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 5 

In the great Darwinian struggle for existence, all animals must tackle the problems posed by 6 

variable environments, be it finding and processing food, recognising and attracting potential 7 

mates, avoiding predators, outcompeting rivals or navigating back to nesting sites. Though the 8 

mental processes by which different species deal with such challenges are varied, all animals 9 

share the fundamental problem of having to cope with the sheer abundance of information in the 10 

environment, much of which is likely to be irrelevant to the task at hand. The first step, therefore, 11 

is to attempt to sift through the mass of data and attend to that which may inform adaptive 12 

decision making. Having acquired the relevant data, animals may then benefit from establishing 13 

how the different pieces of information relate to one another. Do yellow flowers reliably indicate 14 

the presence of nectar? Does the presence of a dominant silverback male signal impending 15 

danger? In complex environments, it may be advantageous not only to take into account 16 

statistical co-occurrence of different stimuli, but to also extract general rules, making it possible 17 

to act flexibly and solve a wide variety of problems across different contexts [1,2]. Certain 18 

animal species might also form mental representations or models of the way the world works. 19 

These internal representations may be used to reason about the desirability of alternative actions 20 

or scenarios, based on expectations of their likely outcome, thus guiding the individual’s 21 

behaviour [3,4]. Thus, for instance, an animal with a mental representation of the action of 22 

gravity on objects could use it to reason that a food item will fall out of its reach if pushed 23 

towards a precipice [5,6]. The possibility that animals may employ such human-like reasoning 24 
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has intrigued observers throughout the centuries, from Aesop’s fables to Romanes’s 25 

anthropomorphic anecdotes. However, careful scientific exploration of the mental faculties of 26 

other animals, and their relation to our own, did not commence in earnest until the last century, 27 

with the rise of comparative psychology and ethology. Contemporary comparative cognition, 28 

which grew from these two disciplines, aims to determine the mental processes underpinning 29 

animal behaviour, and to understand how these processes have evolved over the generations and 30 

develop over an animal’s lifetime. 31 

 32 

Recent years have seen a great burgeoning of studies of comparative cognition, building on 33 

earlier advances in our understanding of basic processes of perception, attention, associative 34 

learning and memory [4,7]. Elegant experimental work is generating insights into disparate 35 

cognitive abilities across a wide range of taxa, from path integration in ants and spatial memory 36 

in rats [8,9] to mental faculties that were considered uniquely human, such as mental state 37 

attribution and mental time travel in apes and corvids [10–13]. Nevertheless, despite these 38 

important empirical advances, the field suffers from a lack of theoretical underpinning, and 39 

conceptual debates abound. For example, how might we discriminate between alternative 40 

cognitive mechanisms underpinning behaviour? Do the abilities seen in cognitive experiments 41 

reflect domain-specific 'adaptive specialisations' or domain-general problem solving capacities? 42 

How and why do humans differ cognitively from other animals? This special issue brings 43 

together a variety of developmental, mechanistic and functional approaches to the study of 44 

cognition with the goal of synthesizing this emerging body of work, and beginning to build a 45 

theoretical framework to facilitate further progress towards our understanding of animal minds. 46 

 47 



1. DELVING INTO ANIMAL MINDS: DETERMINING MECHANISMS OF ANIMAL 48 

COGNITION 49 

The range of possible mental processes through which animals may interact with their 50 

environments poses a major challenge to students of animal minds. We can observe a non-verbal 51 

creature solving a problem, but how can we infer the processes by which it does so? This issue is 52 

particularly problematic given that seemingly complex behaviour may often be generated 53 

through relatively simple mechanisms. Meerkats, for instance, teach their young to hunt by 54 

responding to age-related changes in pups’ begging calls, provisioning dead or disabled prey to 55 

young pups and live prey to older pups. A simple stimulus-response mechanism thus allows 56 

adults to provide pups with prey-handling opportunities appropriate for the pups’ age and 57 

competence, without needing Theory of Mind to attribute ignorance to their pupils [14]. 58 

Similarly, reflexive responses coupled with associative learning processes enable many animals, 59 

from insects to primates, to use tools effectively without understanding their physical properties. 60 

For example, larval antlions (Myrmeleon spp.), insects of the order Neuroptera, knock passing 61 

prey into their pit-traps by flinging grains of sand in response to vibrational cues [15]. How 62 

might we discriminate between such low-level mechanisms and other, more complex cognitive 63 

processes? It may be tempting to assume that species that are more closely related to us may 64 

share more “human-like” cognitive faculties. However, numerous examples of evolutionary 65 

convergence in unrelated taxa, along with abundant evidence of the importance of relatively 66 

simple, evolutionarily ancient mental processes in human behaviour [16–18] caution against this 67 

archaic view of a mental scala naturae. Instead, the contributors to this volume urge a more 68 

careful, bottom-up approach to determine the minimal computational requirements needed to 69 



generate particular behavioural outcomes and to use careful experimentation to tease apart 70 

alternative explanations. 71 

 72 

1.1 Bottom-up approaches: building models and robots 73 

It is common in comparative cognition to use folk psychological intuitions of how humans solve 74 

certain problems when designing experiments to test the cognitive abilities of other animals. 75 

While this approach has clear value in helping to derive hypotheses, it suffers from two major 76 

weaknesses. First, our intuitions of how we solve problems have repeatedly been shown not to 77 

reflect psychological reality (e.g. [19,20]). Secondly, a reliance on folk psychological intuitions 78 

may detract from considering other, arguably more “killjoy” explanations based on simpler 79 

mechanisms [17,18]. A fundamentally different approach advocated by some of the contributors 80 

to this issue is to build models of simple neural networks to determine the minimal necessary 81 

requirements to solve a specific task. These models often yield rather surprising results, 82 

suggesting that abilities that are commonly considered to be complex may in fact be 83 

implemented by very simple networks (see [21], this issue). A circuit of only a few hundred 84 

neurons, for example, has been shown to suffice for reliable face recognition [22]. This approach 85 

is clearly of great value in quantifying basic computational complexity, undermining the 86 

assumption that many cognitive feats require big brains [21,23]. Indeed, recent studies have 87 

revealed a number of striking cognitive feats in small-brained animals such as insects and, as 88 

Webb discusses in this issue [3], there is evidence that insects may employ internal mental 89 

representations of the outside world. However, given that even miniscule invertebrate brains 90 

contain more neurons than the theoretical neural thresholds predicted by computational models 91 

for many tasks, this ‘minimal cognition’ approach may be limited in explaining observed 92 



cognitive differences between species. Moreover, the computational requirements for solving a 93 

specific, isolated problem may underestimate those needed to solve the same task in the real 94 

world, let alone solve multiple different tasks using the same network. One way to build up 95 

complexity towards that faced by an animal in the physical world is to build a robot that must 96 

replicate the animal’s behaviour using the hypothesised neural mechanism to solve a given task. 97 

As Webb points out, robotics thus forces us to face real world difficulties such as perceiving and 98 

attending to relevant stimuli in addition to the abstract computational aspects of a problem, thus 99 

generating more realistic demonstrations of minimal sufficiency. For example, a robotic female 100 

cricket may be able to discriminate between male songs and approach only those who sound like 101 

members of a given species without needing to rely on an internal computational mechanism for 102 

evaluating and comparing songs [3]. Unlike a real cricket, however, it cannot deal with the 103 

additional complexities involved in finding food and avoiding predators.  The development of 104 

ever more complex robots, capable of computing solutions to multiple problems, may generate 105 

important insights into the computational requirements needed for biological systems to respond 106 

adaptively to the multitude of challenges they face in their natural environments. A related 107 

challenge is to determine how organisms may integrate currently available information with 108 

previously acquired knowledge of how the world works, bringing all the necessary cognitive 109 

resources to bear when faced with a novel problem. How are parallel processing units in the 110 

brain integrated to create a coherent, structured system capable of responding appropriately when 111 

encountering a problem for the first time? How might a New Caledonian crow (Corvus 112 

moneduloides) or a rook (Corvus frugilegus), for example, have the wherewithal to 113 

spontaneously manufacture a hook to pull up a bucket containing food [24,25]? In this issue, 114 

Shanahan takes a bottom-up approach, drawing on recent advances in brain connectivity to 115 



propose a cognitive architecture that can generate such seemingly insightful solutions to novel 116 

problems in the physical world [26]. This consists of a number of discrete modules with 117 

extensive internal connectivity (a “modular small-world network”), which are in turn connected 118 

to one another through nodes known as connector hubs to form a “connective core”.  Such a 119 

system may enable the unanticipated integration of mental processes to produce a coherent 120 

sequence of actions to achieve a goal. This theoretical approach thus holds the great promise of 121 

allowing us to move beyond current vague conceptions of insight as a sudden, magical “Eureka 122 

moment”, to a tangible computational process that is amenable to research. An important 123 

question arising from this work is how and why, given that the brains of humans, macaques, cats 124 

and pigeons are all known to possess a connective core, these species may nevertheless differ 125 

radically in their ability to plan their actions when solving a task. Answers to this question will 126 

emerge from a more detailed understanding of differences in neural connectivity in the brains of 127 

different species and their resulting computational power, coupled with behavioural tests of what 128 

different animals are capable of. 129 

 130 

1.2 Top-down approaches: inferring cognitive mechanisms from behaviour 131 

(a) Associative learning as a candidate explanation 132 

For behavioural researchers, a principal challenge is to devise experiments capable of 133 

discriminating between alternative mechanistic explanations for observed behaviour. The 134 

bottom-up approach exemplified by neural network models using computer simulations and 135 

robotics cannot yet provide testable predictions for the range of behaviours examined in 136 

contemporary comparative cognition research. Learning theory, in contrast, is grounded in 137 

behavioural research and provides concrete hypotheses that can be readily examined by 138 



empiricists. Indeed, associative learning is found throughout the animal kingdom and is known 139 

to play a role in generating even seemingly complex behaviour in both non-human animals and 140 

in our own species. Nevertheless, associative explanations are sometimes overlooked, perhaps as 141 

a result of knee-jerk reactions to the overambitious claims of behaviourism, leading to a focus on 142 

what Heyes [17] calls “super-cognitive” explanations derived from folk psychological intuitions. 143 

In fact, modern learning theory is considerably more nuanced than the caricature of 144 

behaviourism would suggest. Unlike behaviourism, it does not claim that anything can be 145 

learned (or that all behaviour is learned), but instead incorporates constraints that limit learning 146 

of coincidental associations and promote learning of biologically relevant associations. 147 

Moreover, learning theory has the distinct advantage over folk psychology in that it rests on 148 

well-described, general theories such as the Rescorla-Wagner [27] and Mackintosh [28] models.  149 

One interesting development discussed by Dickinson [29] is his ‘associative-cybernetic’ theory 150 

[30,31] which postulates that, if embedded in a constraining processing architecture, associative 151 

learning may give rise to rational goal-directed action. That is, rather than simply learning that a 152 

certain action is rewarded, an animal may also learn that its action causes a specific beneficial 153 

outcome. This theoretical prediction has considerable empirical support. For example, rats 154 

trained to obtain a reward by pressing a lever will reduce their lever pressing if the value of the 155 

reward is reduced, indicating that they represent the causal relation between their own lever-156 

pressing actions and the outcome (reviewed in [29]). Thus, associative learning theory provides a 157 

powerful and tractable framework for research on animal (including human) minds. Indeed, 158 

rigorous research in comparative cognition often uses associative learning as a null hypothesis, 159 

making considerable efforts to derive candidate explanations from learning theory to be tested 160 

through behavioural experiments (e.g. [32]). There will, of course, be instances when behaviour 161 



cannot be understood purely in terms of associative processes. Human behaviour, for instance, is 162 

guided to a large extent by reasoning and inference about abstract causal relations in the physical 163 

and social worlds [33–35]. The possibility that animals may employ similar cognitive processes 164 

has attracted great interest from students of animal minds, but lacks the theoretical grounding of 165 

associative theory and so is more difficult to pin down. If associative processes are found to be 166 

lacking as explanations of animal behaviour, how might we make progress in determining 167 

alternatives? 168 

 169 

(b) Beyond associative learning: individual-level approaches 170 

One common and powerful experimental approach is to use a series of training trials in which 171 

subjects learn the basic requirements of the task, followed by transfer tests in which the causal 172 

properties of the problem are kept constant, but arbitrary visible stimuli are changed. Thus, in 173 

theory, subjects that have learned a simple rule based on visible features will fail transfers, while 174 

those that have abstracted a generalizable understanding of the causal structure of the task should 175 

apply it to solve the transfer [36, 37]. However, as Thornton & Lukas point out, the fact that 176 

transfer tests typically involve the same binary choice over multiple trials means that a subject 177 

might learn a rule based on the visible properties of the transfer test itself [38]. Thus, subjects 178 

may reach a given criterion (say nine correct trials out of ten) using nothing but associatively 179 

learned rules. Conversely, reliance on crude binary criteria of success or failure leads us to 180 

ignore potentially valuable data. Instead, several of the contributors to this issue advocate a more 181 

fine-grained analytical approach that focuses specifically on individual differences in 182 

performance on a trial by trial basis to shed light on the cognitive mechanisms employed when 183 

solving tasks [33,38,39]. Seed and colleagues, drawing on insights from developmental 184 



psychology, point out that a detailed focus on individual behaviour, taking into account failed 185 

trials as well as successes, may provide valuable insights into why subjects may fail, and the 186 

precise mechanisms required for success. Using this approach, they show that chimpanzees (Pan 187 

troglodytes) that failed a task requiring them to discriminate between a complete and a broken 188 

tool failed not because of an inability to represent “connectedness” but rather because of 189 

limitations in memory and attention [33]. Thus, an individual-based analytical approach may 190 

allow us to determine the set of cognitive processes that must be employed together when 191 

solving tasks. 192 

 193 

The individual-level approach may also benefit from using formal planning theory used in 194 

artificial intelligence (AI) research. In this issue, Chappell & Hawes explored a four-trap variant 195 

of the classic ‘trap tube’ test in which the precise characteristics of the task (e.g. which of the 196 

four traps was functional) varied systematically across a series of 64 trials. Using an AI planning 197 

language, they generated a series of possible computational rules or “plans” an animal could 198 

employ to solve the task. They then simulated how each of these plans would perform in each of 199 

the different trials, and compared these simulations to the actual trial-by-trial performance of 200 

orangutans (Pongo pygmaeus) [39]. The advantage of this method is two-fold. First, 201 

decomposing the problem into its constituent parts may be valuable in designing experiments. 202 

Second, in common with Seed et al.’s approach, it forces us to move away from the simplistic 203 

and statistically problematic [38] dichotomy of success and failure and instead to harness the rich 204 

data emerging from all the actions of all individuals in all trials to assess how animals solve 205 

problems. In the future, we hope that such individual-based approaches will be combined with 206 

insights from learning theory to determine the role of associative processes in within-task 207 



learning, and to discriminate between alternative mechanistic explanations. We also envisage 208 

great potential in linking this top-down approach of decomposing and simplifying specified 209 

problems with bottom-up approaches that specify the components and connectivity of the 210 

computational systems implementing the solutions. For instance, specifying the computational 211 

components and connectivity of a neural system (c.f. [26]) may allow us to constrain the possible 212 

range of plans the system might implement to solve a cognitively challenging task in a 213 

biologically realistic way. 214 

 215 

2. THE EVOLUTION OF ANIMAL MINDS 216 

2.1 Fitness consequences of individual cognitive variation 217 

Through a combination of experimental and theoretical approaches, comparative cognition is 218 

beginning to provide important insights into the mental processes of different animals. However, 219 

existing approaches tend to place relatively little emphasis on the central goal of understanding 220 

how these processes evolve. In this issue, Thornton & Lukas point out that researchers 221 

commonly assume that the cognitive traits they find in laboratory animals are the adaptive 222 

products of natural selection, but they very seldom assess whether the basic tenets of Darwinian 223 

theory apply to the trait in question [38]. For natural selection to act, there must be heritable 224 

variation in the trait, leading to variation in reproductive success [40]. Consequently, if we want 225 

to understand how cognitive traits evolve, we must ask whether they vary between individuals, 226 

are heritable and influence fitness. Laboratory studies commonly reveal substantial variation in 227 

individual performance, but rarely consider its causes. Thornton & Lukas’s meta-analyses of 228 

individual performance across a series of cognitive tasks suggest that much of this variation may 229 

be explained by laboratory rearing conditions, with enculturated individuals with extensive 230 



previous experience of laboratory tests typically outperforming the rest [38]. It is therefore 231 

unclear to what extent this variation may be heritable, or indeed how cognitive traits may be 232 

manifested in the natural conditions in which they evolved. In some short-lived animals it may 233 

be possible to explore cognitive evolution using selection experiments in the laboratory [41], but 234 

for many of the birds and mammals of interest to students of comparative cognition, such 235 

experiments are less feasible. Laboratory studies must therefore be complemented by field 236 

research to examine links between individual cognitive variation and reproductive fitness. 237 

Unfortunately, the difficulties in examining cognition in the wild have led to a recent trend for 238 

field researchers to assume that individuals that succeed in any experimentally presented 239 

“problem-solving task” possess elevated cognitive abilities, without testing the underlying 240 

mechanisms. Given this trend, there is a danger that, for example, the action of a pigeon pecking 241 

a key to obtain a reward in the field would be regarded as a measure of “cognition”, while no one 242 

would consider the same action to be cognitive if done in a laboratory setting. If field studies are 243 

to provide productive insights into cognitive evolution, it is therefore critical that they 244 

incorporate the valuable lessons of psychological research concerning cognitive mechanisms into 245 

the task design. For instance, Visalberghi and colleagues have used elegant experiments inspired 246 

by laboratory tests of physical cognition to establish that capuchin monkeys recognise the 247 

physical properties that render objects for use as hammers to crack nuts [42]. Similarly, studies 248 

by Healy and colleagues have elegantly adapted laboratory tests of spatial memory and timing 249 

for use in the field (reviewed in[43]), while Cheney & Seyfarth, McComb and others have 250 

devised tests of social cognition incorporating expectation violation paradigms from 251 

developmental psychology [44,45]. Such experimental approaches, as well as novel statistical 252 

tools allowing mechanisms of learning and cognition to be inferred from natural behaviour [46] 253 



hold great promise in enabling us to understand the cognitive processes used by animals in their 254 

environments. A key challenge now is to determine whether individual animals in the wild vary 255 

in their cognitive abilities, to use advances in quantitative genetics to assess the heritability of 256 

this variation and to begin to examine its fitness consequences. 257 

 258 

It may be tempting to assume that elevated cognitive abilities ought always to confer fitness 259 

benefits, and are therefore subject to positive selection. However, any benefits associated with 260 

improvements in cognition will be balanced against the costs they may carry. In Drosophila, for 261 

example, there is evidence that selection for improved associative learning abilities among adults 262 

comes at a cost of reduced ability to compete for food resources at the larval stage [47]. In 263 

addition, at the individual level, the potential benefits of cognition will depend on behavioural 264 

phenotypes. As Sih & del Giudice discuss in this issue, there is extensive evidence that 265 

individual animals differ consistently in their behaviour over time and across contexts, and this 266 

behavioural consistency may place important constraints on the ways in which cognitive abilities 267 

are manifested [48]. Consider, for example, two individuals that have equal cognitive abilities 268 

but differ in their behaviour, with one being very bold and exploratory while the other is shy and 269 

slow to investigate unknown places or objects. While the bolder individual is likely to encounter 270 

novel stimuli more often, the shier individual may have a greater tendency to pause and attend to 271 

changes in the environment and update its assessment of a given situation. Behavioural 272 

differences may therefore generate a trade-off between speed and accuracy when dealing with 273 

novel problems, and influence the benefits that individuals can derive from their cognitive 274 

abilities. 275 

 276 



Just as individuals commonly exhibit suites of inter-correlated behaviours (termed “behavioural 277 

syndromes” [48]) they may also exhibit consistency in cognitive abilities across different 278 

contexts. Indeed, there is a longstanding debate as to whether animal behaviour is underpinned 279 

by cognitive specialisations that have evolved to fulfil specific ecological functions (e.g. 280 

retrieving cached food [49–51]), or rather is governed by domain-general mechanisms that 281 

operate across contexts. Herrmann and Call, using large datasets of the individual cognitive 282 

performance of chimpanzees across a test battery of multiple different tasks, suggest that the 283 

truth may lie somewhere in between the two views [50]. Their analyses reveal that while some 284 

exceptional chimpanzees consistently outperformed their conspecifics across a range of tasks, 285 

there is no evidence for one single “general intelligence” factor, but neither were performances 286 

entirely unrelated across different tasks. Rather, the data appear to support the existence of a 287 

number of distinct clusters of abilities, such as spatial knowledge and discrimination learning 288 

[52]. Further work is needed to determine whether the cognitive abilities of other organisms will 289 

exhibit similar clustering, but the evidence from chimpanzees suggests that there may be 290 

common mechanisms that animals apply to different tasks within particular clusters of abilities. 291 

An understanding of cognitive evolution will therefore benefit from explicit theoretical models to 292 

consider not only how overt, measurable behavioural abilities evolve, but also how selection may 293 

act on the underlying mechanisms [53]. 294 

 295 

2.2 Modelling the evolution of cognitive mechanisms 296 

As Lotem & Halpern discuss, rigorous theoretical analyses of cognitive evolution must consider 297 

how different components of cognitive processing interact and co-evolve [54]. For example, to 298 

understand how learning mechanisms evolve, we must also consider the evolution of the 299 



attentional and motivational mechanisms. Whereas traditional learning models assume that data 300 

are presented to the animal as discrete, distinguishable stimuli, Lotem & Halpern’s model 301 

explicitly considers the fact that animals must sift through and obtain relevant information from 302 

the morass of data in their environments. The model assumes that, when animals encounter 303 

biologically relevant stimuli such as food, they will also attend to other information in the 304 

immediate environment. This array of data is then compared to previously encountered datasets. 305 

Segments of data that are rarely encountered tend to be forgotten and decay, while links between 306 

commonly encountered segments increase in weight and may become fixed in memory. Thus, by 307 

segmenting and linking chunks of data according to encounter rates and allowing irrelevant data 308 

to decay, the animal may build up a structured representation of the environment without the 309 

heavy computational burden of learning and remembering connections between all possible 310 

segments of data. Natural selection may act to tweak the parameters of both the data acquisition 311 

and learning mechanisms, resulting in organisms that are well adapted to handle the natural 312 

distribution of biologically relevant data in their environment. Lotem & Halpern argue that this 313 

process of co-evolution of data acquisition and learning may generate incremental cognitive 314 

change, allowing organisms to extract relevant data even when faced with dynamic and complex 315 

arrays of information such as those that characterise some social systems. In their view, this 316 

process might even facilitate key human cognitive characteristics such as theory of mind and 317 

language acquisition [54–56]. 318 

 319 

3. THE QUESTION OF HUMAN UNIQUENESS 320 



Of course, the quest to understand how and why the cognitive abilities of our own species may 321 

differ from those of other animals has long been a central motivating force for much of 322 

comparative cognition. What cognitive processes make us unique, and what are the origins of 323 

these processes? As Shettleworth discusses in her contribution to this issue, there have been a 324 

multitude of theories of human uniqueness throughout the years [57]. Some of these suggest that 325 

the difference between humans and other animals lies in broad, domain-general processes that 326 

are manifested across a wide range of behavioural contexts [58,59]. In contrast, evolutionary 327 

psychologists have tended to view human cognition as comprising a suite of discrete modules, 328 

some of which may exist in our species alone [60]. Both of these approaches appear to 329 

emphasise dichotomous distinctions between “us and them”. Is a given cognitive faculty (be it 330 

domain-general or specific) uniquely human, or might it be found in other animals? Such human 331 

vs. non-human comparisons suffer from two main problems. First, comparative studies have 332 

tended to apply tests designed for adult, verbal humans and thus may often risk underestimating 333 

the abilities of non-verbal creatures [61]. Second, an emphasis on the presence or absence of 334 

particular cognitive capacities may detract attention from the possibility that, even if an animal 335 

fails a test of some human ability, some of the cognitive processes it applies may still be shared 336 

with humans. Instead, Shettleworth [57] and Spelke [35] argue that important insights may lie in 337 

examining the development of cognitive abilities over individual lifetimes. Just as in 338 

evolutionary biology it is recognised that seemingly different traits may share important 339 

developmental commonalities [62], it is increasingly clear that considering developmental 340 

cognitive trajectories may reveal important elements of similarity and difference. For example, 341 

experiments by Spelke and colleagues [35] suggest that human spatial cognition develops in two 342 

distinct stages. From infancy, children exhibit two systems for representing objects and vectors. 343 



These are largely shared with other animals and are thus likely to be evolutionarily ancient 344 

cognitive adaptations for navigation. Later in development, the acquisition of language and 345 

culture enables children to combine the two systems in uniquely human ways to form abstract 346 

geometrical concepts (reviewed in [35]). Tomasello, Call and colleagues place a similar 347 

emphasis on developmental processes as being at the heart of human socio-cognitive uniqueness 348 

(reviewed in [63]). Their extensive comparative experiments suggest that while human children 349 

and apes show similar performance on tests of physical, spatial and numerical cognition, children 350 

typically outperform apes on social tasks. In particular, they argue that, unlike our closest 351 

relatives, humans are endowed from an early age with the motivation to engage with others in 352 

joint activities involving shared goals and attention. Later in development, this tendency 353 

facilitates the use of linguistic symbols and the creation of cultural norms [52,64,65]. As these 354 

examples show, a continued emphasis on developmental processes in comparative cognition is 355 

likely to yield further important insights into the similarities and differences between humans 356 

and other species. To fully take advantage of this approach, it is important to extend the current 357 

focus on comparing children with adult non-human animals to compare developmental 358 

trajectories across species, acknowledging the fact that non-human cognition also develops. 359 

Indeed, a common theme of this issue is that, as the field of comparative cognition matures, it 360 

must incorporate careful comparative analyses across all levels - within individual lifetimes, 361 

between individuals and between species. Understanding animal cognition is a deeply 362 

challenging endeavour, not least because it requires investigation of multiple layers, from genes 363 

and neurones to computational processes and the resulting behaviours to the developmental and 364 

evolutionary processes shaping cognition over time. We hope that a synthesis of empirical and 365 

theoretical tools from fields including robotics, neuroscience, psychology and biology, such as 366 



those showcased in this issue, will help future research further unravel the mysteries of animal 367 

minds. 368 

 369 
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