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Abstract 

Animat AI has generally emphasised learning of a 

dispositional, or task-specific nature over that of a 

representational or task-independent kind. However, 

many animals are capable of both forms of learning, 

and, in particular, exploit representational learning to 

construct spatial knowledge that allows efficient and 

flexible navigation behaviour. The focus on building 

versatile mobile robots may therefore force the 

development of representational learning systems in 

animat AI. This paper considers the navigation problem 

and argues against the view that qualitative spatial 

representations, encoding principally topological 

relations, may necessarily be simpler to construct, store, 

or use than more quantitative models. It further argues 

against constructing a unified or global representations 

of space suggesting instead that knowledge should be 

distributed between multiple, partial, local models 

encoding complimentary constraints which can be 

combined at run-time to address a specific navigation 

task. 

1. Learning in natural systems 

Research in psychology suggests that underlying a large 

number of observable phenomena of learning and memory, 

there are two broad clusters of learning processes1.  

First, there are the dispositional learning processes 

involved in habit formation, the acquisition of motor skills, 

                                                             
1For reviews of this extensive literature see [15, 43, 46]. 

and certain forms of classical and instrumental conditioning. 

These processes involve incremental adaptation and do not 

seem to need attention or awareness. Learning is generally 

task-specific in that it is driven by a significant outcome in 

the form of a positively or negatively reinforcing event. 

Further, it does not seem to require or involve the 

acquisition of knowledge about the causal processes 

underlying the task that is solved. 

Second, there are the representational2 learning 

processes involved in acquiring knowledge about the 

relationships between events (stimuli or responses). For 

instance, that one event follows another (causal knowledge), 

or is close to another (spatial knowledge). These forms of 

learning appear to be have more of an all-or-none character, 

and may require attentional resources. They are also not 

directly involved in generating behaviour, and need not be 

acquired with respect to a specific task or desired outcome. 

The knowledge acquired can support both further learning 

or decision-making through inference.   

Lesion studies with animals and patterns of learning 

impairment in human amnesiacs indicate that in mammals 

this second style of learning relies on specific medial-

temporal structures in the brain, in particular, the 

hippocampus. In contrast the simpler associative forms of 

learning underlying habit and skill acquisition are not 

affected by damage to this brain region, but appear instead 

to be supported by neural systems that evolved much earlier. 

This view is supported by observations that all vertebrates 

                                                             
2The terms dispositional  and representational  have been 

suggested by Thomas [47] and Morris [29] to refer to these two 

clusters of learning/memory processes. 



 

     

and most invertebrates show dispositional learning abilities, 

whereas representational learning styles have evolved 

primarily in higher vertebrates coinciding with  increased 

brain-size.  

2. The Animat approach 

The shared interest in adaptive systems, between 

psychologists and ethologists, on the one hand, and 

Artificial Intelligence researchers and roboticists on the 

other, has recently seen the development of a new inter-

disciplinary research field. The common aim of ‘Animat’ 

(simulated animal) (Wilson [51]) research is to understand 

how autonomous agents—animals, simulated animals, 

robots, or simulated robots—can survive and adapt in their 

environments, and be successful in fulfilling needs and 

achieving goals.  

Some important themes in much of this work (see, for 

instance [28]) are as follows: control in the agent is not 

centralised but is distributed between multiple task-oriented 

modules; there is minimal reliance on internal world models 

and on reasoning or planning processes; instead there is an 

emphasis on the role of the agent’s interaction with its 

environment in driving the selection and performance of 

appropriate, generally reflexive, behaviours; perception is 

targeted at acquiring task-relevant information rather than 

delivering a general description of the current state of the 

perceived world . 

The animat approach is thus in good accord with 

dispositional learning approaches (such as reinforcement 

learning) to the adaptation of behavioural competences. In 

view of the aim of building complete intelligent systems in 

an incremental, and bottom-up fashion this is wholly 

consistent with the earlier observation that learning in 

simpler animals is principally of a dispositional nature. 

However, the development of this research paradigm is 

already beginning to see the need for some representational 

learning. One reason for this is the emphasis on mobile 

robotics as the domain of choice for investigating animat 

AI. 

3. Navigation as a forcing domain 

The fundamental skill required by a mobile agent is the 

ability to move around in the immediate environment 

quickly and safely, this will be referred to here as local 

navigation competence. Research in animat AI has had 

considerable success in using pre-wired reactive 

competences to implement local navigation skills (e.g. [3, 

10, 45]). The robustness, fluency, and responsiveness of 

these systems have played a significant role in promoting 

the animat methodology as a means for constructing 

effective, autonomous robots. The possibility of acquiring 

adaptive local navigation competences through 

reinforcement learning has also been investigated and has 

been advanced as an appropriate mechanism for learning or 

fine-tuning such skills [31, 40].  

However, a second highly valuable form of navigation 

expertise is the ability to find and follow paths to desired 

goals outside the current visual scene. This skill will be 

referred to here as way-finding. The literature on animal 

spatial learning differentiates the way-finding skills of most 

invertebrates and lower vertebrates, from those of higher 

vertebrates (birds and mammals). In particular, it suggests 

that way-finding in most invertebrates is performed 

primarily by using path integration mechanisms and 

compass senses and secondarily by orienting to specific 

remembered stimulus patterns [49, 50][4-6]. This suggests 

that these animals do not construct models of the spatial 

layout of their environment and that consequently, their 

way-finding behaviour is relatively inflexible and restricted 

to homing or retracing familiar routes3. In contrast, higher 

vertebrates appear to construct and use representations of 

the spatial relations between locations in their environments 

(see, for example, [13, 32, 33, 35]). They are then able to 

use these models to select and follow paths to desired goals. 

This form of spatial learning is often regarded as the classic 

example of a representational learning process (e.g. [43]). 

This evidence has clear implications for research in 

animat AI. First, it suggests that systems employing 

minimal representation and reactive competences could 

support way-finding behaviour similar to that of 

invertebrates4. Second, however, the acquisition of more 

flexible way-finding skills would appear to require 

representational learning abilities—this raises the interesting 

issue of how control and learning architectures in animat AI 

should be developed to meet this need.  

4. How should space be represented? 

In keeping with the animat approach it would seem 

reasonable to require the on-line acquisition of appropriate 

                                                             
3Gould [14] has proposed a contrary view that insects do 

construct models of spatial layout however, the balance of 

evidence (cited above) appears to be against this position. 
4In particular it should be possible to exploit the good 

odometry information available to mobile robots.  



 

     

spatial knowledge, and the use of representations that are 

simple to construct and use, cheap to store, and support a 

‘graceful degradation’ of performance when confronted 

with unreliable sensory data. What forms of representational 

learning might satisfy these criteria?  

Some recent research on robot way-finding has sought to 

address this challenge by advocating a substantial change in 

the character of the systems under investigation. 

Specifically, the emphasis of ‘classical’ AI methods on 

detailed path-planning using metric models of the 

environment (e.g. [8, 11, 16, 24, 41, 48]) has been rejected 

by some researchers in favour of the use of more 

‘qualitative’ methods and models (e.g. [10, 17-19, 21-23, 

25, 26, 30]). In these systems metric modelling and 

wayfinding is often regarded as supplementary to a core 

level of navigation skill based, primarily, on representations 

of topological spatial relations. This approach has, as part of 

its motivation, the perceived inadequacies of classical 

systems which are regarded as over-reliant on accurate 

sensing and detailed world models. It is suggested that such 

systems are both too ‘brittle’ in the face of degraded or 

missing sensory information, and too costly in terms of the 

computational and memory resources they require. 

A second motivation for investigating topological spatial 

models is research on human way-finding. Much of this 

literature follows a theory originating with Piaget [36] that 

human spatial knowledge has a hierarchical structure and is 

acquired through a stage-like process. Specifically, Piaget, 

and later Siegel and White [44], have argued that a 

fundamental stage in the acquisition of spatial knowledge is 

the construction of qualitative models of the environment 

from more elementary sensorimotor associations. This 

representation is then gradually supplemented by distance 

and direction information to form a more detailed 

quantitative map. An important element of this theory is the 

view that a primarily topological representation can support 

robust way-finding behaviour in everyday environments. 

Computational models inspired by the human way-finding 

literature have been described by Leiser [22] and by Kuipers 

[18-21]. The latter in particular has developed a number of 

robot simulations of considerable sophistication and detail 

based on the hypothesis of a hierarchical representation of 

spatial knowledge. The following extract serves to illustrate 

this theoretical position, which has been influential in other 

recent work on robot way-finding  (e.g. [23]): 

“There is a natural four-level semantic hierarchy of 

descriptions of large-scale space that supports robust 

map-learning and navigation: 

1. Sensorimotor: The traveller’s input-output 

relations with the environment. 

2.  Procedural: Learned and stored procedures defined 

in terms of sensori-motor primitives for 

accomplishing particular instances of place-finding 

and route-following tasks. 

3.  Topological:  A description of the environment in 

terms of fixed entities, such as places, paths, 

landmarks, and regions, linked by topological 

relations such as connectivity, containment and 

order. 

4.  Metric:  A description of the environment in terms 

of fixed entities [...] linked by metric relations such 

as relative distance, relative angle and absolute 

angle and distance with respect to a frame of 

reference. 

In general, although not without exception, assimilation 

of the cognitive map proceeds from the lowest level of 

the spatial semantic hierarchy to the highest, as 

resources permit. The lower levels of the cognitive map 

can be created accurately without depending greatly on 

computational resources or observational accuracy. A 

complete and accurate lower level map improves the 

interpretation of observations and the creation of higher 

levels of the map.” ([21], p. 26) 

In many respects this view is highly acceptable, for 

instance, the proposal that spatial knowledge is organised in 

distinct components encoding separate forms of constraint is 

a welcome contrast to the traditional approach of unitary 

global models. However, there are several implications of 

this view that are open to question. First it is important to 

ask in what sense the organisation of spatial knowledge 

should be viewed as hierarchical rather than heterarchical; 

second, to what degree global models, such as those 

described for the topological and metric levels, are required 

(as opposed to multiple overlapping local models); and 

finally, whether the emphasis on geometric content as the 

main distinguishing factor between models is correct.  



 

     

Some of these issues can be highlighted by contrasting 

the literature on human way-finding with much of the 

research from the wider field of animal navigation.  

In particular, this latter evidence suggests a discontinuity 

between procedural knowledge and the use of map-like 

metric spatial representations [13, 32, 33].   

For instance, in contrast to an incremental hierarchy, 

O’Keefe [32, 33] has argued that there are two 

fundamentally independent navigation systems used by 

mammals including man. The first of these, which he calls 

the taxon system is supported by route-like chains of 

stimulus× action ! stimulus associations. Each element in 

such a chain is an association that involves approaching or 

avoiding a specific cue, or performing a body-centred action 

(generally a rotation) in response to a cue. Taxon strategies 

therefore have a similar nature to the procedural knowledge 

in the second level of Kuipers hierarchy. O’Keefe’s second 

system, called the locale system, is, however, a ‘true’ 

mapping system in that it constructs a representational 

model describing the stimulus! stimulus  metric spatial 

relations between locations in the environment. Evidence 

for the existence of this system and its independence from 

taxon strategies consists of both observational and 

laboratory studies of animal behaviour, and 

neurophysiological studies suggesting that different brain 

structures underlie the two systems.  

Although the highest level of Kuipers’ hierarchy can be 

identified with O’Keefe’s locale system the former suggests 

a continuity—with assimilation of information onto 

‘weaker’ representations to generate the metric model, 

whereas the latter stresses the discontinuity and apparent 

autonomy of the two alternative mechanisms. A further 

difference is that O’Keefe’s theory bypasses the level of the 

topological map, if such a map exists it is as an abstraction 

from the full metric representation—this contrasts with 

Kuipers view in which the topological model is simpler and 

comes first.  

Gallistel [13], who provides an extensive review of 

research on animal navigation, also concludes that animals 

make considerable use of metric data for navigation. Like 

O’Keefe he also proposes a modular and autonomous 

mapping system that stores a metric representation of spatial 

layout5. 

5. Topological and/or Metric Modelling? 

The nature of the spatial relations encoded by a world 

model determines the type of navigation behaviour that can 

be supported. Procedural (or route) knowledge can only 

support movement along segments of known paths. 

Knowledge of the topological layout of the environment 

gains the navigator the ability to identify suitable sub-goals, 

and generate and follow novel routes between locations. 

However, because this knowledge is limited to knowing the 

connectivity of places navigation is constrained to using 

known path segments between adjacent sub-goals. A 

navigator with a topological map who enters unfamiliar 

territory can explore new paths and construct new map 

knowledge but cannot engage in goal-directed movement to 

target sites. The ability to determine short-cut or straight-

line routes across un-explored terrain requires knowledge of 

higher-order spatial relations. Where such behaviours are 

observed in animals this is usually taken as strong evidence 

for the use of a metric model. That such skills would be 

very useful to an animal or robot is undeniable giving a 

strong incentive for constructing and using knowledge of 

this type.  

Given the value of metric knowledge is there a 

justification for constructing, as the first or only form of 

spatial representation, models encoding weaker geometric 

constraints? One possible argument for such a view is the 

idea that a topological model could be constructed without 

the need to detect higher-order relations. Mathematically 

topological geometry is simpler and more basic than metric 

geometry—it requires fewer axioms. However, this 

mathematical simplicity perhaps belies the real difficulties 

of constructing topological knowledge in the absence of 

metric knowledge. I have argued elsewhere [39] that such a 

model is in general realisable only if the agent has sensory 

abilities that can be relied on to give accurate identification 

and re-identification of most locations (henceforth place 

identification), and that in practice this may require vision 

skills capable of object recognition or, at least, of very 

                                                             
5O’Keefe and Gallistel agree on the existence of a separate 

metric mapping system but largely disagree on the relative 

importance of dead reckoning and environmental fixes in 

constructing the map. This debate will be considered further 

below. 

 



 

     

robust visual pattern matching6. This fits uneasily with the 

bottom-up bias of Animat AI, and, indeed, with the current 

perceptual abilities of animat-style robots. Many systems 

currently use local sonar patterns to characterise different 

places. However, this sort of local geometry information is 

not likely to be sufficiently distinctive to allow the 

disambiguation of similar places. For this reason sonar 

patterns are often supplemented by odometry information in 

order to make the place identification task feasible (e.g. 

[25]). This need to exploit metric knowledge (albeit of a 

rough and ready kind) demonstrates the difficulty of 

topological mapping with non-visual sensory data7. 

The use of some approximate metric knowledge in 

model-building introduces the possibility that such 

information might be computed and exploited in 

constructing representations, but might not actually be 

explicitly recorded or used for way-finding. Given the 

advantages that metric knowledge of any sort can endow the 

main justification for this proposal must be that the cost or 

complexity of building (or using) such representation would 

outweigh its usefulness. This supposition, which may stem 

from the perceived weaknesses of some existing metric-

based systems, may, however, be premature. A distinctive 

characteristic of much research in quantitative model-

building has been an emphasis on combining all available 

information into a unique global model. One aim of this 

paper is to suggest that it is perhaps this characteristic, 

                                                             
6Some recent work on metric-free topological map-building 

for robot navigation has recognised this need for powerful visual 

processing e.g. 

[17]

. 
7The problem of constructing a topological map are eased 

considerably by introducing additional constraints to the map-

building process. One possible constraint is to limit the behavioural 

repertoire of the robot. One way this might be achieved is to force 

the robot to maintain a travel-path that follows object boundaries 

[25, 

30] . 

This constraint of ‘wall-following’ limits the connectivity of the 

resulting topological graph and reduces the number of true choice 

points (i.e. vertices in the graph of degree>2).  This eases the tasks 

of segmenting the environment (into the regions that form graph 

vertices) and of place identification, and also avoids the need to 

represent places that lack distinctive local features. This approach 

has lead to some successes in building way-finding systems for 

indoor autonomous robots, however, it also has an obvious cost—

open spaces will be poorly represented in the map and movement 

will be more rigidly limited to a small set of paths.  

rather than the use of quantitative information, that has 

contributed to the inflexibility and over-sensitivity to 

measurement error observed in some existing systems. 

6. Constructing metric models 

The task of building a representation of an environment 

that encodes distance and direction requires that places are 

located with respect to common coordinate frames. The 

coordinate frames most directly available are egocentric, 

that is, they are defined by the navigator’s instantaneous 

position and orientation in space. However, to construct a 

useful model, observations from different view-points must 

be integrated into representations with respect to 

environment-centred or allocentric frames. That is 

egocentric relations must be transformed to give allocentric 

spatial relations.  

The arguments that metric models are more complex or 

expensive to construct and use than more qualitative ones, 

generally concern the difficulties of obtaining accurate 

distance information (or failing that, dealing with noisy 

information), and the resource demands of the need for 

continuous transformations between egocentric and 

allocentric frames. However, there are representations and 

mechanisms that may overcome some of these objections. 

Specifically, distributed representations have been proposed 

[23, 38] in which the environment is represented using 

multiple models based on coordinate frames defined by 

distinctive local landmarks.  

 Two landmarks are sufficient to define a two-

dimensional coordinate frame (three for 3D), however, 

coordinate transformations based on such frames require 

non-linear computations (trigonometric functions and 

square-roots) and further require that an arbitrary ordering 

of the reference points is remembered in order to specify a 

unique coordinate frame. However, as Zipser [52] has 

pointed out, if a further landmark is used to define each 

local frame then all the transformation calculations become 

linear. In [38, 39] I have described a simulation based on 

this proposal in which the positions of salient goals are 

stored with respect to the two-dimensional co-ordinate 

frames8 defined by groups of three local landmarks. 

Multiple local frames are represented in a connectionist 

                                                             
8These coordinates are, strictly speaking affine rather than 

metric, however, sssuming that the agent detects metric egocentric 

spatial relation according to some calibrated Euclidean measure, 

metric relations—direction and distance—will be recoverable from 

a stored affine model. 



 

     

network in which the task of determining direction or route 

information to a desired goal is performed by a parallel, 

‘spreading activation’ search. The computations required to 

construct these representations from (noisy) egocentric 

metric data require only linear mathematics (indeed a simple 

‘perceptron’-like learning rule will suffice) and have 

memory requirements roughly proportional to the number of 

goal-sites and landmarks stored. While following a planned 

route the system can also exploit run-time error-correction 

by incorporating egocentric fixes on sighted landmarks. 

This makes the route following system highly robust to 

noise in the representation or perceptual system. 

In contrast to approaches in which the goal is to 

construct a permanent ‘map’ of environmental layout (in 

which position errors are minimised or explicitly modelled) 

this approach builds no long-term static representation of 

global spatial relations. Instead the store of knowledge 

concerning a specific goal or landmark is distributed across 

a number of local models in the network allowing the 

constraint information to be combined at run-time for any 

given task. Methods for combining different constraints 

using Kalman filtering techniques are currently being 

investigated.  

7. A ‘multiple schemata’ view 

This last section is an attempt to set out a perspective on 

the acquisition of representations of space. In contrast to 

Kuipers’ hierarchical approach in which global topological 

and metric models are constructed, it proposes a heterarchy 

of local models in which the geometric distinction is only 

one among a number of characteristics identifying 

complimentary representational forms.  Following Michael 

Arbib [1, 2], I call this a ‘multiple schemata’ view.   

 Arbib has proposed the use of the term schemata to 

describe active representational systems or “perceptual 

structures and programs for distributed motor control” ([1] 

p. 47). In the context of constructing and using models of 

space he suggests— 

“The representation of [...] space in the brain is not one 

absolute space, but rather a patchwork of approximate 

spaces (partial representations) that link sensation to 

action. I mean ‘partial’ and ‘approximate’ in two 

senses: a representation will be partial because it 

represents only one small sample of space (...), and it 

will be approximate in that it will be based on an 

incomplete sample of sensory data and may be of 

limited accuracy and reliability. I will suggest that our 

behaviour is mediated by the interaction of these 

partial representations: both through their integration 

to map ever larger portions of the territory relevant to 

behaviour, and through their mutual calibration to 

yield a shared representation more reliable than that 

obtained by any one alone.” ([2] p. 380) 

In the specific context of cognitive maps, he also 

suggests that: 

“There is no reason, in general, to expect the system to 

use Euclidean space or Cartesian coordinates for such 

a map. Rather, the system needs a whole array of local 

representations that are easily interfaced and moved 

between.” ([1] p. 47). 

The view advocated here is, I hope, in close accord with 

these ideas.  

Spatial information can be picked-up through multiple 

sensory modalities in a number of different guises and 

forms. This information may describe spatial relations upto 

any level of geometric richness (topological—metric) it may 

also be anywhere on a scale from precise to vague. Each 

piece of information can be viewed as supplying a potential 

constraint that can assist navigation.  

I propose that the critical distinction with regard to 

different forms of constraint information has less to do with 

the geometric content of the knowledge and more with the 

process by which that knowledge is derived. For instance, 

metric information derived from odometry is (to a large 

extent) independent from metric information determined by 

perceived distance and direction to identifiable salient 

landmarks. These two forms of quantitative knowledge thus 

provide constraints that are  complimentary because they 

derive from different sensory modalities. Multiple 

constraints can also be obtained from within a single 

sensory modality by observing different environmental cues. 

For instance, the observed position of a single distant 

landmark (such as the sun) gives a direction constraint that 

is essentially independent from spatial localisation with 

respect to local landmarks. Indeed, different individual 

landmarks or landmark groups can supply separate 

constraints as has been demonstrated in [23, 38]. Finally, 

relatively independent constraints can arise within a 

modality by reference to the same external cues but by 

employing different computational mechanisms. It is in this 

sense, perhaps, that the distinction between different 

geometries may be most relevant. For instance, the visual 



 

     

characteristics of landmarks might be used to construct 

knowledge of topological relations that is largely 

independent of the mechanisms that extract distance or 

direction from the visual scene.  

To the extent that different constraints are independent 

two constraints will clearly be much more powerful than 

one, three more than two, etc. It therefore seems reasonable 

to suggest that an agent should seek to detect and represent a 

number of independent or near independent constraints that 

describe the spatial relations between important places.  

The emphasis of a multiple schemata approach is not on 

constructing unified representations such as topological or 

metric maps but rather on establishing multiple 

complimentary spatial descriptions. Each schema should 

exploit a different combination of cues, channels, and 

mechanisms to instantiate a set of environmental spatial 

relations. Thus, there will overall, be a number of relatively 

distinct path-ways through which knowledge is acquired. 

This suggests a heterarchy of models (as opposed to a 

hierarchy), with some, but not all, schemata sharing 

common sources and resources. At any time an agent should 

exploit the knowledge in several schemata to support its 

current navigation task. Although some tasks may require 

the temporary creation of a unified model (drawing a 

graphical map of the environment might constitute such a 

task) in general the underlying representations can remain 

distinct allowing the reliability of each source of 

information to be assessed at run-time. 

Way-finding should exploit acquired schemata via 

arbitration procedures which decide on the basis of the 

content and accuracy of each active model the extent to 

which it should contribute to the decision process. This 

arbitration could be carried out through some fixed 

subsumption mechanism whereby, for instance, knowledge 

determined from large-scale metric relations could override 

taxon (route-following) strategies. Alternatively a more 

sophisticated system would seek to combine the constraints 

afforded by multiple schemata by weighting them according 

to their perceived accuracy or reliability. In this way, 

reliable identification of a highly distinctive landmark might 

override estimates of spatial position or orientation 

determined by some metric reckoning process. 

These ideas are currently being investigated with respect 

to the distributed coding system described in [38, 39] (and, 

briefly, above). If a specific location is encoded by two 

separate schemas based on non-overlapping landmark 

triples then these would constitute relatively independent 

constraints. To the extent that landmark sets do overlap they 

will obviously be less independent, but will nevertheless 

encode partially distinct constraint information. 

However, the idea of multiple schemata also generalises 

to encompass different coding systems. For instance, 

representations based principally on direction sense and 

odometry could be constructed which would provide a 

modality-independent source of information from the 

landmark-based coding. 

An obvious argument against a multiple schemata view 

is that acquiring and storing spatial knowledge is not 

without cost. It makes demands on attention, processing and 

memory (there are really separate costs associated with 

detecting constraints, storing them, retrieving them, and 

combining them!). One defence against this argument is the 

relative independence between different schemata which 

will allow parallel processing to be exploited to a 

considerable extent. A second possibility, which is rarely 

explored in research with artificial animats, is that the 

amount of resources devoted to a given location (i.e. the 

number of constraints stored) may vary according to the 

subjective importance of being able to relocate that place or 

reach it quickly. We could expect, for instance, that an 

animal’s home or nest (or a robots power source) would 

have the highest priority and that therefore ‘homing’ might 

be the most robustly supported way-finding behaviour. 

A multiple schemata view can help in understanding the 

evolution of way-finding competence in animals, and may 

also provide support for the essentially pragmatic approach 

of Animat AI. In the case of the former, O’Keefe’s [32] 

separate taxon and locale systems (which follows a very 

long line of research into response vs. place knowledge in 

animal navigation, see Olton [34, 35]) can be viewed as a 

distinction along these lines. However, there also seems to 

be a reasonable case for breaking up the ‘locale’ system into 

multiple schemata, for instance, models derived from 

odometry and direction senses [13, 27] and those derived 

principally from codings with respect to distinct local 

landmark groups [32]. 

In robotics this view suggests the abandonment of 

theoretical pre-conceptions about the priority, or lack of it, 

of different forms of geometric knowledge. It further 

implies that the ‘brittleness’ of classical approaches arises 

not so much from the emphasis on metric modelling but 

from the search for an accurate unified metric model.  

Much existing work is compatible with this approach. In 

addition to Michael Arbib’s work on schema theory [2] 



 

     

much work in psychology (e.g. [42]) and AI (e.g. [23]) 

shares similar objectives. Work in animal navigation that 

specifically fits this research theme has been performed by 

Poucet et al. (e.g. [7, 37]), Collett et al. [9] and Etienne et al. 

(e.g. [12]). To end this paper I would therefore like to draw 

upon a couple of examples from this work. 

Etienne et al. [12] report that hamsters have effective 

dead reckoning skills which are sufficient to relocate their 

nest in darkness. However, in lighted conditions hamsters 

were found to orient primarily using visual information 

about local landmarks. In conflict situations,  where a 

landmark (a single light spot) was rotated relative to the 

learned position, the hamsters homed using either the 

landmark information or their dead-reckoning sense. When 

the visual information and dead reckoning produced highly 

divergent paths dead reckoning was used, however, with 

smaller discrepancies visual information took priority over 

path integration. Etienne et al. also report that the dead-

reckoning sense was more precise when used to return to the 

nest than when used to locate a secondary feeding site. This 

suggests that a dead reckoning way-finding schema maybe 

more available for homing than for general path-finding. 

Experiments by Collett et al. [9] with gerbils suggests 

that these animals may encode goal positions (buried 

sunflower seeds) in terms of individual visible landmarks by 

using some form of direction sense. For instance, in one 

experiment gerbils were trained to locate a food cache at the 

centre of an array of two landmarks. When the distance 

between landmarks was doubled the gerbils searched at two 

sites each at the correct distance and orientation to one of 

the landmarks rather that at the centre of the two locations 

(as some theories of a landmark ‘map’ might predict). In a 

further experiment the gerbils were trained to go to a goal-

site at the centre of a triangle of three landmarks. During 

testing the distance of one landmark to the centre was 

doubled, Collett et al. report that the animals spent most of 

their search time around the place specified by the two 

landmarks, ignoring the one that broke the pattern. They 

interpreted this result in the following way: 

“The gerbil is thus equipped with a useful procedure for 

deciding between discrepant solutions. When most of 

the landmarks agree in specifying the same goal, with 

just a few pointing to other sites, the chances are that 

the majority view is correct and that the additional 

possibilities result from mistakes in computation or 

from disturbances to the environment.” ([9] p. 845).  

Collett et al. are therefore suggesting that this multiple 

encoding of landmark-goal relations by hamsters occurs to 

provide the system with robustness. In other words, they 

advocate something like a multiple schemata system and 

give a clear example of the ability of such a hypothesis to 

generate interesting and testable predictions. 

8. Conclusions 

This paper has argued that the problem of representation 

for animat spatial learning may be best approached by 

discarding the goal of a complete global model of the 

environment in favour of the use of multiple, partial local 

models encoding complimentary constraints. This approach, 

I believe, has a resonance with the general ethos of animat 

research that opposes the need for representation for its own 

sake (which has often seemed to be the goal of classical AI) 

and is against a strong distinction between model and 

mechanism.  This view constitutes a theoretical position that 

has as yet only been partly explored in simulation, it is thus 

proposed as a hypothesis which awaits evaluation through 

the construction of genuine way-finding robots. 
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