deduce the molecular 

organization of a protein complex, and the probable gene expression dynamics of 

proteins that have unique topologies. For example, biologists often call the proteins that 

form a highly connected sub-network as party hubs and the protein that form the centre 

of a star shape sub-network as date hubs [66]. A protein that connects the two hubs is 

called a bottleneck protein [168]. These three types of proteins have been known to 

exhibit different interaction dynamics. The date hub interacts with its neighbours 

dynamically whereas the party hub tends to interact with theirs for a longer time period 

[66]. 

Given a clustered PIN visualization, biologists were likely to perform the following tasks: 

I. Identify the cellular distribution of co-expressed proteins. This step involves identifying 

red coloured nodes in different cluster nodes. Each cluster node has a GO Component 

label representing a sub-cellular component. 

2. Identify protein-protein interactions between co-expressed proteins that are distributed 

in different clusters. This step involves identifying inter-cluster edges that are coloured 

red. It is most likely performed by systems biologists as a follow up to task 3 in the non­

clustered PIN analysis. In other words, after using node topologies to infer the 

molecular organization of a protein complex, they will use clustered PIN visualization 

to identify the subunits of the protein complex and the probable functionality of each 

subunit. 

We divided our case study into four sections. In the first three sections, we described in each 

section the visual experimentation and analysis results of one or more GO _Process-defined 

PINs that were thought to give rise to three of the six characteristics of HCC. They were 

evasion ofapoptosis (section 4.4.2.1), self-sufficiency in growth signal (section 4.4.2.2), and 

limitless replicative potential (section 4.4.2.3). In the fourth section, we described the 

GO _Process-defined PINs that were shared by the last three characteristics of HCC, i.e. 
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sustained angiogenesis, tissue invasion and metastasis (section 4.4.2.4). Where available, the 

Gene Ontology [60] identifier was given in parentheses for every biological process 

mentioned. Similarly, the Entrez Gene [99] identifier was given in parenthesis for every 

human gene mentioned. 
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FIGURE 4.4. Non-clustered PIN visualization of the cell cycle arrest (G0:0007050) biological process 
in the force-directed layout. TP53 and STKI 1 which are discussed in section 4.4.2.1 are circled in 
green and blue respectively. 

4.4.2. I. Evasion of apoptosis 

I. Non-clustered PIN 

Cell cycle arrest (G0:0007050) was the biological process relating to the evasion of 

apoptosis and bad been found to be HCC-specific in Chapter 3. FIGURE 4.4 showed the non­

clustered PIN visualization for the cell cycle arrest biological process. It consisted of 15 

proteins and I I interactions in four connected components. The largest connected 

component consisted of 8 proteins and 7 interactions. 

We observed that the only node coloured red is the one labeled CDKN2A indicating that 

it was the only expressed protein in the cell cycle arrest PIN. The rest of the nodes were 

coloured blue indicating that they did not co-express with CDKN2A. This implies that there 

were no functioning protein-protein interactions in the cell cycle arrest (G0:0007050) 

biological process. There was a complete loss of functional protein interactions that could 

initiate cell cycle arrest. We further examined the blue coloured nodes to see if we could 

deduce the likely cause of this complete shutdown of cell cycle arrest. 

First we noticed that one neighbour of node CDKN2A was the node labelled CDKN2C. 

Both proteins belong to the family of cyclin-dependent kinase inhibitors. Their known 

function is to arrest cell cycle progression [157]. In the largest connected component, the 
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node labeled TP53 (GeneiD: 7157) had the highest degree and was also a tumour suppressor 

protein well-studied by cancer biologists. It had been known to be involved not only in cell 

cycle arrest but also in the initiation of apoptosis [ 129]. Apoptosis (G0:0006915) is a 

biological process that leads to cell death. One neighbour of node TP53 was the node labeled 

STKI 1. This was a recently discovered protein that has tumour suppressing functionality 

[72]. Our observation that these proteins were not co-expressing led us to the deduction that 

apoptosis might not be active in HCC cells. 

II. Clustered PIN 

FIGURE 4.5 showed the clustered PIN visualization for the cell cycle arrest biological 

process. We used this visualization to investigate the intracellular distribution of the cell 

cycle arrest proteins (see FIGURE 4.5(b)). 
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FIGURE 4.5. Clustered PIN visualization of the cell cycle arrest (00:0007050) biological process in 
the clustered circular layout. CDKN2C, TP53, and STKI 1 which were discussed in section 4.4.2.1 are 
circled in magenta, turquiose and blue respectively. 

The visualization consisted of 41 nodes and 37 edges in seven clusters. The cluster nodes 

were arranged in a circular layout and the protein nodes within each cluster node were also 

arranged in a circular layout. The seven cluster nodes were labeled with GO Component 

terms with one label per cluster. Each cluster therefore represented a sub-cellular component. 

The seven GO Component labels were: (1) 'G0:0005634 nucleus', (2) 'G0:0005622 

intracellular' , (3) 'G0:0005737 cytoplasm', (4) 'G0:0043512 inhibin A complex', (5) 
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'G0:0005730 nucleolus', (6) 'G0:0005576 extracellular region', and (7) 'G0:0005654 

nucleoplasm'. 

Out of the above, clusters (1), (3), and (5) were organelles. An organelle was an 

intracellular cell compartment that performed specific cellular functions [83]. The largest 

cluster was the nucleus (00:0005634). Clusters (5) and (7) were compartments of the 

nucleus (cluster 1). Clusters (2) and (6) were cellular regions. Cluster (4) was a protein 

complex. As such, the clustered PIN visualization in FIGURE 4.5 did effectively present the 

intracellular distribution of proteins at different levels of details. 

We searched for the proteins identified in our non-clustered PIN analysis and found that 

CDKN2A and TP53 were the most ubiquitous. They were found in clusters (I), (3), (5) and 

(7). CDKN2C and STKIJ were found in clusters (I) and (3) (see FIGURE 4.5). We therefore 

deduced that CDKN2A and TP53 were physically located in different organelles. Biologists 

found that many proteins involved in cell cycle arrest are functionally inactive in the 

cytoplasm unless they are re-localized in the nucleus. That is because they interact only 

within the nucleus [50, !52, 156]. Combined with our deduction gained from the clustered 

PIN visualization, we proposed that, maybe in HCC, many proteins involved in cell cycle 

arrest were abnormally sequestrated in the cytoplasm rather than in the nucleus. If this 

happened, it would further cripple their ability to arrest cell cycle progression in HCC. This 

hypothesis is yet to be verified by biologists. 

III. Summary 

For this analysis on the cell cycle arrest-defined PIN, we found that the non-clustered PIN 

visualization was able to support the following analytical tasks. 

I. Identify co-expressed proteins based on node colour. 

2. Identify protein-protein interactions that are likely to be functioning. 

In the second analytical task, we used the current biological knowledge about TP53 in 

combination with visual analysis to deduce that apoptosis (00:0006915) could also be 

affected, even though what had been visualized was the cell cycle arrest-defined PIN. This 

was possible because apoptosis and cell cycle arrest are inter-connected biological processes. 

They have been known to share a common subset of protein-protein interactions (129]. 

Based on the non-clustered PIN visualization of a certain biological process, it was possible 

to deduce hypothesis on its related biological process. 

The clustered PIN visualization allowed us to identify the cellular distribution of co­

expressed proteins. When interpreted in the context of the current biological knowledge, we 

were able to deduce a biologically meaningful hypothesis. 
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4.4.2.2. Self sufficiency in growth signals 

Self sufficiency in growth signals involved at least two biological processes, i.e., the 

regulation of transcription, DNA-dependent (00:0006355) and signal transduction (GO: 

0007165). 

1. Regulation of transcription, DNA-dependent (G0:0006355) 

l. Non-clustered PIN 

FIGURE 4.6. Non-clustered PfN visualization of the regulation of transcription, DNA-dependent 
(G0:0006355) biological process in the force directed layout. (a) Overview. (b) Zoom-in view of the 
bound area. 

FIGURE 4.6(a) showed the non-clustered PIN visualization for the regulation of transcription 

biological process. It consisted of 577 proteins and 1211 interactions. At this scale, the force­

directed layout algorithm generated the 'hair ball' effect typicaJly seen in many PIN 

visualizations [148]. The aggregation of red-coloured nodes at the high density centre of the 

PIN became our visual focus (FIGURE 4.6(a)). 

We zoomed into this region and identified a set of red-coloured high degree nodes (node 

degree > 20) that represented a group of six high degree protein hubs. They were labeled AR, 

CREBBP, HDACJ, HDAC3, NR3CJ, and STAT3. (FIGURE 4.6(b)). These nodes were 

coloured red indicating that they co-expressed in HCC. We traversed only the red coloured 

edges originating from each of these hubs and found that they were inter-connected to one 

another. That meant they physically interact with one another. We deduced from their node 

degrees and connectivity that these hub proteins could be the kernel of the regulation of 

transcription (00:0006355) biological process. A biological kernel was a set of master 

proteins which 'on/off' expression states collectively influenced the states of all other 

proteins, thereby controlling the activity level of one or even multiple biological processes. 
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In order to make biologically meaningful deductions, we first examined the known 

biological function of each hub protein described in the biological literature. AR and NR3CJ 

were signaling receptors that could also function as gene regulators. AR (androgen receptor; 

GeneiD: 367) is a nuclear receptor for the androgen receptor signaling pathway 

(G0:0030521). It had been known to induce the transcription of androgen responsive genes. 

Up-regulation of AR had been known to associate with poor prognosis in prostate cancer [ 46] 

but its role in HCC was unknown. 

NR3CJ (GeneiD: 2908) is a receptor for glucocorticoids that can act as a gene regulator. 

Some of its target genes are also gene regulators. This protein is typically found in the 

cytoplasm until it binds a ligand, which induces transport into the nucleus. Its role in cancer 

biology was unknown. 

CREBBP (GeneiD: 1387) is a master co-activator which had been known to interact with 

more than 50 proteins of different biological functions. Some examples are the (I) hepatic 

master gene regulators ONECUTJ, HNFIA, and HNF4A, (2) tumour suppressors KLF4, 

BRCAI and TP53, (3) nuclear receptors AR and NR3CI, (4) proto-oncogenes E2A, FOS and 

JUN, (5) the cytokine-induced signal transducers STAT I, STAT2, and STAT3, and (6) the 

cAMP-regulated enhancer specific gene regulator CREBI. It also interacts with the cyclin 

CCNDI and the cyclin-dependent inhibitor CDKNIA, and the signal transducers, SMAD2 

and SMAD3, for the TGFBI signaling pathway. 

HDACI (GeneiD: 3065) and HDAC3 (GeneiD: 8841) are members of the histone 

deacetylase complex. Histone deacetylation catalyzed by this complex could enhance cancer 

survival [139]. The histone deacetylase complex was also known to inhibit TP53 and its 

negative effect on cell growth. 

STAT3 (GeneiD: 6774) is a gene regulator which expression has been known to be active 

in response to cytokines and growth factors, such as IFNs, EGF, IL5, IL6, HGF, LIF and 

BMP2. It had been known to involve in many cellular processes such as cell growth and 

apoptosis. 

With their known biological function in mind, we attempted to identify all the co­

expressed proteins that were neighbours to each of the above protein hubs in FIGURE 4.6(b ). 

However, our effort was hampered by the time-consuming navigation through the large 

force-directed layout using pointer-directed panning. Edge traversal was disrupted frequently 

by edge crossings. We only managed to identify three red coloured nodes labeled CCNDJ, 

JUN, and SMAD2 that are connected to the node CREBBP. That implies that they were co­

expressing neighbours of CREBBP. 
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Given the difficulty in visual exploration, we limited our deduction to our previous 

observation that the six hub proteins were connected among themselves in the context of 

their known biological functions . Half of the hubs seen in FIGURE 4.6(b) that made up the 

kernel were proteins with the dual functionality of signal transduction and gene regulation, 

i.e. AR, NR3Cl, and STAT3. Their expression could be activated by growth factors. The 

other half consisted of proteins that initiate gene regulation, i.e. CREBBP, HDACJ and 

HDAC3. We suspected that in HCC cells, the kernel was in a permanent 'on' state in order to 

confer increased sensitivity towards growth factors . This could be one mechanism that led to 

self-sufficiency in growth signals in HCC cells. 

05634nucleus 

FIGURE 4.7. Clustered PTN visualization of the regulation of transcnpt10n, DNA-dependent 
(G0:0006355) biological process in the clustered circular layout. The overview of the clustered PTN is 
shown on the left. (a) A zoom in view of the high-density region in the 'G0:0005737 cytoplasm' 
cluster (red bounded area). (b) A zoom in view of the high-density region in the 'GO:OOOOI 18 histone 
deacetylase complex' cluster (magenta bounded area). 

II. Clustered PIN 

FrGURE 4.7 showed the clustered PIN visualization for the regulation of transcription 

(G0:0006355) biological process. The redundant representation of the same nodes and edges 

in different clusters had inflated the network size by 3.5 times. The resulting visualization 

consists of 2019 proteins and 4039 interactions in 67 clusters. The high number of node and 

edge crossings made the visualization very cluttered in especially the intra-cluster edge 

cluttering on the right hand side of the visualization. 
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The first feature we noticed from the visualization is that the largest cluster node had the 

GO Component label 'G0:0005634 nucleus'. It contained most of the intra-cluster edges. 

From this observation, we deduced that most protein-protein interactions for the regulation 

of transcription (G0:0006355) biological process occurred exclusively within the cell 

nucleus (G0:0005634). Therefore the regulation of transcription was one specific biological 

function of the cell nucleus, a deduction that aligned with the current domain knowledge 

[83]. 

There were two red-coloured high-density regions near the lower right corner of the 

'nucleus' cluster that also drew our attention. These two regions seemed to be connected to 

the 'nucleus' cluster by inter-cluster edges. The region closest to the 'nucleus' cluster 

contained the five high degree hubs previously identified in the non-clustered PIN (see 

FIGURE 4.7(a)). We found that they were also members of the cluster labeled 'G0:0005737 

cytoplasm'. Hence, we deduced that these hub proteins may be transported in between the 

nucleus and the cytoplasm organelles. The region at a further distance from the 'nucleus' 

cluster contained two high degree nodes labeled HDACJ and HDAC3. We found that they 

were members of the cluster labeled 'G0:0000118 histone deacetylase complex' (see 

FIGURE 4.7(b)). This finding was supported by the current knowledge about their function as 

histone deacetylases [99]. At this point, we could not make any more deductions from the 

clustered PIN visualization because of the difficulty in traversing inter-cluster edges from 

any of the high degree nodes identified. 

III. Summary 

For this analysis on the regulation of transcription-defined PIN, we found that the non­

clustered PIN visualization was able to support the following analytical tasks to varying 

degrees of success. 

1. Identify co-expressed proteins based on node colour. 

2. Identify protein-protein interactions that are likely to be functioning. 

3. Identify unique node topologies in the PIN. 

We had no difficult performing the first task but had only limited success with the second 

and the third tasks. At a scale of 577 proteins and 1211 interactions, we could identify only 

those co-expressed proteins that resemble date hubs and the edges connecting them together. 

At the scale of 2019 proteins and 4039 interactions, the clustered PIN visualization 

supported the following analytical tasks poorly. 

1. Identify the intracellular distribution of co-expressed proteins. 

2. Identify protein-protein interactions between co-expressed proteins. 
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We could visually detect that there arc co-expressed proteins being displayed in different 

cluster nodes, but we could neither identify each individual protein nor the inter-cluster 

edges connecting the co-expressed proteins. The visual complexity encountered hampered 

these tasks. In this case, the clustered PIN visualization failed to provide more information 

than its non-clustered counterpart especially when the node-edge distribution skewed 

towards a single cluster . 
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FIGURE 4.8. Non-clustered PfN visualization of the signal transduction (00:0007165) biological 
process in the force-directed layout. The overview of the non-clustered PfN is at the centre. Insets of 
bounded areas (red boxes) show examples of nodes representing the co-expressed proteins. 

2. Signal transduction (G0:0007165) 

I. Non-clustered PIN 

FIGURE 4.8 showed the non-clustered PIN visualization for the signal transduction biological 

process. It consisted of 563 proteins and 832 interactions. An attempt to identify all the co­

expressed proteins was hampered by the time-consuming navigation through the PIN 

visualization using pointer-directed panning. We found that the only nodes that were easy to 

identify in this layout are those that were coloured red and resembled date hubs (node degree 

2: 10). They were labeled AR, CREBBP, STAT3, NRJCJ, DLG4, RXRA, and TRAF4. Tbis 

was suggesting that they co-expressed. We traversed the red coloured edges originating from 

each of these hubs and found that only AR, CREBBP, STAT3, and NRJCJ were connected to 

each other. This was suggesting that they were actively interacting with each other to 

perform certain biological functions. 
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We examined the known biological function of each hub protein documented in the 

Entrez public database [136]. The biological functions of AR, CREBBP, STAT3, and NR3CJ 

were mentioned in the regulation oftranscription-<lefmed PIN. Their appearance in the signal 

transduction-defined PIN further confirmed their dual functionality as a signaling protein and 

a gene regulator. 

We examined the known biological function of the protein node labeled DLG4 (Gene!D: 

1742) and found that it was a signaling protein of the N-methyl-D-aspartate glutamate 

receptor (00:0032281). It was found in human nerve cells and was involved in fast synaptic 

transmission (G0:0007268) (102]. We found that the node labeled 'HGS' was also coloured 

red and was a neighbour of node DLG4 (see FIGURE 4.8, upper right inset). Hence, HGS co­

expressed and interacted with DLG4. The known biological function of HGS (Gene ID: 

9146) was an endosomal ATPase protein that regulated endosome transport (00:0016197), 

and DLG4 was somehow involved in this process. However, the interaction between HGS 

and DLG4 had only been known to occur in nerve cells [30]. We were puzzled to find that a 

protein-protein interaction of nerve cell origin to be actively functioning in HCC cells, 

especially biologists found that DLG4 was not highly expressed in normal hepatocytes [119]. 

We were uncertain on the biological significance of this finding. RXRA (Gene!D: 6256) was 

a nuclear receptor that mediated the retinoic-acid induced gene expression. Thus RXRA was 

also a gene regulator. Although its up-regulation in the hepatoma cell line had been shown to 

associate with cell growth [166], the exact role of RXRA in regulating cell cycle progression 

was still poorly understood. 

TRAF4 (Gene!D: 9618) was a protein that interacted with neurotrophin receptors. It had 

been known to inhibit apoptosis. Recently, cancer biologists found that the over-expression 

of TRAF4 due to gene amplification was very common in different types of cancer [21]. 

Gene amplification meant a cell having more than two copies of the same gene in its 

genomic DNA. We therefore hypothesized TRAF4 may be another oncogenic protein that 

accelerated HCC proliferation. 

II. Clustered PIN 

FIGURE 4.9 showed the clustered PIN visualization for the signal transduction biological 

process. It consists of 1689 proteins and 2041 interactions in 62 clusters. We found that 

identifying co-expressed proteins using the clustered PIN visualization is much easier than 

using its non-clustered counterpart. That is because, in the clustered circular layout, the 

cluster nodes define specific areas in the visualization for containing the protein nodes. The 

circular layout of the protein nodes within each cluster node reduces their inter-node 

distances. Instead of having to navigate throughout the visualization, we simply zoomed in to 

those clusters that contain red-coloured nodes and red-coloured intra-cluster edges. 
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FIGURE 4.9. Clustered PIN visualization of the signal transduction (G0:0007165) biological process 
in the clustered circular layout. The overview of the clustered PIN is at the centre. Insets of bounded 
areas (red boxes) show examples of nodes representing the co-expressed proteins. 

In this way, we did not have to rely on node degree to identify the co-expressed proteins. 

Using the previously mentioned interactivity, we identified twenty six co-expressed proteins. 

Including the five proteins identified in the non-clustered PIN visualization, a total of thirty 

co-expressed proteins had been identified altogether. We examined the known biological 

functions of each co-expressed proteins documented in the Entrez public database [ 136] and 

found that they could be divided into five groups. They were ( 1) nine growth factors and 

their receptors FAS, CCL15, CXCR4, CXCL12, CSF2RB, IL2RG, JL15RA , TGFBR3, and 

VEGFB; (2) eight signal mediators which were either signal transducers STAT3, RANGAPI, 

RAP/A, RAP2A, or signal amplifiers HGS, IQGAPJ , MAPKJ , and PIK3CD; (3) five 

inflammation-induced proteins such as fibrins F2R, FGA, FGB, FGG, and a complement 

factor C3ARJ ; (4) four peptide hormones and their receptors ADM, AR, CR/1, and RXRA; (5) 

and the rest were the extracellular matrix protein ACTL6, the cyclin-dependent kinase CDK4, 

the apoptotic factor TNFSFJO, and the hypoxia-induced gene regulator HIFJA . At least 

thirteen of these proteins were known to be induced by inflammation. We deduced that HCC 

development or progression might involve the activation of inflammation-related signaling 

pathways such as those activated by cytokines and interlcukins. 

111 . Summary 
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For this analysis on the signal transduction-defined PIN, we found that the non-clustered PIN 

visualization suffered the same limitations seen with the analysis on the regulation of 

transcription-defined PIN. We could identify only those co-expressed proteins that resemble 

date hubs and the edges that connect them together. The visual complexity of the non­

clustered PIN visualization severely limited its use for visual analysis, and hence biological 

deduction. 

To our surprise, the clustered PIN visualization proved more useful than its non-clustered 

counterpart when coming to the identification of non-hub co-expressed proteins. This task 

was supposed to be well supported by the non-clustered PIN visualization. We found that the 

clustered circular layout has the advantage of constraining inter-node distances. This, in 

addition to the distinct colouring of the co-expressed protein nodes and their edges, makes 

the tasks of identifying interacting co-expressed proteins very efficient. 

4.4.2.3. Limitless replicative potential 

GO Process terms relating to limitless replicative potential are several. These included cell 

cycle (G0:0007049), regulation of cell growth (G0:0001558), chromatin remodeling 

(G0:0006338) and DNA replication (G0:0006260). We decided to investigate only the 

DNA replication (G0:0006260) process since the cost of limitless replicative potential to 

HCC cells is replication stress. The consequence of which is increased genome instability 

that has been suspected to enhance the invasiveness ofHCC [19]. 

I. Non-clustered PIN 

FIGURE 4.10 showed the non-clustered PIN visualization for the DNA replication biological 

process. It consisted of 55 proteins and 83 interactions distributed in seven connected 

components. The largest connected component consisted of 40 proteins and 45 interactions. 

We found in the zoom-in view that the largest connected component was made of two 

connected sub-networks, each with a distinct network topology (see FIGURE 4.10(a)). One 

sub-network consisted of a group of nine highly inter-connected nodes. In biological terms, 

each of these nodes was called a date hub [66]. The other was a star shape sub-network with 

the centre node being labeled PCNA. In biological terms, this node was called a party hub 

[66]. The two sub-networks were connected by the node labeled CDC6. At the same time, 

CDC6 was also a member of the party hub. Therefore biologists called such type of protein a 

hub-bottleneck protein [ 168]. 
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FIGURE 4.1 0. Non-clustered PIN visualization of the DNA replication (00:0006260) in the force­
directed layout. {a) Overview. (b) Zoom in view of the bound area. 

Biologists who studied PINs had been suggesting that the hub-bottleneck protein tended 

to serve as connectors for holding func6onally different complexes together to form a large 

protein complex [ 168]. When we interpreted FIGURE 4. lO(b) in this context, the large 

connected component should represent a single protein complex. Within tills protein 

complex were two connected sub-complexes with each being represented by a sub-network. 

In the star-shape sub-network, the node topology of the date hub PCNA (see FIGURE 4.1 O(a)) 

suggests that it served as an exchange point for various proteins when different 

functionalitics are required [ 13 7]. In the highly connected sub-network, the inter­

connectivity among MCM proteins (MCM2 to MCM8) and ORCL proteins (ORCJL to 

ORC6L) suggested that they served a common function fundamental to the DNA replication 

biological process. 

In terms of expression dynamics, we found that the date hubs labeled FENJ, PCNA, 

RFC4, are coloured red (see FIGURE 4.ll(a)). We therefore deduced that only two proteins 

FENJ and RFC4 were co-expressed with PCNA, and likely to be interacting with one 

another. FENJ (GeneiD: 2273) is a protein required for Okazaki fragment maturation during 

replication of lagging DNA strand and excising base-mismatch in DNA repair [96]. We also 

found the party hubs labeled MCM2, MCMJ, MCM4, MCM5, and MCM6 are coloured red 

(see FIGURE 4.11 (b)). We therefore deduced that these proteins are actively interacting with 

one another. 
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fiGURE 4. I I. A zoom in view on the rwo sub-networks forming the largest connected component seen 
in FIGURE 4 . I 0 . (a) the PCNA complex. (b) Pre-replicative (pre-RC) complex. 

According to the documented biological functions of the party hubs displayed in FIGURE 

4.1l(b), they form the subunit known as the pre-replicative complex (pre-RC) [64]. In the 

pre-RC subunit, the MCM proteins initiate the unwinding of the DNA double strand and the 

ORCL proteins interact with specific DNA sequences known as the origin of replication. At 

the same time, the pre-RC subunit provides a platform for the PCNA hub and its neighbours. 

We expected that all the party hubs should be co-expressed but according to FIGURE 4. J I (b), 

the colour coding indicated that only some of the MCM proteins were co-expressed and the 

ORCL proteins were not expressed at all. Thus, any protein-protein interactions involving 

ORCL proteins may be inactive. From this, we deduced that part of the DNA replication 

complex was poorly formed and could be functionally deficient. 

We searched the biological literature for interpreting the significance of MCM protein co­

expression. We found that this phenomenon has been reported in many forms of cancer [64]. 

Cancer biologists also recognized that an up-regulated MCM7 was usually associated with a 

high proliferation rate [65, 126]. While we do not have enough information to verify MCM7 

up-regulation, we observed that the MCM7 node was coloured blue (see FIGURE 4.11 (b)). 

That indicated MCM7 did not co-express with MCM2, MCM3, MCM4, MCM5, and MCM6 

proteins. Hence, we suspected that the progression of HCC might not rely on a high 

proliferation rate. 
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FIGURE 4.12. Clustered PIN visualization of the DNA replication (G0:0006260) in the clustered 
circular layout. The zoom in view of cluster 'G0:0005658 alpha DNA polymerase:primase complex' 
cluster (cluster (2)) is shown at the top left comer. The zoom in view 'G0:0005663 DNA replication 
factor C complex' cluster (cluster (3)) is shown at the lower right comer. 

II. Clustered PIN 

FIGURE 4.12 showed the clustered PIN visualization for the DNA replication biological 

process. Jt consisted of 148 nodes and 153 edges in 13 clusters. From the GO Component 

labels, we recognized that the thirteen clusters represented two types of sub-cellular 

components, i.e. organelles and protein complexes. Six of them were highly inter-connected. 

They were (1) 'G0:0005634 nucleus', (2) 'G0:0005658 alpha DNA polymerase:primase 

complex', (3) 'G0:0005663 DNA replication factor C complex', (4) 'G0:0000785 

chromatin', (5) 'G0:0005622 intracellular', and (6) 'G0:0005737 cytoplasm'. The largest 

cluster was the nucleus. The GO Component labels (2) and (3) represented subunits of the 

larger DNA replication protein complex. The label for cluster (4) represented a type of 

organelle in the cell nucleus. Chromatin was the ordered and organized complex of genomic 

DNA and protein that formed the chromosome (G0:0000785). We therefore deduced that 

proteins represented by protein nodes in cluster (4) interact directly with the genomic DNA 

in chromatin. 

We identified the node MCM3 not only in cluster (I) but also in cluster (2) as well (see 

FIGURE 4.1 2). For cluster (2), its GO Component label represented the alpha DNA 

polymerase:primase complex. It is a subunit of the DNA replication complex which 
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catalyzes the synthesis of an RNA primer on the lagging strand of the replicating DNA while 

the alpha DNA polymerase is catalyzing DNA elongation [51]. In cluster node (2), we 

observed that the node POLA2 (GeneiD: 23649) connected with the node PRIMJ (GeneiD: 

5557) and PRIM2A (GeneiD: 5558) with intra-cluster edges. However, MCM3 was not 

connected to the nodes PRIM I, PRIM2A, and POLA2. Thus, we deduced that MCM3 did not 

interact directly with PRIMJ, PRIM2A, and POLA2, but PRIMJ and PRIM2A interacted 

directly with POLA2. 

We searched the Entrez public database for the known biological function of PRIMJ, 

PRIM2A, and POLA2 [99]. PRIMJ and PRIM2A are proteins that synthesize small RNA 

primers on the lagging strand of the replicating DNA during DNA replication [160]. POLA2 

is a protein required for catalyzing DNA elongation [160]. For this reason, we expected that 

PRIMJ, PRIM2A, and POLA2 should co-express with MCM3 in order to form a stable alpha 

DNA polymerase:primase complex. However, the blue node colour of PRIM I, PRJM2A, and 

POLA2 informed us that they did not co-express with MCM3. Therefore, it is possible that 

there were functional alpha DNA polymerase:primase complexes being formed but they may 

be unstable. 

We found that the two red coloured nodes labeled PCNA and RFC4 were members of 

cluster (3). For cluster (3), its GO Component label represented the DNA replication factor C 

complex. It is another subunit of the DNA replication complex which loads the protein 

PCNA onto the DNA to initiate DNA synthesis catalyzed by DNA polymerases [64]. In 

cluster node (3), the nodes labeled RFC2, RFC3, RFC4, and RFC5 represent the core 

proteins that had been known to form the DNA replication factor C complex. The intra­

cluster edges between them showed that they interacted with one another. We expected that, 

for this protein complex to function, the above proteins should co-express with PCNA. 

However, we found that only RFC4 and PCNA are coloured red (see FIGURE 4.12). This 

observation led us to the deduction that the replication factor C complex might be defective. 

III. Summary 

For this analysis on the DNA replication-defmed PIN, we found that the non-clustered PIN 

visualization supported the following analytical tasks very well. 

l. IdentifY co-expressed proteins based on node colour. 

2. IdentifY protein-protein interactions between co-expressed proteins. 

3. IdentifY unique node topologies in the PIN. 

The clustered PIN visualization also provided us with more detailed information on the 

molecular organization of the DNA replication complex. This allowed us to make deductions 
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complementary to those made with the non-clustered PIN visualization. In short, the 

clustered PIN visualization supported the following analytical tasks well. 

I . Identify the intracellular distribution of co-expressed proteins. 

2. Identify protein-protein interactions between co-expressed proteins that are distributed 

in different clusters. 

4.4.2.4. Angiogenesis, Tissue invasion, Metastasis 

Angiogenesis (GO:OOO 1525) is defmed as a biological process that mediates blood vessel 

formation when new vessels emerge from the proliferation of pre-existing blood vessels. 

Cancer biologists had been suggesting that tissue invasion and metastasis probably depended 

on the same protein-protein interactions. Their rationale was that tissue invasion and 

metastasis had often been observed in parallel to angiogenesis [59]. For this reason, we 

decided to investigate only the angiogenesis (GO:OOO 1525) biological process . 
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FIGURE 4.13. Non-clustered PIN visualization for the angiogenesis (GO:OOO 1525) biological process 
using the force-directed layout. 

I. Non-clustered PIN 

FIGURE 4 . 13 showed the non-clustered PIN for the angiogenesis biological process. It 

consists of 24 proteins and 28 interactions in three connected components. Eighteen of them 

formed a large connected component. Within which, we identified two sets of party hubs. 

One set consisted of nodes labeled CTGF, TGFBJ, TGFB2, TGFB3, ENG, and ACVRLJ. 

Another set consisted of nodes labeled VEGF, PGF, FLTJ, NRPJ, NRP2, FJGF, VEGFC, 

and KDR. The two sets of party hubs were connected together by the nodes CTGF and 

VEGF. Therefore, we identified them as hub-bottleneck proteins. The node SHB seemed to 

be a non-hub bottleneck protein which sat in between KDR and FGFRJ. Using the same 
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rationale applied in the DNA replication-defined PIN analysis, we deduced that the party 

hubs could be subunits of a larger protein complex. 

We searched the Entrez public database and found that eleven of the proteins in the large 

connected component were known angiogenic growth factors [136]. This information in 

combination with its network topology observed led us to hypothesize that the large 

connected component could be representing a protein complex that mediated angiogenesis. 

However, the biological literature informed us that angiogenic growth factors had only been 

known to interact with each other as protein pairs or triplets [80, 154]. Furthermore, the 

functioning of angiogenesis as a biological process had not been known to involve an 

eighteen-member protein complex either. Therefore our hypothesis was rejected by the 

current biological research. The large connected component shown in FIGURE 4.13 could 

merely represent a collection of pairwise interactions that shared the same set of proteins, not 

a representation of a protein complex. Therefore, the non-clustered PIN visualization did not 

represent the biological reality currently known to biologists. 

In the large connected component, we found the nodes labeled CTGF, TGFBI and VEGF 

were coloured red indicating that they were co-expressed in HCC. This co-expression could 

be explained by the finding that CTGF (also known as CCN2; Gene!D: 1490) is an early 

intermediate gene induced by TGFBI signaling and itself could induce VEGF expression [8]. 

Furthermore, we noticed that CTGF was connected to TGFBI (Gene!D: 7040) and VEGF 

(GeneiD: 7422) with red-coloured edges. Therefore, we deduced that CTGF interacted with 

TGFBI and VEGF. 

According to the biological literature [80], VEGF is the major angiogenic growth factor 

which signals through VEGFR2 (GeneiD: 3791), the main signaling VEGF receptor that 

mediates nco-angiogenesis. The interaction between VEGF and VEGFR2 can trigger 

multiple signaling paths that lead to (I) the induction of DNA replication (00:0006260), (2) 

cell growth for endothelial cells, (3) actin cytoskeletal re-modeling and eventually (4) 

endothelial cell migration. Biologists had also found recently that CTGF is also involved in 

angiogenesis, probably through endothelial cell growth, cell migration (00:0016477), and 

cell-cell adhesion (00:0007155). They further suspected that CTGF might act as a co-factor 

of TGFBJ in mediating the same processes [108]. The biological significance of the 

interaction between CTGF and VEGF is unknown. CTGF might interact with multiple 

signaling proteins and gene regulators that regulate cell growth [108]. We speculated that 

CTGF and VEGF might act as cofactors to each other in order to amplifY their influence of 

angiogenesis, but this had not been supported by any biological research so far. 
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FIGURE 4.14. Clustered PIN visualization ofthe angiogenesis (00:0001525) biological process using 
the clustered circular layout. 

II. Clustered PIN 

FIGURE 4.14 showed the clustered PIN visualization for the angiogenesis biological process. 

It consisted of 21 nodes and 21 edges in 8 clusters. The GO Component labels shown were 

(1) 'G0:0005634 nucleus', (2) 'G0:0005624 membrane fraction' , (3) 'G0:0016020 

membrane', (4) 'G0:0016021 integral to membrane', (5) 'G0:0005578 proteinaceous 

extracellular matrix', (6) 'G0:0005576 extracellular region', (7) 'G0:0005615 

extracellular space', and (8) 'G0:0005887 integral to plasma membrane' . 

We noticed that the red coloured nodes labeled CTGF and VEGF were connected by a 

red coloured intra-cluster edge in clusters (5) and (7). The node CTGF in cluster (5) is also 

connected to the node VEGF in cluster (3) by a red coloured inter-cluster edge. This 

observation implied that the proteins CTGF and VEGF interacted with each other in the 

extracellular space and also in the cell membrane. As mentioned in the last section, VEGF 

interacts with its receptor protein VEGFR2 on the cell membrane to trigger angiogenesis [80] 

but the receptor protein for CTGF is unknown. Based on the clustered PIN visualization, we 

further refined our previous deduction about the biological significance of the interaction 

between CTGF and VEGF. CTGF could be a co-factor of VEGF and both might interact 

with the receptor protein VEGFR2 on the cell membrane to amplify the rate of angiogenesis. 

III. Summary 
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For this analysis on the angiogenesis-defined PIN, we found that the non-clustered PIN 

visualization supported the following analytical tasks effectively. 

I. Identify co-expressed proteins based on node colour. 

2. Identify protein-protein interactions that are likely to be functioning. 

3. Identify unique node topologies in the PIN. 

However, we also discovered two limitations with the non-clustered PIN visualization. 

The first problem was that even though task 3 was supported by the visualization, it did not 

lead to a biologically meaningful deduction. The visualized large connected component led 

us to a false deduction because we tried applying the same node topology-based deduction as 

in the DNA replication-defined PIN analysis. The second problem was that the non-clustered 

PIN visualization was not as informative as its clustered PIN counterpart. In the present 

analysis, we relied on the clustered PIN visualization to provide information on the 

distribution of proteins in different cell components. By this means, we refined any 

deductions made with the non-clustered PIN visualization. In short, the clustered PIN 

visualization supported the following analytical tasks effectively. 

I. Identify the intracellular distribution of co-expressed proteins. 

2. Identify protein-protein interactions between co-expressed proteins that are distributed 

in different clusters. 

4.4.2.5. Conclusion 

For each biological process, the non-clustered PIN visualization supported the four analytical 

tasks mentioned at the beginning of this section to a varying degree of success. These tasks 

were: 

I. Identify co-expressed proteins based on node colour. 

2. Identify protein-protein interactions that are likely to be functioning. 

3. Identify unique node topologies in the PIN. 

Generally speaking, non-clustered PIN visualization in the force-directed layout did not 

support task 2 for GO Process-defined PIN that approached 500 nodes or more. The 

visualized non-clustered PINs for the regulation of transcription (G0:0006355) and signal 

transduction (GO: 0007165) biological processes were comparable. Both had more than 500 

nodes and more than I 000 edges. At this scale, it was difficult to identify the protein-protein 

interactions specified in task 2 because edge traversal was frequently hampered by edge 

crossing. 
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When coming to task 3, the high degree nodes that resembled date hubs and were 

coloured red attracted our visual attention. However, our biological deductions were also 

limited to these date hubs because of the difficulty in carrying out task 2. This meant all the 

ink for drawing the non-clustered PINs for the regulation of transcription (G0:0006355) and 

signal transduction (GO: 0007165) biological processes was wasted. Therefore non-clustered 

visualization in the force-directed layout was not effective as a visual analysis method at a 

large scale. In this regard, our finding that it was easier to identify non-hub co-expressed 

proteins in the clustered PIN visualization of the signal transduction-defined PIN might 

provide a hint that visual clustering may overcome the limitation of force-directed layout. 

We found that interpreting clustered PIN visualizations was cognitively less challenging 

because of the additional information provided by the GO Component labels. With the non­

clustered PIN visualization, we relied almost completely on the current biological knowledge 

on either a particular set of proteins and/or a particular set of protein-protein interactions to 

make deductions. Our analysis on the DNA replication-defined PIN was a good illustration. 

Although we could deduce from the non-clustered PIN visualization that the DNA 

replication protein complex might have two sub-networks of distinct functionalities, it was 

the clustered PIN visualization that informed us on the structural organization of the same 

protein complex. Clustered PIN visualization was therefore more informative than its non­

clustered PIN counterpart. With the exception of the regulation of transcription-defined PIN, 

the clustered PIN visualization in the clustered circular layout supported the following 

analytical tasks effectively. 

I. Identify the cellular distribution of co-expressed proteins. 

2. Identify protein-protein interactions between co-expressed proteins that are distributed 

in different clusters. 

In all analyses, we found that the use of both visualizations were necessary for making 

biological deductions. Biologists who were interested in studying PIN from the systems 

biology viewpoint would especially find the clustered PIN visualization indispensable. 

Ofthe seven cancer-related biological processes we had investigated so far, the cell cycle 

arrest-defined PIN showed the least number of co-expressed genes. Only CDKN2A was 

shown to be expressed but with no co-expressing neighbours. Hence there might not enough 

functioning protein-protein interactions for initiating cell cycle arrest. While exploring the 

signal transduction-corresponding PIN visualizations, we noticed that almost one-third of the 

co-expressed genes were growth factors and inflammatory cytokines, and another one-third 

of them were signal mediators. These observations were suggesting that HCC resisted cell 
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cycle arrest but \\(as sensitive to growtb signals. Hence we concluded that both signal 

transduction and cell cycle arrest were the most affected biological processes. 

In the next section, a user evaluation conducted with an expert biologist was being 

presented. The purpose was to examine the usability of each layout and how it affected 

biological reasoning. A domain expert evaluation was used since it did not involve response 

time measurement and hence, could be conducted within an hour. 

4.5. Domain Expert Evaluation 

To evaluate the usability of the two PIN visualizations, we conducted a user evaluation with 

an expert biologist who had research interests in proteomics and bioinformatics. The 

biologist was an expert in E. coli, yeast and human PINs who regularly used computer­

generated visualization in his research. 

The design of the evaluation tasks was based on four criteria, i.e. information overlay, 

spatial information, inter-connectivity, and interactivity. They were based on a selection of 

published molecular pathway visualization heuristics [134]. The PIN visualizations 

corresponding to the DNA replication biological process were used as the test case since its 

network size was moderate even for the clustered PIN visualization (see FIGUREs 4.10 and 

4.12). 

In regards to information overlay, the expert biologist had no difficulty distinguishing 

between co-expressed and non co-expressed proteins based on node colour. The co­

expressed proteins were coloured red whereas their non co-expressed counterparts were 

coloured blue. Nor did the biologist have difficulty identifYing edges between co-expressed 

and non co-expressed proteins. He did this by first identifYing the red coloured node and 

then traversed the edge originated from the node. However, the biologist suggested using 

more contrasting colour hues for the cluster nodes to facilitate the identification of individual 

cluster as a unique cell component. 

In proteomics, a functionally essential protein is defined as a protein that when deleted 

will abrogate the biological process of concern, and cannot be restored by an alternative 

protein. In this evaluation, that biological process was DNA replication. When asked to 

identify functionally essential proteins in the non-clustered PIN visualization, the expert 

biologist identified MCM2, MCM3, MCM7, ORC2L, and PCNA. He was thinking aloud 

while performing this task indicating verbally that he was visually searching for nodes that 

had a node degree greater than five. 

When performing the same task on the clustered PIN visualization, the biologist also 

identified PCNA as one of the essential proteins but he was not certain whether MCM2, 
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MCM3, ORCJL, and ORC2L were essential proteins. He approached this task by first 

identifYing nodes with a node degree > 5 in each cluster and then examined if the same 

protein nodes had inter -cluster edges that connected them with those in other clusters. His 

rationale was that protein nodes that were highly connected inside and outside its own 

cellular component must be functionally essential. The biologist mentioned that the 

replicated nodes made it difficult to understand the connectivity between proteins as 

interacting neighbours. Therefore, he preferred using the non-clustered PIN visualization for 

identifYing essential protein because it informed him better on how highly connected each 

protein really is. These results suggested that the redundant representation of protein nodes 

can affect biological reasoning. 

When asked to identity which protein was a bottleneck between two or more protein 

complexes in the non-clustered PIN visualization, the biologist identified CDC6 

immediately. His rationale was that it is the only protein commonly connected to two 

complexes. This showed that the non-clustered PIN visualization presented could clearly 

reveal the direct interactions between proteins. He was then asked to interpret the biological 

implication of co-expression between PCNA and MCM3. The biologist stated that the up­

regulation PCNA and MCM3 might be not mediated by CDC6 given that it was positioned 

between PCNA and MCM3. His response indicated that he was associating the bottleneck 

protein with its potential gene regulatory role in the PIN. 

IdentifYing inter-cluster connections was often important in deducing the functional 

relationship between cellular components. The biologist correctly identified from the 

clustered PIN visualization that 'G0:0005634 nucleus' and 'G0:0000785 chromatin' were 

the most highly inter-connected clusters. His deduction was based on the inter-cluster edge 

density observed. The biologist also suggested that it would be more helpful if the clusters 

were arranged according to the descending order of their inter-cluster connectivity. 

In terms of interactivity, the expert biologist commented that visual zooming by pointer 

dragging while keeping the middle button of the pointer device pressed down was not user­

friendly. He preferred a dial-like device for controlling the zooming function. He also found 

it tedious to use pointer motion for navigating through the visualization. In short, he found 

the interactivity provided short of his expectation. 

Lastly, the biologist commented that the clustered PIN did not preserve his mental model 

of a PIN because its original topology had not been preserved by the clustered circular 

layout. However, the clustered PIN visualization was still a good complementary 

visualization to its non-clustered counterpart. The fixed layout of the clusters would facilitate 

biological analysis when the same visualization had to be examined repeatedly. In the non­

clustered PIN visualization, each rendering gave a different layout. He cautioned that the 
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clustered PIN visualization could mislead users into thinking that the clusters are non­

intersecting and the inter-cluster edges are biologically meaningful only if the clusters 

represent different protein complexes. 

4.6. Remarks 

In the·HCC case study, we demonstrated the merit of applying two different visualization 

methods on the same GO _Process-defined PIN to gene expression analysis. Our approach 

allowed us to deduce the implication of gene co-expression in seven cancer-related 

biological processes. More importantly, it allowed us to identify which biological process( es) 

is/are the most affected. Our approach also demonstrated the feasibility of making biological 

deductions by following the approach of "filter first, zoom and details, overview if 

necessary". Visualizing a selective biological process-corresponding PIN gave us a good 

starting point for exploring gene expression in the context of the single cell PIN. 

When applying the non-clustered PIN visualization to visual analysis, we found that the 

network topology in the force-directed layout allowed the identification of the various 

protein hubs and bottlenecks, i.e. party hubs, date hubs, hub-bottlenecks, and non-hub 

bottlenecks. Their topologies informed us of their network properties and allowed us to 

deduce their probable interaction dynamics with their neighbours. However, it was the 

clustered PIN visualization that informed us of their role in a biological process. Often it was 

the combination of GO Component clusters representing the collection of sub-cellular 

organelles and protein complexes that were the most informative. That was because an 

organelle functions as a compartment for localizing a specific set of biological processes 

whereas a protein complex is a functional module in its own right within the whole cell PIN. 

In terms of usability, both visualizations had their strength and limitations. The greatest 

strength of the clustered PIN visualization was the fzxed circular layout of the cluster and 

protein nodes. Fixed layout reduced the user's cognitive load more than the free layout since 

the biologist did not need to re-adapt to a new layout generated in every rendering of the 

same PIN. That could explain why the expert biologist commented during the user 

evaluation, "The fzxed positioning of clusters is important especially knowing where a 

particular group of proteins for an ontology term is positioned. " We also found the clustered 

circular layout more effective for identifying co-expressed proteins than the force-directed 

layout when the visualized network approached 500 nodes. That was because the circular 

layout of protein nodes within each cluster reduces their inter-nodal distance. 

However, the clustered PIN visualization had one limitation that hampered its usability. 

The redundant representation of the same protein nodes but in different clusters had 

increased the size of the visualized PIN. In addition, some intra-cluster edges were being 
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redundantly represented as inter-cluster edges. As the number of nodes increased, the 

number of edge crossings also increased. When the visualized PIN approached 1000 nodes 

and 1000 edges or more, the edge crossing made the visualization un-readable. The non­

clustered PIN visualization also had its limitation. As the size of the PIN increases, the force­

directed layout became increasingly unreadable eventually giving the 'hair ball' effect [148]. 

The identification of party hubs became increasingly difficult whereas the high degree date 

hubs continued to attract visual attention as the size of the PIN increased 

Our domain expert evaluation showed that non-dustered and the clustered PIN 

visualizations gave the biologist a different perception on protein hubs and subsequently 

their identification of essential proteins. Thus different visual design could affect biological 

reasoning. 

Finally, the PIN visualizations could be applied as the follow-up step to the GO-annotated 

gene cluster visualization (see Chapter 3, section 3.4). Our deductions in the HCC case study 

could further explain how the functional organization of a living cell might emerge from the 

probable protein-protein interactions underlying the various biological processes. In 

particular, we could explain how the loss of functional protein-protein interactions in the cell 

cycle arrest (G0:0007050) biological process could result in the constitutive activation of 

oncogenic proteins in the regulation of transcription, DNA-dependent (00:0006355) and the 

signal transduction (G0:0007165) biological processes. However, our analysis of the DNA 

replication (G0:0006260) process suggested that the activation of these oncogenic proteins 

did not seem to result in high mitotic cycles, a finding that agrees well with the observation 

that the frequency of replication errors in HCC is low [ 45]. Rather, the co-expressed 

signaling proteins found in the signal transduction (G0:0007165) network are predominantly 

involved in mediating inflammation or are inflammation-induced. This observation raises 

suspicion that prolonged tissue-level injury caused by the de-regulation of inflammation may 

be the most likely cause of HCC development. 

The appearance of co-expressing fibrin genes shows that fibrosis was present in HCC. 

Indeed, published epidemiology has revealed a strong correlation between liver cirrhosis and 

the heightened risk of HCC development [20]. Furthermore, the persistence expression of 

inflanunatory cytokines can spur venous metastasis, therefore amplifying the invasiveness of 

HCC [182]. The co-expression of the TGFBJ, VEGF and CTGF in the angiogenesis 

(00:0001521) network and the expression of HIFJA in the signal transduction network 

suggest that angiogenesis did take place in the hypoxic microenvironment within the HCC 

tumour [26] and would therefore further enhance metastasis. In conclusion, our deduction 

had been supported by recent publications, thus validating our visual analysis. 



Visualization and Analysis 
of Two-Overlapping 
Heterogeneous Biological 
Networks 

"Connectivity creates Complexity" 

5.1. Introduction 

CHAPTER 5 

In Chapter I, we mentioned that the routine application of high-throughput technologies in 

biological research has generated copious amount of data that were challenging to decipher. 

This situation is not exclusive to biology. Recent advances in computing technologies have 

produced huge datasets, and as a result large and complex network models emerged in many 

other application domains, e.g. finance and sociology. Visualization can be an effective 

analysis tool only if it can reveal the intricate structure of the networks. Otherwise, it cannot 

amplify human understanding; let alone leading to new insights and hypotheses deduction. 

The current challenges remain to be the scalability and complexity issues. 

Life emerges out of complex molecular interactions and highly orchestrated biological 

processes. In fact, one can view the single-cell network as a system of multiple sub­

networks, with each serving a specific biological process, e.g. gene regulation, signal 

transduction, or metabolism [3]. These biological processes can be treated as three distinct 

but inter-connected (or overlapping) networks. Each network has its own interaction types. 

For example, the metabolic network (MN) consists of protein-metabolite interactions. Its 

purpose is to transform metabolites to biomass [142]. The signal transduction network 

(STN) consists of fast and transient protein-protein interactions that operate on the time scale 

of seconds to minutes. Its purpose is to propagate the activation/de-activation signal 

originated from a few signaling proteins throughout the entire STN. The gene regulatory 

network (GRN) consists of protein-gene interactions that operate on the time scale of 

minutes to hours. Its purpose is to control the rate of protein expression when necessary [3]. 

The MN, STN, and GRN are considered to be overlapping because they share a common set 

of proteins or genes between one another. 

Because a single cell molecular network consists of a system of networks, the limitation 

of focusing only on one network with a single interaction type becomes apparent. For 

example, protein interaction networks (PIN) can be used for inferring the probable protein­

protein interactions involved in the various biological processes, but they cannot fully 
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explain how the functional organization of a cell emerges out of co-regulated biological 

processes. Does the physical interaction occur for the purpose of signal transduction or for 

the purpose of metabolic reaction? Do certain biological processes require more than just 

protein-protein interactions? For this reason, we require novel methods for visualizing 

overlapping networks as the third step of our visual analysis framework (see Chapter I, 

section 1.2). This brought us to the new problem of visualizing overlapping networks. 

As the first step towards investigating this new problem, we introduce in this chapter the 

two-overlapping network representations and their corresponding visualization methods. 

They are really a type of multi-plane layout [183]. The rationale behind our choice is that 

integrated analysis, hence systems-level insight, should be better supported by good 

visualizations of two inter-connected heterogeneous networks, rather than a separate 

visualization of each network. This is being achieved by visually highlighting the inter­

connections between the two networks while exposing their differences in interaction types 

and network topologies. The two-overlapping network can come in the two-plane or the 

three-plane representation. The difference between them lies in the way the inter-connections 

are being highlighted. It is noteworthy to mention that, thus far, multi-plane layouts have 

only been experimented on metabolic networks [14, 187]. The multi-plane layout methods 

presented in this chapter and chapter 6 represent our first experimentation on heterogeneous 

biological networks. 

To evaluate their merits as visual analysis methods, we perform two case studies using 

the previously mentioned biological networks (MN, PIN, GRN and STN) as the input. The 

first case study involves molecular networks found in the bacterium Escherichia coli. E. coli 

has been one of the best studied organisms in biology. It has been studied by biologists 

coming from the domains of medicine and biotechnology for the last two decades. Hence, it 

has been used as a model organism for studying prokaryotic biological networks on the 

systems scale. For this reason, E. coli is a suitable case study for evaluating the potential of 

overlapping networks as a concept model visualization. Concept model visualization means 

that the visualization represents human knowledge [76]. Visual experimentation is done on 

two combinations of networks, the MN-PIN and the GRN-PIN. The objective is to evaluate 

their effect on biological reasoning and see whether any deductions made are supported by 

the recent or current biological literature. We also use the GRN-PIN combination to fulfill 

another objective, i.e. to evaluate the visualizations of the two-plane and the three-plane 

representations for their readability when networks of over 500 nodes are used. 

The second case study involves human molecular networks. The visual experimentation 

and analysis are done on the STN-PIN combination. Instead of using the single-cell cancer 

STN [35] and the canonical human PIN [15], only the TGFBl (transforming growth factor 
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beta) sub-network and the nuclear PIN are being applied, since both have been known to be 

active in different forms of cancer. The objective is to evaluate the effectiveness of the STN­

PIN combination in hypothesis deduction especially as a follow-up step to the PIN 

visualizations presented in the previous chapter (see Chapter 4, section 4.4.2). The domain 

application remains to be hepatocellular carcinoma (HCC). The analytical objective is to 

study the probable effect of TGFB I signal transduction on the human cell cycle. In both case 

studies, we also evaluate the merits of the two-plane and three-plane visualizations as visual 

analysis methods. 

Because these visualizations are very new to biologists and their interpretation can take 

several hours, it is difficult to design a user evaluation. For this reason, we do not include 

user evaluation as part of our investigation. Instead, we use the case studies to provide 

anecdotal evidence on the usability of each two-overlapping network visualization. 

The rest of this chapter is divided into five sections. The representations of the MN, GRN 

and STN are defined in section 5.2. The two representations of the two-overlapping network 

are defined in section 5.3. The drawing algorithm for the layout of each representation is 

presented in section 5.4. The E. coli case study is introduced in section 5.5 followed by the 

human case study in section 5.6. Finally, the strength and limitations of each layout and the 

suitability of the two-overlapping network visualization for biological analysis are discussed 

in section 5.7. 

5.2. Representation of Three Molecular Networks 

5.2.1. Metabolic Network 

The original graph theoretic model of a metabolic network (MN) is a hypergraph in which 

the node set represents the metabolites and the hyper-edge set represents the metabolic 

reactions [11]. In practice, metabolic networks are often represented as directed bipartite 

graphs in which one node set represents the metabolites and the other node set represents the 

metabolic proteins called enzymes [14]. For the applications discussed in this chapter, the 

graph-theoretic definition of the metabolic network is defined as the following: 

Definition 5.1. A metabolic network is a directed bipartite network GM =(VpV2 ,Eul in 

which V1 denotes the node set of enzymes, V2 denotes the node set of metabolites, and EM 

denotes the edge set of unidirectional reactions. The pair of edges e1 and e2 where e1 = (, v = 
and e2 = (, w = denote the single directional reaction catalyzed by the enzyme v which 

converts metabolite u to metabolite w wherevE~, u,wEV2 , and(,v:,(,w:are ordered 

pairs. If the same reaction involving metabolites u and w is bi-directional, then it is 

represented by an additional pair of edges e3 and e4 where e, = '-'• v = and e4 = (, u =· 
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Note that V1 is a subset of the protein nodes in a PIN because metabolic enzymes are proteins 

that specialize in catalyzing metabolic reactions [83]. A metabolic reaction often generates a 

number of small molecules. These molecules are often known as currency metabolites and 

are usually omitted in the graph-theoretic representation and the visualization of MN. 

Examples of currency metabolites are ATP, ADP, H20, N02, C02, W, and inorganic 

phosphate. 

5.2.2. Signal Transduction Network 

Strictly speaking, a signal transduction network (STN) should be a directed bipartite graph in 

which one node set represents the signaling proteins and the other represents the energy 

molecules cyclic-ATP, ATP, cyclic-GTP and their metabolites cyclic-ADP, ADP, cyclic­

GOP, and inorganic phosphate. However, the STN is designed for propagating the 

activation/de-activation signals from a subset of proteins called receptors to the rest of the 

network rather than metabolizing energy molecules. Therefore, it can be reduced to a set of 

protein-protein interactions which are directional in order to account for the flow of signals. 

For the applications discussed in this chapter, the graph-theoretic definition of the STN is 

defined as the following: 

Definition 5.2. A signal transduction network is a directed network Gsr =(VsroEsr) in 

which Vsr denotes the finite node set of signaling proteins and Esr denotes the finite directed 

edge set of directional signaling. The edge e = ~', v2 } Esr denotes the signal relay from 

signaling protein v1 to signaling protein v2 where v1, v2 E Vsr and ~', v2 = is an ordered pair. 

Note that Gsr is a subset of the PIN because interactions. Similar to the MN, the currency 

metabolites generated by the signaling interactions are omitted. It should also be noted that 

the STN visualization presented in this chapter does not provide information on the 

activation/de-activation state of each protein as a consequence of phosphorylation or 

acetylation. Some proteins become active while others become inactive when 

phosphorylated or acetylated. 

5.2.3. Gene Regulatory Network 

A gene regulatory network (GRN) is often mistaken as a sub-network of the PIN. However, 

it is really a network of two interaction types, protein-DNA and RNA-RNA interactions. 

Hence the original theoretic model of the GRN should be a k-partite graph where k = 4. In 

this representation, one node set represents the proteins known as gene regulators or 

transcription factors. The second node set represents the non-coding RNAs. The third node 

set represents messenger RNAs (mRNA) [92]. The fourth node set represent the DNA 
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sequence that codes for a protein or RNA, and the directed edge set represents interactions 

between members of the four node sets. 

G1 

G2 

FIGURE 5.1. Two-plane representation of the two-overlapping network. Each network G, is enclosed 
by a two-dimensional plane P,. G1 and G2 are the heterogeneous biological networks. Nodes and edges 
of G1 arc coloured red within the top plane P1• Nodes and edges of G2 are coloured blue within the 
bottom plane P3. The inter-plane edges £ 12 connecting the corresponding nodes in different planes are 
coloured green. 

Because all four node sets represent gene products, GRN is often simplified as a network 

of gene-gene interactions. Classically, a gene is defined as the information coded by a DNA 

sequence in the genome [83]. In the protein-DNA interaction, the protein translated from a 

protein-coding gene interacts physically with the promoter sequence of another gene thereby 

inducing or repressing its transcription. In the RNA-RNA interaction, the microRNA 

transcribed from an RNA-coding gene or simply RNA gene interacts physically with its 

target mRNA, thereby preventing it from being translated to proteins. This process is known 

as gene silencing [ 120]. For the application described in this chapter, the graph-theoretic 

definition of the GRN is defined as the following: 

Definition 5.3. A gene regulatory network is a directed network GR = (VR , ER) in which VR 

denotes the finite node set of genes and ER denotes the edge set of directed control. The edge 

e = ~a' v6 } ER denotes the induction or repression of gene vb transcription (or expression) 

by gene V0 where va, v6 E VR and ~a' v6 = is an ordered pair. 

Note that the protein gene regulators are a subset of the protein nodes in a given PIN. In the 

human and mammalian GRNs, they interact with one another to form a protein complex and 

at the same time, some interact with the promoter DNA sequence upstream of a gene. 

5.3. Representation of the Two-Overlapping Network 

In general, k networks overlap if they share a subset of nodes and edges. This chapter 

describes only the overlapping networks with k = 2. They are heterogeneous networks with 

each representing a different type of interaction. For example, one network can be a PIN and 

the other can be an STN or a GRN. Yet these networks are inter-connected because they 

share a subset of common nodes and in some cases common edges as well. 
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FIGURE 5.2. Three-plane representation of the two-overlapping network. Each network G, is enclosed 
by a two-dimensional plane P,. G3 is the overlap layer. Nodes and edges of G1 are coloured red within 
the top plane P 1• Nodes and edges of G2 are coloured blue within the bottom plane P3• Nodes in G3 are 
coloured m a red/blue blend. Overlap edges in G3 that correspond to G1 are coloured red, those 
corresponds to G2 are coloured blue, and those corresponds to both G1 and G3 are coloured magenta. 
The inter-plane edges connecting the corresponding nodes in different planes are coloured green. 

Here, we defmed the two representations of the two-overlapping network. In the two­

plane representation, C1 and C2 are the two heterogeneous biological networks with layouts 

L1 and L2 respectively (see FIGURE 5.1 ). The inter-plane edge set £ 12 is added to connect 

nodes commonly shared between C 1 and C2. In the three-plane representation, an additional 

layer C3 is added (see FIGURE 5.2). This network contains nodes shared by C1 and G2 and 

edges found in either C1 or C2 or both. We called this the overlap layer within which the 

nodes and edges are called overlap nodes and overlap edges respectively. The inter-plane 

edge set £ 13 is added to connect the C 1 nodes with the overlap nodes (or C3 nodes). 

Similarly, £ 23 is added to connect the C2 nodes with the overlap nodes. 

5.3.1. Two-Plane Representation 

To generate the two-plane representation, the following inputs are required: 

• Two networks c. = (V1, £ 1) and C2 = (V2, £ 2) , where V., V2 are the node sets and£., £ 2 

are the edge sets. 

• A I-to- J mapping Mv : V11 +--+ Vn defines the nodes common to C 1 and C2, where V11 ~ 

VI and v22 ~ v2. 

The outputs are as the follows: 

• The layouts L1 and L2 of C 1 and C2 respectively, including the edge set £ 12 that connects 

the corresponding nodes between G1 and G2• 

Note that G1 and G2 are drawn in layouts L 1 and L2 respectively. The layouts may not be 

given based on the drawing convention of the specific network. For example, PINs are 
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usually drawn in the force-directed layout [44] whereas MNs are usually drawn in the 

hierarchical layout or the KEGG layout which is pre-defined [79]. 

5.3.2. Three-Plane Representation 

To generate the three-layer representation, the following inputs are required: 

• Two networks G1 = (V" £ 1) and G2 = (V2, E2), where V1, V2 are the node sets and £ 1, £ 2 

are the edge sets. 

• A 1-to-1 mapping Mv: V11 +-+ V22 defines the common nodes between G1 and G2, where 

V11 ,;; V1 and V22 ,;; V2• 

The outputs are as the follows: 

• Construction of the overlap layer G3 = ( V3, £ 3), where the overlap node set V3 is defined 

as those nodes common to G1 and G2, i.e. 

v, =V, nv, 

and the overlap edge set £ 3 is defined as the edges found in G1 and/or G2, i.e. 

E3 = {(v, v') I (v, v') E E, uE2,v, v'E V,} 

• The layouts L" L2, and L3 of G" G2, and G3 respectively, including the two edge sets E" 

and £ 23 that connects the corresponding nodes between G1 and G3, and between G2 and 

G3 respectively. 

5.4. Visualization of the Two-Overlapping Network 

In this section, we present the drawing algoritlnns for the visualizations of the two­

overlapping networks, based on the representations discussed in the previous section. We use 

the notations in the previous section for denoting the various planes, networks, nodes and 

edges in the drawing algoritlnns. All the visualizations mentioned in this chapter have one 

network drawn in a fixed (or given) layout. The purpose is to preserve the conventional 

layout which most biologists will prefer. For example, MNs are preferably drawn in the 

KEGG layout [79]. Therefore the layout L1 is given by the KEGG layout if G1 is an MN. We 

then draw the other network using a variation of the force-directed layout. 

5.4.1. Two-Plane Visualization 

The two-plane representation is visualized in a two-parallel plane layout in which networks 

G1 and G2 are drawn on separate planes P 1 and P2• The design criteria are: (I) to achieve 

drawing aesthetics for G1 and G2, and (2) to minimize the total edge length of £ 12 between 

parallel planes in order to minimize occlusion in the 2.5-dimensional visualization. 
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The drawing algorithm involves four steps: 

Algorithm 5.1. Two-parallel plane layout 

I. Draw G1 with a given layout L 1 on P1; 

Visualization of Two-Overlapping Networks 

2. Assign the position of node v1 in L1 as the initial position of its corresponding node v2 in 

G2; 

3. Add the inter-plane edge set £ 12 and model each inter-plane edge as a zero-length 

natural spring, i.e. attraction force only. Note that such spring force does not change the 

inter-plane distance; 

4. Draw G2 on P2 and the edge set £ 12 with a force-directed layout [44] with the previous 

initial positions; 

At step 2, by assigning a good initial position based on L~o it can help the force-directed 

layout of G2 at step 4 to converge quickly. Furthermore, the corresponding nodes v1 in L1 and 

v2 in L2 have similar x, y-coordinates. At step 3, the zero-length natural spring for the inter­

plane edges is being added in order to reduce their total edge length. Note that at step 4, this 

force competes with other forces in G2 in order to produce a readable layout when 

equilibrium is reached. 

5.4.2. Three-Plane Visualization 

The three-plane representation is visualized in a three-parallel plane layout in which 

networks G1, G2 and G3 are drawn on three parallel planes P1, P 2 and P 3• The design criteria 

are: (I) to display the overlap network G3 on a separate plane P3, (2) to achieve drawing 

aesthetics for G~o G2 and G3, and (3) to minintize the total edge length of £ 13 and £ 23 between 

the parallel planes. 

Given that G1 has a fixed layout L1, L, and L3 are being computed by taking L1 into 

account. A variation of a force-directed layout [44] can be used to produce a readable layout 

for G2 and G3 while reducing the total inter-plane edge length. 

The drawing algorithm contains six steps: 

Algorithm 5.2. Three-parallel plane layout 

I. Draw G1 with a given layout L1 on P1; 

2. Assign the position of node v1 in L1 as the initial position of its corresponding node v2 in 

Gz; 

3. Add inter-plane edge sets £ 13 and £ 23 and model each inter-plane edge as a zero-length 

natural spring (i.e. attraction force only); 
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4. Draw G2 on P2 and the edge sets £ 13 and £ 23 with a force-directed layout with the 

previous initial positions; 

5. Assign the position of node v3 E G3 using the barycenter ofv1 in L 1 and v2 in L2; 

6. Draw G3 on P3• 

The effect of steps 2 to 4 are the same as that described in the two-parallel plane layout 

drawing algorithm. At step 6, the barycenter of L 1 and L2 is being used to draw G3• 

5.4.3. Implementation 

The drawing algorithms were implemented as new plug-ins to GEOMI [2]. This network 

visualization tool has the Java3DTM package embedded, thus allowing for three-dimensional 

computer graphics implementation. Data for constructing the networks presented in the 

following case studies could be loaded into the plug-in as tab-delimited files, either as a 

Pajek [9] output or downloaded from a public database beforehand. The mappings required 

for constructing the overlap layer G3 is computed automatically based on common node 

identifiers. 

5.5. Case Study: Inter-connected Networks in Escherichia coli 

5.5.1. Network Construction 

5.5.1.1. Datasets 

Protein interaction data. The protein interaction data for the organism was obtained from 

the Database of Interacting Proteins (DIP) Release July 2007 [132]. It stored protein-protein 

interactions as rows of protein pairs. Each protein was identified by a unique identifier, and 

several other identifiers such as the UniProt ID [151] are given in the file. The data contained 

1846 proteins and 8013 interactions. From this, a subset containing the largest connected 

component consisted of 1440 nodes with 7279 edges was extracted. 

Glycolytic pathway data. The data for glycolysis was obtained from the KEGG Pathway 

database Release 43.0 (June 2008) [79]. The data contained 52 nodes and 62 interactions. Of 

which, 29 nodes represented proteins (also known as enzymes) and the rest represented 

metabolites. 

Gene regulatory interaction data. The gene regulatory data for E. coli was obtained from 

the public database RegulonDB version 6 [57] from which the largest connected component 

was extracted. Each row described the pairwise interaction between two proteins. The source 

nodes were listed on the left column and end nodes on the right column. The data contained 

1371 genes and 2030 interactions. 

5.5.1.2. Data mapping 
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Because proteins and enzymes are annotated with a common UniProt identifier [151], inter­

connections between the PIN and the glycolytic pathway could be established. In total, nine 

enzymes from the glycolysis pathway had corresponding proteins in the PIN. 

To construct an integrated two-overlapping network, the E. coli PIN and the glycolytic 

pathway were combined. In the two-plane representation, proteins common to the PIN and 

the MN were connected by inter-plane edges. In the three-plane representation, proteins 

common to the MN and the PIN were added to G3 as new nodes. To reduce the visual 

complexity of the two- and the three-parallel plane visualizations, the PIN was reduced to the 

]-neighbourhood network (see definition 5.4). Finally, labels for the proteins in the 

interaction network were replaced by the corresponding gene name, if known. 

Because UniProt identifiers are nomenclatures for proteins not genes, the inter­

connections between PIN to GRN were established based on common gene identifiers [99]. 

A total of 160 proteins in the PIN had corresponding genes in the GRN. In the three-plane 

representation, proteins in the PIN having corresponding genes in the GRN were connected 

to new G3 nodes. The PIN was reduced to the !-neighbourhood for all proteins connected to 

theGRN. 

The graph-theoretic definition of the !-neighbourhood network was defined as the 

following: 

Definition 5.4. Given a network G = (V, E) and a subset of nodes V',;;; V. The 

neighbourhood network Gv· = (V~o EI) where VI>; V and E1 ,;;;E. Also, VIE VI and v'E V' 

such that V, = {v1 I v1 e V,v'e V',(v', v,) e E} and E, = {(v,. v1 ') 1 (v,, v1 ') e E, v,. v, 'e V,}. 

5.5.2. Visualization and Analysis 

Where available, the Gene Ontology [ 60] identifier was given in parentheses for every 

biological process mentioned. Similarly, the Entrez Gene [99] identifier was given in 

parentheses for every E. coli gene mentioned. 

5.5.2.1. MN-PJN-overlapping network 

FIGURE 5.3 showed the visualization of the MN-PIN overlapping network. Here, G1 (IVd = 

52; IE11 = 62) represented the glycolytic pathway within MN (blue nodes; blue edges). G2 

(IV21 = 89; l£21 = 85) represented the !-neighbourhood PIN (green nodes; green edges) which 

was a single connected component. G1 was laid out using the fixed coordinates obtained 

from KEGG whereas G2 was laid out using the force-directed method stated in the three­

parallel layout algorithm (see algorithm 5.1). G3 (IV31 = 8; IE3I =!)represented the G, n G2 

(light blue nodes). The nodes in G1 and G2 were connected to their corresponding nodes in 

G3 by inter-plane edges. We found in G3 that only eight but not all glycolytic enzymes were 
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present in G2 (PIN). One would expect that every enzyme should be represented in the PIN, 

as enzymes were really proteins. This was not the case, because protein interaction databases, 

including DIP, usually refer to proteins for which at least one interaction was known. 

We noticed from the top view of G1 in the visualization that G2 contains of a high degree 

node (node degree > 50) that resembled a date hub (see FIGURE 5.3(a)). Using a slight 

rotation on the x-axis revealed that the node label of the hub is 'DIP:9040N'. Except for the 

node DIP:9040N itself, we noticed that none of its neighbours have inter-plane edges 

connecting to G1 nodes. This strongly suggested that the date hub DIP:9040N seen in G2 

does not interact solely with glycolytic enzymes. It could be a junction point between 

multiple metabolic pathways and would be an ideal target for metabolic control by gene 

regulation. Its topology also implied that the date hub forms a multi-protein complex 

(metabolon) with many other proteins. 

We traversed the inter-plane edge from the date hub DIP:9040N in G2 to G1 and found 

that the inter-plane edge connects to the G1 node labeled aceF (Gene!D: 956812). This 

meant that the node aceF is the corresponding node to the date hub in G2• A closer 

inspection of G1 revealed that the node aceF had two outgoing blue coloured edges pointing 

to two other nodes. One edge points to the node labeled 'acetyl-CoA' and the other edge 

points to the node labeled '5-Acety/dihydro/ipoamide'. There was also an incoming edge 

originated from the node labeled 'Dihydrolipoamide' pointing to the node aceF. The 

direction of these edges informed us that aceF catalyzes the reaction that converted 

Dihydrolipoamide to 5-Acetyldihydrolipoamide and acetyl-CoA. 

We then traversed from the G1 node Dihydrolipoamide to the other G1 node labeled 'aceE, 

aceEI' via three G1 edges and two nodes. The aceE node had one incoming edge originating 

from the node labeled 'Pyruvate' and three outgoing edge pointing to the nodes labeled 

'Lipoamide', '2-a/pha-Hydroxyethy/ene', and 'Thiamine diphosphate'. This informed us that 

aceE catalyse the reaction that converted pyruvate to lipoamide, 2-alpha-Hydroxyethylene, 

and thiamine diphosphate. If we followed the G1 edges back to the node Lipoamide, we 

eventually came back to the node acetyl-CoA. This G1 path is as follows: 

Pyruvate-> aceE -->Lipoamide--> lpd -->Dihydrolipoamide--> aceF--> acetyl-CoA 

From this path, we deduced that the metabolic enzyme aceE (Gene!D: 7062918) in 

conjunction with lpd (Gene!D: 944854) and aceF (Gene!D: 956812) catalyse the reaction 

that converts pyruvate to acetyl-CoA. When we compared the above G1 path with the current 

knowledge on glycolysis as visualized in FIGURE 5.5, we found that the G1 path displayed in 

our MN-PIN-overlapping network visualization is in fact a detailed view of the Pyruvate-> 
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acetyl-CoA metabolic reaction. Hence our deduction was supported by the current biological 

knowledge on E. coli metabolic network [110]. 

Next, we noticed that the node G1 labeled 'pykF had an outgoing edge to the node 

Pyruvate and an incoming edge from the node labeled 'phospho-enol-pyruvate'. This 

observation informed us that pykF (GeneiD: 946179) catalyses the reaction that converts 

phospho-enol-pyruvate to pyruvate. The node pykF also connects to its overlap node in G3 

and then its corresponding node labeled 'DIP:l0622N' in G2 by two inter-plane edges 

(FIGURE 5.3(a)). When taking the side view (FIGURE 5.3(b)), we found that node 

DJP:J0622N was another hub (node degree= 7) which was less connected than its aceF 

counterpart. This was more obvious when taking the top view of G2 (see FIGURE 5.4). This 

view showed that some of its neighbours were not connected to any overlap nodes in G3 and 

any G1 nodes via inter-cluster edges. Hence we deduced that, similar to aceF, pyk:F does not 

interact solely with glycolytic enzymes. Therefore, it could be a junction point between 

glycolysis and other metabolic pathways and likely to be subjected to metabolic control by 

gene regulation. As shown in FIGURE 5.5, both aceF and pykF are junction points to 

glycolysis, the tricarboxylic acid (TCA) cycle and the erythrose dehydrogenase (ED) 

pathway. Again, our deduction was supported by the current biological knowledge on E. coli 

metabolic network [110]. 

As the final step in our analysis, we took the oblique view in order to identifY the pair of 

overlap nodes in G3 that are connected to each other with an overlap edge. We identified that 

one node is labeled 'pykF-DIP: 1 0622N', the other is labeled 'ptsr, and the overlap edge 

between them is coloured green. This observation informed us that pykF has protein-protein 

interaction with ptsl. We traversed their inter-plane edges from G3 to their corresponding 

nodes in G2 and confirmed that ptsl is indeed a neighbour of pykF. We then traverse the 

inter-plane edge from the overlap node ptsl to its corresponding node in Gt. We found in Gt 

that node ptsl has one incoming edge from the node labeled 'D-Glucose' and one outgoing 

edge to the node labeled 'alpha-D-Glucose-6-phosphate'. This observation informed us that 

ptsl catalyzes the metabolic reaction that converts D-glucose to alpha-D-glucose-6-

phosphate. 

We further made the interesting observation that nodes ptsl and pyk:F were distant to each 

other in G1 even though they were neighbours that interacted directly with each other in G2• 
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(a) 

(b) 

FrGVRE 5.3. Visualization of the E. coli MN-PIN-overlapping network in the three-parallel plane 
layout. The G1 network represents the MN (dark blue nodes, dark blue edges), the G2 network 
represents the PIN (green nodes, green edges) and the G3 network is the middle layer which represents 
the overlap layer (light blue nodes, green edge). The glycolytic pathway is presented as the MN. (a) 
Top view. The G1 nodes aceF, aceE, and pyk.F are circled in blue, green, and red respectively. (b) 
Oblique view. 
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This finding from FIGURE 5.3 led us to the deduction that ptsl and pykF might be part of a 

larger protein complex (or metabolon) that catalyzed both reactions, i.e. the D-Glucose-. 

alpha-D-Glucose-6-phosphate reaction and the Pyruvate-. acetyl-CoA reaction. To find 

support for our deduction, we searched the known metabolic function of pykF from the 

EcoCyc public database (EcoCyc ID: PKI-COMPLEX). We found that both previously 

metabolic reactions require the phosphoenolpyruvate-sugar phosphotransferase system (PTS) 

to function . Within which, ptsl was one of the protein members. 

FIGURE 5.4. Visualization of the G2 node DIP: 10622N and its neighbours in the three-parallel plane 
layout as shown in FIGURE 5.3. The G1 node pykF is coloured dark blue. The G2 node DIP: 10622N is 
coloured green. The overlap node in G3 is coloured light blue. The inter-plane edges connecting the G2 

node DIP: 10622N, the overlap node, and the G1 node pykF are coloured yellow. 

The PTS complex phosphorylates the glucose and pyruvate before they can participate in 

further metabolic reactions [ J 05). On the other band, pykF is a member of the pyruvate 

kinase complex (EcoCyc ID: PKI-COMPLEX). Therefore our deduction was not entirely 

correct. At its current size, the MN-PlN-overlapping network was not informative enough 

for us to make the correct deduction. 

In this analysis, we explored the three networks in the following sequence: 

We spent most of the analytical time on G1 and G2 from which we generated three 

deductions. This was the case because G3 was less informative than G1 and G2. By ·less 

informative' , we meant that G3 provided visual representations of fewer molecular 

interactions compared to G1 and G2• However, the display of overlap edges in G3 had the 

advantage of highlighting those proteins that interacted with each other directly but were 

catalyzing different metabolic reactions in the pathway. In this way, the overlap edges in 

conjunction with the intra-cluster edges within G1 and G2 provided with us information on 

the spatial organization of the metabolic reactions. 
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FIGURE 5.5. Regulation of the E. coli central metabolic network (MN) by the various master gene 
regulators. The gene regulators (bold) and their target enzymes are shown in the inset box at the upper 
left comer. Negative gene regulation is indicated by the minus sign. Positive gene regulation is 
indicated by the positive sign. PP Pathway stands for pcntose phosphate pathway. ED Pathway stands 
for erythrose dehydrogenase pathway. Reproduced from Perrenoud and Sauer 2005 [110). 

In summary, the MN-PIN-overlapping network visualization supports analysis relating to 

the role of date hub proteins in a metabolic pathway. Furthermore, the visualization was a 

good visual model on E. coli glycolysis since most of our deductions were supported by the 

biological literature [ItO] . 

5.5.2.2. PIN-GRN-overlapping 11etwork 

I. Two-parallel plane layout 

FIGURE 5.6 showed the PIN-GRN-overlapping network in the two-parallel plane layout. 

Here, G1 (IV21 = 451 ; l£21 = 730) represented the PIN (green nodes; green edges). The 

network G2 CIVd = 1371 ; lEd = 2030) represented the largest connected component of the 

GRN (yellow nodes; magenta edges). G2 was a directed network containing gene-gene 

interactions (see definition 5.3). G1 was an undirected network containing the physical 

protein-protein interactions. G2 was drawn using the fixed co-ordinates computed according 

to the Kamada-Kawai layout [78] while G1 was drawn using the force-directed method stated 

in the t.vo-parallel plane layout drawing algorithm (see algorithm 5.1 ). The nodes in G1 were 

directly connected to their corresponding nodes in G2 by the inter-plane edge set E12 (yellow 

edges). The resulting visualization contained 1822 nodes and 2920 edges. 
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FIGURE 5.6. Visualization of the E. coli PIN-GRN-overlapping network in the two-parallel plane 
layout. The G1 network represents the PIN (green nodes, green edges) and the G2 network represents 
the GRN (magenta nodes, magenta edges). The inter-plane edge set £ 12 represents node 
correspondence between G1 and G2• The oblique view is shown here. 

With a large two-overlapping network, the first task we performed was to identify any 

visual feature that could serve as a visual focus. Our intention was to use this visual focus as 

a starting point for our network exploration. Using the top view, we identified a high density 

area in G1• We zoomed into the area in search for high degree nodes (node degree > 30) that 

resemble date hubs. Immediately, we found ourselves facing two challenges. The first 

challenge was to decide which high degree date hub should be our first object of 

investigation. This was because the hubs had similar node degrees or connectivity visually. 

We later decided to search for the G1 node labeled 'aceF' since it was found to be a high 

degree date hub in the MN-PJN-overlapping network visualization before. At this step, we 

faced our second challenge, the aggregation of high degree nodes and their node labels give 

rise to occlusion that hampered our effort. We therefore decided to switch to the oblique 

view in an attempt to locate readable inter-plane edges. 

In the oblique view (see FIGURE 5.6), we identified several inter-plane edges that 

connected the G1 and G2 nodes which were located at the periphery of their respective 

planes. These nodes have node degrees ranging from I to 3. We did not take further steps to 

identify their node labels because they were not likely to provide us enough biological 
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insights for hypothesis deduction. Their node positions and node degrees informed us that 

they were unlikely to be gene regulators in the GRN, and they were also unlikely to be 

bottleneck proteins in the PIN which are subjected to tight regulation. Substantial edge 

cluttering made it difficult for us to identifY inter-plane edges that connected the G1 and G2 

nodes positioned near the centre of their respective planes. 

Thus far, the PIN-GRN-overlapping network visualized in the two-parallel plane layout 

did not seem to be an effective visual analysis method. We were not able to deduce any 

hypotheses from it. 

II. Three-parallel plane layout 

FIGURE 5.7 showed the PIN-GRN-overlapping network in the three-parallel plane layout. 

Here, G1 and G2 represented the same networks as in its two-parallel plane counterpart and 

so is the layout of G1• G2 was drawn using the force-directed layout stated in the three­

parallel plane layout drawing algorithm (see algorithm 5.2). The visual encoding of G1 and 

G, was the same as that in the two-parallel plane layout. The overlap layer G3 (IV31 = 160; 

IE31 = 154) represented G1 n G2 (red nodes; green edges). The nodes in G1 and G2 were 

connected to the overlap nodes in G3 by the inter-plane edge sets E 13 and E23 respectively 

(yellow edges). The resulting visualization had a total network size of 1982 nodes and 3234 

edges. 

The inclusion of the overlap layer G3 increased the size of the PIN-GRN-overlapping 

network visualization by 16% when compared to the two-parallel plane layout. A large part 

of this increase was due to the additional inter-plane edges required for connecting G1 and G2 

to G3• As a consequence, we observed more occlusions due to node aggregation and more 

edge cluttering in the three-parallel plane layout. Despite this visual complexity, we found 

that the red coloured overlap nodes in G3 served as a visual focus for us. These overlap 

nodes informed us that there were proteins commonly represented in G1 (PIN) and G2 (GRN) 

(see FIGURE 5.7). In this context, we called these proteins as common proteins. 

Based on their positions in G3, we located two overlap nodes whose inter-plane edges 

connects two G1 nodes located in the high density region of G1 and two G2 nodes located 

near the periphery of the G2 plane. In order to identifY what the common proteins were, we 

zoomed into the two overlap nodes and found that one was labeled 'rpoD - rpoD' and the 

other was labeled 'uvrD - uvrD' (see FIGURE 5.8(a)). We traversed the inter-plane edges to 

G2 and found that the nodes labeled 'rpoD' and 'uvrD' had magenta coloured incoming 

intra-plane edges originated from the same G2 node (see FIGURE 5.8(a)). From this 

observation, we deduced that the expression of proteins from the genes rpoD and uvrD were 

regulated by the same gene regulator. We then traversed the inter-plane edges to G1 and 
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found that the nodes labeled 'rpoD' and ' uvrD' were date hubs with node degrees of 

approximately 20 (see FIGURE 5.8(b)). Despite their proximity in G~, we found the two hubs 

were not connected to each other by any edges. Therefore, we reasoned that rpoD and uvrD 

did not interact with each other. We bad difficulty locating their neighbours by traversing G1 

edges originating from 'rpoD' and 'uvrD' due to the edge crossings. However, when taking 

the top view at a distance from Gt. the nodes rpoD and uvrD seemed to have edges 

connecting two other date hubs within G1 (see FIGURE 5.8(c)). 

FIGURE 5.7. Visualization of the E. coli PIN-GRN-overlapping network in the three-parallel plane 
layout. The G1 network represents the PIN (green nodes, green edges), the G2 network represents the 
GRN (magenta nodes, magenta edges) and the G3 network is the middle layer which represents the 
overlap layer (red nodes, green edges). The inter-plane edge sets £ 12 and £23 represents node 
correspondence between G1, G2 and G3• The two overlap nodes in G3 that connect to the high density 
area of G1 are circled in red. Their neighbours in G2 are circled in magenta. The oblique view is 
shown here. Also see FIGURE 5.8. 

With all our observations made so far, we hypothesized that rpoD was a member of one 

protein complex and uvrD was a member of another. Each protein could be a bottleneck 

protein that held the subunits of its corresponding protein complex together. Their co­

regulation by the same gene regulator implied that rpoD and uvrD might be functioning co­

operatively in two related biological processes. To see whether our hypothesis was supported 

by the current biological knowledge, we searched the above protein labels in the public 

database Entrcz [99] for their biological function . 
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(c) 

FIGURE 5.8. A fly-through sequence from the G2 (GRN) network to the G 1 (PIN) traversing the inter­
plane edges originating from the two overlap nodes rpoD and uvrD. (a) A zoom-in view of the 
overlap nodes rpoD and uvrD and their neighbouring nodes at G2• {b) The inter-plane edges that 
connect the overlap nodes in G3 (boxed in blue) to the G1 nodes rpoD and uvrD. (c) Their positions in 
the G1 are circled in red. This figure is derived from FIGURE 5.7. 
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We found that rpoD is an RNA polymerase sigma factor (GeneiD: 4492022). It is an 

initiation factor for promoting the interaction of RNA polymerase with specific initiation 

sites on the genomic DNA. This step is essential to the initiation of gene transcription. uvrD 

(GeneiD: 948347) is a DNA helicase required for the unwinding of the genome DNA double 

strands. It is a member of the E. coli pre-replicative complex. During the process of gene 

transcription, the unwinding of the DNA strands by uvrD is required before the synthesis of 

RNA by rpoD can take place. 

After the above analysis, we examined G3 again and noticed that it contained only green 

coloured overlap edges. This was most obvious after we hid the G1 layer (see FIGURE 5.9). 

We therefore deduced that none of the common proteins represented were involved in any 

gene-gene interactions but only protein-protein interactions. In that case, they were unlikely 

to be gene regulators. Rather, the overlap nodes could be representing effector genes which 

function as the output layer of the GRN. They code for the response proteins which execute 

the biological processes required to form a biological response, e.g. increased glucose 

metabolism or terminal cell differentiation [38]. The G3 nodes representing effector genes 

usually had one incoming G3 edge and no outgoing G3 edges. 

We further noticed from FIGURE 5.9 that G2 contained six high degree date hubs. They 

were more easily identified from the top view over G2 (see FIGURE 5.9). The hubs were 

labeled 'crp' (GeneiD: 947867), 'ihfAB' (GeneiD: 6062397), 'hns' (Gene!D: 945829), 'fis' 

(Gene!D: 947697), 'areA' (GeneiD: 948874), and 'fnr' (Gene!D: 945908). We deduced 

from their node degrees that they could be representing the master regulators of the GRN. 

Hence, we suspected that they formed the kernel of the E. coli GRN. As defined in Chapter 4 

(see section 4.4.2.2), a kernel in the biological context means a set of master genes or 

proteins which 'on/off states collectively influence the state of all other genes or proteins, 

thereby controlling the activity levels of multiple biological processes. Our deduction was 

supported by the biologist's recent finding that half of the E. coli genes were directly 

regulated by seven master regulators [101]. Note that the hub ihfAB is an operon containing 

two master regulators, ihfA and ihjB. 

Of interest, we found that none of the high degree date hubs representing the master gene 

regulators had inter-plane edges (see FIGURE 5.10). This meant that none of the master gene 

regulators were represented by any overlap nodes in G3 or any corresponding nodes in G1• 

The most obvious explanation was that none of the master gene regulators needed to interact 

with one another or with any protein co-factors in order to mediate gene regulation. Such a 

biological systems design greatly reduces the amount of protein-protein interactions required 

for mediating gene regulation. This allows the bacterium to fine tune its functional 

organization rapidly in response to any external environmental challenges. 



149 Visualization of Two-Overlapping Networks 

~ ... 
\. 

0 

.. ~ 

FIGURE 5.9. The side view of FIGURE 5.7 with the G1 (PIN) being hidden. The green coloured overlap 
edges can be seen. The overlap nodes circled red arc examples of nodes representing effector genes. 
These are genes that code for response proteins. 

Jn this analysis, we begun our network exploration with the G3 network and finished at 

the G2 network. Our exploratory path through the networks could be summarized as follows: 

Gr--+Gr·-+G,-+G3-+G2 

We found that the inclusion of G3 has its benefits for a two-overlapping network of the 

current size. The red-coloured overlap nodes provided a visual focus for us and served as a 

starting point for network exploration. The overlap nodes also helped us to identify inter­

plane edges that were most likely to be biologically interesting whereas the overlap edges 

allowed us to deduce the functional relationship between the GRN and the PTN in E. coli. In 

this PIN-GRN-overlapping network which contained approximately 1000 nodes, we found 

that being able to prioritize which inter-plane edges to investigate first was crucial to our 

success in making biologically interesting deductions. In this case study, we demonstrated 

that the overlap layer G3 served such a purpose well. 
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FIGURE 5. 1 0. Visualization of the master gene regulators in E. coli. The gene regulators are 
highlighted in light blue. (a) hns, ihfAB andfis. (b) areA andfnr. (c) crp. (d) Overview. This view is 
derived from the top view of FIGURE 5.9. 

5.5.2.3. Conclusion 

In summary, for the PIN-GRN-overlapping network visualization, the three-parallel plane 

layout was visually more complex than its two-parallel plane counterpart. However, the 

explicit visualization of the overlap layer in the three-parallel plane layout was of great 

assistance in the process of hypothesis deduction. For a large network, we found that the 

three-parallel plane layout was a more effective visual analysis method than its two-parallel 

plane counterpart. 
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5.6. Case Study: Human TGFBI Signaling in Hepatocellular Carcinoma 

In the previous chapter, the protein TGFBJ and its neighbours were shown in the 

angiogenesis (G0:0001525)-defined PIN visualizations. TGFBJ activates the TGFBJ 

signaling pathway (00:0007179) upon interacting with its receptor protein TGFBRJ. 

TGFBJ signaling is of particular interest to cancer biologists. In normal epithelial cells, it 

suppresses cell survival by inducing cell cycle arrest (00:0006917), and its inactivation 

contributes to oncogenesis. However, during cancer progression, TGFBJ changes its 

function from being a tumour suppressor to a growth promotor in epithelial cells [154]. 

Cancer biologists suspected that the signaling proteins activated by TGFB 1 may be 

interacting with a set of proteins in cancer cells different from that in the normal cells. 

To investigate the probable effect of TGFBJ signaling on the development of HCC, we 

used the overlapping networks to visualize the connection between the TGFBJ signaling 

pathway (TGFBJ-STN) and the PIN in the sub-cellular organelle known as the nucleus 

(00:0005634). 

5.6.1. Network Construction 

5.6.1.1. Datasets 

Nuclear protein interaction data. The human nuclear protein interaction data was extracted 

from two datasets downloaded from the BioGRID [15] and the ECHO databases [74]. The 

ECHO database provided a list of HCC-specific proteins. A subset of the canonical human 

protein interaction data, in which every protein node shared the GO Component term of 

'00:0005634 nucleus', was extracted from the BioGRID data using the appropriate database 

transaction. The resulting dataset which contained 1748 proteins was then queried against the 

list of HCC-specific proteins. The final dataset contained 605 protein nodes with 787 protein 

interactions that were not only found in the cell nucleus but were also HCC-specific. This 

data came in the form of a tab-delimited file which was an output from the MySQL™ 

Database Management System. 

TGFB1 signal transduction data. The TGFBJ signal transduction interaction data was 

manually curated from two publications [35; 154]. This data contained 48 proteins and 46 

interactions. 

5.6.1.2. Data mapping 

As gene symbols had been used as node labels in both datasets, inter-connections between 

the nuclear PIN and the TGFBJ-STN could easily be established. A total of 20 signaling 

proteins had corresponding nodes in the nuclear PIN. Not all signal transduction proteins 

have a corresponding node to the nuclear PIN because some of them were localized within -
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(a) 

(b) 

FIGURE 5. 11 . Visualization of the human STN-PrN-overlapping network in the two-parallel plane 
layout The G1 network represents the TGFBJ-STN (blue nodes, blue edges) and the G2 network 
represents the PIN (green nodes, green edges) in human cell nucleus. The inter-plane edge sets E12 
represents node correspondence between G1 and G2 (yellow edges). (a) Top view. (b) Oblique view. 
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FIGURE 5.12. Zoom-in views of the G1 network in the human STN-PIN-overlapping network shown in 
FIGURE 5.11. The signaling proteins discussed in section 5.6.2 are circled in ovals in different views 
of G1• (a) Region that contains mostly cell cycle proteins. (b) Region that contains TGFBJ receptors 
and their transducers. (c) Region that contains the JFNG signaling path. (d) Overview. 

the cytosol and the cell membrane compartments. When reduced to the !-neighbourhood for 

all proteins connected to the STN, the resulting PIN being visualized bad 108 nodes and 188 

edges. 

5.6.2. Visualization and Analysis 

Where available, the Gene Ontology [60] identifier was given in parentheses for every 

biological process mentioned. Similarly, the Entrez Gene [99] identifier was given in 

parentheses for every human gene mentioned. 
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5.6.2.1. Two-parallel plane layout 

FIGURE 5.11 showed the STN-PIN-overlapping network in the two-parallel plane layout. 

Here, G1 (IVd = 48; 1£11 = 46) represented the TGFBJ-STN (blue nodes; blue edges). G, 

represented the nuclear PIN after being reduced to the !-neighbourhood network (I V,i = I 08; 

1£21 = 188). G2 was laid out using the force-directed method stated in the two-parallel plane 

algorithm (see algorithm 5.1 ). G1 was a directed network containing protein-protein 

interactions that served the sole purpose of propagating the phosphorylation signal from the 

TGFBRI receptor protein to the rest of the network. This happened only when the peptide 

growth factor TGFBI interacted with TGFBRI. G2 was an undirected network containing 

protein-protein interactions that occurred in the cell nucleus. The nodes in G, were directly 

connected to their corresponding nodes in G2 by the inter-plane edge set E, (yellow edges). 

The visualized network consisted of a total of 156 nodes and 234 edges. 

Using the top view over G, we identified the nineteen nodes in G1 that had inter-plane 

edges connecting to their corresponding nodes in G2• These are nodes labeled 'SMAD2', 

'SMAD3', 'SMAD4', 'EP300', 'HTATIP', 'CTNNBI', 'FOXOJA', 'STAT3', 'CDK2', 

'HDACI', 'RBI', 'STATI', 'LEFI', 'CCNDI', 'CCND2', 'CDK4', 'CDKN2A', 'TP53', 

'ATM', and 'JUN'. We examined the known biological function of each signaling protein 

documented in the Entrez public database [ 136] and found that they could be divided into six 

groups. 

The six groups were (I) transducers for the TGFBRI-TGFBR2 receptor protein dimer 

[154], e.g. SMAD2 (Gene!D: 4087), SMAD3 (Gene!D: 4088), and SMAD4 (GeneiD: 4089) 

(see FIGURE 5.12(b)); (2) EP300 (Gene!D: 2033) which is a cofactor of SMADs and many 

other gene regulators [ 62]. It functions as histone acetyl transferase that regulates 

transcription via chromatin remodeling and is important in the processes of cell proliferation 

(G0:0008283) and differentiation (G0:0030154) [95]; (3) The adherens junction protein 

CTNNBJ (Gene!D: 1499) (see FIGURE 5.12(a)). Adherens junctions (AJs; also called the 

zonula adherens) are critical for the establishment and maintenance of epithelial layers, such 

as those lining organ surfaces; (4) The cell cycle proteins that are involved cell division, e.g. 

CDKN2A (Gene!D: 1029), CDK2 (Gene!D: 1017), CDK4 (Gene!D: 1019), CCNDJ (Gene!D: 

595), and CCND2 (Gene!D: 894) (see FIGURE 5.12(a)); (5) The oncogenic proteins that 

activate the above cell cycle proteins, e.g. JUN (Gene!D: 3725), HDACI, LEFI (Gene!D: 

51176), STATI (Gene!D: 6772) and STAT3 (Gene!D: 6774) (see FIGURE 5.12(a) and (c)); (6) 

The well studied tumour suppressors, ATM, RBI (Gene!D: 19645), and TP53 (Gene!D: 

7157), that inactivate the cell cycle proteins by phosphorylation (see FIGURE 5.12(c)). A 

lesser known tumour suppressor is HTATIP (Gene!D: I 0524) is a histone acetylase that has a 

role in DNA repair and apoptosis (see FIGURE 5.12(a)). 
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FIGURE 5.13. Visualization ofth~ sig;:;l integrator EPJOO ancfSome of its neighbours in the G2 (PIN) 
network. Nodes with yellow edges signify that they have corresponding nodes in the G1 (STN) 
network. This view is derived from two-parallel plane layout shown in FIGURE 5.11. 

Out of the six groups of signaling proteins, we noticed that groups (4) and (5) had 

functions that promote cell growth and proliferation. Group (6) had the function of arresting 

cell proliferation. Their co-existence in G1 Jed us to deduce that TGFBJ signaling was a 

secondary control point of the cell cycle. In other words, TGFBl signaling alone was 

inadequate for initiating the cell cycle. Rather, it relied on the relative molecular abundance 

between the oncogenic proteins and the tumour suppressors. In turn, this was determined by 

the active/inactive states of other signaling proteins prior to the onset of TGFBJ signaling. 

This is known as differential signaling [39]. 

We reasoned that for differential signaling to happen, there should be a protein that could 

interact with signaling proteins that had antagonistic functions like the ones in groups (5) and 

(6). To identify such as a protein, we traversed the inter-plane edges out of the nineteen G1 

nodes to see if any of their corresponding proteins were high degree date hubs in G2• The 

result was that we identified the G2 nodes labeled 'HDACJ' (node degree = 23) and ' EP300' 

(node degree = 35) as two such hubs. We then visually inspected the neighbours of each hub 

to identify if any of them had inter-plane edges originating out of them. This would indicate 

to us that a particular neighbour had a corresponding node in G1 and therefore functioned as 

a signaling protein. We found that only the node EP300 was connected to four other nodes 
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that had inter-plane edges originating out of them (see FIGURE 5.13). These G2 nodes were 

labeled 'CCNDJ', 'SMAD2', 'STAT3', and 'TP53'. Their biological function had been 

mentioned previously. We therefore deduced thatEP300 was likely to be a signal integrator 

shared among them. 

We then asked if our deduction was supported by the current biological literature. A 

group of biologists did demonstrate that the abundance of EP300 proteins was limited in 

human fibroblasts and gene regulators that activated antagonistic activities had to compete 

for its availability [62]. Hence, TGFBJ-induced differential signaling might rely heavily on 

the differential affinity [162] between EP300 and the variety of tumour suppressors e.g. 

TP53, cell cycle proteins e.g. CCNDJ, and oncogenic proteins e.g. STAT3. If the last two 

types of proteins out-competed the tumour suppressors in HCC cells, then its cancerous state 

might become firmly entrenched. Differential affinity is a type of protein interaction 

dynamics in which a protein interacts dynamically with different neighbours at different 

times [162]. Its interaction frequency with each neighbour will depend on the relative 

molecular abundance among its various competing neighbours. 

In this analysis, we navigated through the G1 and G2 plane following the simple 

exploratory path G1--+G2• We spent most of our analytical time on G1 because of the need to 

identify G1 nodes that had inter-plane edges. This step was the most tedious in the entire 

analytical process. To shorten the time taken for hypothesis deduction, we used the current 

biological knowledge about the proteins represented by the G1 nodes to decide which of their 

corresponding G2 nodes would be of use to our hypothesis deduction. Otherwise, we would 

have to examine all the network paths in G1 and then used all the inter-plane edges to G2 to 

deduce the functional relationship between the edges in G1 and the edges in G2 • 

5.6.2.2. Three-parallel plane layout 

FIGURE 5.14 showed the STN-PIN-overlapping network in the three-parallel plane layout. 

Here, G1 (IVd = 48; lEd = 46) represented the TGFBJ-STN (blue nodes; blue edges). G2 

represented the nuclear PIN after being reduced to the !-neighbourhood network (IV21 = l 08; 

IE21 = 188). The fixed co-ordinates for G1 were manually assigned while G2 was laid out 

using the force-directed method stated in the three-parallel plane algorithm (see algorithm 

5.2). The overlap layer G, (IV,I = 20; 1£31 = 22) represented G1 n G2 (red nodes; blue and 

green edges). The blue overlap edges represented the protein-protein interactions shared with 

G,. The green overlap edges represented the protein-protein interactions shared with G2 • The 

nodes in G1 and G2 were connected to their corresponding nodes in G3 by the inter-plane 

edge sets E13 and E23 respectively (yellow edges). The resulting overlapping network 

visualization contained a total of 176 nodes and 256 edges. 



157 Visualization of Two-Overlapping Networks 

We performed the same analysis as in the two-parallel plane layout. We found that using 

the top view of the three-parallel plane layout (see FIGURE 5.14(a)) to identifY those G1 

nodes that had inter-plane edges were more effective than using that of the two-parallel 

layout (see FIGURE 5.ll(a)). We simply located the red colored G3 nodes and then traversed 

the inter-plane edges to their corresponding G1 nodes. However, the top view in FIGURE 

5.14(a) suffered from the limitation of edge occlusion where the overlap edges in G3 were 

obscured by the G1 edges on top. We therefore used the oblique view to continue with our 

analysis (see FIGURE 5.14(b)). 

The oblique view showed the obvious benefits of visualizing G3• The red coloured 

overlap nodes informed us on the protein nodes that were common to G1 (STN) and G2 

(PIN). The colour hues of the overlap edges informed us on the interaction types that the 

common proteins were involved in. Some common proteins were engaged in both protein­

protein interactions and signaling interactions. 

An example of a common protein was represented by the overlap node TP53. In G3, it 

was connected to RB 1 with a green coloured overlap edge but was also connected to node 

LEFJ with a blue coloured overlap edge (see FIGURE 5.15). We deduced from this 

observation that the TP53 physically interacted with RBI in the PIN, and also engaged in a 

signaling interaction with the protein LEFJ in the TGFBJ-STN. As will be shown later, it 

was this visual display of overlap edges in G3 that helped us to deduce a hypothesis on how 

the growth factor TGFBJ could change from a tumour suppressor to a growth promoter in 

HCC cells. 

We identified the overlap node EP300 and its neighbours simply by examining G3. 

Although occlusion had been observed near the EP300 node (see FIGURE 5.14(b)), it was 

resolvable by z-axis rotation. In G3, we found that the overlap node EP300 was connected to 

four overlap nodes labeled 'CCNDJ', 'SMAD2', 'STAT3', and 'TP53' with overlap edges of 

different colours. The overlap edge between node EP300 and nodes SMAD2, TP53 were 

coloured blue. This informed us that EP300 had signaling interactions with SMAD2 and 

TP53. The overlap edge between node EP300 and nodes CCNDJ, STAT3 were coloured 

green. This informed us that EP300 had protein-protein interactions with CCNDJ and STAT3. 

We therefore reasoned that SMAD2 and TP53 should be neighbours of EP300 in G1 whereas 

CCNDJ, STAT3, SMAD2, and TP53 should be neighbours of EP300 in G2• 

To confirm our reasoning, we traversed the inter-plane edges from the overlap nodes 

EP300, CCNDJ, STAT3, SMAD2, and TP53 to G2• We found that the G2 node EP300 did 

connect to its neighbouring nodes CCNDI, STAT3, SMAD2, and TP53 with green coloured 

edges, thus informing us on their protein-protein interactions. 
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(b) 
FIGURE 5.14. Visualization of the hwnan STN-PIN-overlapping network in the three-parallel plane 
layout. The G1 network represents the TGFBJ-STN (blue nodes, blue edges), the G2 network 
represents the PIN (green nodes, green edges) in human cell nucleus, and the G3 network is the middle 
layer which represents the overlap layer (red nodes, blue and green edges). The inter-plane edge sets 
£ 12 and £ 23 represents node correspondence between G~, G2 and G3• (a) Top view. (b) Oblique view. 
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fiGURE 5. 15 . A zoom-in view on the overlap layer G3 of the three-parallel layout shown in FIGURE 
5.14. The red coloured overlap nodes represent proteins common to G1 and G2• The blue overlap 
edges represent signaling interactions between the overlap nodes. The green overlap edges represent 
protein-protein interactions between the overlap nodes. The san1e overlap node, e.g. TP53, can 
connect to other overlap nodes with different edge types. 

We also found that the C2 node EP300 was a high degree hub (node degree= 35). 

Apart from the previously mentioned neighbours, EP300 was also connected to other C2 

nodes that to our knowledge had cancer related biological functions. Some of them 

represented tumour suppressors, e.g. TP73 (GeneiD: 7161) and BRCAJ (GeneiD: 672). 

Others represented oncogenic proteins, e.g. CATA6 (GeneiD: 2627) and ETS2 (GeneiD: 

2114) (sec FIGURE 5.16). 

Next, we traversed the inter-plane edges from the overlap nodes EP300, CCNDJ, STAT3, 

SMAD2, and TP53 in C2 to their corresponding nodes in C1• Here, we found that the C1 node 

EP300 had a blue-coloured incoming edge from the node SMAD2 and a blue-coloured 

outgoing edge to its neighbouring node TP53 (see FIGURE 5.14(a)). The three nodes 

therefore formed the following network path: 

SMAD2-+EP300-+TP53 

When we viewed C1 from the rightmost node TCFBRJ , we found that the above path was 

part of the following network path: 
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FIGURE 5. 1 Visualization ofthe signal integrator EP300 and some of its neighbours in the G2 (PIN) 
network. The node EPJOO is circled blue. This view is derived from three-parallel plane layout shown 
in FIGURE 5.14 

TGFBR2---+ TGFBR1---+ZFYVE9---+SMAD2---+EP300---+ TP53 (I) 

The biological meaning of path (1) was that, upon interacting with the growth factor TGFBJ, 

TGFBR2 phosphorylated TGFBRJ and so forth. This phosphorylation signal was being 

relayed through path (I) until TP53 was phosphorylated. From the biological literature, we 

found that path (J) represented the signaling path that led to TP53 activation by 

phosphorylation [77]. The other two G1 nodes, CCNDJ and STAT3, were found to locate in 

different network paths (see FIGURE 5.14(a)). The node CCNDJ was found in the following 

network path in G1: 

TP53---+CDKN2A---+CDK4---+CCNDJ (2) 

This path represented the signaling path in the TGFBJ-STN which led to the inactivation of 

the cell cycle protein CCND 1 by phosphorylation [ 1 50]. This was also the path that led to 
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cell cycle arrest (G0:0006917). The node STAT3 was found in the following network path in 

G1: 

IFNG->JAK2->STAT1->STAT3->FOXOA ->HTPATIP (3) 

This path represented the IFNG (Gene ID: 3458) signaling path in the TGFBJ-STN which 

led to the inactivation of HTPATIP by phosphorylation. 

After exploring the networks in all three planes, we attempted to construct our hypothesis 

on how the growth factor TGFBJ could change from a tumour suppressor to a growth 

promoter in HCC cells. To achieve this objective, we needed to recall two deductions made 

in Chapter 4. In the analysis of the cell cycle arrest-defined PIN, we deduced that there were 

no functional protein-protein interactions in the cell cycle arrest (G0:0006917) biological 

process (see Chapter 4, section 4.4.2.1). We also found that the tumour suppressor protein 

TP53 was not expressed in HCC cells. In the analysis of the angiogenesis-defined PIN, we 

deduced that TGFBJ was up-regulated and co-expressed with the growth factors VEGF and 

CTGF in HCC cells (see Chapter 4, section 4.4.2.4). 

In the event that TP53 was not expressed and TGFBJ was up-regulated, we deduced that 

the signaling path represented by network path (I) would lead to an accumulation of EP 3 00 

proteins that are activated by phosphorylation, and path (2) would not be functioning. In 

other words, there would be no inactivation of CCND 1 by phosphorylation. With the absence 

of TP53 in paths (I) and (2), there would be more EP300 available for interactions with 

CCNDJ and STAT3, and more bio-active CCNDJ available for interaction with EP300. 

According to the current medical literature, the IFNG signaling path represented by path 

(3) would also be functional in HCC cells. IFNG was produced by virally-infected cells. It 

had been known that HCC could be pre-disposed by the chronic infection of hepatitis A, B, 

and C viruses [20]. The expression of STATJ and STAT3 had been known to be induced by 

IFNG which was important to cell growth and division [36]. Therefore, it was likely that 

there were more STAT3 available for interaction with EP300 in HCC cells. At this point, we 

deduced that the loss of TP53 would lead to the concomitant increase in protein-protein 

interactions between EP300 and the growth-promoting proteins CCNDJ and STAT3. As a 

result, the TGFBJ-activated signaling path represented by network path (I) would more 

likely be promoting cancer cell growth rather than initiating cell cycle arrest. 

To go a step further, we recalled our previous finding that EP300 also interacted with 

other tumour suppressors e.g. BRCAJ, and oncogenic proteins, e.g. ETS2. We hypothesized 

that in the course of disease progression, the progressive loss of functional tumour 

suppressors in HCC cells would eventually lead to the loss of differential signaling. The only 
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functional interactions with EP300 would be from the oncogenic proteins. Once that 

happened, we predicted that the cancerous state of HCC cells would be irreversible. 

In this analysis, we explored the networks in all three planes in order to develop our 

hypothesis on how the growth factor TGFBJ could change from a tumour suppressor to a 

growth promoter in HCC cells. In the process, we explored the networks in the following 

sequence: 

G3 --.G, --.G, --.G2 -+G1 

We spent most of our analytical time on deducing the interactions between overlap nodes. 

The visualization of G3 was crucial to our success in hypothesis deduction. Its display of 

overlap edges in different colour hues effectively assisted us in deciding which set of G1 and 

G2 edges will be of use to our hypothesis deduction. Furthermore, the overlap edges not only 

provided spatial information on the signaling interactions but also the molecular complexity 

underlying the TGFBI-STN. By 'molecular complexity', we meant the non-signaling type 

protein-protein interactions required for the TGFBI-STN to function properly. 

5. 6. 2 3. Conclusion 

In conclusion, we found that the STN-PIN-overlapping network visualized in the three­

parallel plane layout was more efficient than its two-parallel plane counterpart as a visual 

analysis method and as a knowledge discovery tool. This was because the overlap layer 

provided with us a starting point for analyzing the functional relationship between TGFBI­

STN and the human nuclear PIN. 

5.7. Remarks 

In this chapter, our case studies demonstrated that the use of the two-overlapping network 

visualizations as visual analysis methods. The E. coli case study demonstrated that they are 

effective visual knowledge representations since most of our deductions made in section 

5.5.2 were supported by the biological literature. The human case study demonstrated that 

they were useful for deducing novel hypotheses. 

The E. coli GRN-PIN-overlapping network example showed that the overlap layer G3 in 

the three-parallel plane layout could serve as visual focus for the biologist. He/she could use 

the overlap layer as a starting point for exploring large networks. This benefit was also seen 

with the human STN-PIN-overlapping network even though it was of a smaller size than the 

E. coli GRN-PIN-overlapping network. 

Our case studies also suggested what combinations of molecular networks were good 

choices for designing effective two-overlapping network visualizations. The first choice was 

complementary visualization of two interaction types for the same biological function or 
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process. The E. coli MN-PIN-overlapping network was such a case. The G1 (MN) layer 

displayed enzyme-metabolite interactions but could not display the protein-protein 

interactions required for catalyzing each metabolic reaction. This limitation was 

compensated by having the PIN as the G2 • The second choice was visualization of a 

particular subset of interactions in relation to the complete set. The human STN-PIN­

overlapping network was such a case. The G1 (STN) layer displayed signaling interactions 

which were really a subset of the larger human nuclear PIN in G2• The third choice was 

visualization of two different interaction types, each mediated a different biological function 

or process, but was functionally inter-dependent. The E. coli GRN-PIN-overlapping network 

was such a case. The G1 (GRN) layer displayed the gene-gene interactions which controls 

the induction and repression of gene expression. This process controlled the availability of 

proteins for the subsequent protein-protein interactions shown in G2• 

Finally, the two-overlapping network visualization was also suitable for use as a follow­

up visual analytical step to the PIN visualization discussed in Chapter 4. It provided the 

biologists with an integrated visualization of multiple interaction types. The different 

interaction types were being visualized as individual networks enclosed in two-dimensional 

planes, thus achieving visual separation between interaction types. If the biologist found a set 

of GO-defined PINs relevant to one's research question, he/she could investigate the 

functional relationship between any pairwise combinations using the two-overlapping 

network visualization. 

{End of Chapter 5} 



Visualization and Analysis of 
Three-Overlapping 
Heterogeneous Biological 
Networks 

"Everything is Connected' 

6.1. Introduction 

CHAPTER 6 

In the previous chapter, it has been demonstrated that the two-overlapping network 

visualization is useful as a concept model visualization and even knowledge discovery. 

However, the two-overlapping network visualization provides only a limited view of a 

single-cell molecular network. It does not provide with us an integrated view of the 

metabolic network (MN), gene regulatory network (GRN), and the protein interaction 

network (PIN) in E. coli, or an integrated view of the signal transduction network (MN), 

gene regulatory network (GRN), and the protein interaction network (PIN) in human. That is 

why, in this chapter, we introduced the problem of three-overlapping network visualization. 

Again, the networks in the visualization were heterogeneous. Our research problem was 

without doubt inspired by our understanding on biological networks, which considers a 

molecular network as a system of heterogeneous but inter-connected networks [3]. 

Good visualization of the three-overlapping networks should provide a systems-level 

view on the functional role of a pathway in the context of systems architecture. Such a 

biological question cannot be investigated simply by visualizing each network 

independently. The benefit of integrating three heterogeneous networks in a single 

visualization is the highlighting of important inter-connections between different networks, 

while emphasizing their different biological functionalities. As a follow-up step to the two­

overlapping network visualization (see Chapter 5) and as the final analysis step in our visual 

analysis framework (see Chapter I, section 1.2), we experiment with two visualization 

methods for the three-overlapping network representation, i.e. the parallel plane layout and 

the circular plane layout. 

To evaluate their merit as visual analysis methods, we applied the E. coli and human 

networks to the three-overlapping networks. Visual experimentation on two different 

layouts, parallel plane and circular plane, was applied to each case study. The objective is to 

evaluate the effect of each layout on biological reasoning. For the E .coli case study, the 

objective is to evaluate the potential of the three-overlapping network as a visual knowledge 
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representation. The purpose of integrating the metabolic network (MN), protein interaction 

network (PIN), and gene regulatory network (GRN) is to provide an explicit view on the 

inter-connectivity among these molecular networks (see FIGURE 6.1). This should provide an 

overview on how the GRN in E. coli regulates the MN by influencing the physical 

organization of the PIN. We also use the E. coli case study to test the readability of a three­

overlapping network when two of the networks were large and were highly inter-connected. 

For the human case study, the objective is to evaluate the merits of the GRN-STN-PIN 

overlapping network in hypothesis deduction especially as a follow-up step to the two­

overlapping network visualization. The domain application remains to be hepatocellular 

carcinoma (HCC). Because many interactions in the human GRN are yet to be discovered, 

some of the gene regulatory interactions visualized were projected from those found in other 

organisms. This provides us with ample scope for deducing new hypotheses. For this reason, 

the human case study is suitable for evaluating the potential of the three-overlapping network 

as a knowledge discovery method. 

The rest of this chapter is divided into five sections. The representation of the three­

overlapping network is defined in section 6.2. The drawing algorithms for the two layouts in 

two variations were presented in section 6.3. The E. coli case study is elaborated in section 

6.4 followed by the human case study in section 6.5. Finally, the strength and limitations of 

each layout and the role of the three-overlapping network in biological analysis were 

discussed in section 6.6. 

6.2. Representation of the Three-Overlapping Network 

A three-overlapping network contains a set of three heterogeneous networks with each 

representing a different type of interactions. For example, the first can be a signal 

transduction network (STN), the second can be a PIN and the third can be a GRN. They are 

inter-connected because they share a subset of common nodes. 

The three-overlapping network comes in two representations. In the parallel plane 

representation (see FIGURE 6.2), G, G2 and G2 were the three heterogeneous biological 

networks with layouts L1, L2 and L3 respectively. Two inter-plane edge sets are added. The 

edge set E 12 is added to connect G1 nodes with their corresponding G2 nodes, and the edge 

set E23 is added to connect G2 nodes with their corresponding G3 nodes. In the circular plane 

representation (see FIGURE 6.3), an additional inter-plane edge set E 13 is added to connect G1 

nodes with their corresponding G3 nodes. In either representation, overlap layers are not 

included as in the two-overlapping network in order to avoid added visual complexity. 
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FrGURr 6.1. The schematic representation of the inter-connected metabolic, proteomic, and gene 
regulatory networks in E. coli. TF stands for transcription factor (also called gene regulators). Met 
stands for metabolite. Reproduced from Shlomi eta/. 2007 [ 142). 

6.2.1. Parallel Plane Representation 

To generate the parallel plane representation, the following inputs are required: 

• Three networks G1 = (V~, £ 1), G2 = (V2, £ 2) and G3= (V3, £ 3), where V1, V2, V3 are the 

node sets and E~, £ 2, £ 3 are the edge sets. 

• A 1-to-l mapping Mv1 : V11 +-+ V22 defines the common nodes between G1 and G2, where 

V1 1 ~ V1 and Vu ~ V2. 

• A 1-to-1 mapping Mv2 : V 23 +-+ V32 defines the common nodes between G2 and G3, where 

Vn ~ V2 and Vn ~ V3• 

Thus the generated output is: 

• The networks c~. G2, and G3 respectively, including the two edge sets £ 12 and £ 23. £ 12 

connects the corresponding nodes between G1 and G2• £ 23 connects the corresponding 

nodes between G2 and G3 respectively (see FIGURE 6.2). 

6.2.2. Circular Plane Representation 

To generate the cyclical representation, the following inputs arc required: 

• Three networks G1 = (V~, £ 1), G2 = (V2, £ 2) and G3= (V3, £ 3), where V~, V2, V, are the 

node sets and E~, £ 2, £3 are the edge sets. 

• A l-to-1 mapping Mv1 : V11 +-+ V22 defines the common nodes between G1 and G2, 

where V II ~ VI and v 22 ~ v2. 
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G 1 

G2 

G3 

FIGURE 6.2. Parallel plane representation of the three-overlapping network. The networks G, are 
drawn on three parallel planes P,. Nodes and edges of G1 are coloured red within the top plane ? 1• 

Nodes and edges of G2 are coloured blue within the middle plane P2• Nodes and edges of G3 are 
coloured green within the bottom plane ? 3• The inter-plane edges connecting the corresponding nodes 
in different planes are coloured green. 

• A I-to-J mapping Mv2 : V23 +-+ V32 defines the common nodes between G2 and G3, 

where V23 ~ V2 and V32 ~ V3• 

• A 1-to- 1 mapping Mv3 : V13 +-+ V31 defines the common nodes between G1 and G3, 

where V13 ~ V1 and V31 ~ V1. 

Thus the generated output is: 

• The networks G" G2, and G3 respectively, including the three edge sets £ 12, £ 23 and £ 13. 

£ 12 connects the corresponding nodes between G1 and G2. E23 connects between G2 and 

G3 respectively. £ 13 connects the corresponding nodes between G1 and G3 respectively 

(see FIGURE 6.3). 

6.3. Visualization of the Three-Overlapping Network 

In this section, we present algorithms for drawing the visualizations of the three-overlapping 

networks. In each visualization, the networks G1, G2 and G3 are drawn on separate planes P 1, 

P1 and P 3• Each representation mentioned in section 6.2 is being visualized in either of the 

two cases, i.e. fixed-free-ftxed or free-fixed-free. If the layouts L , and L3 are fixed (or given), 

the visualization is of the ftxed-free-fixed case. If only the layout L2 is fixed, the visualization 

is of the free-fixed-free case. 

The two representations differ mainly in the arrangement of the planes in the three­

dimensional space. The parallel plane layout arranges the planes in parallel within the 2 .5-

dimensiooal space. The circular plane layout arranges the planes in a triangular formation. 

The parallel-plane layout is more suitable for representing the three-overlapping network as 

a path, i.e. G1 overlaps G2 and G2 overlaps GJ. 
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FTGURE 6.3. Circular plane representation of the three-overlapping network. The networks G, arc 
drawn on three planes P,. Nodes and edges of G1 are coloured red within the top plane P1• Nodes and 
edges of G2 arc coloured blue within the middle plane ? 2. Nodes and edges of G3 are coloured green 
within the bottom plane P3• The inter-plane edges connecting the corresponding nodes in different 
planes are coloured green. 

The circular-plane layout is more suitable for representing the three-overlapping network as 

a cycle, i.e. G1 overlaps G2, G2 overlaps G3, and G3 overlaps G1• 

6.3.1. Three-Parallel Plane Visualization 

6.3.1.1. Fixed-free-fiXed case 

Given that G1 and G3 have fixed layouts L1 and L3, the layout L2 of G2 is being computed by 

taking L1 and L3 into account. The design criteria are: ( 1) to achieve drawing aesthetics for 

Gt. G2 and G3, and (2) to minjmize the total edge length of £ 13 and £23 between parallel 

planes in order to minimize occlusion in the 2.5-dimensional visualization. The drawing 

algorithm involves six steps: 

Algorithm 6.1. Fixed-free-fiXed parallel layout 

I. Draw G1 with a given layout L 1 on P1; 

2. Draw G3 with a given layout L3 on P3 ; 

3. Arrange the planes P~, P2, and P3 in parallel; 

4. Assign the initial position of node v2 in G2 using the barycenter position of its mapped 

nodes v1 in L1 and v3 in L3; 
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5. Add inter-plane edge set £12 between P1 and P2, and £ 23 between P, and P3 to represent 

mappings, and model each inter-plane edge as a zero-length natural spring; 

6. Draw G2 and the inter-plane edges using a force-directed layout [44]. 

At step 4, by assigning a good initial position for G2 based on L 1 and L3, it can help the force­

directed layout of G2 at step 6 to converge quicker. At step 5, the zero-length natural spring 

for the inter-plane edges are added in order to reduce the total edge length of the inter-plane 

edges. In step 6, this force competes with other forces in G2 to try producing a readable 

layout for G2• As a result, the inter-plane edges may not always perfectly align themselves in 

parallel. 

6.3.1.2. Free-fo:ed-free Case 

Given that G2 has a fixed layout L2, then the new layouts L 1 and L3 of G1 and G3 are 

computed by taking L2 into account. The design criteria applied to the fixed-free-fixed 

variation also apply here. The algorithm involves seven steps: 

Algorithm 6.2. Free-fo:ed-free parallel layout 

I. Draw G2 with a given layout L2 on P2; 

2. Assign the initial position of node v1 in G1 using the barycenter of its mapped nodes in 

L2; 

3. Add inter-plane edge set £ 12 between planes P1 and P2, and model each inter-plane edge 

as a zero-length natural spring; 

4. Draw G1 on P1 and inter-plane edge set £ 12 using a force-directed layout [44]; 

5. Assign the initial position of node v3 in G3 using the barycenter of its mapped nodes in 

L2; 

6. Add inter-plane edge set £ 23 between planes P2 and P3, and model each inter-plane edge 

as a zero-length natural spring; 

7. Draw G3 on P3 and inter-plane edge set £ 23 using a force-directed layout [44]. 

The purpose of steps 2 and 5 are alike. By assigning good initial positions of nodes in G1 and 

G3 based on L2, it will help the force-directed layouts of G1 and G3 to converge quickly. At 

steps 3 and 6, the zero-length natural spring for the inter-plane edges are added in order to 

reduce the total edge length of the inter-plane edges. For both G1 and G3, the zero-length 

natural spring force competes with other forces to produce readable layouts (see steps 4 and 

7). 
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6.3.2. Three-Circular Plane Visualization 

6.3.2.1. Fixed-free-ftxed case 

Visualization of Three-Overlapping Networks 

Like the fixed-free-fixed case of the parallel plane layout, G1 and G3 have fixed layouts; then 

the new layout L2 of G2 is computed by taking into account L1 and L3• The design criteria are: 

(I) to achieve drawing aesthetics for Gh G2, and G3, and (2) to minimize the total edge 

length of £ 12, £ 23 , and £ 13 in order to reduce visual complexity. The drawing algorithm 

involves seven steps: 

Algorithm 6.3. Fixed-free-ftxed circular layout 

I. Arrange the planes P 1, P2, and P3 in the circular layout (see FIGURE 6.3); 

2. DrawG1 withagivenlayoutL 1 onP1; 

3. Draw G3 with a given layout L3 on P3; 

4. Add inter-plane edge set £ 13 between P 1 and P3; 

5. Assign the initial position of node v2 in G2 using the barycenter positions of its mapped 

nodes v1 in L1 and v3 in L3; 

6. Add inter-plane edge set £ 12 between P 1 and P2, and £ 23 between P2 and P3 to represent 

mappings, and model each inter-plane edge as a zero-length natural spring (i.e. 

attraction force only); 

7. Draw G2 and the inter-plane edges £ 12 and £ 23 using a force-directed layout [44]. 

At step 5, by assigning a good initial position based on L1 and L3, it can help the force­

directed layout of G2 at step 7 to converge quicker. At step 6, the zero-length natural spring 

for the inter-plane edges are added in order to reduce the total edge length of the inter-plane 

edges. In step 7, this force competes with other forces in G2 to try producing a readable 

layout for G2 • 

6.3.2.2. Free-ftxed-Jree case 

In this case, G2 has a fixed layout L2• Thus the new layouts L1 and L3 of G1 and G3 are being 

computed by taking L2 into account. The design criteria applied to the fixed-free-fixed case 

(see section 6.3.2.1) also apply here. The algorithm involves nine steps: 

Algorithm 6.4. Free-ftxed-free circular layout 

I. Arrange the planes Ph P2, and P3 in the circular layout (see FIGURE 6.3); 

2. Draw G2 with a given layout L2 on P2; 

3. Assign the initial position of node v1 in G1 using the position of its mapped node v2 in 

L2; 
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4. Add inter-plane edge set E12 between planes P1 and P2, and model each inter-plane edge 

as a zero-length natural spring; 

5. Draw G1 on P1 and inter-plane edge set E12 using a force-directed layout [44]; 

6. Assign the initial position of node v3 in G3 using the barycenter positions of its mapped 

nodes in L 1 and £ 2; 

7. Add inter-plane edge set E23 between planes P2 and P3, and model each inter-plane edge 

as a zero-length natural spring; 

8. Draw G3 on P 3 and inter-plane edge set E23 using a force-directed layout; 

9. Add inter-plane edge set En between planes P1 and P3 • 

The effect of the above steps is quite similar to that mentioned in the three-parallel plane 

drawing algorithm for the free-fixed-free variation (see section 6.3.1.2). 

6.3.3. Implementation 

The drawing algorithms are implemented as plug-ins to GEOMI [2]. Data for constructing 

the networks presented in the following case studies could be loaded into the plug-in as tab­

delimited files, but they had to be created either as a Pajek [9] output or downloaded from a 

public database beforehand. 

6.4. Case Study: Systems Architecture of Escherichia coli 

6.4.1. Network Construction 

6.4.1.1. Datasets 

The E. coli MN, GRN and the PIN data applied were described in Chapter 5 (see section 

5.5.1 ). In the MN, only the glycolytic pathway was presented. 

6.4.1.2. Data mapping 

To construct the three-overlapping network, the MN, GRN and the PIN networks were 

integrated into one. Protein nodes in the PIN that had corresponding nodes in either the 

glycolytic pathway or the GRN, were connected by inter-plane edges. The largest connected 

component of the GRN was used. To reduce the largest connected component in the PIN, 

only the proteins that had corresponding nodes in either the glycolytic pathway or the GRN, 

and their neighbours were used. The final PIN being visualized contained 514 proteins and 

807 interactions. This was the ]-neighbourhood PIN defined in Chapter 5 (see section 

5.5.1.2). A total of 250 proteins in the PIN had corresponding genes in the GRN. A total of 

seven enzymes in the glycolytic pathway had corresponding proteins in the PIN. An enzyme 

was a protein specialized in catalyzing metabolic reactions (see Chapter 5, section 5.2.1). 
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In the circular plane representation, metabolic enzymes that had corresponding nodes in 

the GRN were also connected by inter-plane edges. Four glycolytic enzymes had 

corresponding genes in the GRN. Because the GRN had not been reduced to a !­

neighbourhood network, it allowed the mapping of any proteins that had dual functionalities 

to both the glycolytic pathway and the GRN. The resulting representation would help us to 

deduce the control points through which the GRN regulated the flow of metabolites through 

the glycolytic pathway and even its neighbouring pathways, e.g. amino acid biosysnthesis 

and tricarboxylic acid cycle. 

6.4.2. Visualization and Analysis 

Where available, the Gene Ontology [ 60] identifier was given in parentheses for every 

biological process mentioned. Similarly, the Entrez Gene [99] identifier was given in 

parentheses for every E. coli gene mentioned. 

6.4.2.1. Parallel plane layout 

FIGURE 6.4 showed the MN-PIN-GRN-overlapping network in the fixed-free-fixed parallel 

plane layout (see algorithm 6.1 ). Here G1 (IV11 = 52; lEd = 62) represented the MN (blue 

nodes; blue edges) which showed only the glycolytic pathway. G2 (IV21 = 514; IE21 = 807) 

represents the !-neighbourhood network of PIN and G3 (IV31 = 1371; 1£31 = 2030) represented 

the GRN (yellow nodes; magenta edges). The complete network consisted of 1937 nodes and 

3156 edges of which 257 are inter-plane edges. The nodes common to G1 and G2 were 

connected by the inter-plane edge set E12 (yellow edges), and those common to G2 and G3 are 

connected by the inter-plane edge set E23 (yellow edges). G1 was laid out using the fixed 

coordinates obtained from KEGG. G3 was laid out using fixed coordinates from the Kamada­

Kawai layout generated by Pajek [78]. Because the layouts of G1 and G3 were fixed, the 

resulting overlapping network was of the fzxed-free-fzxed case. 

The parallel plane layout captured the biological concept model known as the cascade 

model [3]. The cascade model depicted a clear functional ordering of the three networks. The 

organization of the PIN ( G2) was subjected to regulation by GRN ( G3) which would affect 

the interactions in the MN ( G1). In return, the operation of MN would influence the 

organization of the PIN which would alter the feedback regulation from the GRN. Thus, in 

the cascade model, the PIN was the control target. 

With the parallel plane layout, we found that only G1 (glycolytic pathway) and the inter­

plane edges between G1 (MN) and G2 (PIN) were readable. With 250 inter-plane edges 

between G2 and G3 (GRN), edge cluttering within the inter-plane edge set E23 seriously 

hindered their readability (see FIGURE 6.4). Therefore, large and highly inter-connected 

networks were not good choices for the parallel plane layout. 
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FIGURE 6.4. Visualization of the £. coli MN-PIN-GRN-three-overlapping network in the fixed-free­
fixed parallel plane layout. The G1 network represents the MN (dark blue nodes, dark blue edges), the 
G2 network represents the PIN (green nodes, green edges), and the G3 network represents the GRN 
(magenta nodes, magenta edges). The glycolytic pathway is presented as the MN. 

It had been shown in the MN-PIN-overlapping network visualization (see Chapter 5, 

section 5.5.2.1) that the node representing the metabolic enzyme aceFwas a high degree hub 

(node degree > 50). Together with another enzyme ace£ (DIP:9039N), aceF catalyzed the 

metabolic reaction Pyruvate-tacetyi-CoA. Because they were known to biologists as the 

junction point between glycolysis, the tricarboxylic acid cycle, and amino acid biosynthesis 

[ 167], we would expect ace£ and aceF to be targets of one or more master gene regulators in 

E. coli. Therefore we decided to examine the connectivity of nodes labeled 'ace£' and 

'aceF' in the three-overlapping network visualization in FIGURE 6.4. Since neither enzyme 

was represented in all three networks, the parallel plane layout was sufficient for the purpose 

ofbiological analysis. 

We explored the parallel plane layout by drilling through the planes starting from the 

ace£ nodes in G1 (MN) and tried to identify the corresponding node for ace£ in G2 (PIN) by 

traversing the inter-plane edges (see FIGURE 6.5(a)). In G2 (PIN), both ace£ (DIP:9039N) 

and aceF were high degree hubs (see FIGURE 6.5(b)). We noticed that only ace£ had a 

corresponding node in G2 but not aceF. We also found that only G2 node aceF had a 

corresponding node in G3 (GRN) but not the G2 node ace£ (see FIGURE 6.5(c)). We 

therefore deduced that only the expression of aceF is being regulated by certain gene 

regulators in the GRN. 
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FIGURE 6.5. A fly-through sequence from the G1 (MN) to G3 (GRN) following the inter-plane edges 
originated from the glycolytic enzyme ace£. (a) A zoom-in view of ace£ m the glycolytic pathway. 
(b) Its corresponding node DTP:9039N (circled red) and its neighbour aceF (circled blue) in the PIN. 
(c) The corresponding node of aceF in the GRN layer is (circled blue) and its regulator areA (ci rcled 
green). This series of diagrams was derived from the parallel plane layout shown in FIGURE 6.4. 
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In G3, we found that the node labeled 'areA' was the higb degree hub closest to the node 

aceF. The node areA had an outgoing magenta coloured edge to the node aceF. This means 

that aceF was the regulatory target of areA. As mentioned in Chapter 5 (see section 5.5.2.2), 

areA was one of the seven master gene regulators in E. coli GRN. It had been known to 

biologists that areA represses aceF [110]. It would be reasonable then to deduce that areA 

controlled the formation of the pyruvate dehydrogenase complex by controlling the 

interaction between aceE and aceF. Hence, they were known as scaffold proteins within a 

protein complex [ 168]. The importance of our deduction was that if the scaffold proteins are 

not expressed, their corresponding protein complex would not be assembled. 

Biologists had discovered recently that some enzymes in the tricarboxylic acid cycle were 

redundantly expressed but not ace£ and aceF. [142]. By regulating only the scaffold proteins 

while allowing others to be redundantly expressed, the need to produce every member of a 

metabolic protein complex just-in-time was effectively minimized. This eventually allowed 

the bacterium to achieve energy efficiency while ensuring rapid responses to changing 

environmental challenges. 

In this analysis, the three-parallel plane layout allowed us to discover the indirect 

regulatory relationship between the gene regulator areA and the metabolic enzyme ace£. We 

achieved this by exploring the three networks in a linear sequence as the follows: 

G,-. G2 ----. G, 

We relied on the inter-plane edges to guide us from one plane to another, and relied on the 

G2 edge between the nodes aceE and aceF to visually guide us from the former node to the 

latter. In G3, we relied on the node degree of the hub areA and its outgoing edge to node 

aceF to visually guide us from the latter node to the former. 

The small size of G1 was important for initiating our visual analysis process. With G2 and 

G3 exceeding 500 nodes each and over 200 inter-plane edges between the two planes, the 

smaller and more readable G1 provided us a starting point for network exploration. The 

choice of G1 is therefore an important design consideration for the three-overlapping 

network in the parallel plane layout. Since our deduction made was supported by the current 

biological literature, the visualization was a good visual knowledge representation on the 

regulation of the metabolic reaction Pyruvate-> acetyi-CoA by the E. coli gene regulator 

areA. 

6.4.2.2. Circular plane layout 

FIGURE 6.6 showed the MN-PIN-GRN-overlapping network in the fixed-free-fixed circular 

plane layout (see algorithm 6.3). The datasets used were the same as section 6.4.2.1. 
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FIGURE 6.6. Visualization of the MN-PIN-GRN-three-overlapping network in the fixed-free-fixed 
circular plane layout. The G1 network represents the MN (dark blue nodes, dark blue edges), the G2 

network represents the PIN (green nodes, green edges), and the G3 network represents the GRN 
(magenta nodes, magenta edges). The glycolytic pathway is presented as the MN. 

The networks for GJ. G2, and G3 are MN, PIN, and GRN respectively and layouts of G1 and 

G3 were fixed. G1 was laid out using the fixed coordinates obtained from KEGG. G3 was laid 

out using fixed coordinates from the Kamada-Kawai layout generated by Pajek [78). The 

complete network consisted of 1937 nodes and 3160 edges of which 261 were inter-plane 

edges. The nodes common to GJ. G2 and G3 were connected by the inter-plane edge sets £ 12, 

£ 13, and £ 23 (yellow edges) respectively. 

As shown in FIGURE 6.6, the planes P1 and P3 were arranged at incidence angles of l/4n 

and 3/4n radians to the x-axis respectively. There was little edge cluttering seen within the 

inter-plane edge sets £ 12 and £ 13, but substantial edge cluttering with the inter-plane edge set 

£23 was observed. The inter-plane edges in the circular plane layout appear longer than those 

in the parallel plane layout. 

The circular plane layout captures another biological concept model known as the systems 

model (see FIGURE 6.1). In this model, the three networks MN, PIN, and GRN djd not form 

a path. Rather, they formed a circle. It suggested that GRN (G3) and PIN (G2) can co­

operatively influence the interactions in the MN (G1) . In return, MN could influence the 

organization of the PIN and equally influenced the regulation of the PIN via the GRN. 
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FIGURE 6.7. Visualization of the glycolytic enzymes gpmA and pykF (blue nodes) in relation to their 
corresponding G3 (GRN) nodes. pykF in G1 and its corresponding node in G3 are circled red. gpmA in 
G1 and its corresponding node in G3 are circled blue. This view was derived from FIGURE 6.6. 

The degree of influence exerted by one network on another depends how inter-connected 

they are. Of the three sets of inter-plane edges, £ 23 was the largest. It is the one connecting 

the PIN with the GRN, thus showing that the organization of the PIN was tightly regulated 

by the GRN. The inter-plane edge set £ 13 simply suggested that some glycolytic enzymes 

can be found in the PIN and they interacted with proteins that are non-glycolytic enzymes. 

We made a closer examination on G1 and found that the three nodes labeled 'pykP, 

'gpmA ' (GeneiD: 945068), and 'ptsG' (GcneiD: 945651) had inter-plane edges projecting 

towards G2 and G3• Because only corresponding nodes in different planes were connected by 

inter-plane edges, we reasoned that these three G1 nodes should also have corresponding 

nodes in both G2 and G3. In other words, the G1 nodes pykF, gpmA , ptsG represent the 

common proteins shared by the MN, PIN, and the GRN. FIGURE 6.7 showed that the G1 node 

pykF is connected to its corresponding node in G3 with an inter-plane edge. We traversed 

this inter-plane edge to G3, and found that the corresponding pykF node in G3 is a neighbour 

to a hub. Since it had only one incoming edge, we deduced that the pykF node in G3 

represented one of the effector genes that formed the final output of the GRN [38] and was 

itself not a gene regulator. This line of reasoning was explained in the analysis of the PIN­

GRN-overlapping network visualization (see Chapter 5, section 5.5.2.2). 

We examined the second G1 node gpmA in FIGURE 6. 7 which also bad an inter-plane 

edge connected to its corresponding node in G3. We traversed this inter-plane edge to G3, 
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and found that the corresponding gpmA node in G3 also had one incoming edge originated 

from a hub in G3 (see FIGURE 6.7). Therefore, we deduced that the gpmA node in G3, like the 

pykF node, represented one of the effector genes in the GRN. Thus, it was not a gene 

regulator. To see if our deduction was supported by the current biological knowledge, we 

searched the protein label 'gpmA' in the Entrez public database for its known biological 

function. Indeed, gpmA (GeneiD: 6971780) had been known to be a metabolic enzyme 

catalyzing the reaction that converted 3-phospho-glycerate to 2-phospho-glycerate rather 

than being a gene regulator. 

We then examined the third G1 node ptsG in the circular plane layout. We traversed its 

inter-plane edge to its corresponding node in G3 and found that the node ptsG in G3 had three 

incoming edges from the nodes labeled 'fis', 'crp', and 'dgsA' (see FIGURE 6.8). 

Furthermore, two of the G3 nodes were high degree party hubs (node degree > 30). One of 

them, crp, had been known to be one of the master gene regulators in E. coli [101]. We 

deduced from this observation that ptsG could be an effector gene with very important 

biological function in E. coli. That was why it was being directly regulated by crp. It was 

very likely that ptsG was essential to multiple metabolic pathways or even non-metabolic 

biological processes. 

We traversed the inter-plane edge originated from the node ptsG in G3 to its 

corresponding node in G2• In G2 (PIN), the node ptsG had two neighbours labeled 'dgsA' and 

'DIP:6179N'. This meant that the protein ptsG interacted with one of its gene regulators 

dgsA and another protein DIP:6179N. We searched for the accession ID 'DIP:6179N' from 

the DIP public database and found that it was a record for the protein err (GeneiD: 

3828900). We re-examined the node ptsG in G1• It had one incoming edge from the G1 node 

labeled 'D-glucose' and one outgoing edge to the G1 node labeled 'a/pha-D-g/ucose-6-

phosphate'. This meant that ptsG is involved in the conversion of D-glucose to alpha-D­

glucose-6-phosphate. Together, these strongly suggested that ptsG was both a gene 

regulatory co-factor and a metabolic enzyme that could be involved in multiple biological 

processes. 

We therefore searched the biological literatnre and the Entrez public database for the 

known function(s) of protein ptsG. As was currently known, ptsG, a membrane-bound 

protein, together with three other cytoplasmic proteins, i.e. ptsl (Gene!D: 3828981), ptsH 

(GeneiD: 6970555), and err (Gene!D: 3828900) form the bacterial phosphoenolpyruvate 

sugar phosphor-transferase system (PTS). It was primarily involved in the concomitant 

phosphorylation and transmembrane glucose uptake into the cytoplasm [105]. ptsG was also 

known to interact with m/c, a gene regulator that mediated the glucose induction of other 

PTS subunits and glycolytic proteins [25]. It functioned as a pts operon repressor [110]. 
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FIGURE 6.8. Visualization of the gene regulators crp, jis, and dgsA and their target gene ptsG in the GJ 
(GRN) of the circular plane layout shown in FIGURE 6.6. 

The dephosphorylated form of ptsG sequestrated m/c thus de-repressing the pts operon and 

allowed the transcription ofPTS subunits and glycolytic enzymes to be switched on by other 

gene regulators (see FIGURE 6.9). Hence, ptsG did function as a metabolic protein and also 

as a gene regulatory co-factor in de-repressing the pis operon. 

In this analysis, we used the circular mapping among the Gt. G2, and G3 networks to 

uncover proteins that were common to the MN, PIN, and the GRN. We explored all the three 

networks in the following sequence: 

c~- c3- c2- G1 

The most important process in our analysis was to single out the common proteins that were 

likely to be have the dual function of being a metabolic enzyme and a gene regulator. We 

achieved this by first locating the corresponding nodes in G3 by traversing the inter-plane 

edges from the G1 nodes. Following this, we deduced whether they were likely to represent 

gene regulators based on their intra-plane node degrees. In this way, we successfully 

identified ptsG as the glucose metabolic enzyme that also had a gene regulatory function. 

6.4.2.3. Conclusion 

In conclusion, the parallel plane layout of the MN-PIN-GRN-overlapping network 

visualization was good for vertical and sequential exploration. In the present case study, the 

parallel plane layout helped us to identify the indirect biological relationship between the 

metabolic enzyme aceF and the master gene regulator areA in E. coli. On the other band, the 

circular plane layout was good for cyclical exploration because the biologist could visualize 

the direct mappings among all the three networks. 
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FIGURE 6.9. A schematic representation of transmembrane glucose transport regulated antagonistically 
by ptsG and mlc. (a) In the absence of glucose, EIICBGic (ptsG) is present in the membrane in its 
phosphorylated form and the ptsG gene is repressed by mlc upstream of the promoter. Cb6 Glucose 
enters and is phosphorylated by EIICBG1c. Mlc interacts with de-phosphorylated EIICB lc and is 
sequestered away from its target operons to the membrane. M/c-controlled genes are de-repressed, and 
ptsG is expressed. (c) Tn wild-type E. coli strains growing on glucose, the newly synthesized ptsG 
proteins are inserted into the inner membrane for glucose transport. M/c remains attached to the 
predominately de-phosphorylated EIICBGic. The glucose-6-phosphate formed enters into the 
glycolytic pathway. (d) Jn strains unable to complete glycolysis (such as pjkA or pgi mutants), 
RNAseE cuts near the AUG initiation codon. The ptsG mRNA is then degraded and ptsG protein 
levels are not increased [85]. Reproduced from Plumbridge 2002 [114). 

From the same E. coli networks, the circular plane layout helped us to identify the metabolic 

enzyme ptsG that had biological functions in the MN and the GRN. For the E. coli dataset, 

both visualization methods had their place in visual analysis and in biological deductions. 

6.5. Case Study: microRNA Regulation of TGFBJ Signaling 

The human two-overlapping network visualization discussed in Chapter 5 (sec section 5.6.2) 

was obviously insufficient for understanding the biology of HCC. Many of the proteins in 

the nuclear PIN were gene regulators that regulated the expression of many TGFB }-induced 

signaling proteins. Therefore, to gain a further understanding on how the human hepatocytic 

GRN regulated the nucleus PIN and influenced signaling interactions in the TGFBJ STN, a 

three-overlapping network had to be used. 

In contrast to E. coli GRN, only a few human GRN interactions had been known. Some 

of the GRN interactions included in the three-overlapping network visualizations were 

inferred from cross-species homologs but the most novel type of interactions was the 
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microRNA-gene interactions. Homologues are two genes from two different species that had 

almost identical DNA sequences and coded for proteins of the same molecular function 

[163]. The reason for their inclusion was because microRNAs had recently been discovered 

to be regulators of cancer-related biological processes, i.e. apoptosis (00:0006915), cell 

development (00:0048468), cell differentiation (00:0030154), cell proliferation 

(00:0008283), metabolism (00:0008152),and immunity (00:0006952) [84, 170]. 

If one applied the cascade model which considered the ORN as the output of the STN 

[38], the protein gene regulators that connect the STN with the ORN seemed to be heavily 

regulated by microRNAs [34]. There had also been suggestions that microRNAs might even 

co-operate with certain protein gene regulators in regulating a common set of target genes 

thereby allowing a co-ordinated fine-tuning of gene expression [89, 138]. The three­

overlapping network described here was the first visualization that included microRNA-gene 

interactions as part of the ORN, allowing us to deduce novel hypotheses on the probable 

impact of microRNAs on HCC development. 

6.5.1. Network Construction 

6. 5.1.1. Datasets 

Nuclear protein interaction data. The canonical human protein interaction data used had 

been described in section 5.6.1.1. 

TGFBJ signal transduction data. The TGFBI signal transduction interaction data used had 

been described in section 5.6.1.1. 

Gene regulatory interaction data. Because known gene regulatory interactions in the 

human hepatocyte were few, the dataset was a combination of the TRANSPATH public 

database and three publications [16; 37; 104]. This data contained 108 genes and 100 

interactions. Out of these, nine are non-protein coding genes which encoded for a new class 

of gene regulators called microRNA. These RNAs had recently been found to exert gene 

silencing by post-transcriptionally inhibiting the translation of messenger RNAs and later led 

to their degradation [!53]. 

6.5.1.2. Data mapping 

To construct the three-overlapping network, every protein in the TGFBJ-STN was mapped 

to its corresponding node in the ORN or the PIN if they shared an identical gene symbol. A 

total of 20 TGFBI STN proteins had corresponding nodes in the nuclear PIN. Another nine 

STN proteins had corresponding nodes in the human ORN. A total of 29 nuclear proteins 

had corresponding nodes in the ORN. Four protein-coding genes were shared by all three 

networks. 
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6.5.2. Visualization and Analysis 

Where available, the Gene Ontology [ 60] identifier was given in parentheses for every 

biological process mentioned. Similarly, the Entrez Gene [99] identifier was given in 

parentheses for every human gene mentioned. 

6.5.2.1. Parallel plane layout 

FIGURE 6.10 showed the GRN-STN-PIN-overlapping network in the free-fixed-free parallel 

plane layout (see algorithm 6.2). Here, G1 (IVd = 108; lEd = 100) represented the GRN 

(magenta nodes; magenta edges) and G2 (IV21 = 48; IE,I = 46) represented the TGFBJ-STN 

(blue nodes; blue edges). G3 (IV31 = 605; IE31 = 787) represented the PIN (green nodes; green 

edges) within the cellular organelle known as the nucleus. The complete network consisted 

of 761 nodes and 962 edges of which 29 were inter-plane edges. The nodes common to G1 

and G2 were connected by the inter-plane edge set En (yellow edges), and those common to 

G2 and G3 were connected by the inter-plane edge set E23 (yellow edges). Only G2 had a 

fixed layout which co-ordinates were manually assigned to give a grid layout. Therefore the 

overlapping network was of the free-fzxed-free case. 

This layout captured the signaling cascade model which was the conventional view held 

by most biologists. This model depicted G1 (GRN) as the output layer of the G2 (STN) while 

some STN proteins also interacted with other nuclear proteins in the PIN. As such, this view 

regarded STN as the controller of the PIN and GRN. 

We could explore the overlapping network using two different approaches. The first 

approach was by drilling through the planes starting from the top of G1 and tried to identify 

corresponding nodes in each network using the inter-plane edges (see FIGURE 6.10(a)). 

Alternatively, we could use the oblique view (see FIGURE 6.10(b)) to identify nodes common 

to all three networks. This was achieved by identifying those nodes in G2 that had inter-plane 

edges connected to their corresponding nodes in G1 and G3 (see FIGURE 6.11 ). With only 29 

inter-edges in the visualization, we found the latter method was more effective because of 

the ease in identifying G2 nodes that have inter-plane edges in En and E23 • 

Using FIGURE 6.10, we identified five G2 nodes that bad inter-plane edges in En and E23 • 

These nodes were labeled 'TP53', 'JUN', 'RBJ', 'CTNNBJ' and 'HTATIP'. Because these 

G2 nodes bad corresponding nodes in G1 and G3, we reasoned that these nodes represented 

the common proteins shared by the GRN, STN, and the PIN. We therefore deduced that they 

were the signaling proteins that were also gene regulators and also interacted with proteins in 

the cell nucleus. This agrees with the assertion that cancer-associated genes were enriched in 

nuclear proteins which formed the output layer of the signaling network [35]. The biological 

functions of the five common proteins were discussed in Chapter 5 (see section 5.6.2). 
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FIGURE 6.10. Visualization of the human GRN-STN-PTN overlapping network in the free-fixed-free 
parallel plane layout. The G1 network represents the GRN (magenta nodes, magenta edges), the G2 

network represents the TGFBJ-STN (dark blue nodes, dark blue edges), and the G3 network represents 
the PTN (green nodes, green edges). The inter-plane edge sets £ 12 and £23 represents node 
correspondence between G1, G2 and G3• (a) Top view. (b) Oblique view. 
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FIGURE 6.11. A zoom-in view of the inter-plane edges between G1 (GRN) and G2 (STN) in FIGURE 
6.10. 

In the human cancer signaling network, TP53, RBI , and CTNNBJ were known to be three 

of the signaling hubs [35). Since TP53 and RBJ were tumour suppressors well studied by 

biologists, we wanted to investigate their interactions with other gene regulators in the GRN 

and how these interactions affected their interactions in the PIN. In Gh we found that both 

nodes TP53 and RBJ were neighbours of the date bub E2Fl (see FIGURE 6.12). Both 

proteins had been known to repress E2FJ expression [16). We examined the E2FJ party bub 

and found that seven of the 16 nodes represent RNA genes. They were nodes labeled 

' CJ30RF25' , 'MTRN18A' , 'MIRN20A', 'MIRN25', 'MIRN92', 'MIRN93', 'MIRN106A', and 

'MIRN106B'. The outgoing edges from the node E2Fl to the above nodes represented the 

positive regulatory relationship. This meant that the gene regulator E2Fl induced their 

expression. The E2FJ date hub also had four neighbours labeled 'MCM5' , 'CCNEJ', 

'CDKNJA ' and 'CDC16' (see FIGURE 6.12). They represented genes coding for cell cycle 

proteins. The outgoing edges from the E2Fl date hub to nodes MCM5, CCNEJ, and CDC16 

represented their induction, but its outgoing edge to the node CDKNIA (GenclD: 1026) 

represented its repression. 

Of the sixteen RNA genes we identified in FIGURE 6. 12, cancer biologists had recently 

found that the RNA genes MIRN20A , MIRN25, MJRN92 and MIRN106A were expressed in 

different types of cancer cells [155). Of interest, MIRN20A and MIRN92 had been found to 

be coded by Cl30RF25. 
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FIGURE 6.12. Visualization of the E2Fl regulatory sub-network in G3 (GRN). The oncogenic gene 
regulator E2Fl is being circled in red and its repressor TP53 is being circled in blue. The cyclin­
dependent kinase CDK.NJA which is repressed by E2Fl is circled in light green. This view was 
derived from FIGURE 6.1 0. 

MJRN106A was coded by miR106a-92 polycistron in chromosome X. MJRN25, MJRN93 , 

and MJRN106B were coded by the miR106b-92 polycistron within the intronl3 of the cell 

cycle gene MCM7 [Ill]. 

As mentioned before, the tumour suppressor TP53 represses E2Fl expression. Therefore 

TP53 could also indirectly repress the expression of E2Fl-induced microRNAs. In Chapter 

4, we deduced that TP53 was not expressed in the cell cycle arrest (G0:0006917) biological 

process (see section 4.4.2.1). We also deduced that MCM7 was not expressed in the DNA 

replication (G0:0006260) biological process (see section 4.4.2.3). Together with the 

deductions we made so far using the parallel plane layout, we tried constructing a hypothesis 

to suggest that the inappropriate inactivation of TP53 could de-regulate E2F ]-induced 

microRNAs in J-ICC cells. The concomitant up-regulation of E2Fl would induce the 

expression of CJ30RF25, miR106a-92 polycistron, and miR106b-92 polycistron in parallel 

with its host gene, MCM7. We hypothesized that this could lead to the repression of RBI 

expression due to gene silencing by multiple microRNAs (MJRN25, MJRN93, MJRN106A, 

and MJRNI06B) . 
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FIGURE 6.13. Visualization of TP53 in G1 (GRN) and its neighbours in G2 (STN) and G3 (PIN). Its 
neighbour CDKN2A in G2 (circled blue) and its neighbour EP300 in G3 (circled light green). Thi s 
view was derived from FIGURE 6. 1 0. 

FIGURE 6.12 showed that the node CDKNJA had incoming edges from multiple nodes 

MIRN20A, MIRN93 , and MIRN106B. These edges represented the biological event that 

cyclin-dependcnt kinase inhibitor, CDKNIA , could be silenced by multiple mieroRNAs and 

is also repressed by E2FJ. We moved from G1 (GRN) to G2 (STN) following the inter-plane 

edge originated from node TP53 and found that it had signaling interaction with the node 

CDKN2A. It represented another cyclin-dependent kinase inhibitor like CDKNIA (see 

FIGURE 6.13). In turn, CDKN2A interacted with CDK4. CDKN2A had been known to 

inactivate CDK4 by phosphorylation [64]. In G3 (PIN), CDK4 was shown to interact directly 

with cyclins, e.g. CCNDJ and CCND2, and DNA replication complex proteins, e.g. RFCJ, 

RFC2, RFC3, RFC4, and RFC5 (see FIGURE 6.13). CDK4 had been known to interact with 

the above cell cycle proteins in different phases of the cell cycle [64]. The deduction that 

could be drawn from these observations was that the loss of TP53 would lead to the 

abrogation of cell cycle arrest ( G0:0006917). 

A novel mechanism was the increase in £2F/-induced microRNAs which silenced the 

expression of cyclin-dependent kinase inhibitors e.g. CDKNJA , CDKN2A, and the tumour 

suppressor RBJ [ 16]. More importantly, these two mechanisms co-operatively abrogated cell 

cycle arrest in HCC. 
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FIGURE 6. 14. Visualization of the FOXA2-MJRNJ8A regulatory interaction in G1 (GRN). MJRNIBA is 
circled in red and FOXA2 is circled in dark blue. This view was derived from FIGURE 6.1 0. 

Our deduction further explained why there were no operating protein-protein interactions 

seen in the cell cycle arrest biological process (see Chapter 4, section 4.4.2.1 ). In Chapter 4 

(sec section 4.4.2.3), the PIN visualization for the DNA replication biological process 

(00:0006260) showed that MCM7 did not co-express with MCM3, MCM4, and MCM5, 

suggesting that MCM7 was not as highly expressed. Thus the expression of MCM7-linked 

miR I 06b-92 polycistron in HCC should be more moderate compared to cancers with MCM7 

over-expression, e.g. prostate carcinoma [ 126] and gastric carcinoma [ 112]. However, a 

group of biologists found that MIRN18A had been actively expressed in 60% of Japanese 

HCC patients and was hitherto known to be liver- and cancer-specific [104]. Both findings 

suggested that Cl30RF25 expression was up-regulated in a subset of HCC cases but not the 

expression of other E2Fl-induced microRNAs. FIGURE 6.14 showed that the node MIRN 18A 

in G1 could also be induced by the gene regulator FOXA2. It maybe that genome instability 

could reduce the number of functional TP53 proteins in some HCC cases due to haplo­

insufficiency and hence exerted a moderate repression of E2F 1 and E2F 1-induced 

microRNAs. 

In this analysis, we started our network exploration by identifying G2 nodes that had two 

inter-plane edges connecting corresponding nodes in G1 and G3• We reasoned that these 

nodes must be common to all three networks and should have important biological functions. 
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We then started our visual analysis with one of the common nodes TP53 which represented a 

well studied tumour suppressor protein. Our exploratory path followed the sequence: 

In the process, we spent most of our analytical time in exploring the gene regulatory 

interactions between TP53, E2Fl and E2Fl-induced microRNAs in G1• This was because 

the influence of microRNAs on the development of HCC was still largely unknown. The 

inter-connection between the GRN, TGFBJ-STN and PIN visualized in the parallel plane 

layout provided with us ample information for deducing novel hypothesis on the probable 

biological role of micro RNA in HCC progression. 

6.5.2.2. Circular plane layout 

FIGURE 6.15 showed that the same GRN-STN-PIN-overlapping network in the free-fixed­

free circular plane layout (see algorithm 6.4). The networks for G" G2, and G3 were GRN, 

STN, and PIN respectively. The complete network consisted of761 nodes and 991 edges of 

which 58 were inter-plane edges. The nodes common to G1 and G2 were connected by the 

inter-plane edge set E 12• The nodes common to G1 and G3 were connected by the inter-plane 

edge set En. The nodes common to G2 and G3 were connected by the inter-plane edge set 

E,,. 
This layout captured the systems model which depicted the three networks as a tightly 

inter-connected system. As such, it represented the latest understanding in biology [93]. The 

comparable sizes of En and the E23 suggested that both GRN and STN were an integral part 

of the human nuclear PIN. The systems model was increasingly supported by recent data that 

many human signaling proteins could also act as gene regulators [113]. 

Although we attempted to identify nodes common to all three networks, the occlusions in 

G1 and G2 hindered this task. In G" the occlusion was caused by inter-plane edges obscuring 

one another in En. In G2, the occlusion was mainly caused by nodes obscuring parts of the 

inter-plane edges in E 12, and poor angular resolution between the G2 edges and the inter­

plane edges in E12• We found that only node JUN in G1 and node HTATIP in G2 were readily 

identifiable. Such occlusions were resolvable by rotating the x-axis and then the z-axis. 

We also identified the node labeled TGFBRJ in G1 and the inter-plane edge to its 

corresponding node in G2 readily. This was because the TGFBRJ node was positioned at the 

upper side of P 1 where there was no occlusion (see FIGURE 6.15). We traversed the magenta 

coloured outgoing edge originated from the node TGFBRJ in G1 that led us to the node 

CTGF. We therefore deduced that the gene CTGF is a regulatory target of TGFBRJ. This 

deduction was supported by the current biological knowledge that CTGF was induced by 

TGFBJ [8]. 
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FIGURE 6.15. V1sualization of the human GRN-STN-PIN-overlapping network in the circular plane 
layout. The a1 network represents the GRN (magenta nodes, magenta edges), the a2 network 
represents the TaFBJ-STN (dark blue nodes, dark blue edges), and the a3 network represents the PIN 
(green nodes, green edges). The inter-plane edge sets £ 12, £ 13, and £ 23 represents node correspondence 
between a1, a2 and a3. 

Biologists had observed that CTGF could promote angiogenesis and cell migration [I 08]. It 

had been shown to co-express and interact with TGFBJ R in the angiogenesis-defined PIN 

(G0:0007 I 55) (see Chapter 4, section 4.4.2.4). 

Of interest, we also found in FIGURE 6. I 5 that the node CTGF had an incoming edge 

originated from the node labeled MJRNJ8A. E2Fl-induced rnicroRNA, MJRNJ8A, had a 

gene regulatory interaction with CTGF which meant that its expression could be silenced by 

the former. In angiogenesis, CTGF induced the secretion of collagen and fibronectin from 

cancer cells which formed the scaffolding of the extracellular matrix, a crucial step in the 

formation of a new vascular system [28]. The up-regulation of MJRNJ8A in some HCC cases 

could lead to the poor formation of the extracellular matrix due to the repressed translation of 

CTGF mRNAs. One probable consequence could be excessive endothelial cell migration but 

inadequate cell anchorage due to a poorly formed extracellular matrix and hence poor 

vascular formation . 
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The above deduction was supported by the latest biological knowledge that the vascular 

system in the cancer cell mass was known to be structurally defective with excessive leakage 

[81] and MIRNI8A expression could be a contributing factor. This could enhance HCC 

metastasis in two ways. The first could be the increased dissemination of cancer cells into 

the surrounding liver tissue because of vascular leakage, a process known as extravasation 

[81]. The second could be the amplification of tissue invasion by MMPs which were induced 

by the hepatitis B viral oncoprotein HBX in cancer cells [33]. It seemed that the impact of 

E2F I -induced microRNAs may extend well beyond cell cycle control. 

We suggested in section 6.5.2.1 that the de-regulation of E2FJ-induced microRNAs may 

had altered the interaction dynamics within the GRN and the STN in favour of anti­

apoptosis. The change in the interaction dynamics within the STN should also have an 

impact on the interaction dynamics in the PIN. We suggested in Chapter 5 (see section 

5.6.2.1) that, whether TGFBI would promote cancer growth or tumour suppression relies, at 

least partially, on the differential affinity [162] between the signal integrator EP300 and the 

variety oncogenic proteins and tumour suppressors. Therefore TP53 inactivation in 

conjunction with the silencing of tumour suppressor genes should in theory hasten the loss of 

differential signaling in the TGFBI-STN. 

The visualization of the inter-plane edge set £ 13 prompted us to investigate which of the 

gene regulators in G1 was the neighbour of EP300 in G3• EP300 was also a signaling protein 

represented in G2 (STN). We started from the node TGFBRJ in G2 and traversed the network 

path: 

TGFBR2->TGFBRI->ZFYVE9->SMAD2-+EP300 

The biological meaning of this path had been delineated in Chapter 5 (see section 5.6.2.2). 

At G2, we traversed the inter-plane edges originating from node EP300 to its corresponding 

node in G3 (see FIGURE 6.16(a)). In G3, we visually searched for the neighbours of EP300 

that had inter-plane edges pointing towards the direction of G1• We found one such 

neighbour labeled HNFIA (see FIGURE 6.16(b)). 

To identify the neighbours of HNFIA in G1 (GRN), we traversed the inter-plane edges 

originating from the G3 node HNFIA to its corresponding node in G1• We found that HNFIA 

(Gene ID: 6927) was a date hub that had sixteen neighbours (see FIGURE 6.16(c)). With the 

exception of HNF4A, the topology of node HNFIA shows that it had outgoing edges toward 

its neighbours. We noticed that the intra-plane edge connecting HNFIA and HNF4A was bi­

directional. From this observation, we deduced that the HNFJA gene regulates all its 

neighbours but was also a regulatory target of HNF4A. Therefore HNFIA and HNF4A form 

a regulatory loop. 
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FIGURE 6.16. A fly-through sequence from G2 (STN) to G1 (GRN) via G3 (PIN). (a) A zoom-in view 
of the node EP300 in G2 with an inter-plane edge connected to its corresponding G3 node. (b) The 
node EPJOO in G3 (circled blue) is connected to one of its neighbours HNFJA (circled magenta). (c) 
The node I!NFIA and its neighbours forrn a date hub in G1• This figure is derived from FIGURE 6.15. 
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Furthermore, from our observations made in G3, HNFJA needed to interact physically with 

EP300 in order to induce the expression of its neighbours. We then searched the Entrez 

database [99] for their known biological functions and found that they could be divided into 

twelve groups. 

These groups were (I) liver-specific gene regulators, i.e. HNFJB (Gene 10: 6928) and 

HNF4A (Gene 10: 3172). Both had recently been known to regulate liver-specific genes 

[107]. (2) An enzyme crucial to the synthesis of tRNA, i.e. GARS (Gene 10: 2617). It is a 

glycyl-tRNA-synthetase that attaches the amino acid glycine to a tRNA molecule 

(G0:0006426). The glycyl-tRNA is then used by the ribosome in the process of mRNA 

translation. (3) PRSS3 (Gene 10: 5646) is a serine protease associated with the inflanunation 

of the pancreas and is resistant to degradation by protease inhibitors. (4) SERPINA3 (Gene 

10: 12) is a serine protease inhibitor and its deficiency had been associated with liver disease. 

( 5) Lipid transport proteins which transport lipids from the blood vessels to the liver for 

catabolism (G0:0006869). APOC3 (Gene 10: 345) and APOH (Gene 10: 350) are two such 

proteins known as apolipoproteins. (6) RPL34 (Gene 10: 6164) is a member of the ribosome 

protein complex which mediates protein biosynthesis (G0:0006412). (7) FGB (Gene 10: 

2244) and FGA (Gene 10: 2243) are fibrinogens associated with wound healing 

(G0:0042060). (8) CYP2El (Gene 10: 1571) is a member of the cytochrome P450 protein 

family. It is known to metabolize ethanol and carcinogens such as nitrosamines and benzene. 

(9) HSD3Bl (Gene 10: 3283) is a steroid dehydrogenase which catalyzes the conversion of 

cholesterol to steroids. (10) SIATJ (Gene 10: 6480) is known as sialytransferase which 

catalyzes the glycosylation of cell surface proteins (G0:0006486). (II) ALB (Gene 10: 213), 

GC (Gene 10: 2638) and AFP (Gene 10: 147) are blood plasma proteins. (12) TXNIP (Gene 

10: 733688) is thioredoxin interacting protein. 

Given that the neighbours of HNFIA shown in G1 were involved in such diverse 

biological processes, we suspected that it could be a master regulator in human hepatocytes. 

Our deduction was supported by the latest computer model ofliver-specific GRN [107]. The 

functional diversity seen among neighbours of HNFJA might also explain how multiple risk 

factors could pre-dispose the onset of HCC, e.g. hepatitis B viral infection or liver damage 

due to alcohol addiction [47]. The proteins in groups (3), (7), and (8) had been suspected by 

clinicians and biologists to pre-dispose carcinogenesis [ 45; 47]. We therefore proposed that 

if these risk factors could lead to the prolonged up-regulated expression of HNF 1 A and 

TGFBJ, they could prime the cell's molecular network for later changes in network 

dynamics required for cellular transformation. Cellular transformation meant the phenotypic 

shift of a normal cell to a cancer cell [161]. 
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In Chapter 5, we postulated from the two-overlapping network that for cellular 

transformation to occur, there needed to be a total loss of differential signaling in the 

TGFBJ-STN. This could be due to the progressive loss of functional tumour suppressors (see 

section 5.6.2.2). Visual analysis of the three-overlapping network (see FIGURE 6.16) gave us 

the added insight that the prolonged up-regulation of HNFJA expression might have pre­

disposed the loss of differential signaling in the TGFBJ-STN. The reason was that some of 

the neighbours of HNFJA suspected to pre-dispose to carcinogenesis were also persistently 

up-regulated. A marker of HNFJA up-regulation was the expression of AFP found in group 

(I I) in the above list. AFP was considered by clinicians to be a conventional diagnostic and 

prognostic biomarker in HCC. High expression level of AFP was often associated with poor 

prognosis due to cell proliferation, high angiogenesis, and low apoptosis [103]. Recently, a 

group of biologists discovered that AFP co-expressed with HNFIA and with some of its 

neighbours shown in FIGURE 6.16, i.e. HNF4A, ALB, GC, APOC3, and APOH [118]. This 

finding indicated that the HNFJA sub-network was highly expressed in HCC cells and 

provided some support to our deduction. 

In this analysis, we explored all the networks in the circular plane layout in the following 

sequence: 

GI---+Gz---+G,---+GJ 

We spent most of our analytical time in identifYing the nodes were common to all three 

networks and found that this task was better done with the parallel plane layout than with the 

circular plane layout. However, this conclusion was applicable to the present human dataset 

only. The other limitation of the latter was the need to traverse lengthy inter-plane edges as 

compared to its parallel plane counterpart. However, the explicit visualization of the inter­

plane edge set £ 13 in the circular plane layout helped us to deduce the probable role of 

HNF !A in pre-disposing HCC. 

6.5.2.3. Conclusion 

In summary, both methods for visualizing the human GRN-STN-PIN-overlapping network 

have their strength and limitations. In the present case study, the parallel plane layout helped 

us to identify signaling proteins represented in the TGFB 1-STN that were also present in the 

GRN and the PIN. On the other hand, the circular plane layout was good for cyclical 

exploration because the biologist could visualize the direct mappings among all the three 

networks. From the same human networks, the circular plane layout helped us to identify the 

liver-specific gene regulator HNF !A that interacted with the signal integrator EP300 and had 

biological functions in the GRN. For the human dataset, both visualization methods had their 

place in visual analysis and in biological deductions. 
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6_6, Remarks 

Through the case studies, we demonstrated the use of the three-overlapping network 

visualizations for biological analysis. In the E. coli case study, our deductions were 

supported by recent publications, thus showing that the visualizations of concern were 

effective visual knowledge representations. In the human case study, we made deductions on 

the biology of HCC that further explained those made in the previous chapters. Therefore, 

the three-overlapping network visualizations did support knowledge discovery. 

So far, our case studies showed that the readability and usability of the circular plane 

layout and its parallel plane layout were dependent on the dataset applied, even though the 

former was probably more aligned to the latest domain knowledge in biology. In the E. coli 

case study, it was more difficult to identify nodes common to all three networks using the 

parallel plane layout as compared to the circular plane layout. When using the parallel plane 

layout, this task involved identifying G2 nodes that had inter-plane edges connected to their 

corresponding nodes in G1 and G3• The occlusion seen between the planes P 2 and P 3 in the E. 

coli case made the above task difficult. The opposite was true in the human case. That was 

because there was less occlusion seen within each inter-plane edge set in the parallel plane 

layout. However, in the human case, occlusion seen in the circular plane layout was 

resolvable using rotation. 

With the circular plane layout, the above task required identifying G1 or G3 nodes that 

have two inter-plane edges. The rationale was that, if a node in G1 has corresponding nodes 

in both G2 and G3, then the node must be common to all three networks. This task was 

achievable in the E. coli case because there was no occlusion seen within the inter-plane set 

E 13• However, the opposite was true in the human case. Serious occlusion was seen within 

the plane P 2 and the inter-plane edge set E13 making the identification of common nodes 

tedious. 

Because their explicit mapping was not available, the parallel-plane visualization required 

the use of transitivity to imply the relationship between the G1 and G3 networks. Transitivity 

meant that if a G1 node was connected with its corresponding node in G,, and the G2 node 

was connected with its corresponding node in G3, then the G1 node must corresponded to the 

G3 node. Apart from biology, we knew that transitivity applied to financial transaction 

network consisting of heterogeneous transaction types. However, transitivity might not apply 

to every domain. Therefore the generalization of this property was yet to be tested 

extensively. 

Biologists could use the three-overlapping network visualization as a follow-up visual 

analysis step to its two-overlapping network counterpart. The human case study 
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demonstrated the effectiveness of this approach. We first used the STN-PIN overlapping 

network visualizations to investigate how TGFBI differential signaling might work in 

relation to the differential affinity of EP300 with nuclear proteins (see Chapter 5, section 

5.6.2.1). We then used the GRN-STN-PIN overlapping network visualizations to investigate 

how GRN regulated the signaling proteins within the STN, and how those two networks may 

together influence the organization of the nuclear PIN. When used sequentially, the two 

types of overlapping networks allowed us to deduce novel hypotheses on how HCC 

developed robustness against any repression on cell growth and metastasis. 

{End of Chapter 6} 



CHAPTER 7 

Conclusion and Future Work 

"This is just the Beginning" 

Throughout this thesis, we demonstrated the relevance of network visualization in supporting 

visual analysis on molecular biology networks. We also demonstrated that biological concept 

models map very well to networks. To go a step further, we demonstrated that our visual 

analysis framework could assist the biologist in the incremental investigation of gene 

expression in the context of bio-molecular networks. Such a framework contained a series of 

network visualizations in decreasing level of abstraction. The objective was to assist the 

expert biologist in exercising analytical reasoning. 

Because our focus was on visual analysis of biological networks, we studied how 

different methods for visualizing networks with different biological focus, different size, and 

different layout support biological analysis. 

7.1. Summary 

7.1.1. Visual Analysis Framework 

Our visual analysis framework (see FIGURE 1.2) was a novel approach towards visual 

analytics for molecular biology. Each step in the framework had a different focus. We found 

that the deductions made in one visual analysis step could often be further explained by 

subsequent steps. It did support the biologist's practice of incremental investigation. The 

progressive use of increasingly complex visualizations did increase the explanatory power of 

each visual analysis step. For example, we deduced the impact of TP53 inactivation on the 

progression of hepatocellular carcinoma (HCC) using the three visual analysis steps in the 

framework as follows. 

Step 1- Co-expressed gene clusters. We found that the GO Process label 'G0:0007050jcell 

cycle arrest' in the clustered bipartite graph representation was exclusive to the 'disease' 

sample (see Chapter 3, section 3.4.2.2). This finding suggested that the cell cycle arrest 

biological process was dysfunctional in HCC. 

Step 2- GO _Process-defined PIN. We then proceeded to the cell cycle arrest-defined PIN 

analysis and deduced from the non-clustered PIN visualization that there was a complete Joss 

of functional protein interactions that can initiate cell cycle arrest. We also identified that one 

of the nodes labeled 'TP53' represented a protein not only involved in cell cycle arrest but 
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also in the initiation of apoptosis [ 129]. This protein was a tumour suppressor well studied 

by cancer biologists (see Chapter 4, section 4.4.2.1 ). We also deduced from the non­

clustered visualization of the angiogenesis-defined PIN that TGFBI expression was up­

regulated. From the clustered PIN visualization, we proposed that, maybe in HCC, many 

proteins involved in cell cycle arrest were abnormally sequestrated in the cytoplasm rather 

than in the nucleus. If this happens, it would further cripple their ability to arrest cell cycle 

progression in HCC. 

Step 3- Integrated molecular network. With the two deductions in step 2, we examined 

the connectivity between the TGFBJ-STN and the PIN in the STN-PIN overlapping network 

visualization in the three-parallel plane layout to deduce a hypothesis that explained how the 

loss of TP53 expression might have led to the loss of differential signaling in the TGFBI­

STN (see Chapter 5, section 5.6.2). Finally we deduced from the GRN-STN-PIN­

overlapping network visualization in the parallel plane layout that the loss of TP53 

expression could have de-regulated E2F J-induced microRNAs that silenced tumour 

suppressor genes. This might hasten the loss of differential signaling in the TGFBI-STN 

thereby promoting cancer cell growth (see Chapter 6, section 6.5.2). 

Using the visual analysis framework, we demonstrated the feasibility of using a series of 

model visualization for generating biological insight. On hindsight, our visual analysis 

framework had a similar emphasis to that proposed by Amar and Stasko [ 4]. Their 

framework proposed that a user has to perform three cognitive tasks in sequence when using 

a visual representation of data for assisting his/her high-level analytical reasoning. This 

sequence is as the follows: 

Analyst perceptual processes-+ Perceiving usefol relationships-+Explaining relationships 

They argued that a visualization system is effective if it can present relationships among data 

clearly and also indicate useful visual representations and their limits. In our framework, the 

use of network visualizations for assisting the above cognitive tasks was the main concern. 

That was because explaining biological relationships was the leading step to biological 

deduction. That was why evaluating network visualizations for their merits in supporting 

biological deduction in each visual analytical step became the focus of this thesis. 

We could define the meaning of a network visualization being 'cognitively challenging' 

in the context of Arnar and Stasko's framework [4]. !fits visual complexity was preventing 

the biologist from perceiving relationships, the network visualization was considered to be 

'cognitively challenging' and was therefore ineffective in supporting the user's (or analyst's) 

analytical reasoning. Furthermore, we could also define the term 'biological insight' in the 
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context of our visual analysis framework as a rational explanation on the perceived 

biological relationships displayed in a biological network visualization. 

7.1.2. Visualization of the GO _Process-Annotated Co-expressed Gene Clusters 

In Chapter 3, we investigated the merits of two different visual representations of GO 

Process-annotated co-expressed gene clusters in supporting analytical reasoning. We 

contributed two visual representations, the block matrix and the clustered bipartite graph, 

with the intention to capture two different biological concept models. We used the block 

matrix representation to capture the gene-centric model which had been the biologist's 

conventional view on gene co-expression. It assumed that by knowing which biological 

process(es) each gene cluster was involved in, the biologist should be able to make 

deductions on which biological processes were co-regulated. On the other hand, we used the 

clustered bipartite graph representation to capture the network model. This model assumes 

that the biological processes are inter-connected because they share the same co-expressed 

gene clusters. The network model is increasingly being adopted by systems biologists who 

study molecular biology as a network. 

We experimented with each visual representation using the datasets on normal 

hepatocytes and hepatocellular carcinoma (HCC) as input [58]. We then performed visual 

analysis on each representation as a series of analytical tasks that biologists are most likely to 

perform. Our user experience in the visual analysis brought us to the conclusion that the 

block matrix representation is more suitable for examining the biological function of a 

selected gene cluster or comparing a cluster pair for functional relatedness. The clustered 

bipartite graph representation is more suitable for comparing between sample sets (normal 

vs. disease) for their biological differences. Since biologists often need to perform sample set 

comparisons in biological analysis, the clustered bipartite graph representation is better 

suited to gene expression analysis than the block matrix. 

Our conclusion was further supported by the results from the usability evaluation. We 

noticed that our participants stalled when they were asked to deduce the biological 

differences between the 'normal' sample and the 'disease' sample (see Chapter 3, section 

3.5.5.1 ). To our surprise, the user evaluation results also suggested that visual simplicity 

does not necessarily enhance user performance, in either the task completion time or in 

analytical accuracy. Although the block matrix representation is visually simpler than the 

clustered bipartite graph representation, our participants in the former did not give a better 

performance in task completion time and in analytical accuracy. Rather, the redundant 

representation of the GO Process terms and their distribution throughout the visualization 

reduced the readability of the block matrix and hampered its use for visual analysis. The 

same problem was not seen with the clustered bipartite graph representation which displayed 



200 Conclusion and Future Work 

the m:n gene_cluster-GO_Process relationship as inter-level edges. However, the readability 

of the clustered bipartite graph representation deteriorated with the increase in edge crossing. 

By far the most valuable insight gained from our research in Chapter 3 was that capturing 

the network concept model is more relevant to biologists, in the context of biological 

analysis, than preserving their gene-centric model. This is especially relevant in the present 

day when experimental biologists increasingly need to adopt the network view in order to 

make a better use of high-throughput data for hypotheses deduction. Another important 

lesson we gained was that emphasizing on visual simplicity at the expense of visual 

representational accuracy will hamper analytical accuracy rather than enhancing it. 

7.1.3. Visualization ofthe GO_Process-defined Protein Interaction Networks 

Io Chapter 4, we investigated the merits of two different visualizations of a GO _Process­

defined PIN in supporting analytical reasoning. By using the GO hierarchy to filter down the 

complete human PIN, we obtained a filtered PIN in which all the nodes share the same GO 

label as an attribute. We called such a filtered PIN as a GO-defined PIN. If the GO Process 

category was used as the filtering criterion, the resulting PIN was a GO _Process-defined 

PIN. 

We visualized the GO _Process-defined PIN using two methods, i.e. the non-clustered 

PIN visualization and the clustered PIN visualization. The non-clustered PIN is simply the 

GO_ Process-defined PIN being visualized in the force-directed layout which has been the 

conventional method [44, 148]. The alternative option is the clustered PIN visualization. 

This is the GO _Process-defined PIN being visualized as a set of inter-connected clusters in a 

clustered circular layout. The visual clustering of the protein node set was done by using GO 

Component as a criterion. The purpose is to allow the biologists to add complementary 

information to a GO_ Process-defined PIN at their discretion, thus enhancing their analytical 

reasoning. The clustered circular layout provided a novel way for visualizing clustered PIN. 

The layout was easy to compute and captured the nested modularity of the PIN effectively. 

We implemented a visualization system that allowed biologists to navigate from one GO 

Process label to the other. We then experimented with each PIN visualization by overlaying 

the HCC co-expression dataset [58] on the network nodes. We performed visual analysis on 

each visualization as a series of analytical tasks that biologists are most likely to perform. 

During the visual analysis, we found that to make biologically meaningful deductions, the 

non-clustered PIN visualizations had to be interpreted in the context of the current biological 

knowledge. The GO _Process-defined PIN has no meaning to a user who is not an expert 

biologist. Although the non-clustered PIN allowed us to identifY protein nodes with unique 

topologies, e.g. bottleneck proteins and party hubs, the biological meaning of these 
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topologies might not apply well to every GO _Process-defined PIN. Therefore, we cautioned 

biologists to be careful in interpreting the biological meaning of node topologies in any non­

clustered PIN visualization. 

By comparison, we found that interpreting clustered PIN visualizations was cognitively 

less challenging because of the added information on the cellular distribution of proteins 

represented by the GO Component labels. They alleviated our cognitive loading by 

providing biological knowledge in visual form which was useful to biological deduction. 

Therefore our user experience suggested that the clustered PIN visualization is more 

informative than its non-clustered PIN counterpart. 

We made two important findings in the domain expert evaluation. The first finding was 

that the fixed layout of the clustered PIN visualization has the advantage of reducing the 

biologist's cognitive load on repeated usage since the person does not need to re-adapt to a 

new layout in every rendering of the same network. This visual feature should be an 

important design consideration in molecular network visualizations. The second finding was 

that, when asked to identify functionally essential protein from each visualization, the expert 

biologist was relying on node degrees to achieve this task. In the non-clustered PIN 

visualization, he identified nodes with a node degree greater than five as representations of 

essential proteins. In the clustered PIN visualization, the expert biologist took inter-cluster 

edges into account when trying to identifY essential proteins. This observation aligned with 

our own experience when performing visual analysis, we found that node degrees in a PIN 

visualization do have biological meaning and needed to be accounted for in visual analysis. 

The most important achievement we made in this study was demonstrating the feasibility 

of making biological deductions without following the conventional information 

visualization mantra of"overview, zoom and filter, details on demand' [141]. Our approach 

was to use the biological concept model of cancer as a rational guidance for our visual 

analysis. We then began with a selected GO_Process-defined PIN as the starting point. In 

short, our approach can be summed up as "filter first, zoom and details, overview if 
necessary". We argued that this approach is better for guiding those expert biologists who 

come from the 'reductionist' school of biology into systems exploration. These biologists 

need PIN visualization at a scale that they can cognitively handle. In contrast, the 

conventional mantra is more suitable for biologists who come from an engineering 

background. 

7.1.4. Visualization of the Two-Overlapping Networks 

In Chapters 5 and 6, we introduced the novel problem of visualizing overlapping networks. 

In Chapter 5, we introduced two visualization methods of the two-overlapping network, i.e. 
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the two-parallel plane layout and the three-parallel plane layout. Their difference laid in the 

display of the overlap layer in the three-parallel plane layout. 

To investigate the merits of the two visualization methods in supporting analytical 

reasoning, we performed two case studies. In the E. coli case study, we experimented with 

each visualization method using the public datasets for protein interaction network (PIN), 

metabolic network (MN) or gene regulatory network (GRN). The objective was to use well 

studied biological networks to evaluate the effectiveness of the two-overlapping network as a 

concept model visualization. If it does, our deductions should be supported by the current 

biological literature. In the human case study, we experimented with each visualization 

methods using the public datasets for the TGFBI signal transduction network (STN) and the 

human PIN that are not only found in the cell nucleus but are also HCC-specific. The 

objective was to evaluate the effectiveness of the two-overlapping network in supporting 

hypothesis deduction. 

In both case studies, we consistently found that the three-parallel plane layout supported 

analytical reasoning better than its two-parallel plane layout. Even for a large two­

overlapping network representation that exceeded 1000 nodes, such as the E. coli PIN-GRN­

overlapping network (see Chapter 5, section 5.5.2.2), the three-parallel plane layout could 

still help us to make limited deductions whereas the two-parallel plane layout could not. We 

attributed the strength of the three-layer parallel plane layout to its displaying of the overlap 

nodes and edges within a separate plane and highlighting the overlap nodes with a distinct 

colour hue. These visual features were crucial to our success in making biologically 

interesting deductions because they helped us to prioritize which of the two heterogeneous 

biological networks to investigate first. 

In the E. coli use case, we demonstrated that the two-overlapping network visualizations 

were good concept model visualization in general. The deductions we made were supported 

by the recent biological literature. In the human use case, we demonstrated that the two­

overlapping network visualization is effective in assisting hypothesis deduction (see Chapter 

5, section 5.5.2.3). 

7.1.5. Visualization ofthe Three-Overlapping Networks 

In Chapter 6, we introduced two visualization methods of the three-overlapping network, i.e. 

the parallel plane layout and the circular plane layout. We used the parallel plane layout to 

capture the biological concept model known as the cascade model [3]. The cascade model 

depicts a clear functional ordering of three heterogeneous networks. We used the circular 

plane layout to capture the biological concept model known as the systems model. The 

systems model depicts the functional co-operation of three heterogeneous networks. Again, 
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we used E. coli networks and human networks as case studies to evaluate the merits of the 

two visualization methods in supporting analytical reasoning. 

In both case studies, we were able to use the parallel plane layout and circular plane 

layout to make certain biological deductions. In the E. coli case study, the parallel plane 

layout helped us to identify the indirect biological relationship between a metabolic enzyme 

and a gene regulator, thus helping us to deduce the regulatory targets in the E. coli MN. On 

the other hand, the circular plane layout helped us to identify the metabolic enzymes that had 

biological functions in the MN and the GRN. In the human case study, the parallel plane 

layout helped us to identify signaling proteins represented in the TGFBJ-STN that were also 

present in the GRN and the PIN, thus allowing us to hypothesize their influence on the 

progression of HCC. On the other hand, the circular plane layout helped us to identify the 

indirect biological relationship between a gene regulator and a signaling protein. The 

usability of each layout seemed to depend on the chosen data set. Therefore we could only 

conclude that the both visualization methods had their place in visual analysis and in 

biological deductions. 

7.1.6. Usability Evaluation 

In Chapter 3, we introduced the first set of benchmark tasks for evaluating Gene Ontology­

annotated gene clusters (see section 3.5). These analytical tasks emphasized on identifying 

active and co-regulated biological processes based on inter-cluster comparison. The list of 

tasks was by no means exhaustive and there could be other analytical tasks that could be 

added to the evaluation in future. Our benchmark tasks could be modified to suit any non­

biology domains where there was a need to analysis a set of ontology-annotated clusters 

visually. 

In the evaluation process, we measured the dependent variables: task completion time, 

accuracy, and user confidence score for each task. They were conventionally used for 

measuring participant's performance in user evaluation studies [134, 164]. In practice, we 

found that task completion time was not a good measure on user performance for the 

conceptual tasks, i.e. tasks that require analytical reasoning for deducing a solution. The 

reason was that the biologist's personality and domain expertise could affect his/her thinking 

path and approach towards the same conceptual task, not just the design of the visualization. 

By comparison, accuracy is a better measurement on user performance because every 

participant's solution is being compared against a well-defined solution. However, in a 

knowledge-intensive domain like biology, a well-defined solution is only possible if the 

evaluator shares the same domain knowledge with the participants. In our case, we shared 

the same understanding on the biological implication of gene co-expression with our 

J 
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participants. Furthermore, we chose a set of up-regulated and positively co-expressed genes 

for the evaluation, so that the participants are likely to interpret gene co-expression in a 

similar way. 

7.2. Challenges and Future Work 

Through this thesis, we provided the interested experts from the fields of bioinformatics, 

information visualization, and visual analysis, with a starting point for investigating 

visualization-related problems in molecular biology. For the biologists, we hoped that this 

thesis would lead them to consider combining visual analysis with quantitative analysis 

methods in studying their research problems. 

However, this thesis also raised prospects for future research regarding bioinformatics 

visualization. In this section, we listed future work that provided possible directions for 

further research into the visualization and analysis of biomolecular network. 

7.2.1. Visual Analysis Framework 

So far, we had only emphasized on the effectiveness of model visualization in our visual 

analysis framework. In Amar and Stasko's vocabulary [ 4], we were attempting to bridge the 

worldview gap but not the rationale gap. The definition of the term 'worldview gap' is the 

gap between what is being displayed and what actually needs to be displayed in order to 

deduce a straightforward conclusion for making a decision. The definition of the term 

'rationale gap' is the gap between perceiving a relationship and actually being able to 

explain confidence in that relationship and the usefulness of that relationship. 

Amar and Stasko [4] asserted that visualization systems built to bridge the worldview gap 

often failed in elucidating the strengths of the perceived relationships and the confidence in 

these relationships. This was the limitation of our visual analysis framework. The failure to 

bridge the rationale gap could lead the biologist to the wrong analytical path. Such a scenario 

appeared during our analysis of the angiogenesis-defined PIN using the non-clustered PIN 

visualization (see Chapter 4, section 4.4.2.4). We had incorrectly deduced that the large 

connected component in the PIN visualization represented a protein complex with subunits. 

Yet the current biological knowledge informed us that those perceived protein-protein 

interactions are more likely to be pairwise. Therefore the confidence of those protein-protein 

interactions being part of a protein complex is almost zero, so is their usefulness in HCC 

research. To bridge the rationale gap, we needed to clearly label the edges in the 

angiogenesis-defined PIN as 'pairwise only'. How to use visual encoding to close the 

analytical gap seen in our visual analysis framework will be our next objective. 
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Although we applied co-expressed gene clusters as our first visual analysis step, the 

framework can also be modified according to the biologist's requirement. For example, some 

biologists may prefer visualizing differential gene clusters as the first step. The future work 

will be to design and implement the framework as a full visualization system equipped with 

molecular network visualization of different organisms, e.g. yeast, bacteria, fungi, human, 

mouse, and plants. 

7.2.2. Visualization of Co-expressed Gene Clusters 

With our research indicating that the clustered bipartite graph representation was visually 

more complex more than its block matrix counterpart; several options could be taken to 

improve the usability of the former. Feasible options were listed as follows: 

I. To make the clustered bipartite graph more informative, interactivity should be added to 

the gene nodes such as drop down menu on brushing to provide hyperlinks to public 

databases such as ENTREZ. 

2. To further reduce the negative impact of edge crossings on readability, edge highlighting 

on pointer brushing can be added to the clustered bipartite graph representation. 

3. For comparing the cluster patterns of two sample sets (e.g. normal vs. disease), a tripartite 

graph with the GO Process nodes as the intermediate layer could be an option. This 

should help the biologist to compare two sample sets for their differences in GO 

Processes. 

4. Another user evaluation can be performed by comparing a published visualization 

method with clustered bipartite graphs in various designs. This should provide more 

information on their usability in microarray analytics. 

7.2.3. Clustered PIN Visualization in Biological Context 

In general, we found that for PIN networks that were approaching 1000 nodes, the force­

directed layout algorithm produced the 'hair ball' effect on the network visualization [148]. 

We found that such a visualization is poor in supporting analytical reasoning. At this scale, 

the high-degree nodes (or hubs) automatically became our visual focus because of their star­

shaped formation and of the high edge density around them. 

In the analysis of the signal_ transduction-defined PIN (see Chapter 4, section 4.4.2.2), we 

experienced difficulty in using the non-clustered PIN visualization to identify the low node 

degree neighbours of the hubs in the force-directed layout. This layout contained 563 nodes 

and 832 edges. Instead we had to use the clustered PIN visualization to achieve the same 

task. That was because, in the clustered circular layout, the protein nodes colour-coded for 

co-expression were confmed to specific areas demarcated by the cluster nodes. Furthermore 
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the label of each cluster node provided information on the cellular component in which the 

co-expressed proteins were contained, thus making the visualization more informative. 

The only limitation of the clustered PIN visualization was that node redundancy reduced 

the readability of the visualization by increasing the size of the original GO Process-defined 

PIN, and the number of redundant edges. This limited the size of the clustered PIN that can 

be visualized using the circular layout. Taking into account our experience with the GO­

annotated gene cluster visualizations (see Chapter 3, section 3.4.2.2, subsection!), redundant 

node representation should be minimized if possible. 

7.2.4. Visualization of Overlapping Networks 

In the analysis of the E. coli PIN-GRN-overlapping network (see Chapter 5, section 5.5.2.2), 

the high degree hubs in the PIN of the two-parallel plane layout became our visual focus. 

This PIN was also visualized in the force-directed layout and contained 451 nodes and 730 

edges. In this visualization, the aggregation of high degree nodes and their node labels gave 

rise to occlusion that made it difficult for us to identify the high degree node within our 

interest. However, the overlap layer in the three-parallel plane layout provided a visual 

representation for the subset of nodes and edges commonly shared between the PIN and the 

GRN. Furthermore, the overlap layer was visually confined to a separate plane from those 

confining the PIN and the GRN. 

In the above case studies, the force-directed layout limited our ability in perceiving 

biological relationships that were useful to biological deductions, even though the size of the 

PINs visualized may be very moderate. Our user experiences in these cases studies provided 

a strong argument for using layouts that factor in some kind of biological context. Visual 

experiments with biological context-based layouts had been conducted recently [7, 71, 87]. 

So far, only the betweenness fast-layout algorithm had been tested on a PIN with I 04 nodes 

[71]. Furthermore, none of them had been tested on a network integrated with multiple 

interaction types. It would be interesting to see what visual effect would be generated from 

an overlapping network that employed one or more of these biological context-based layouts. 

The interesting question would be: could we omit the overlap layer in the two-overlapping 

network visualization simply by using different biological context-based layouts for different 

networks? 

7.2.5. Usability Evaluation 

There is a need to explore the suitability of using heuristics evaluation for assessing the 

usability ofbioinformatics visualization. It is not as time-consuming to conduct as controlled 

experiments and is usually conducted with a few domain experts. The challenge is that there 

is no benchmark heuristics defined for evaluating biological network visualizations. 
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Although there were new heuristics being contributed for the evaluation of pathway 

visualization systems [134], the question as to whether other published heuristics [4, 141, 

172] are suitable for the same purpose is yet to be answered. In particular, it will be 

interesting to test whether the knowledge and task-based framework [4] is suitable for 

evaluating network visualizations that integrate multiple molecular interaction types, since it 

is the only framework that coupled relationship recognition with high-level analytical tasks. 

7.2.6. Biology of Hepatocellular Carcinoma 

In Chapters 5 (see section 5.6.2.2) and 6 (see section 6.5.2.2), we made two inter-related 

hypotheses to explain how the loss of TP53 could lead to the loss of differential signaling in 

the TGFBI-STN, thus explaining how TGFBI could change from a tumour suppressor to a 

growth promoter in HCC cells. 

Our hypotheses could provide directions to biologists in their research into HCC. Our 

first hypothesis suggested that the loss of TP53 expression would increase EP300 

availability to oncogenic proteins. To verifY this hypothesis, the biologist would need to 

measure the molecular abundance of all proteins in HCC cells using a quantitative high­

throughput technology that had a sensitivity of I 00 protein molecules and then verifed all the 

protein neighbours of the signal integrator EP300. Our second hypothesis suggested that 

E2F ]-induced microRNAs might silence many of the tumour suppressors that interacted 

with the signal integrator EP300. The verification of this hypothesis would require a 

technology platform that could measure both microRNA and protein-coding gene expression 

in parallel. At present, microRNA expression data were seriously under-sampled. With more 

than 200 human microRNA genes being discovered today, the existing published dataset was 

collected from fewer than 40 patients [I 04]. A larger survey on a few hundred patient 

samples would be necessary. If our hypotheses could be verified, the new knowledge might 

provide new diagnostic methods for the detection of HCC or new drug targets for the 

treatment of HCC. 

7.2.7. Future Direction for Rio-informatics Visualization 

As mentioned in section 7.2.1, our focus has been on the metaphor and effectiveness of 

model visualization. In our visual framework, we assumed that a biologist will use the 

framework as a tool for carrying out data analysis based on a linear sequence of 

visualization. In reality, systems biology research is a complex interplay between 

information visualization, statistical and mathematical analysis, and high-throughput 

technologies. Examples of such can be found in references [179-181]. For this reason, the 

'user and tool' model breaks down almost completely because there is no 'one tool fits all'. 

As such, systems biology research needs a federated model which allows the user to design 
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the entire project involving a network of high-throughput technologies, visualization 

methods, statistical algorithm, mathematical algorithms, and databases. This federated model 

will have to be evaluated using the Knowledge Precept Model proposed by Amar and Stasko 

[4] based on two types of knowledge precepts. The first is the worlclview precept. Elements 

of this include (I) exposing important domain parameters, (2) exposing multivariate 

explanation, and (3) facilitating hypothesis testing. The second is the rationale precept. 

Elements of this include (I) exposing uncertainty, (2) concretizing relationships discovered 

in the data, and the usefulness of these relationships. The incorporation of network statistics 

to network visualization should provide the biologist a signpost for gauging the 

trustworthiness of the knowledge precepts. At the time of writing, there remains a research 

project that investigates the aforementioned. 

{End of Chapter 7} 



Bibliography 

[I] A. Adai, S. Date, S. Wieland, and E. Marcotte, "LGL: creating a map of protein 

function with an algorithm for visualizing very large biological networks", Journal of 

Molecular Biology, vol. 340, pp. 179-190, 2004. 

[2] A. Ahmed, T. Dwyer, M. Forster, et al., "GEOMI: Geometry for maximum insight", 

Lecture Notes in Computer Science, vol. 3843, Springer, pp. 468-479, 2006. 

[3] U. Alon, "Network Motifs in Developmental, Signal Transduction, and the Neuronal 

Networks", An Introduction to Systems Biology: Design principles of biological 

circuits, Chapman & Hall/CRC Mathematical and Computational Biology Series, pp. 

97-134, 2007. 

[4] R. A. Amar and J. T. Stasko, "Knowledge precepts for design and evaluation of 

information visualizations", IEEE Transactions on Visualization and Computer 

Graphics, vol. II, pp. 432-442, 2005. 

[5] E. H. Baehrecke, N. Dang, K. Babaria, and B. Shneiderman, "Visualization and 

analysis of microarray and gene ontology data with treemaps", BMC Bioiriformatics, 

vol. 5, pp. 84-96, 2004. 

[6] A. L. Barabasi and Z. Oltvai, "Network biology: understanding the cell's functional 

organization", Nature Reviews Genetics, vol. 5, pp. 101-113, 2004. 

[7] A. Barsky, J. L. Gardy, R. E. W. Hancock, and T. Munzner, "Cerebral: a Cytoscape 

plugin for layout of and interaction with biological networks using subcellular 

localization annotation", Bioinformatics, vol. 23, pp. I 040-1042, 2007. 

[8] L. Bartholin, L. L. Wessener, J. M. Chirgwin, and T. A. Guise, "The human Cyr61 

gene is a transcriptional target of transforming growth factor beta in cancer cells", 

Cancer Letters, vol. 246, pp. 230-236, 2006. 

[9] V. Batagelj and A. Mrvar, "Pajek-analysis and visualization of large networks", 

Lecture Notes in Computer Science, vol. 2265, Springer, pp. 4 77-478, 200 I. 

[10] U. Baur and U. Brandes, "Crossing reduction in circular layouts", Lecture Notes in 

Computer Science, vol. 3353, Springer, pp. 332-343, 2004. 

[II] M. Y. Becker and I. Rojas, "A graph layout algorithm for drawing metabolic 

pathways", Bioinformatics, vol. 17, pp. 461-467, 2001. 

[12] J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, W. H. Freeman, 2002. 



L 10 Bibliography 

[13] Y. Blat and N. Kleckner, "Cohesins bind to preferential sites along yeast chromosome 

III, with differential regulation along arms versus the centric region", Cell, vol. 98, pp. 

249-259, 1999. 

[14] U. Brandes, T. Dwyer, and F. Schreiber, "Visual understanding of metabolic pathways 

across organisms using layout in two and a half dimensions", Journal of Integrative 

Biology, pp. 119-132, 2004. 

[15] B. J. Breitkreutz, C. Stark, T. Reguly, eta!., "The BioGRID Interaction database: 2008 

update", Nuclei Acids Research (database issue), vol. 36, pp. D637-640, 2008. 

[16] R. Brosh, R. Shalgi, A. Liran, eta!., "p53-repressed miRNAs are involved with E2F in 

a feed-forward loop promoting proliferation", Molecular Systems Biology, vol. 4, pp. 

229,2008. 

[17] M. Bruls, K. Huizing, and J. J. van Wijk, "Squarified Treernaps", Proceedings of the 

joint Eurographic and IEEE TVCG Symposium on Visualization, Eurographics 

Association, pp. 33-42, 2000. 

[18] J. A. Burger and T. J. Kipps, "CXCR4: a key receptor in the crosstalk between tumor 

cells and their microenvironment", Blood, vol. 107, pp. 1761-1767, 2006. 

[19] W. C. Burhans and M. Weinberger, "DNA replication stress, genome instability, and 

aging", Nuclei Acids Research, vol. 35, pp. 7545-7556, 2007. 

[20] D. Y-. K. But, C-. L. Lai, and M-. F. Yuen, "Natural history of hepatitis-related 

hepatocellular carcinoma", World Journal of Gasteroenterology, vol. 14, pp. 1652-

1656,2008. 

[21] S. Camilleri-Broet, I. Cremer, B. Manney, et a!., "TRAF4 overexpression is a 

common characteristic of human carcinomas", Oncogene, vol. 26, pp. 142-147, 2007. 

[22] S. K. Card, J. D. MacKinlay, B. Shneiderman, and M. Card, Readings in Iriformation 

Visualization: Using Vision to Think, Academic Press, 1999. 

[23] S. Carpendale and A. Agarawala, "PhylloTrees: Harnessing nature's phyllotactic 

patterns for tree layout", IEEE Symposium on Iriformation Visualization 2004, IEEE 

Computer Society Press, pp. 215.3, 2004. 

[24] A. Castro, C. Bemis, S. Vigneron, J-. C. Labbe, and T. Lorca, "The anaphase­

promoting complex: a key factor in the regulation of cell cycle", Oncogene, vol. 24, 

pp. 314-325,2005. 



211 Bibliography 

[25] B. Charpentier, V. Bardey, N. Robas, and C. Branlant, "The EIIGlc protein is involved 

in glucose mediated activation of Escherichia coli gapA and gapB pgk transcription", 

Journal of Bacteriology, vol. 180, pp. 6476-6483, 1998. 

[26] D. Chattopadhyay, D. M. Manas, and H. L. Reeves, "The development of targeted 

therapies for hepatocellular cancer", Current Pharmaceutical Design, vol. 13, pp. 

3292-3300, 2007. 

[27] C. Chen and M. Czerwinski, "Empirical evaluation of information visualizations: an 

introduction", International Journal of Human-Computer Studies, vol. 53, pp. 631-

635,2000. 

[28] P. P. Chen, W. J. Li, Y. Wang, et al., "Expression of Cyr61, CTGF, and WISP-I 

correlates with clinical features of lung cancer", PLoS ONE, vol. 2, article no. e5, 

2007. 

[29] X. Chen, S. T. Cheung, S. So, et a!., "Gene expression patterns in human liver 

cancers", Molecular Biology of the Cell, vol. 13, pp. 1929-1939,2002. 

[30] D. M. Chetkovich, R. C. Bunn, S. H. Kuo, Y. Kawasaki, M. Kohwi, and D. S. Bred!, 

"Postsynaptic targeting of alternative postsynaptic density-95 isoforms by distinct 

mechanisms", Journal of Neuroscience, vol. 22, pp. 6415-6425, 2002. 

[31] T. L. Chmielewski, D. F. Dansereau, and J. L. Moreland, "Using common region in 

node-link displays: The role of field dependence/independence", Journal of 

Experimental Education, vol. 66, pp. 197-207, 1998. 

[32] C. Christensen, J. Thakar, and R. Albert, "Systems-level insights into cellular 

regulation: inferring, analyzing, and modeling intracellular networks", Institution of 

Engineering and Technology Systems Biology, vol. I, pp. 61-77, 2007. 

[33] T. W. Chung, Y. C. Lee, and C. H. Kim, "Hepatitis B viral HBx induces matrix 

metalloproteinase-9 gene expression through activation of ERKs and PI-3K/AKT 

pathways", FASEB Journal, vol. 18, pp. 1123-1125, 2004. 

[34] Q. Cui, Z. Yu, E. 0. Purisma, and E. Wang, "Principles of micro RNA regulation of a 

human cellular signaling network", Molecular Systems Biology, vol. 2, article no. 46, 

2006. 

[35] Q. Cui, Y. Ma, M. Jaramillo, et a!., "A map of human cancer signaling", Molecular 

Systems Biology, vol. 3, article no. 152, 2007. 

[36] C. J. Dafonesca, F. Shu, and J. J. Zhang, "Identification of two residuals in MCM5 

critical for the assembly of the MCM complexes and Stall-mediated transcription 



21L Bibliography 

activation in response to IFN-y", Proceedings of the National Academy of Sciences 

USA, vol. 98, pp. 3034-3039, 2001. 

[37] D. Das, Z. Nahle, and M. Q. Zhang, "Adaptively inferring human transcriptional 

subnetworks", Molecular Systems Biology, vol. 2, article no. 2006.0029, 2006. 

[38] E. H. Davidson, "The regulatory genome for animal development", The Regulatory 

Genome, Academic Press, pp. 22, 2006. 

[39] S. de Ia Fuente van Bentem, W. I. Mentzen, A. de Ia Fuente, and H. Hirt, "Towards 

functional phosphoproteomics by mapping differential phosphorylation events in 

signaling networks", Proteomics, vol. 8, pp. 4453-4465, 2008. 

[40] N.C. Denko, "Hypoxia, HIFI, glucose metabolism", Nature Reviews Cancer, vol. 8, 

pp. 705-713, 2008. 

[41] S. W. Doniger, N. Salomonis, K. D. Dahlquist, et a!., "MAPPFinder: using Gene 

Ontology and GenMAPP to create a global gene-expression profile from microarray 

data", Genome Biology, vol. 4, pp. R7, 2003. 

[42] U. Dogrusoz, E. Z. Erson, E. Giral, et a!., "PATIKAweb: a Web interface for 

analyzing biological pathways through advanced querying and visualization", 

Bioinformatics, vol. 22, pp. 374-375, 2006. 

[43] P. Duesberg, R. Stindl, R. Li, R. Helhmann, and D. Rasnick, "Aneuploidy versus gene 

mutation as cause of cancer", Current Science, vol. 81, pp. 490-500, 2001. 

[44] P. Eades, "A heuristic for graph drawing", Congressus Nemerantium, vol. 42, pp. 149-

160, 1984. 

[45] H. B. El-Serag and K. L. Rudolph, "Hepatocellular carcinoma: epidemiology and 

molecular carcinogenesis", Gastroenterology, vol. 132, pp. 2557-2576, 2007. 

[46] A. Ergiin, C. A. Lawrence, M. A. Kohanski, T. A. Brennan, and J. J. Collins, "A 

network biology approach to prostate cancer", Molecular Systems Biology, vol. 3, pp. 

82,2007. 

[47] P. A. Farazi and R. A. DePinho, "Hepatocellular carcinoma pathogenesis: from genes 

to environment", Nature Reviews Cancer, vol. 6, pp. 674-687, 2006. 

[48] D. G. Feitelson and M. Treinin, "The blueprint for life", Computer, vol. 35, pp. 34-40, 

2002. 

[49] R. Fleischer and C. Birch, "Graph drawing and its applications", Lecture Notes in 

Computer Science, vol. 2025, Springer, pp. 1-22, 2001. 



L u Bibliography 

[50] V. Fogal, M. Gostissa, P. Sandy, eta!., "Regulation ofp53 activity in nuclear bodies 

by a specific PML isoform", EMBOJournal, voi. 19, pp. 6185-6195,2000. 

[51] D. N. Frick and C. C. Richardson, "DNA primases", Annual Review in Biochemistry, 

vol. 70, pp. 39-80, 2001. 

[52] A. Frick, et a!., "A fast adaptive layout algorithm for undirected graphs", Lecture 

Notes in Computer Science, vol. 894, Springer, pp. 388-403, 1994. 

[53] B. Fry, "Computational information design", Doctor of Philosophy Dissertation, 

Massachusetts Institute of Technology, pp. 14, 2004. 

[54] D. C. Y. Fung, S-. H. Hong, K. Xu, and D. Hart, "Visualizing the Gene Ontology­

annotated clusters of co-expressed genes: a two-design study", Proceedings of the 

Fifth International Conference BioMedical Visualization: Information Visualization in 

Medical and Biomedical Informatics (MediVis 2008), IEEE Computer Society Press, 

pp. 9-14, 2008. 

[55] D. C. Y. Fung, S-. H. Hong, D. Koschiitzki, F. Schreiber, and K Xu, "2.5D 

visualization of overlapping biological networks", Journal of Integrative Biology, pp. 

90,2008. 

[56] D. C. Y. Fung, S-. H. Hong, D. Koschiitzki, F. Schreiber, and K. Xu, "Visual analysis 

of overlapping biological networks", Proceedings of the 13th International 

Conference Information Visualization (Info Vis 2009), IEEE Computer Society Press, 

pp. 337-342, 2009. 

[57] S. Gama-Castro, eta!., "RegulonDB version 6.0: gene regulation model of Escherichia 

coli K-12 beyond transcription, active (experimental) annotated promoters and 

Textpresso navigation", Nuclei Acids Research, vol. 36, pp. Dl20-124, 2008. 

[58] G. Gamberoni, S. Storari, and S. Volinia, "Finding biological process modifications in 

cancer tissues by mining gene expression correlations", BMC Bioinformatics, vol. 7, 

pp. 6-15, 2006. 

[59] R. A. Gatenby and R. J. Gillies, "Perspectives: A microenvironmental model of 

carcinogenesis", Nature Reviews Cancer, vol. 8, pp. 56-60, 2008. 

[60] Gene Ontology Consortium, "The Gene Ontology (GO) project in 2006", Nuclei Acids 

Research (database issue), vol. 34, pp. D322-326, 2006. 

[61] N. Gershon and S. G. Eick, "Information Visualization", IEEE Computer Graphics 

and Applications, voi. 14, pp. 29-31,1997. 



Ll4 Bibliography 

[62] A. K. Ghosh and J. Varga, "The transcriptional coactivator and acetyltransferase p300 

in fibroblast biology and fibrosis", Journal of Cell Physiology, vol. 213, pp. 663-671, 

2007. 

[63] A. Goesmann, M. Haubrock, F. Meyer, J. Kalinowski, and R. Giegerich, "PathFinder: 

reconstruction and dynamic visualization of metabolic pathways", Bioinformatics, vol. 

18,pp. 124-129,2002. 

[64] M. A. Gonzalez, K. K. Tachibana, R. A. Laskey, and N. Coleman, "Control of DNA 

replication and its potential clinical exploitation", Nature Reviews Cancer, vol. 5, pp. 

135-141,2005. 

[65] T. Guida, G. Salvatore, P. Faviana, eta!., "Mitogenic effects of the up-regulation of 

minichromosome maintainence proteins in anaplastic thyroid carcinoma", Journal of 

Clinical Endocrinology and Metabolism, vol. 90, pp. 4703-4709, 2005. 

[66] J. D. Han, N. Bertin, T. Hao, eta!., "Evidence for dynamically organized modularity 

in the yeast protein-protein interaction network", Nature, vol. 430, pp. 88-95, 2004. 

[67] D. Hancock, M. Wilson, G. Velarde, eta!., "maxdLoad2 and maxdBrowse: standards­

compliant tools for microarray experimental annotation, data management and 

dissemination", BMC Bioinformatics, vol. 6, pp. 264, 2005. 

[68] D. Hanahan and R. Weinberg, "The hallmarks of cancer", Cell, vol. 100, pp. 57-70, 

2000. 

[69] H. Hartson and D. Hix, Developing User Interfaces: Ensuring Usability through 

Product and Process. John Wiley and Sons, 1993. 

[70] L. H. Hartwell, J. J. Hopefield, S. Leibler, and A. W. Murray, "From molecular to 

modular cell biology", Nature, vol. 402(suppl), pp. C47-C52, 1999. 

[71] T. B. Hashimoto, M. Nagasaki, K. Kojima, and S. Miyano, "BFL: a node and edge 

betweenness based fast layout algorithm for large scale network", BMC 

Bioinformatics, vol. 10, pp. 19,2009. 

[72] A. F. Hezel and N. Bardeesy, "LKBl: linking cell structure and tumor suppression", 

Oncogene, vol. 27, pp. 6908-6919,2008. 

[73] M. Holford, N. Li, P. Nadkarni, and H. Zhao, "VitaPad: visualization tools for the 

analysis of pathway data'', Bioinformatics, vol. 21, pp. 1596-1602, 2005. 

[74] C-. N. Hsu, J-. M. Lai, C-. H. Liu, eta!., "Detection of the inferred interaction network 

in hepatocellular carcinoma from ECHO (Encyclopedia of hepatocellular carcinoma 

genes online)", Bioitiformatics, vol. 8, pp. 66, 2007. 



Bibliography 

[75] H. Jeong, S. P. Mason, A. L. Barabasi, and Z. N. Oltvai, "Lethality and centrality in 

protein networks", Nature, vol. 411, pp. 41-42, 2001. 

[76] W. Johnston, "Model Visualization", Information Visualization in Data Mining and 

Knowledge Discovery, Morgan Kauffman, pp. 223-228, 2001. 

[77] E. Kalo, Y. Buganim, K. E. Shapira, et a!., "Mutant p53 attenuates the SMAD­

dependent transforming growth factor beta! (TGF-betal) signaling pathway by 

repressing the expression of TGF-beta receptor type II", Molecular and Cellular 

Biology, vol. 27, pp. 8228-8242, 2007. 

[78] M. Kamada and S. Kawai, "An algorithm for drawing general undirected graphs", 

Information Processing Letters, vol. 31, pp. 7-15, 1989. 

[79] M. Kanehisa, S. Goto, M. Hattori, et a!., "From genomics to chemical genomics: new 

developments in KEGG", Nuclei Acids Research, vol. 34, pp. D354-357, 2006. 

[80] R. S. Kerbel, "Molecular origins of cancer-tumor angiogenesis", New England 

Journal of Medicine, vol. 358, pp. 2039-2049, 2008. 

[81] R. S. Kerbel, "Supplementary to Molecular origins of cancer-tumour angiogenesis", 

New England Journal of Medicine, vol. 358, pp. 2039-2049, 2008. 

[82] H. A. Kestler, A. Muller, T. M. Gress, eta!, "VennMaster: Area- proportional Euler 

diagrams for functional GO analysis ofmicroarrays", BMC Bioinformatics, vol. 9, pp. 

67,2008. 

[83] E. Klipp, R. Herwig, A. Kowald, H. Wierling, and H. Lehrach, Systems Biology in 

Practice. Concepts, Implementation and Application, Wiley-VCH, Weinheim GmbH, 

2006. 

[84] V. N. Kim, "MicroRNA biogenesis: coordinated cropping and dicing", Nature 

Reviews Molecular Cell Biology, vol. 6, pp. 376--85, 2005. 

[85] K. Kimata, Y. Tanaka, T. Inada, and H. Aiba, "Expression of the glucose transporter 

gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in 

Escherichia coif', EMBOJournal, vol. 13, pp. 3587-3595, 2001. 

[86] A. Kobsa, "An empirical comparison of three commercial information visualization 

systems", Proceedings of IEEE Conference on Iriformation Visualization (IrifoVis 

2001), pp. 123-130, 2001. 

[87] K. Kojima, M. Nagasaki, E. Jeong, M. Kato, and S. Miyano, "An efficient grid layout 

algorithm for biological networks utilizing various biological attributes", BMC 

Bioinformatics, vol. 8, pp. 76, 2007. 



21() Bibliography 

[88] G. Kumar and M. Garland, "Visual exploration of complex time-varying graphs", 

IEEE Transactions of Visualization and Computer Graphics, vol. 12, pp. 805-812, 

2006. 

[89] J. Lee, Z. Li, R. Brower-Sinning, and B. John, "Regulatory circuit of human 

microRNA biogenesis", PLoS Computational Biology, vol. 3, pp. e67, 2007. 

[90] E. C. R. Lee and L. A. Megeney, "The yeast kinome displays scale free topology with 

functional hub clusters", BMC Bioinformatics, vol. 6, pp. 271, 2005. 

[91] I. Ladunga, "Finding homologs to nucleotide sequences using network BLAST 

searches", Current Protocol in Bioinformatics, Chapter 3 Unit 3.3, 2002. 

[92] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, and Z. Bar-Joseph, "Transcriptional 

regulatory networks in Saccharomyces cerevisiae", Science, vol. 298, pp. 799-804, 

2004. 

(93] S. Legewie, N. Bltithgen, R. Schafer, and H. Herzel, "Ultrasensitization: switch-like 

regulation of cellular signaling by transcriptional induction", PLoS Computational 

Biology, vol. I, pp. e54, 2005. 

[94] B. H. Liu, C. Goh, L. L. Ooi, and K. M. Hui, "Identification of unique and common 

low abundance tumor-specific transcripts by suppression subtractive hybridization and 

oligonucleotide probe array analysis", Oncogene, vol. 27, pp. 4128-4136, 2008. 

[95] X. Liu, L. Wang, K. Zhao, et a!., "The structural basis of protein acetylation by the 

p300/CBP transcriptional coactivator", Nature, vol. 451, pp. 846-850, 2008. 

[96] Y. Liu, H. I. Kao, and R. A. Bambara, "Flap endonuclease I: a central component of 

DNA replication", Annual Review of Biochemistry, vol. 73, pp. 589-615, 2004. 

[97] D. J. Lockhart, H. Dong, M. C. Byrne, et al., "Expression monitoring by hybridization 

to high-density oligonucleotide arrays", Nature Biotechnology, vol. 14, pp. 1675-

1680, 1996. 

[98] J. Loscalzo, I. Kohane, and A-. L. Barabasi, "Perspective: Human disease 

classification in the postgenomic era: A complex systems approach to human 

pathobiology", Molecular Systems Biology, vol. 3, pp. 124, 2007. 

(99] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova, "Entrez Gene: gene-centered 

information at NCBf', Nuclei Acids Research, vol. 33, pp. D54-58, 2005. 

[100] P. M. Magwene and J. Kim, "Estimating genomic coexpression networks using first­

order conditional independence", Genome Biology, vol. 5, pp. RlOO, 2004. 



211 Bibliography 

[101] A. Martinez-Antonio and J. Collado-Vides, "IdentifYing global regulators in 

transcriptional regulatory networks in bacteria", Current Opinion in Microbiology, 

vol. 6, pp. 482-489, 2003. 

[102] M. Migaud, P. Charlesworth, M. Dempster, eta!. "Enhanced long-term potentiation 

and impaired learning in mice with mutant postsynaptic density-95 protein", Nature, 

vol. 396, pp. 433-439, 1998. 

[103] N. Mitsuhashi, S. Kobayashi, T. Doki, et a!., "Clinical significance of alpha­

fetoprotein: involvement in proliferation, angiogenesis, and apoptosis of 

hepatocellular carcinoma", Journal ofGasteroenterology and Hepatology, vol. 23, pp. 

el89-197, 2008. 

[104] Y. Murakami, T. Yasuda, K. Saigo, et a!., "Comprehensive analysis of microRNA 

expression patterns in hepatocellular carcinoma and non-tumorous tissues", Oncogene, 

vol. 25, pp. 2537-2545, 2006. 

[105] T. W. Nam, S-. H. Cho, D. Shin, et a!., "The Escherichia coli glucose transport 

enzyme IICBGlc recruits the global repressor Mlc", EMBO Journal, vol. 20, pp. 491-

498, 2001. 

[I 06] C. North, T. M. Rhyne, and K. Duca, "Bioinformatics visualization: introduction to 

the special issue", Information Visualization, vol. 4, pp. 147-148, 2005. 

[107] T. Odom, R. D. Dowell, E. S. Jacobsen, et a!., "Core transcriptional regulatory 

circuitry in human hepatocytes", Molecular Systems Biology, vol. 2, article no. 

2006.0017, 2006. 

[108] B. Perbel, "CCN proteins: multifunctional signalling regulators", Lancet, vol. 363, pp. 

62-64, 2004. 

[I 09] A. Perer and B. Shneiderman, "Balancing systematic and flexible exploration of social 

networks", IEEE Transactions on Visualization and Computer Graphics, vol. 12, pp. 

693-700, 2006. 

[!!OJ A. Perrenoud and U. Sauer, "Impact of global transcriptional regulation by areA, arcB, 

era, crp, cya, fur, and mlc on glucose catabolism in Escherichia coli", Journal of 

Bacteriology, vol. 187, pp. 3171-3179,2005. 

[Ill] F. Petrocca, A. Vecchione, and C. M. Croce, "Emerging role ofmiR-106b-25/miR-17-

92 clusters in the control of transforming growth factor ~ signaling", Cancer 

Research, vol. 68, pp. 8191-8195,2008. 



21M Bibliography 

[112] F. Petrocca, R. Visone, M. R. Onelli, et a!., "E2Fl-regulated microRNAs impair 

TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer", Cancer Cell, 

vol. 13, pp. 272-286, 2008. 

[I !3] N. Planque, "Nuclear trafficking of secreted factors and cell-surface receptors", Cell 

Communication and Signaling, vol. 4, pp. 7, 2006. 

[114] J. Plumbridge, "Regulation of gene expression in the PTS in Escherichia coli: the role 

and interactions ofMlc", Current Opinion in Microbiology, vol. 5, pp. 187-193,2002. 

[115] G. Rigaut, A. Shevchenko, B. Rutz, eta!., "A generic protein purification method for 

protein complex characterization and proteome exploration", Nature Biotechnology, 

vol. 17, pp. 1030-1032, 1999. 

[116] A. W. Rives and T. Galitski, "Modular organization of cellular network", Proceedings 

of the National Academy of Sciences USA, vol. 100, pp. 1128-1133, 2003. 

[117] J. D. Saffer, V. L. Burnett, G. Chen, and P. van der Spek, "Visual analytics in the 

pharmaceutical industry", IEEE Computer Graphics and Applications, vol. 24, pp. 10-

15, 2004. 

[118] S. Saito, H. Ojima, H. Ichikawa, S. Hirohashi, and T. Kondo, "Molecular background 

of alpha-fetoprotein in liver cancer cells as revealed by global RNA expression 

analysis", Cancer Science, vol. 99, pp. 2402-2409, 2008. 

[119] D. G. Stathakis, K. B. Hoover, Z. You, and P. J. Bryant, "Human postsynaptic 

density-95 (PSD95): location of the gene (DLG4) and possible function in nonneural 

as well as in neural tissues", Genomics, vol. 44, pp. 71-82, 1997. 

[120] L-. X. Qin, "An integrative analysis of microRNA and mRNA expression-a case 

study'', Cancer Informatics, vol. 6, pp. 369-379, 2008. 

[121] J. Rachlin, D. D. Cohen, C. Cantor, and S. Kasif, "Biological context networks: a 

mosaic view of the interactome", Molecular Systems Biology, vol. 2, article no. 66, 

2006. 

[122] G. Rao and D. Mingay, "Reports on usability testing of Census Bureau's dynamaps 

CD-ROM product", http://infovis.cs.vt.edu/cs5764/oapers/dvnamapsUsabilitv.pdf, 

2001. 

[123] S. Raza, K. A. Robertson, P. A. Lacaze, et a!., "A logic-based diagram of signaling 

pathways central to macrophages", BMC Systems Biology, vol. 2, pp. 36, 2008. 

[124] C. Reas and B. Fry, Processing:A Programming Handbook for Visual Designers and 

Artists, MIT Press, Massachusetts, 2007. 



21'1 Bibliography 

[125] D. M. Reif, S. M. Dudek, C. M. Shaffer, J. Wang, and J. H. Moore, "Exploratory 

visual analysis of pharmacogenomic results", Pacific Symposium on Biocomputing, 

vol. 10, pp. 296-307, 2005. 

[126] B. Ren, G. Yu, G. C. Tseng, et a!., "MCM7 amplification and overexpression are 

associated with prostate cancer progression", Oncogene, vol. 25, pp. 1090-1098, 2006. 

[127] T. M. Rhyne, "Visualization Viewpoints: Does the difference between information 

and scientific visualization really matter?", IEEE Computer Graphics and 

Applications, vol. 23, pp. 6-8, 2003. 

[128] J. Rieman, "A field study of exploratory learning strategies", ACM Transactions on 

Computer-Human Interaction, vol. 3, pp. 189-218, 1996. 

[129] F. Rodier, J. Campisi, and D. Bhaumik, "The two faces of p53: aging and tumor 

suppression", Nuclei Acids Research, vol. 35, pp. 7475-7484, 2007. 

[130] J. Rougemont and P. Hingamp, "DNA microarray data and contextual analysis of 

correlation graphs", BMC Bioinformatics, vol. 4, pp. 15, 2003. 

[131] N. Salomonis, K. Hanspers, A. C. Zambon, et al., "GenMAPP 2: new features and 

resources for pathway analysis", BMC Bioinformatics, vol. 8, pp. 217, 2007. 

[132] L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg. 

"The Database of Interacting Proteins: 2004 update", Nuclei Acids Research, vol. 32, 

pp. D449-451, 2004. 

[133] R. Santamaria, R. Theron, and L. Quintales, "A visual analytics approach for 

understanding biclustering results from microarray data", BMC Bioinformatics, vol. 9, 

pp. 247, 2008. 

[ 134] P. Saraiya, C. North, and K. Duca, "Visualization for biological pathways: 

requirements analysis, systems evaluation and research agenda", Information 

Visualization, vol. 4, pp. 191-205,2005. 

[135] P. Saraiya, C. North, V. Lam, and K. A. Duca, "An insight-based longitudinal study of 

visual analytics", IEEE Transactions on Visualization and Computer Graphics, vol. 

12, pp. 1511-1522,2006. 

[136] E. W. Sayers, T. Barrett, D. A. Benson, et a!., "Database resources of the National 

Center for Biotechnology Information", Nuclei Acids Research, vol. 37, pp. D5-15, 

2009. 

[137] R. A. Sclafani and T. M. Holzen, "Cell cycle regulation of DNA replication", Annual 

Review on Genetics, vol. 41, pp. 237-280, 2007. 



LlU Bibliography 

[138) R. Shalgi, D. Lieber, M. Oren, and Y. Pilpel, "Global and local architecture of the 

mammalian rnicroRNA--transcription factor regulatory network", PloS Computational 

Biology, vol. 3, pp. el31, 2007. 

[139) S. Shankar and R. K. Srivastava, "Histone deacetylase inhibitors: mechanisms and 

clinical significance in cancer: HDAC inhibitor-induced apoptosis", Advances in 

Experimental Medicine and Biology, vol. 615, pp. 261-298,2008. 

[140) P. Shannon, A. Markiel, 0. Ozier, et a!., "Cytoscape: A software environment for 

integrated models of biomolecular interaction networks", Genome Research, vol. 13, 

pp.2498-2504,2003. 

[141) B. Shneiderman, "The eyes have it: A task by data type taxonomy for information 

visualizations", Proceeding of the IEEE Symposium on Visual Languages, pp. 336-

343, 1996. 

[142) T. Shlomi, Y. Eisenberg, R. Sharan, and E. Ruppin, "A genome-scale computational 

study of the interplay between transcriptional regulation and metabolism", Molecular 

Systems Biology, vol. 3, article no. 101,2007. 

[143) T. Soukup, Visual Data Mining: Techniques and Tools for Data Visualization and 

Mining, John Wiley and Sons Inc., 2002. 

[144) R. Spence, "A framework for navigation", International Journal of Human-Computer 

Studies, vol. 51, pp. 919-945, 1999. 

[145] D. Stekel, "Analysis of relationships between genes, tissues or treatments", 

Microarray Informatics, Cambridge University Press, pp. 139-182, 2003. 

[146) R. Stevens, C. Goble, P. Baker, and A. Brass, "A classification of tasks in 

bioinformatics", Bioiriformatics, vol. 17, pp. 180-188, 2001. 

[147) J. M. Stuart, E. Segal, D. Koller, and S. K. Kim, "A gene co-expression network for 

global discovery of conserved genetic modules", Science, vol. 302, pp. 249-255, 2003. 

[148) M. Suderman and M. Hallett, "Tools for visually exploring biological networks", 

Bioinformatics, vol. 23, pp. 2651-2659,2007. 

[149) K. Sugiyama, S. Tagawa, and M. Toda, "Methods for visual understanding of 

hierarchical system structures", IEEE Transactions on Systems, Man, and Cybernetics, 

vol. II, pp. 109-125, 1981. 

[150) R. Taylor and G. R. Stark, "Regulation of the G2/M transition by p53", Oncogene, 

vol. 20, pp. 1803-1815, 200 I. 



Ul Bibliography 

[151] The UniProt Consortium, "The universal protein resource (UniProt)", Nuclei Acids 

Research, vol. 35, pp. 0193-197, 2007. 

[152] V. S. Tompkins, J. Hagen, A. A. Frazier, eta!., "A novel nuclear interactor of ARF 

and MDM2 (NIAM) that maintains chromosomal stability", Journal of Biological 

Chemistry, vol. 282, pp. 1322-1333, 2007. 

[153] M.A. Valencia-Sanchez, J. Liu, G. J. Hannon, and R Parker, "Control of translation 

and mRNA degradation by miRNAs and siRNAs", Genes and Development, vol. 20, 

pp. 515-524,2006. 

[!54] J. M. G. Vilar, R. Jansen, and C. Sander, "Signal processing in the TGF-~ ligand­

receptor network", PLoS Computational Biology, vol. 2, article no. e3, 2006. 

[155] S. Violinia, G. A. Calin, C-. G. Liu, eta!., "A microRNA expression signature of 

human solid tumors defines cancer gene targets", Proceedings of the National 

Academy of Sciences U.S.A., vol. 103, pp. 2257-2261, 2006. 

[156] M. Vivo, R. A. Calogero, F. Sansone, et a!., "The human tumor suppressor arf 

interacts with spinophilin/neurabin II, a type I protein-phosphatase-binding protein", 

Journal of Biological Chemistry, vol. 276, pp. 14161-14169,2001. 

[157] G. J. Walker and N. K. Hayward, "p161NK4A and p14ARF tumour suppressors in 

melanoma: lessons from mouse", Lancet, vol. 359, pp. 7-9, 2002. 

[158] Y. Ward, S. Gupta, P. Jensen, M. Wartmann, R. J. Davis, and K. Kelly, "Control of 

MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase 

PAC!", Nature, vol. 367, pp. 651-654, 1994. 

[159] C. Ware, Information Visualization: Perception for Design, Morgan Kauffman, 2000. 

[160] T. S-. F. Wang, "DNA replication in eukaryotic cells", Annual Review in 

Biochemistry, vol. 60, pp. 513-552, 1991. 

[161] D. Wigle and I. Jurisica, "Cancer as a system failure", Cancer Informatics, vol. 2, pp. 

10-18,2007. 

[162] M. Wilkins and S. K. Kurnmerfeld, "Sticking together? Falling apart? Exploring the 

dynamics of the interactome", Trends in Biochemical Sciences, vol. 33, pp. 195-200, 

2008. 

[163] D. M. Williams and M. C. Ebach, "Homologues and Homology", Foundations of 

Systematics and Biogeography, Springer, pp. 126-138, 2008. 



LLL Bibliography 

[164] P. C. Wong, H. Foote, G. Chin, P. Mackey, and K. Perrine, "Graph signatures for 

visual analytics", IEEE Transactions on Visualization and Computer Graphics, vol. 

12, pp. 1399-1413,2006. 

[165] S. Wu, N. M. Lourette, N. Tolic, et al., "An integrated top-down and bottom-up 

strategy for broadly characterizing protein isoforms and modifications", Journal of 

Proteome Research, vol. 8, pp. 1347-1357, 2009. 

[166] Y. Wu, Y. Cai, J. Aquilo, T. Dai, Y. Ao, and Y. J. Wan, "RXRalpha mRNA 

expression is associated with cell proliferation and cell cycle regulation in Hep3B 

cell", Experimental and Molecular Pathology, vol. 76, pp. 24-28, 2004. 

[167] C. -H. Yeang and M. Vingron, "A joint model of regulatory and metabolic networks", 

BMC Bioinformatics, vol. 7, pp. 332, 2006. 

[168] H. Yu, P. M. Kim, E. Sprecher, V. Trifonov, and M. Gerstein, "The importance of 

bottlenecks in protein networks: correlation with gene essentiality and expression 

dynamics", PloS Computational Biology, vol. 3, article no. e59, 2007. 

[ 169] B. R. Zeeberg, H. Qin, S. Narasimhan, et al., "High-Throughput GO Miner, an 

industrial strength integrative gene ontology tool for interpretation of multiple 

microarray experiments, with applications to studies of Common Variable Immune 

Deficiency (CVID)", BMC Bioinformatics, vol. 6, pp. 168, 2005. 

[170] B. Zhang, X. Pan, G. P. Cobb, and T. A. Anderson, "microRNAs as oncogenes and 

tumor suppressors", Developmental Biology, vol. 302, pp. 1-12, 2007. 

[171] B. Zhang, D. Schmoyer, S. Kirov, and J. Snoddy, "GOTree Machine (GOTM) a web­

based platform for interpreting sets of interesting genes using Gene Ontology 

hierarchies", BMC Bioinformatics, vol. 5, pp. 16, 2004. 

[172] T. Zuk and M.S. T. Carpendale, "Theoretical analysis of uncertainty visualizations", 

Proceedings of SPIE and IS&T Conference on Electronic Imaging, Visualization and 

Data Analysis, vol. 6060, pp. 606007,2006. 

[173] M. C. F. de Oliveira and H. Levkowitz, "From visual data exploration to visual data 

mining: a survey", IEEE Transactions on Visualization and Computer Graphics, vol. 

9,pp.378-394,2003. 

[174] D. A. Keirn, "Information visualization and visual data mining", IEEE Transactions 

on Visualization and Computer Graphics, vol. 8, pp. 1-8, 2002. 



Bibliography 

[175] I. Herman, "Graph visualization and navigation in information visualization: a 

survey", IEEE Transactions on Visualization and Computer Graphics, vol. 6, pp. 24-

43,2000. 

[176] I. G. Tallis, G. di Battista, P. Eades, and R. Tamassia, Graph Drawing: Algorithms for 

the Visualization of Graphs, Prentice Hall, 1998. 

[177] U. Brandes, "Drawing on physical analogies", Lecture Notes in Computer Science, 

vol. 2025, Springer, pp. 71-86, 200 I. 

[178] F. Iragne, M. Nikolski, B. Mathieu, D. Auber, and D. Sherman, "ProViz: protein 

interaction visualization and exploration", Bioiriformatics, vol. 21, pp. 272-274, 2005. 

[179] K. C. Gunsalus, H. Ge, A. J. Schetter, et a!., "Predictive models of molecular 

machines involved in Caenorhabditis elegans early embryogenesis", Nature, vol. 436, 

pp. 861-865, 2005. 

[180] M. A. Pujana, J. D. Han, L. M. Starita, eta!., "Network modeling links breast cancer 

susceptibility and centrosome dysfunction", Nature Genetics, vol. 39, pp. 1338-1349, 

2007. 

[ 181] E. M. Schmid and H. T. McMahon, "Integrating molecular and network biology to 

decode endocytosis", Nature, vol. 448, pp. 883-888, 2007. 

[182] A. Budhu, M. Forgues, Q. H. Ye, eta!., "Prediction of venous metastases, recurrence, 

and prognosis in hepatoceUular carcinoma based on a unique immune response 

signature of the liver microenvironment", Cancer Cell, vol. 10, pp. 99-111,2006. 

[183] S. H. Hong, "MultiPlane: a new framework for drawing graphs in three (2Y,) 

dimensions", A VJ'06, Venice, Italy, May 2006. 

[184] C. J. Alpert and A. B. Kahng, "Recent developments in netlist partitioning: A survey", 

Integration: the VLSI Journal, vol. 19, pp. 1-81, 1995. 

[185] G. Even, J. Naor, S. Rao, and B. Schieber, "Fast approximate graph partitioning 

algorithms", SIAM Journal on Computing, vol. 28, no. 6, pp. 2187-2214, 1999. 

[186] M. Kaufmann and D. Wagner, (ed), "Drawing graphs: methods and models", Lecture 

Notes in Computer Science Tutorial 2025, Springer Verlag, 2001. 

[187] J. Ho and S. Hong, "Drawing clustered graphs in three dimensions", Proceedings of 

Graph Drawing, 2005. 



RARE BOOKS LIB. 

1 l. ~AY 20JO 



.l.2868S£L90000000 

Ill ~1111111111 ~/IIIII ~ 11111111111111 ~ lllll/11/lllllllllllllllll~ Ill A~V~811 A3NOAS ~0 AliS~3AINn 


