41 research outputs found

    A methodology to compare dimensionality reduction algorithms in terms of loss of quality

    Get PDF
    Dimensionality Reduction (DR) is attracting more attention these days as a result of the increasing need to handle huge amounts of data effectively. DR methods allow the number of initial features to be reduced considerably until a set of them is found that allows the original properties of the data to be kept. However, their use entails an inherent loss of quality that is likely to affect the understanding of the data, in terms of data analysis. This loss of quality could be determinant when selecting a DR method, because of the nature of each method. In this paper, we propose a methodology that allows different DR methods to be analyzed and compared as regards the loss of quality produced by them. This methodology makes use of the concept of preservation of geometry (quality assessment criteria) to assess the loss of quality. Experiments have been carried out by using the most well-known DR algorithms and quality assessment criteria, based on the literature. These experiments have been applied on 12 real-world datasets. Results obtained so far show that it is possible to establish a method to select the most appropriate DR method, in terms of minimum loss of quality. Experiments have also highlighted some interesting relationships between the quality assessment criteria. Finally, the methodology allows the appropriate choice of dimensionality for reducing data to be established, whilst giving rise to a minimum loss of quality

    Effective and Trustworthy Dimensionality Reduction Approaches for High Dimensional Data Understanding and Visualization

    Get PDF
    In recent years, the huge expansion of digital technologies has vastly increased the volume of data to be explored. Reducing the dimensionality of data is an essential step in data exploration and visualisation. The integrity of a dimensionality reduction technique relates to the goodness of maintaining the data structure. The visualisation of a low dimensional data that has not captured the high dimensional space data structure is untrustworthy. The scale of maintained data structure by a method depends on several factors, such as the type of data considered and tuning parameters. The type of the data includes linear and nonlinear data, and the tuning parameters include the number of neighbours and perplexity. In reality, most of the data under consideration are nonlinear, and the process to tune parameters could be costly since it depends on the number of data samples considered. Currently, the existing dimensionality reduction approaches suffer from the following problems: 1) Only work well with linear data, 2) The scale of maintained data structure is related to the number of data samples considered, and/or 3) Tear problem and false neighbours problem.To deal with all the above-mentioned problems, this research has developed Same Degree Distribution (SDD), multi-SDD (MSDD) and parameter-free SDD approaches , that 1) Saves computational time because its tuning parameter does not 2) Produces more trustworthy visualisation by using degree-distribution that is smooth enough to capture local and global data structure, and 3) Does not suffer from tear and false neighbours problems due to using the same degree-distribution in the high and low dimensional spaces to calculate the similarities between data samples. The developed dimensionality reduction methods are tested with several popu- lar synthetics and real datasets. The scale of the maintained data structure is evaluated using different quality metrics, i.e., Kendall’s Tau coefficient, Trustworthiness, Continuity, LCMC, and Co-ranking matrix. Also, the theoretical analysis of the impact of dissimilarity measure in structure capturing has been supported by simulations results conducted in two different datasets evaluated by Kendall’s Tau and Co-ranking matrix. The SDD, MSDD, and parameter-free SDD methods do not outperform other global methods such as Isomap in data with a large fraction of large pairwise distances, and it remains a further work task. Reducing the computational complexity is another objective for further work

    Probabilistic topographic information visualisation

    Get PDF
    The focus of this thesis is the extension of topographic visualisation mappings to allow for the incorporation of uncertainty. Few visualisation algorithms in the literature are capable of mapping uncertain data with fewer able to represent observation uncertainties in visualisations. As such, modifications are made to NeuroScale, Locally Linear Embedding, Isomap and Laplacian Eigenmaps to incorporate uncertainty in the observation and visualisation spaces. The proposed mappings are then called Normally-distributed NeuroScale (N-NS), T-distributed NeuroScale (T-NS), Probabilistic LLE (PLLE), Probabilistic Isomap (PIso) and Probabilistic Weighted Neighbourhood Mapping (PWNM). These algorithms generate a probabilistic visualisation space with each latent visualised point transformed to a multivariate Gaussian or T-distribution, using a feed-forward RBF network. Two types of uncertainty are then characterised dependent on the data and mapping procedure. Data dependent uncertainty is the inherent observation uncertainty. Whereas, mapping uncertainty is defined by the Fisher Information of a visualised distribution. This indicates how well the data has been interpolated, offering a level of ‘surprise’ for each observation. These new probabilistic mappings are tested on three datasets of vectorial observations and three datasets of real world time series observations for anomaly detection. In order to visualise the time series data, a method for analysing observed signals and noise distributions, Residual Modelling, is introduced. The performance of the new algorithms on the tested datasets is compared qualitatively with the latent space generated by the Gaussian Process Latent Variable Model (GPLVM). A quantitative comparison using existing evaluation measures from the literature allows performance of each mapping function to be compared. Finally, the mapping uncertainty measure is combined with NeuroScale to build a deep learning classifier, the Cascading RBF. This new structure is tested on the MNist dataset achieving world record performance whilst avoiding the flaws seen in other Deep Learning Machines

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Machine Learning in Aerodynamic Shape Optimization

    Get PDF
    Machine learning (ML) has been increasingly used to aid aerodynamic shape optimization (ASO), thanks to the availability of aerodynamic data and continued developments in deep learning. We review the applications of ML in ASO to date and provide a perspective on the state-of-the-art and future directions. We first introduce conventional ASO and current challenges. Next, we introduce ML fundamentals and detail ML algorithms that have been successful in ASO. Then, we review ML applications to ASO addressing three aspects: compact geometric design space, fast aerodynamic analysis, and efficient optimization architecture. In addition to providing a comprehensive summary of the research, we comment on the practicality and effectiveness of the developed methods. We show how cutting-edge ML approaches can benefit ASO and address challenging demands, such as interactive design optimization. Practical large-scale design optimizations remain a challenge because of the high cost of ML training. Further research on coupling ML model construction with prior experience and knowledge, such as physics-informed ML, is recommended to solve large-scale ASO problems

    Semantic Visualization with Neighborhood Graph Regularization

    Get PDF
    JAIR Award Winning Papers Track: AAAI 2014 Honorable Mention for Outstanding Paper</p

    Studies on dimension reduction and feature spaces :

    Get PDF
    Today's world produces and stores huge amounts of data, which calls for methods that can tackle both growing sizes and growing dimensionalities of data sets. Dimension reduction aims at answering the challenges posed by the latter. Many dimension reduction methods consist of a metric transformation part followed by optimization of a cost function. Several classes of cost functions have been developed and studied, while metrics have received less attention. We promote the view that metrics should be lifted to a more independent role in dimension reduction research. The subject of this work is the interaction of metrics with dimension reduction. The work is built on a series of studies on current topics in dimension reduction and neural network research. Neural networks are used both as a tool and as a target for dimension reduction. When the results of modeling or clustering are represented as a metric, they can be studied using dimension reduction, or they can be used to introduce new properties into a dimension reduction method. We give two examples of such use: visualizing results of hierarchical clustering, and creating supervised variants of existing dimension reduction methods by using a metric that is built on the feature space of a neural network. Combining clustering with dimension reduction results in a novel way for creating space-efficient visualizations, that tell both about hierarchical structure and about distances of clusters. We study feature spaces used in a recently developed neural network architecture called extreme learning machine. We give a novel interpretation for such neural networks, and recognize the need to parameterize extreme learning machines with the variance of network weights. This has practical implications for use of extreme learning machines, since the current practice emphasizes the role of hidden units and ignores the variance. A current trend in the research of deep neural networks is to use cost functions from dimension reduction methods to train the network for supervised dimension reduction. We show that equally good results can be obtained by training a bottlenecked neural network for classification or regression, which is faster than using a dimension reduction cost. We demonstrate that, contrary to the current belief, using sparse distance matrices for creating fast dimension reduction methods is feasible, if a proper balance between short-distance and long-distance entries in the sparse matrix is maintained. This observation opens up a promising research direction, with possibility to use modern dimension reduction methods on much larger data sets than which are manageable today
    corecore