2,014 research outputs found

    Biological learning and artificial intelligence

    Get PDF
    It was once taken for granted that learning in animals and man could be explained with a simple set of general learning rules, but over the last hundred years, a substantial amount of evidence has been accumulated that points in a quite different direction. In animal learning theory, the laws of learning are no longer considered general. Instead, it has been necessary to explain behaviour in terms of a large set of interacting learning mechanisms and innate behaviours. Artificial intelligence is now on the edge of making the transition from general theories to a view of intelligence that is based on anamalgamate of interacting systems. In the light of the evidence from animal learning theory, such a transition is to be highly desired

    A Cognitive Science Based Machine Learning Architecture

    Get PDF
    In an attempt to illustrate the application of cognitive science principles to hard AI problems in machine learning we propose the LIDA technology, a cognitive science based architecture capable of more human-like learning. A LIDA based software agent or cognitive robot will be capable of three fundamental, continuously active, humanlike learning mechanisms:\ud 1) perceptual learning, the learning of new objects, categories, relations, etc.,\ud 2) episodic learning of events, the what, where, and when,\ud 3) procedural learning, the learning of new actions and action sequences with which to accomplish new tasks. The paper argues for the use of modular components, each specializing in implementing individual facets of human and animal cognition, as a viable approach towards achieving general intelligence

    Can Rats Reason?

    Get PDF
    Since at least the mid-1980s claims have been made for rationality in rats. For example, that rats are capable of inferential reasoning (Blaisdell, Sawa, Leising, & Waldmann, 2006; Bunsey & Eichenbaum, 1996), or that they can make adaptive decisions about future behavior (Foote & Crystal, 2007), or that they are capable of knowledge in propositional-like form (Dickinson, 1985). The stakes are rather high, because these capacities imply concept possession and on some views (e.g., Rödl, 2007; Savanah, 2012) rationality indicates self-consciousness. I evaluate the case for rat rationality by analyzing 5 key research paradigms: spatial navigation, metacognition, transitive inference, causal reasoning, and goal orientation. I conclude that the observed behaviors need not imply rationality by the subjects. Rather, the behavior can be accounted for by noncognitive processes such as hard-wired species typical predispositions or associative learning or (nonconceptual) affordance detection. These mechanisms do not necessarily require or implicate the capacity for rationality. As such there is as yet insufficient evidence that rats can reason. I end by proposing the ‘Staircase Test,’ an experiment designed to provide convincing evidence of rationality in rats

    The robot vibrissal system: Understanding mammalian sensorimotor co-ordination through biomimetics

    Get PDF
    Chapter 10 The Robot Vibrissal System: Understanding Mammalian Sensorimotor Co-ordination Through Biomimetics Tony J. Prescott, Ben Mitchinson, Nathan F. Lepora, Stuart P. Wilson, Sean R. Anderson, John Porrill, Paul Dean, Charles ..

    Spatial Learning and Localization in Animals: A Computational Model and Its Implications for Mobile Robots

    Get PDF
    The ability to acquire a representation of spatial environment and the ability to localize within it are essential for successful navigation in a-priori unknown environments. The hippocampal formation is believed to play a key role in spatial learning and navigation in animals. This paper briefly reviews the relevant neurobiological and cognitive data and their relation to computational models of spatial learning and localization used in mobile robots. It also describes a hippocampal model of spatial learning and navigation and analyzes it using Kalman filter based tools for information fusion from multiple uncertain sources. The resulting model allows a robot to learn a place-based, metric representation of space in a-priori unknown environments and to localize itself in a stochastically optimal manner. The paper also describes an algorithmic implementation of the model and results of several experiments that demonstrate its capabilities

    Learning cognitive maps: Finding useful structure in an uncertain world

    Get PDF
    In this chapter we will describe the central mechanisms that influence how people learn about large-scale space. We will focus particularly on how these mechanisms enable people to effectively cope with both the uncertainty inherent in a constantly changing world and also with the high information content of natural environments. The major lessons are that humans get by with a less is more approach to building structure, and that they are able to quickly adapt to environmental changes thanks to a range of general purpose mechanisms. By looking at abstract principles, instead of concrete implementation details, it is shown that the study of human learning can provide valuable lessons for robotics. Finally, these issues are discussed in the context of an implementation on a mobile robot. © 2007 Springer-Verlag Berlin Heidelberg

    Spatial-learning and representation in animats

    Get PDF

    Biologically inspired computational structures and processes for autonomous agents and robots

    Get PDF
    Recent years have seen a proliferation of intelligent agent applications: from robots for space exploration to software agents for information filtering and electronic commerce on the Internet. Although the scope of these agent applications have blossomed tremendously since the advent of compact, affordable computing (and the recent emergence of the World Wide Web), the design of such agents for specific applications remains a daunting engineering problem;Rather than approach the design of artificial agents from a purely engineering standpoint, this dissertation views animals as biological agents, and considers artificial analogs of biological structures and processes in the design of effective agent behaviors. In particular, it explores behaviors generated by artificial neural structures appropriately shaped by the processes of evolution and spatial learning;The first part of this dissertation deals with the evolution of artificial neural controllers for a box-pushing robot task. We show that evolution discovers high fitness structures using little domain-specific knowledge, even in feedback-impoverished environments. Through a careful analysis of the evolved designs we also show how evolution exploits the environmental constraints and properties to produce designs of superior adaptive value. By modifying the task constraints in controlled ways, we also show the ability of evolution to quickly adapt to these changes and exploit them to obtain significant performance gains. We also use evolution to design the sensory systems of the box-pushing robots, particularly the number, placement, and ranges of their sensors. We find that evolution automatically discards unnecessary sensors retaining only the ones that appear to significantly affect the performance of the robot. This optimization of design across multiple dimensions (performance, number of sensors, size of neural controller, etc.) is implicitly achieved by the evolutionary algorithm without any external pressure (e.g., penalty on the use of more sensors or neurocontroller units). When used in the design of robots with limited battery capacities , evolution produces energy-efficient robot designs that use minimal numbers of components and yet perform reasonably well. The performance as well as the complexity of robot designs increase when the robots have access to a spatial learning mechanism that allows them to learn, remember, and navigate to power sources in the environment;The second part of this dissertation develops a computational characterization of the hippocampal formation which is known to play a significant role in animal spatial learning. The model is based on neuroscientific and behavioral data, and learns place maps based on interactions of sensory and dead-reckoning information streams. Using an estimation mechanism known as Kalman filtering, the model explicitly deals with uncertainties in the two information streams, allowing the robot to effectively learn and localize even in the presence sensing and motion errors. Additionally, the model has mechanisms to handle perceptual aliasing problems (where multiple places in the environment appear sensorily identical), incrementally learn and integrate local place maps, and learn and remember multiple goal locations in the environment. We show a number of properties of this spatial learning model including computational replication of several behavioral experiments performed with rodents. Not only does this model make significant contributions to robot localization, but also offers a number of predictions and suggestions that can be validated (or refuted) through systematic neurobiological and behavioral experiments with animals

    Robot spatial learning: Insights from animal and human behaviour

    Get PDF
    Robotics research could benefit by looking for clues in the understanding of natural systems for the design of artificial systems. The literature on spatial learning suggests that there is a great diversity of solutions to the problem of learning and navigating a large-scale system. There are characteristic properties that extend across species that may be applicable for designing autonomous mobile robots. Natural navigation systems have a common trait relating to the use of multiple subsystems for the control of behavior and the exploitation of dynamic, quantitative representations of space

    Animal minds: from computation to evolution.

    Get PDF
    notes: PMCID: PMC3427558types: Introductory Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2012 The Royal Society. Post print version deposited in accordance with SHERPA RoMEO guidelines. The definitive version is available at: http://rstb.royalsocietypublishing.org/content/367/1603/2670.longIn the great Darwinian struggle for existence, all animals must tackle the problems posed by variable environments, be it finding and processing food, recognizing and attracting potential mates, avoiding predators, outcompeting rivals or navigating back to nesting sites. Although the mental processes by which different species deal with such challenges are varied, all animals share the fundamental problem of having to cope with the sheer abundance of information in the environment, much of which is likely to be irrelevant to the task at hand.David Phillips Fellowship from the BBSRC (A.T.)The Human Frontiers Science Programme Organization (U.G.
    • 

    corecore