
9HSTFMG*aedbbb+

ISBN 978-952-60-4312-8 (pdf)
ISBN 978-952-60-4311-1
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934

Aalto University
School of Science
Dept. of Biomedical Engineering and Computational Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 9

4
/2

011

Parviainen
Studies on dim

ension reduction and feature spaces
A

alto
 U

n
ive

rsity

Dept. of Biomedical Engineering and Computational Science

Studies on
dimension reduction
and feature spaces

Eli Parviainen

DOCTORAL
DISSERTATIONS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80704027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University publication series
DOCTORAL DISSERTATIONS 94/2011

Studies on dimension reduction and
feature spaces

Eli Parviainen

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the School of
Science for public examination and debate in Auditorium F239a at
the Aalto University School of Science (Espoo, Finland) on the 11th
of November 2011 at 12 noon.

Aalto University
School of Science
Dept. of Biomedical Engineering and Computational Science

Supervisor
Prof. Jouko Lampinen

Preliminary examiners
Prof. José Alfredo F. Costa, Universidade Federal do Rio Grande do Norte, Brazil
Dr. Marc Strickert, Universität Siegen, Germany

Opponent
Prof. Michel Verleysen, Université Catholique de Louvain, Belgium

Aalto University publication series
DOCTORAL DISSERTATIONS 94/2011

© Author

ISBN 978-952-60-4312-8 (pdf)
ISBN 978-952-60-4311-1 (printed)
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934 (printed)

Unigrafia Oy
Helsinki 2011

Finland

The dissertation can be read at http://lib.tkk.fi/Diss/

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Eli Parviainen
Name of the doctoral dissertation
Studies on dimension reduction and feature spaces
Publisher School of Science
Unit BECS - Department of Biomedical Engineering and Computational Science
Series Aalto University publication series DOCTORAL DISSERTATIONS 94/2011
Field of research Computational Science
Manuscript submitted 9 April 2011 Manuscript revised 12 September 2011
Date of the defence 11 November 2011 Language English

Monograph Article dissertation (summary + original articles)

Abstract
Today's world produces and stores huge amounts of data, which calls for methods that can
tackle both growing sizes and growing dimensionalities of data sets. Dimension reduction
aims at answering the challenges posed by the latter.

Many dimension reduction methods consist of a metric transformation part followed by
optimization of a cost function. Several classes of cost functions have been developed and
studied, while metrics have received less attention. We promote the view that metrics should
be lifted to a more independent role in dimension reduction research. The subject of this work
is the interaction of metrics with dimension reduction. The work is built on a series of studies
on current topics in dimension reduction and neural network research. Neural networks are
used both as a tool and as a target for dimension reduction.

When the results of modeling or clustering are represented as a metric, they can be studied
using dimension reduction, or they can be used to introduce new properties into a dimension
reduction method. We give two examples of such use: visualizing results of hierarchical
clustering, and creating supervised variants of existing dimension reduction methods by using
a metric that is built on the feature space of a neural network. Combining clustering with
dimension reduction results in a novel way for creating space-efficient visualizations, that tell
both about hierarchical structure and about distances of clusters.

We study feature spaces used in a recently developed neural network architecture called
extreme learning machine. We give a novel interpretation for such neural networks, and
recognize the need to parameterize extreme learning machines with the variance of network
weights. This has practical implications for use of extreme learning machines, since the
current practice emphasizes the role of hidden units and ignores the variance.

A current trend in the research of deep neural networks is to use cost functions from
dimension reduction methods to train the network for supervised dimension reduction. We
show that equally good results can be obtained by training a bottlenecked neural network for
classification or regression, which is faster than using a dimension reduction cost.

We demonstrate that, contrary to the current belief, using sparse distance matrices for
creating fast dimension reduction methods is feasible, if a proper balance between short-
distance and long-distance entries in the sparse matrix is maintained. This observation opens
up a promising research direction, with possibility to use modern dimension reduction
methods on much larger data sets than which are manageable today.

Keywords dimension reduction, neural network, metric, visualization
ISBN (printed) 978-952-60-4311-1 ISBN (pdf) 978-952-60-4312-8
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942
Location of publisher Espoo Location of printing Helsinki Year 2011
Pages 107 The dissertation can be read at http://lib.tkk.fi/Diss/

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Eli Parviainen
Väitöskirjan nimi
Ulotteisuudenpienennyksestä ja piirreavaruuksista
Julkaisija Perustieteiden korkeakoulu
Yksikkö Lääketieteellisen tekniikan ja laskennallisen tieteen laitos
Sarja Aalto University publication series DOCTORAL DISSERTATIONS 94/2011
Tutkimusala Laskennallinen tekniikka
Käsikirjoituksen pvm 09.04.2011 Korjatun käsikirjoituksen pvm 12.09.2011
Väitöspäivä 11.11.2011 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Nykypäivänä tuotetaan ja tallennetaan valtavia määriä tietoa, joten menetelmien pitäisi
selviytyä sekä kasvavasta datamäärästä että datan kasvavasta ulotteisuudesta.
Ulotteisuudenpienennysmenetelmät pyrkivät vastaamaan jälkimmäiseen haasteeseen.

Monet ulotteisuudenpienennysmenetelmät koostuvat metrisestä muunnoksesta, jota seuraa
kustannusfunktion optimointi. Useita erityyppisiä kustannusfunktioita on kehitetty ja
tutkittu, mutta metriikat ovat jääneet vähemmälle huomiolle. Tämän työn näkökulma
ulotteisuudenpienennykseen on nostaa metriikat itsenäisempään rooliin. Työn aihe on
metriikan ja ulotteisuudenpienennyksen vuorovaikutus. Työ rakentuu joukosta
ulotteisuudenpienennyksen ja neuroverkkotutkimuksen ajankohtaisiin kysymyksiin liittyviä
tutkielmia. Neuroverkkoja käytetään sekä ulotteisuudenpienennyksen työvälineenä että
tutkimuskohteena.

Esittämällä mallinnuksen tai klusteroinnin tulokset metriikan muodossa voidaan niitä
tutkia ulotteisuudenpienennysmenetelmillä, tai käyttää niitä tuomaan uusia ominaisuuksia
ulotteisuudenpienennykseen. Kaksi esimerkkiä ovat hierarkkisen klusteroinnin tulosten
visualisointi, ja ohjattujen ulotteisuudenpienennysmenetelmien luominen
neuroverkkomallin piirreavaruuteen pohjautuvan metriikan avulla. Klusteroinnin ja
ulotteisuudenpienennyksen yhdistäminen tuottaa uuden tavan luoda tilatehokkaita
visualisointeja, joissa yhdistetään hierarkkinen rakenne tietoon klustereiden etäisyyksistä.

Työssä tutkitaan äskettäin kehitetyn extreme learning machine -nimisen
neuroverkkomenetelmän piirreavaruutta. Tällaiselle neuroverkolle esitetään uusi tulkinta, ja
todetaan tarve parametrisoida menetelmä painojen varianssia käyttäen. Tällä on käytännön
merkitystä extreme learning machine -menetelmän käyttöön, sillä nykykäytäntö korostaa
piiloyksikkömäärän tärkeyttä ja jättää painojen varianssin huomiotta.

Eräs syvien neuroverkkojen tutkimuksen nykytrendi on käyttää ohjattujen
ulotteisuudenpienennysmenetelmien kustannusfunktioita neuroverkon opetukseen. Tässä
työssä näytetään, että yhtä hyviin tuloksiin voidaan päästä yksinkertaisesti opettamalla
pullonkaulakerroksella varustettu neuroverkko toteuttamaan luokittelu tai regressio. Tämä
on nopeampaa kuin ulotteisuudenpienennyskustannuksen käyttö.

Työssä osoitetaan, että toisin kuin nykyään ajatellaan, nopeiden
ulotteisuudenpienennysmenetelmien luominen harvaa etäisyysmatriisia käyttäen on toimiva
ajatus, mikäli matriisissa säilyy sopiva tasapaino lyhyiden ja pitkien etäisyyksien välillä. Tämä
havainto avaa lupaavan suunnan jatkotutkimukselle, ja saattaa mahdollistaa nykyaikaisten
ulotteisuudenpienennysmenetelmien käytön nykyistä paljon suuremmilla datoilla.
Avainsanat ulotteisuudenpienennys, neuroverkko, metriikka, visualisointi
ISBN (painettu) 978-952-60-4311-1 ISBN (pdf) 978-952-60-4312-8
ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942
Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2011
Sivumäärä 107 Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Preface

Work for this thesis was done at Department of Biomedical Engineering and
Computational Science (BECS) during 2009-2010, with some finishing touches in
spring 2011. Most of funding came from Finnish Funding Agency for Technology
and Innovation (TEKES) through a project where I worked before my thesis. In
addition to funding, the project provided a chance to take the necessary courses
and acquire some experience on machine learning, which enabled rapid comple-
tion of the thesis work afterwards. Faculty of Information and Natural Sciences
kindly supported finalization of the thesis with some extra money.
I warmly thank my supervisor prof. Jouko Lampinen for allowing me to jump

on his family’s trampoline, a most enjoyable experience which outshines any
recreation I could have devised in an office. I also thank prof. Lampinen for
possibility to do my PhD at BECS. In pleasantness thesis work cannot be com-
pared to trampoline jumping, but all the same it provided welcome escapism and
occasionally a chance to sprain some braincells.
Not all PhD stories are success stories, and not all tunnels have a light in the

end. Towards the end I came to feel so much like an outcast that I shied away
from my luckier colleagues. Anyway, the few good memories I have from my time
at BECS are of moments shared with fellow students. First of all I thank the
poor souls who had to share an office with me: Markus Siivola, who had the good
sense to escape to Canada; Juho Kettunen, a constant source of support with his
grown-up and mature attitude (he seldom said anything suitable for ears of mi-
nors); and especially Jaakko Riihimäki, whose friendliness and patience kept me
afloat innumerable times. Jaakko is the only person ever to fool me into eating
pinecones, and to force me to see a dentist (these two events are unrelated). I also
thank the rest of the gang, in no particular order: Jarno Vanhatalo (awesomely
efficient), Pasi Jylänki (awesomely smart), Janne Ojanen (awesomely violent),
Jouni Hartikainen (the other QPO; apologies for the Finnish pun), and others.
To Tommi and Aleph I would like to point out, that although my thesis lacks

an allusion to Superpenguin (admittedly a grave fault in any scientific work),
everything in my thesis has much lower computational complexity than anything
in Tommi’s thesis. Yes, some of us do consider it a virtue.
Finally, my gratitude goes to my parents, whose influence I recognize in my

thinking even today. My mother ingrained the value of knowledge by insisting,
that the only valid reson to quit the table before the meal is over is to look things
up in a dictionary. My father taught me that often the best way to improve a
design is to leave things out.

Espoo, September 12, 2011,

Eli Parviainen

1

Contents

Preface 1

Contents 3

1 Introduction 7
1.1 Outline of the work . 8

2 Background 11
2.1 Basic concepts . 11
2.2 A taxonomy of dimension reduction methods 19
2.3 Metrics . 20
2.4 Cost functions . 22
2.5 Supervised dimension reduction 27

3 Metrics bridging models and dimension reduction 35
3.1 Metrics that describe results of modeling 35
3.2 Visualizing hierarchical clustering 38
3.3 Comparison of feature space and LM visualizations 40
3.4 Conclusions . 42

4 Feature space of the Extreme Learning Machine 45
4.1 Random and infinite neural networks 46
4.2 Comparison of feature spaces 47
4.3 Extreme learning machine approximates the neural net-

work kernel . 49
4.4 Variance parameter in ELM 52
4.5 On properties of ELM . 54
4.6 Conclusions . 55

5 Supervised dimension reduction with bottleneck networks 57
5.1 Feedforward neural networks in dimension reduction 58
5.2 Supervised bottleneck networks 60
5.3 Bottleneck classifier experiments 61
5.4 Bottleneck regression network experiments 64
5.5 Conclusions . 70

6 Dimension reduction with a sparse metric 73
6.1 Existing sparse approaches 73
6.2 Local and global in sparse distance matrices 75
6.3 Conclusions . 78

7 Discussion 83

A Data and parameters 85
A.1 Description of data sets . 85
A.2 Data and parameters of experiments 86

Bibliography 89

3

List of abbreviations

AE autoencoder
BC bottleneck classifier
BRN bottleneck regression network
CCA curvilinear component analysis
CDA curvilinear distance analysis
COIR covariance operator inverse regression
DBN deep belief network
DC discriminative clustering
DR dimension reduction
DRR dimension reduction for regression
ELM extreme learning machine
GPLVM Gaussian process latent variable model
HC hierarchical clustering
HLLE Hessian locally linear embedding
KDR kernel dimension reduction
KL Kullback-Leibler (divergence)
kNN k nearest neighbors
KPCA kernel principal component analysis
LDA linear discriminant analysis
LE Laplacian eigenmap
LMNN large margin nearest neighbor
LLE locally linear embedding
MDS multidimensional scaling
mKDR manifold kernel dimension reduction
MLP multilayer perceptron network
MVE minimum volume embedding
MVU maximum variance unfolding
NCA neighborhood component analysis
NNK neural network kernel
PCA principal component analysis
PSD positive semidefinite
RBM restricted Boltzmann machine
RMS root mean square (error)
SIR sliced inverse regression
SNE stochastic neighbor embedding
SOM self organizing map
SVM support vector machine
t-SNE t-distributed stochastic neighbor embedding

5

1. Introduction

This work is a monograph built on a series of studies on current top-
ics in dimension reduction and neural network research. What unifies
these two subjects is the importance of a metric transformation as a
building block. Dimension reduction attempts to transform points of a
high-dimensional space into a low-dimensional space, obeying constraints
specified by a cost function. Hidden layers of a neural network implement
successive transformations that turn data into features. Usually features
are found so that they minimize a certain cost. In this work neural net-
works are used both as a tool and a target for dimension reduction.
Dimension reduction is a topical research subject. Today’s world pro-

duces and stores huge amounts of data, which calls for methods that can
tackle both growing sizes and growing dimensionalities of data sets. Di-
mension reduction tries to answer the challenges posed by the latter.
Term "dimension reduction" collects under its umbrella several meth-

ods with partly overlapping, partly differing uses. Some methods are
good for data preprocessing, turning a high-dimensional data into lower-
dimensional form for algorithms to use. Others concentrate on recogniz-
ing shapes of data clouds, effectively learning data-internal coordinates,
and such coordinates can then be used in further processing. Yet others
aim to pack data so that the results can be used for predictions like full
data, but take less space and are faster to handle. Finally, some meth-
ods are developed with visualization in mind, and also results from other
methods are often applied in visualizations. The emphasis of this work is
on two-dimensional visualizations.
A problem we see in current dimension reduction research is that too

often methods are presented as monolithic, even though many consist of
a fairly independent metric transformation part followed by optimization
of a cost function. This leads to an unmanageable number of seemingly
new methods, many of which could be better categorized as combinations
of a basic cost function and a new metric, or vice versa. Modularity of
presentation would facilitate both development and analysis of dimension
reduction methods.
There are several successful cost functions for dimension reduction,

based on different ideas of what should be preserved in the low-dimen-
sional representation of data. The role of metrics, on the contrary, has
received less attention. We promote the view that metrics should be lifted
to a more independent role in dimension reduction research. Shifting the
focus on metrics and the interaction of the metric and the cost function
opens up several routes for methodological development. It is not neces-
sary to pack all functionality of a dimension reduction method into one
cost function. By optimizing the metric separately (e.g. to facilitate clas-

7

Introduction

sification) new properties can be easily introduced into existing methods.
Dimension reduction can be applied to higher-level entities than raw data
by describing such entities (e.g. a clustering result) in the form of a met-
ric. Connections to feature extraction become more clear – a cost function
of a dimension reduction method can e.g. guide the feature learning in
a neural network, instead of just finding low-dimensional points. And,
speeding up dimension reduction can be done by using a sparse metric,
instead of using complicated heuristics for choosing points or distances in
the optimization algorithm.
This work contributes to surveying the territory between metrics and

cost functions. We study the interaction of metrics and dimension reduc-
tion from two directions. Two chapters make the dimension reduction
method the object of study, and modify a metric to affect behavior of di-
mension reduction: Chapter 3 uses a metric to convey modeling results
into a dimension reduction method, and Chapter 6 develops a dimension
reduction method based on a sparse metric. Two chapters take the oppo-
site view, and use dimension reduction to create or understand a metric:
in Chapter 4, the feature space of a neural network model is studied, us-
ing tools of dimension reduction and analysis of similarity matrices, and
Chapter 5 concentrates on guiding feature learning of a neural network
by different cost functions.

1.1 Outline of the work

The background in Chapter 2 is a review of common concepts and meth-
ods of dimension reduction.
Chapter 3 extends and refines work from [135] , [132], and in a small

part, [136]. The key idea of this chapter is to use a metric as a bridge
between a model and a dimension reduction method. Two realizations of
this idea a studied. First, we visualize results of hierarchical clustering
using dimension reduction. Second, we implement supervised variants
of existing unsupervised dimension reduction methods by using a metric
based on feature space of a supervised neural network model, and present
a comparison to a related method.
In Chapter 4 we study extreme learning machines (ELM), a recently de-

veloped neural network architecture based on random projections. Main
contributions of this chapter are a novel interpretation of ELM, which
points out its resemblance to kernel classifiers, and recognition of im-
portance of weight variance as a parameter in ELM training. We also
discuss some claims made about ELM, which we feel may have been too
strongly presented in earlier work. Most of the study has been published
in [134]1, visualizations of feature spaces being new. Only the author’s
material from the jointly written [134] was chosen in this work.
In Chapter 5 we study bottleneck classifiers, which complement the

current research on deep networks for dimension reduction. We show
that supervised bottleneck classifiers are a competitive alternative to cur-
rently used deep networks for supervised dimension reduction. Eval-
uation of the cost function of a bottleneck classifier scales linearly in
the number of data points, while state-of-the-art methods use cost func-
tions that scale quadratically or worse. Although classification and re-
gression are related tasks from a neural network point of view, super-

1in proceedings of International Conference on Knowledge Discovery and Infor-
mation Retrieval 2010; reused with permission

8

Introduction

vised dimension reduction is clearly divided into classification-oriented
and regression-oriented research branches. We therefore experiment sep-
arately with bottlenecked regression networks, and show that they per-
form as well as the state-of-the art methods used in dimension reduction
for regression. We are not aware of earlier use of neural networks in the
field of dimension reduction for regression. Bottleneck classifiers have
been studied in [130]2, and part of experiments on bottleneck regression
networks are from [131]2.
Chapter 6 presents work on sparse dimension reduction, published in

[133]. We demonstrate that, contrary to the current belief, using sparse
distance matrices for creating fast dimension reduction methods is a pro-
mising idea. We learn that a proper balance between short-distance and
long-distance entries in the sparse matrix is needed for good results. The
chapter opens a promising direction for further research, and we also
discuss some lines for further development.

2reused with kind permission from Springer Science+Business Media

9

2. Background

In this section, we first introduce some background concepts, and describe
commonly used dimension reduction methods.
The number of papers published about dimension reduction currently

seems to grow exponentially (Fig. 2.1), and it would be impossible to
attempt a full account here. We briefly recount some methods that il-
lustrate common principles in how dimension reduction (DR) methods
work. Many of the methods presented here have introduced novel ideas
to the field, and thereby serve as basic methods which have later been
extended or modified. Further reviews on dimension reduction include
[24, 54, 23, 208, 109, 183].

2.1 Basic concepts

2.1.1 Dimension reduction in machine learning

Some of most basic problems of machine learning are classification, clus-
tering, density estimation and dimension reduction. Using such a divi-
sion satisfies humans’ need to create clear-cut taxonomies, and is also
motivated by the often widely differing algorithms for solving the basic
problems. Solutions to all these problems, however, build on the thought
that a data point has a different or stronger relationship to a nearby-
located point than to a point further away. It is therefore not surprising
that sometimes the different problems can be solved by similar methods,
and sometimes the borderlines between the problems are not clear-cut.
Many, if not most, modern dimension reduction methods use some kind

of density estimate. It is seldom explicitly called a density estimate,
but forming graphs with links to nearest neighbors or placing kernels
on the data points has the effect of deciding which areas are local, and
how strongly local information should be emphasized. This is not very
different from using Parzen windows or k-nearest neighbor density es-
timates [45]. The density estimate interpretation has been exploited in
[139], where a DR method of quadratic complexity is turned into a lin-
early scaling method by replacing a non-parametric Parzen estimate by a
Gaussian mixture model.
Dimension reduction is also connected with clustering. Some methods

can be interpreted as clustering methods as well as DR methods [95, 43].
Both DR and clustering can be based on similar density estimates and
graph-based representations built thereon [8, 194]. Dimension reduction
of clustered data has been specifically considered [153, 159], and cluster-
ing has been used as a preprocessing step in order to obtain labels for

11

Background

1960 1970 1980 1990 2000 2010
0

1000

2000

3000

4000

5000

6000

7000
"dimension reduction" OR
"dimensionality reduction"

1960 1970 1980 1990 2000 2010

2

4

6

8

10

12
x 10

5

technique

1960 1970 1980 1990 2000 2010

1

2

3

4

5

6

x 10
5

physics

Figure 2.1. 50 years of dimension reduction in Google Scholar. The number of search hits
for "dimension reduction" has increased exponentially from 1960s to today,
with 6660 hits for 2009 (search results of June 16, 2010). The growth is not
explained just by better availability of newer publications, as attested by two
searches with more general search terms.

supervised DR [144]. Dimension reduction methods can also be combined
with a clustering-based metric to visualize clustering results [132].
Classification, as well as clustering, can often be improved by choos-

ing or learning a metric on data as a preprocessing step [179, 62, 210,
202, 196]. Supervised metrics provided by such methods can be used
with dimension reduction algorithms, or they can directly provide a re-
duced representation, if the output dimensionality of the method can be
controlled. In a classification problem, the metric should improve accu-
racy; in a dimension reduction problem, the metric should lower dimen-
sion while worsening accuracy as little as possible. Although the goals
differ, technically, the same cost functions and the same algorithms can
often be used in metric learning for both tasks.
Performing dimension reduction and learning a data-based metric are

thus closely related tasks. In some cases the same DR problem can be for-
mulated either as first learning a metric and then using e.g. its highest
principal components as a reduced representation, or as directly learning
a reduced-rank metric. Therefore, the two terms are sometimes inter-
changed. As a metric is often specified as a (positive semidefinite) matrix,
also term kernel learning is sometimes used for the metric learning task.

2.1.2 Intrinsic dimensionality

The number of attributes is usually different from dimensionality. In
problems with less data points than dimensions, the number of data points
dictates the maximum dimensionality of the subspace that the data vec-
tors can span. Sometimes data can contain directions that are mostly
noise, or it can have attributes that are mostly irrelevant for the task in
hand and can be left out by variable selection. And, even more impor-
tantly, data may contain dependencies which effectively lower its dimen-
sionality. The smaller dimensionality caused by dependencies is referred
to as the intrinsic dimensionality of data, or the number of degrees of
freedom that is sufficient for describing the data.
Determining the intrinsic dimensionality is important when the goal is

to describe data concisely but without losing information. In the visual-
ization applications the presentations are forced to 2D or 3D, with the
price of greater information loss. In such context the intrinsic dimension-
ality is often ignored. In this work we mainly concentrate on dimension

12

Background

reduction as a visualization tool, aiming at 2D results. As the output
dimensionality is fixed, we do not explicitly try to estimate the intrinsic
dimensionalities.

2.1.3 Curse of dimensionality

Algorithms designed with intuitions based on two- or three-dimensional
spaces may face unexpected problems when dealing with high-dimension-
al data [109, 90, 1]. The phenomenon maybe most relevant for dimension
reduction is the concentration of distances. When number of dimension
components grows, contribution of any one axis becomes more and more
meaningless. It becomes difficult to tell two points apart unless they dif-
fer in most dimensions. Most points are roughly equally far from each
other, and the distribution of pairwise distances becomes peaked.
An important practical consequence of this is that the concept of nearest

neighbor is weakened [15, 77]. When the difference in distances to the
nearest and the furthest neighbors becomes less than the measurement
noise, algorithms relying on neighborhoods break down. This and other
peculiarities of high-dimensional spaces are referred to as the curse of
dimensionality.
DiMenSionAlity effects can severely affect distance-based algorithms,

and become noticeable already in 5–10 dimensions [109, 55], which is
much less than the number of attributes in many modern data sets. That
such algorithms can be used at all depends on the basic assumption that
the intrinsic dimensionality of the data is fairly low [112].
Nonlinear dimensionality reduction, sometimes thought as a remedy

for the curse of dimensionality, implicitly relies on the assumption of a
low intrinsic dimensionality. Most DR methods use nearest neighbors or
comparisons of pairwise distances, and are thus equally sensitive to the
curse of dimensionality as other machine learning methods.

2.1.4 Unfolding manifolds

Some data clouds are curved in shape, and better described with Rieman-
nian than Euclidean coordinates. Data is thought to be a sample from
a manifold, which is embedded in a higher-dimensional space. Manifold
generalizes the linear subspace by introducing curvilinear coordinates. In
small enough scale, manifolds are approximately linear, in same fashion
as the surface of the earth appears flat in local view.
The aim of manifold methods is to uncover the intrinsic coordinate sys-

tem of the manifold from which the data is sampled. Dimension reduction
is done using these coordinates instead of the Euclidean coordinates of
the embedding space. The manifold coordinates can be approximated by
studying the data in a local scale, and then combining local, linear views
into a global nonlinear shape. Local views are obtained by restricting the
analysis to the nearest neighbors of a data point. There are several ways
to work with local neighborhoods. Some of them will be introduced below.
Sometimes term "manifold learning" is used synonymously with non-

linear dimension reduction [109] to emphasize the fact that the methods
assume existence of a low-dimensional structure and try to find it, instead
of transforming truly high-dimensional data into a low-dimensional form.
We continue to speak about nonlinear dimension reduction, being aware
of that the main uses of the methods may lie elsewhere than in fighting
the curse of dimensionality.
Approximating the manifold coordinates is deservedly one of basic ap-

13

Background

proaches to non-linear dimension reduction, but should not be seen as
a panacea. Complicated manifolds are present in toy problems like the
famous Swiss Roll, and systematically collected data (like the Yale and
Head Pose data sets we will use later, see Appendix A) can exhibit very
clear manifold structure. Data sets collected under more varying condi-
tions are seldom cooperative enough to resemble uniform, dense samples
from a manifold. Clustered and non-uniformly sampled data are obvious
challenges for methods, that basically assume a single manifold shape
well represented by the data cloud. Many manifold methods are reviewed
in [183], and are not found to do better than global methods in real prob-
lems.
Manifolds are not the only way to look at the structure of data. Alter-

natives include clustering the data (e.g. self-organizing maps [95] and
generative topographic mapping [17]), or emphasizing its natural den-
sity structure (e.g. stochastic neighbor embedding [78]). Some methods
are able to unfold manifolds, even if they do not explicitly form manifold
coordinates (e.g. curvilinear components analysis, [76]). The focus of DR
development is still on methods that rely on neighborhoods, but neighbor-
hoods can be exploited without bringing in strong manifold assumptions.

2.1.5 Similarity representation of data

The location of a data point in space can be given by listing its coordinates,
one per dimension. This is the representation used in vectorial data. An
alternative representation, similarity data, gets rid of the notion of coor-
dinates, and only lists pairwise comparisons between the points. These
can be measurements of either similarity or dissimilarity of points.
Similarity representation can handle more diverse data types than vec-

torial data, e.g. graphs [96], since developing a similarity measure may
be easier than converting a complex data object into a vector. For data
sets with a small number of very high-dimensional points, like gene data
sets with a few thousand persons but hundreds of thousands of measure-
ments, similarity matrices take less space than the data itself, and thus
be faster to handle. These properties of similarities have been exploited
e.g. in visualizing text documents [35] and gene data [88] .
Pairwise similarity or dissimilarity is the form of data used by most

dimension reduction methods. Also some classification and clustering al-
gorithms can be implemented directly on similarities [29, 138]. Some
algorithms originally designed for vector data have been directly applied
using a list of pairwise similarities as a feature vector [138].

General similarity A general similarity can be specified by a pairwise ma-
trix, with no restrictions on matrix elements (except perhaps the require-
ment that a point should be maximally similar to itself). Even symmetry
is not a necessary requirement: if the similarity describes e.g. closeness
of persons, as reported by themselves, two persons may obviously have
different views on their relationship.
Similarity and dissimilarity matrices can be converted into each other,

although no single "correct" transformation exists. A common transfor-
mation, used e.g. in mdscale function of Matlab, which can be used if
similarities are first normalized into [0,1]-range is

dij =
√
1− sij . (2.1)

14

Background

Generally there is no one-to-one correspondence between a similarity
matrix and points of a metric space, as a general similarity might spec-
ify constraints which do not necessarily yield a meaningful topology [87].
General similarity matrices are encountered in applications where data
is originally collected as pairwise comparisons. Such similarities can be
embedded in Euclidean spaces only approximately. Slight deviations from
metricity are not a problem in DR, since dimension reduction by its na-
ture looks for compromises. Even if the original(dis)similarities stem
from a metric high-dimensional space, even the best possible represen-
tation in a low-dimensional space cannot usually satisfy all constraints
based on high-dimensional point locations.

Positive semidefinite similarity In dimension reduction context one often
deals with a restricted class of similarity matrices, the positive semidefi-
nite (PSD) ones. PSD matrices arise when vectorial data is converted into
similarity data, or when a metric is learned and constrained to be PSD.
A positive semidefinite matrix A is a similarity matrix, which fulfills

the condition vTAv ≥ 0 for all non-zero (real) vectors v. A PSD matrix
is symmetric and has positive, real eigenvalues. Matrices of this fam-
ily correspond to covariance matrices in some, possibly high-dimensional
Euclidean space. Corresponding vectorial representation can be recov-
ered by eigendecomposition.
As covariance sij = xT

i xj and Euclidean distance dij are connected through

d2ij = (xi − xj)
T (xi − xj) = xT

i xi + xT
i xj + xT

j xi + xT
j xj , (2.2)

PSD matrices are naturally converted into squared distance matrices us-
ing

d2ij = sii + sjj − 2sij . (2.3)

The resulting dissimilarity matrix fulfills requirements for a distance:
positiveness, a zero distance only to the point itself, symmetry, and trian-
gle inequality.
PSD matrices and their distance counterparts correspond to local or

non-linear metrics: topology of the space can vary from region to region.
Therefore, by having only the pairwise training point distances available,
distances between test points can be only approximately determined. De-
termining an unknown distance between two points would require com-
puting a path integral between the points.

Mahalanobis distance Mahalanobis distances [116] are a more restricted
class of distances than those obtained from general PSD matrices. Maha-
lanobis distances correspond to linear transformations of data, since the
squared Mahalanobis distance, with A = W TW ,

d2ij = (xi − xj)
TA(xi − xj) (2.4)

can be represented as

d2ij = (xi − xj)
TW TW (xi − xj)

= (Wxi −Wxj)
T (Wxi −Wxj). (2.5)

Euclidean distance is a special case where the linear mapping is an
identity matrix. A diagonal matrix specifies an adaptive Euclidean dis-
tance [166], where only scaling of the axes is possible. A general Ma-
halanobis distance has all properties that can be specified by a linear

15

Background

mapping: axes of the data space can be rotated, scaled and used as linear
combinations.

2.1.6 Neighborhoods

There are basically two ways for defining a neighborhood for a point.
First, we can fix the number of neighboring points k we want to have in
the neighborhood. This creates neighborhoods of differing spatial sizes,
depending on local data density. Usually we want the neighbor relation
to be symmetric. This can be arranged either by making points neigh-
bors only if they both agree on this (in which case some points will have
fewer neighbors than the intended k), or creating a connection if any
point lists the other as a neighbor (number of neighbors grows for some
points). The edges between neighbors can be weighted or unweighted.
Weights are needed e.g. for computing geodesic distances. A problem of
k-parameterization is the computational expense of finding the nearest
neighbors.
Another way is to fix a spatial radius ε, and connect a point to all neigh-

bors at a closer distance. In ε-neighborhoods points can have different
numbers of neighbors. A neighbor relationship defined this way is sym-
metric. As all neighbors are about equally far away, edge weights do not
bring much additional information [194], and are usually discarded.
Outliers become easily disconnected in ε-neighborhoods. The ε-neigh-

borhood may also be a bad choice if the data has multiple natural scales.
A value of ε that gives good results in a dense area may not represent
sparser areas well, whereas using k nearest neighbors adapts to local
conditions better. Data dimensionality, which affects the meaningfulness
of neighborhoods anyway, must be taken into account especially when
choosing ε, since the higher the dimension the less neighbors there will
be inside a given radius.
Neighbor relationships can be hard or soft. In a hard neighborhood,

two points either are neighbors or they are not. In a soft neighborhood,
all points are neighbors, but the strength of the relationship varies, usu-
ally depending on the spatial distance via a kernel, most often a Gaus-
sian. The kernel emphasizes closest neighbors by assigning them larger
weights.
Defining hard neighborhoods is straightforward, whether using k or ε.

Soft neighborhoods are more often parameterized by ε, which now be-
comes a kernel width parameter. Adaptive kernel widths, similar in effect
to k-neighborhoods, can be created with soft k-parameterization. For ex-
ample, the distance to the kth neighbor x(k)i is used in [215] to determine
local scale σ2

i = ‖xi − x
(k)
i ‖2, which is then used to weight connections as

wij = exp (− ‖xi−xj‖2

σiσj
). SNE and t-SNE (Sec. 2.4.3) determine kernel width

so that the entropy of a Gaussian kernel is log k. This amounts to using k
as a kind of effective number of neighbors.
Neighbor relations are usually presented as amatrix, that has a nonzero

entry for each existing connection between neighbors. The matrix can be
equivalently interpreted as a graph, with (possibly weighted) edges be-
tween neighbors.

2.1.7 Embedding quality

There is no general agreement about what, if any, is a good representation
of high-dimensional data with fewer dimensions. Different methods em-

16

Background

ploy different cost functions, making a choice on what is worth preserving
in the low-dimensional embedding. Since each method optimizes its own
cost function, fair comparisons between methods are hard to make based
on such cost functions. Therefore, several external quality criteria have
been developed.
Development of the quality criteria has followed the development of DR

methods. The early DRmethods, like multidimensional scaling (Sec. 2.4.3),
aimed at global preservation of distances, and also the quality of results
was measured by global criteria. In 1990s, when the topology-preserving
self-organizing maps [95] were at the peak of their popularity, the quality
criteria concentrated on quantifying topology preservation. The current
trend is to emphasize local neighborhoods, in DR methods as well as in
quality criteria.

Global criteria Shepard diagrams [164] are a basic tool for assessing dis-
tance preservation. They are simple plots where pairwise distances re-
alized in the embedding space are plotted as a function of the original
pairwise dissimilarities. This is basically correlation of distances, and
does not tell the whole truth about the embedding. An example from [19]
is a mapping of an A-B-C triangle with edge lengths 2,3,4 to a straight A-
B-C line with AB-distance 1, BC-distance 2 and AC-distance 3. Distance
correlation is one, indicating a perfect mapping, yet we have completely
lost the information about the points forming a triangle and not origi-
nally lying on a line. Several correlation-based quality measures have
been suggested [68, 16, 19, 167].

Preserving topology Criteria for measuring topology preservation are
more complex than the global criteria. Topographic product [7] is adapted
from nonlinear dynamics. It measures preservation of neighbor order-
ings at different scales and combines the results into one formula. As
scale terms are computed for all scales (numbers of neighbors) and all
points, evaluating the criterion is computationally demanding. Topo-
graphic function [191] is computed using Voronoi regions of points to de-
fine neighborhoods, and is therefore best suited to clustering-based meth-
ods like SOM. Topographic function vanishes if topology is completely
preserved, and positive and negative values measure the direction and
severity of the mismatch between the embedding dimensionality and the
intrinsic dimensionality.

Local criteria Rank-based criteria do not pay attention to pairwise dis-
tances, but only check whether sets of nearest neighbors are realized as
they should in the embedding space. Different criteria can be classified in
terms of their handling of hard and mild extrusions and intrusions [110].
In a hard k-extrusion, a point is missing from the k-neighborhood where
it should be, and in a hard k-intrusion, it appears in a wrong k-neighbor-
hood. Mild extrusions and intrusions occur when the point is included in
the correct k-neighborhood, but its rank among the neighbors is wrong.
Local continuity metacriterion [28] combines mild intrusions and extru-

sions into one criterion. More common approach is to use two separate cri-
teria. Trustworthiness and continuity (introduced in more detail below)

17

Background

measure number and severity of hard intrusions and hard extrusions, re-
spectively. Mean relative rank errors [109] behave similarly but include
also mild intrusion and extrusions. [110] proposes two criteria, one for
measuring intrusiveness or extrusiveness of the method, and another for
assessing overall quality.
Many pairwise criteria are closely related to precision and recall [110].

Precision measures the proportion of correct answers among all answers
to a query, and recall tells, which proportion of the possible correct an-
swers was found. In DR embeddings, a correct answer could be a point
which is placed in a correct k-neighborhood. Unlike the DR quality crite-
ria, precision and recall do not consider the severity of rank mistakes.
Having two separate criteria makes it possible to describe the charac-

teristics of different methods, which often implicitly emphasize avoidance
of either extrusions or intrusions. They also open a way for creating con-
trolled compromizes between the two properties. In spite of their symmet-
rical definition, the members of a criteria pair are not necessarily equally
important. In [110] it is found that extrusive methods, i.e. those which
may cause discontinuities by allowing more extrusions than intrusions,
usually unfold manifolds better than intrusive methods. In [91] it is ar-
gued that trustworthiness, i.e. minimizing intrusions, is more important
for data exploration than continuity.

Trustworthiness and continuity Trustworthiness and continuity [184, 91]
are a popular pair of criteria for assessing neighborhood preservation.
Newer work by the same authors [188], uses mean smoothed precision
and recall instead, but we present the older and more heuristical trust-
worthiness and continuity here, since they were used in the studies on
which this work is built.
Trustworthiness and continuity study numbers of correct and incorrect

points in a neighborhood of a given size, taking into account how far from
the neighborhood (in rank distance) a wrong point came from, or how far
it should have been placed.
When studying trustworthiness at xi, other points are ordered by the

distance from xi. Point ranks according to data space distance are de-
noted r(xi,xj), and r̂(xi,xj) according to distances in the low-dimensional
space.
Let set Uk(xi) contain all points that are in the embedded neighborhood

but should not be, and set Vk(xi) the points that should be in an embedded
neighborhood but are not. Then, for a k-neighborhood, trustworthiness
and continuity, respectively, are defined as

Tk = 1−Ak

N∑
i=1

∑

xj∈Uk(xi)

[r(xi,xj)− k] (2.6)

and

Ck = 1−Ak

N∑
i=1

∑

xj∈Vk(xi)

[r̂(xi,xj)− k]. (2.7)

The normalizing factor Ak = 2
Gk

, where

Gk = Nk(2N − 3k − 1), k < N/2, (2.8)
Gk = N(N − k)(N − k − 1), k ≥ N/2, (2.9)

18

Background

Table 2.1. A taxonomy of some dimension reduction methods.

cost function

(dis)similarity
kernel
eigendec.

Laplacian
eigendec.

nonlinear
dissimilar-
ity

nonlinear
similarity

Euclidean
distance

classical
MDS
[174, 175],
PCA

MDS [98],
Sammon
[152],
MDS-tradeoff
[129], CCA
[40, 76],
CCA-tradeoff
[185, 186]

kernel-
weighted
neighbor-
hoods

KPCA [158] LE [8],
linear LE
[75]

SNE [78],
t-SNE [182],
SNE-
tradeoff
[187, 188]

paths
through
the data

Isomap
[170]

diffusion
map [32,
101, 126]

CDA [107]

neighborhood
+ cost

MVU
[203, 201],
MVE [162]

LLE [148],
linear LLE
[74],
HLLE [44]

facilitates interpretation of the criteria by ensuring that the values are
in the [0,1] range. Value one of trustworthiness and continuity is for per-
fectly successful mappings, and a perfectly random mapping gives values
around 0.5.

2.2 A taxonomy of dimension reduction methods

Strikingly many DR methods are built from a part which applies a met-
ric transformation or learns a data-based metric, and from a part which
minimizes a cost function in the transformed space. Although not all
methods neatly fall to this mould, division into a metric part and a cost
function part serves as a useful framework for presenting the multitude
of methods. This kind of division also brings forth the potential for new
combinations, e.g. by using a non-linear cost function with a metric that is
usually associated with an eigenfunction cost. Also [109] suggests a tax-
onomy that that separates metric and optimization, although they clas-
sify methods by the optimization algorithm, not by the cost function. Ta-
ble 2.1 gives a taxonomy of some DR methods arranged in the metric-cost
framework.

19

Background

2.3 Metrics

2.3.1 Euclidean distance and its transformations

An often used dissimilarity is the Euclidean distance. In some DR meth-
ods it is used as such, but it is more common to form a matrix of Euclidean
distances and transform it, e.g. with a suitable kernel function, to obtain
new (dis)similarities. Often the role of the transformation is to emphasize
local structure.
Gaussian or other kernels with a spherical or elliptical neighborhood

are commonly used. Such kernels have a clear notion of locality, an area
around a data point which is emphasized more than distant areas. The
role of locality in kernels like tanh-kernel (Sec. 4.1.2) or polynomial is not
as obvious as that in a Gaussian, and they are not much used in DR.
A kernel specifically designed for DR is proposed in [111]. The simi-

larity of two points is based on the probability of observing a larger dis-
tance than the truly observed one, according to a multidimensional nor-
mal distribution and a threshold parameter (which controls the size of
local neighborhood). With appropriate choices of the threshold and the
dimensionality of the normal distribution this kernel can account for the
norm concentration phenomenon [111].

Neighborhood probabilities
The probability pij of points xi and xj being neighbors can be computed
by placing kernels at the points and normalizing. The kernel emphasizes
local structure of data, and width parameter σi determines what is con-
sidered local.
Probabilities can be defined both in the high-dimensional space, com-

puted from the raw data, or in the low-dimensional embedding space, in
which case the point locations are optimized to satisfy a cost based on the
neighborhood probabilities. By far the most common kernel is Gaussian,
which gives neighborhood probabilities [78, 182] as

pj|i =
exp (− ‖xi − xj‖2/2σ2

i)∑
h�=i exp (− ‖xi − xh‖2/2σ2

i)
. (2.10)

If varying kernel widths are used, resulting probabilities are not symmet-
rical, and can be symmetrized by

pij =
pj|i + pi|j

2
. (2.11)

A modification with sometimes substantially improved performance is
to use Student t-distributions [180], with neighborhood probabilities

qij =
(1 + ‖zi − zj‖2/α)−

α+1

2

∑
h�=l(1 + ‖zh − zl‖2/α)−

α+1

2

, (2.12)

where α is a degrees-of-freedom parameter. The heavy tails of the t-dist-
ribution allow the points to move slightly farther from each other in the
embedding than in the data space. This is necessary, because in the high-
dimensional space, the distances concentrate, so that a point has many
approximately equidistant neighbors. Realizing theăequidistance using
a lower number of coordinates would force large numbers of points into
same area, a phenomenon named crowding problem in [182].

20

Background

Graph Laplacians
Many methods use neighborhood-based similarities to define weights of a
graph, and use them to build so called graph Laplacian [31]. The Lapla-
cian is a special matrix, that has theoretical connections to Laplacian
operators defined on manifolds [9, 31]. There are several versions of the
graph Laplacian [194], but the form usually used in dimension reduction
is the unnormalized form, L = D −W . It is computed from edge weights
W and a diagonal matrix D with entries dii =

∑
j wji. Defined this way,

the matrix is real, symmetric and diagonally dominant, and thus guaran-
teed to be positive-semidefinite.

2.3.2 Paths through the data cloud

Geodesic distance
As opposed to the Euclidean straight-line distance, the geodesic distance
follows the shape of a manifold. Approximate geodesic distances are ob-
tained by finding shortest paths through the neighborhood graph. Di-
jkstra’s [42] and Floyd’s [53] algorithms compute shortest paths, Dijk-
stra’s from one point to all points and Floyd’s between all point pairs.
Shortest-path approximations to geodesics may suffer from distortions
due to holes, caused by non-uniform or sparse sampling, and from short-
cuts, if the data has noise [183]. The graph should also be connected for
geodesic distances to work well.

Diffusion distance
An approach less sensitive to noise is to regard the graph Laplacian as a
Markov chain, and perform a random walk on it. The distance between
two nodes is influenced by lengths of all paths between the nodes. Some
paths might be due to noise, but they are averaged out by the hopefully
more numerous paths that follow the manifold. One random-walk based
distance which has been used in dimension reduction is diffusion distance
[101, 126]. The transition matrix for the random walk is formed from a
normalized graph Laplacian, and the distance can be computed from the
eigenvectors and eigenvalues of this matrix.

2.3.3 Optimization using neighborhoods

Locally Linear Embedding (LLE) [148] works on the assumption that if a
point can be reconstructed as a linear combination of its k neighbors in
the data space, the same weights and same neighbors can reconstruct it in
the embedding space. This is true if each local neighborhood is embedded
using a linear mapping. The similarity matrix, which is naturally sparse,
is found by optimizing the weights to minimize the reconstruction error.
Maximum Variance Unfolding (MVU) [203, 201] and Minimum Volume

Embedding (MVE) [162] use nearest neighbor relationships to determine
optimal similarities from data. A similarity matrix is learned so that
some global property of the low-dimensional representation is optimized,
while constraints are used to exactly preserve distances to the nearest
neighbors. The global property varies depending on the method. MVU, as
the name says, maximizes the variance of the results, which has the effect
of unfolding curved manifolds. MVE tries to find representations so that
the highest eigenvalues of the kernel matrix contain most of the energy,
minimizing information loss in the final projection step of the method.

21

Background

2.4 Cost functions

After the data has been represented in a suitable metric, a transformation
to a low dimensionality is sought. The transformation is specified by a
cost function. A simple alternative employed in many methods is the
mean square error. Its minimization corresponds to eigendecomposition,
either of a kernel matrix or of graph Laplacian. There are also methods
that specify a nonlinear transformation.

2.4.1 Eigendecomposition of kernels

One simple way to obtain embedding coordinates after the similarity ma-
trix is formed is to use eigendecomposition. Projections to the highest
eigenvectors (those related to the largest eigenvalues) give the embed-
ding locations for the data points.
If the kernel matrix is the covariance matrix of the raw data points,

eigendecomposition performs principal component analysis (PCA). PCA
finds a linear transformation of the data such that the directions of max-
imum variation become the new coordinate axes, in decreasing order of
importance. Using other kernels than covariance corresponds to doing
PCA in the metric presented by the similarity matrix. This method is
known as kernel PCA (KPCA) [158]. In this sense all eigendecomposition
methods can be considered variants of kernel PCA.
A separately developed method, that later was shown to be equivalent

to PCA, is classical multidimensional scaling (MDS) [174, 175]. (The qual-
ifier "classical" tells the method apart from the family of newer MDS
methods which map data nonlinearly). It was formulated as a solution
to the problem of finding absolute distances (a scale, hence the name) be-
tween points given a set of pairwise comparisons or relative distances.
The same problem in a different formulation is to find locations for points
in space given their pairwise dissimilarities. If the dissimilarity matrix
represents Euclidean distances, the points can be exactly recovered by
eigendecomposition [213]. Thus, classical MDS performs PCA, but for-
mulated in terms of outer product of data points instead of the PCA inner
product formulation [69].
A number of methods, originally not formulated using kernels, can be

recast into the kernel framework [14]. These methods include LLE, Lapla-
cian eigenmaps (see Sec. 2.4.2), MDS and Isomap.
Several other methods combine learning a method-specific similarity

with finding the embedding by eigendecomposition. Classical MDS with
geodesic distances, known as Isomap, is presented in [170]. MVU and
related methods [203, 201, 162] decompose kernel matrices that have
been optimized to maximize variance of the embedding or a related cost
function. MVU is a popular method and has inspired several variants.
In [195], requirement of exact neighbor distance preservation is relaxed,
which reduces sensitivity to noise. [63] applies the MVU idea to data that
is given as pairwise similar/dissimilar/unknown relationship constraints.

2.4.2 Eigendecomposition of graph Laplacians

Considerably larger number of methods obtain their embeddings from
graph Laplacians. A graph Laplacian is a positive semidefinite matrix,
such as kernel matrices are. However, it does not represent similarity,
but is rather a special kind of dissimilarity matrix. Its PSD property
is due to its construction, which makes the matrix diagonally dominant.

22

Background

The non-diagonal entries contain negative edge weights, and therefore
a smaller non-diagonal entry indicates larger similarity. This explains
why decomposing Laplacians differs from the kernel eigendecomposition
methods in that not highest but lowest eigenvectors (those related to the
smallest eigenvalues) are used. The lowest vector is a constant, related
to eigenvalue zero, and is excluded.
Embeddings using graph Laplacians were brought to awareness of the

machine learning community by Belkin and Niyogi’s work of Laplacian
Eigenmaps (LE) [8], which not only introduced graph Laplacians as an
effective and versatile tool for dimension reduction, but also led into re-
interpretation of LLE as Laplacian-based [73, 11]. Graph Laplacians
have earlier been used for spectral clustering, and their role in forming
2D representations for graphs has long been known as part of graph the-
ory [65]. They have been applied in computational chemistry for drawing
molecule structures [143].
Examples of other Laplacian-based methods include LLE [148], Hessian

LLE (which replaces Laplacian with Hessian operator) [44], Neighbor-
hood Preserving Embedding [74] (a linear approximation of LLE), Local-
ity Preserving Projections [75] (a linear version of Laplacian Eigenmaps),
and Diffusion Maps [32, 101, 126] (which are based on random walks but
can be computed using Laplacians). Embeddings produced by LE or LLE
can be further refined by a linear mapping to better preserve angles be-
tween data vectors [161].

2.4.3 Cost functions specifying a nonlinear transformation

MDS and variants
Termmultidimensional scaling (MDS) refers to a whole group of methods,
all of which try to find point locations so that Euclidean distances between
the low-dimensional points match the given dissimilarities as accurately
as possible. Their development was started from classical MDS, that is
equivalent to PCA.
Later versions of MDS [164, 98] relax the classical MDS requirement

that dissimilarities in the data should equal distances in the embedding.
Instead, the dissimilarities can be transformed first. Transformations are
specified by the cost function.
MDS is used in psychometry for handling results of pairwise compar-

isons, and more generally as a dimension reduction method. In psychom-
etry, the goal is often to check if the pairwise observations can be ex-
plained by an assumption of a psychological space [19]. If an embedding
using a certain distance measure matches the observed dissimilarities,
the psychological space is deemed to obey that distance.
Many MDS cost functions, so called stress functions, are derivations

of the mean square error used in classical MDS. General form for MDS
stress functions [19], from which different costs can be formed by a suit-
able choice of f(·) and wij , is

s(z) =
∑
i<j

wij [f(δ
2
ij)− f(d2ij(z))]

2. (2.13)

Some well-known cost functions are Stress (f(z) =
√
z, wij = 1), Squared

stress (f(z) = z, wij = 1), and Sammon mapping (f(z) =
√
z, wij = δij).

Sammon mapping [152] does not explicitly specify any local environment,
but emphasizes short distances more than basic MDS does, and is in this
sense a precursor for modern local dimension reduction methods.

23

Background

CCA and variants
Instead of using data-space neighborhoods for defining distances, neigh-
bor information can be introduced at the level of cost function. This allows
defining neighborhoods in the embedding space, as is done in Curvilinear
Components Analysis (CCA) [39, 40, 76]. The basic CCA and its deriva-
tives use Euclidean distances. Also geodesic distances have been tried
[107], under the name Curvilinear Distance Analysis (CDA).
Defining neighborhoods in the embedding space gives CCA its ability

to unfold manifolds. Requiring accurate distance preservation inside an
embedding-space neighborhood ensures that all points that are placed
near each other, are truly data-space neighbors. But, nothing prevents
data-space neighbors from spreading into different neighborhoods in the
embedding space. The points that in the data space were brought near
each other by manifold folding are allowed to move to different areas in
the low-dimensional space, and thus the manifold can unfold.
For small distances (d(xi,xj) ≤ d(zi, zj)) CCA minimizes a cost imple-

menting unfolding,

Eu = (d(xi,xj)− d(zi, zj))
2 · F(d(zi, zj), σ), (2.14)

and for large distances, it uses a cost that implements projection to the
unfolded manifold,

Ep = (d(xi,xj)
2 − d(zi, zj)

2)2 · F(d(zi, zj), σ). (2.15)

σ is neighborhood radius; only points closer than that are considered,
which is ensured by step function F (·). The optimization proceeds from
global towards local scale by gradually decreasing σ.
Although the CCA cost is formulated using distances, it can be cast

in a form that uses similarities instead, and related to similarity-based
methods [111]. Representation using similarities highlights importance
of the local neighborhood F (·), and explains why the seemingly distance-
based CCA can behave more like locality-emphasizing methods than like
MDS.
First versions of CCA used a neural network for vector quantization and

building a description of data topology. This speeds up training, since only
the code vectors of the quantization need to be mapped. Inspired by this
idea, some other combinations of quantization and projection methods
have been tried (competitive learning with a neighborhood preserving it-
erative algorithm [108, 106], neural gas with CCA and CDA [49, 48]).
CCA itself can be, and has been, implemented without the quantization
step.

SNE and variants
Stochastic neighbor embedding (SNE) [78] and related methods use cost
functions that try to preserve the probability of two points being neigh-
bors. The low-dimensional embedding is found by minimizing Kullback-
Leibler divergence

C = KL(P‖Q) =
∑
i �=j

pij log
pij
qij

(2.16)

between high-dimensional neighborhood probabilities pij and low-dimen-
sional probabilities qij , computed as in Eq. (2.10) and Eq. (2.12), respec-
tively.
SNE computes the probabilities using Gaussians in both the high-di-

mensional and the low-dimensional space. A relatively new variant which

24

Background

has rapidly become popular is t-SNE, or SNE using Student t-distribu-
tions [182], which uses Gaussians in the high-dimensional space but t-
distributions for the embedding points. Originally t-SNE was meant es-
pecially for 2D and 3D visualizations, but it was later slightly modified
to better adapt to different dimensionalities [180]. SNE and especially t-
SNE have inspired a number of variants or related works [111, 25, 188],
and SNE-like cost functions have been used in conjunction with other
methods [181, 22].
Both SNE cost and its derivatives use squared Euclidean distances, but

they can easily be adapted to use other distance metrics. In Chapter 3 we
will use model-based similarities with t-SNE.

2.4.4 Trading off local quality for global quality

A number of approaches strive for a tradeoff between trustworthiness and
continuity, or global and local quality.
Local and global constraints mean different things in the data space

and the embedding space. Keeping points of a data-space neighborhood
together in the embedding space requires notion of locality in the data
space. Making sure that two data-space neighborhoods are not acciden-
tally mapped on top of each other requires access to distant data-space
points, and is thus a more global problem. In the embedding space, how-
ever, the latter problem is local: any two points in a local embedding-
space neighborhood should originate from the same area in the data space.
Such thinking has allowed development of methods with controlled trade-
off between local and global quality (Sec. 2.4.4).
Tradeoff methods have been built on MDS, CCA and SNE cost func-

tions [129, 186, 188]. None of the cost functions optimizes trustworthi-
ness or continuity explicitely, although SNE cost has a close connection
to these criteria. Instead, the tradeoff is built between errors in the
data space neighborhoods versus those in the embedding space neighbor-
hoods. MDS-tradeoff uses either the data space or the embedding space
distances as normalizing factors in the cost function. CCA-tradeoff ex-
plicitely formulates the neighborhoods in either space, and SNE-tradeoff
uses either the data space or the embedding space probabilities as the
distribution to be approximated by the KL-divergence.
How this relates to trustworthiness and continuity criteria can be un-

derstood by looking at the scales at which the two criteria operate. Con-
tinuity is predominantly a local property: to achieve high continuity, it
is enough to obey local constraints, dictated by (dis)similarities to near
neighbors (in the data space). This is why the continuity term looks at a
data space neighborhood, and tries to minimize errors in it.
The continuity term is not affected by large scale mistakes. Two distant

neighborhoods can be mapped on top of each other, as long as both are
internally correct. To prevent such overlaps, global scale constraints are
needed. Such constraints can be formulated as favoring mappings, where
large data space dissimilarities become large embedding space distances.
Alternatively, the constraints can punish mappings that turn large dis-
similarities into small distances. This latter formulation gives the trust-
worthiness term in a tradeoff cost: a local neighborhood in the embedding
space may only have points from a local data space neighborhood, that is,
no distant data-space points are allowed.

25

Background

MDS-tradeoff
Quality of MDS visualizations for dimension reduction has been analyzed
in [129]. The cost function of Sammon mapping is seen as tearing er-
ror, minimization of which gives a continuous result. This is achieved by
normalizing the square error by the original dissimilarities, which em-
phasizes small distances. On the other side, small flattening error (or
high trustworthiness) can be achieved by emphasizing large distances, or
normalizing by the output distances. From these, a cost function with a
tunable tradeoff parameter λ

E =
1

N(N − 1)

N∑
i

N∑
j=1,j �=i

(
λ
(Dij − δij)

2

Dij

+ (1− λ)
(Dij − δij)

2

δij

)
(2.17)

provides a controlled tradeoff between the two errors.

CCA-tradeoff (Local MDS)
CCA tends to produce embeddings with high trustworthiness. The rela-
tionship of continuity and trustworthiness can be controlled by linearly
combining a cost based on the embedding-space neighborhood with a cost
that uses data-space neighbors. This is done in Local MDS [185, 186],
with cost function

E =
1

2

∑
i �=j

(d(xi,xj)− d(zi, zj))
2 × [(1− λ)F(d(zi, zj), σi) + λF(d(xi,xj), σi)].

(2.18)
When λ = 0, the method works like the unfolding-half of CCA, and with
λ = 1, the cost is MDS stress function, but only evaluated for the nearest
neighbors.

SNE-tradeoff (Neighbor Retrieval Visualizer)
The SNE cost is studied in [187] from information retrieval perspective.
If the neighborhood would be a step function, minimizing KL divergence
from the data space neighborhoods to the embedding space neighborhoods
would maximize average recall of neighborhood relationships. The SNE
cost that uses Gaussian neighborhoods can be interpreted as a soft ver-
sion of recall, as it takes into account not only the number of errors but
also their size. Since continuity and recall are very similar, this observa-
tion explains why SNE tends to produce embeddings with high continuity.
A controlled tradeoff between continuity and trustworthiness is built in

a method called Neighbor Retrieval Visualizer [187, 188] by introducing
another cost term, that minimizes KL-divergence to the opposite direc-
tion, from the embedding space to the data space. This is a soft version
of maximizing precision, a criterion related to trustworthiness. The total
cost is

E = λ
∑
j �=i

pij log
pij
qij

+ (1− λ)
∑
j �=i

qij log
qij
pij

, (2.19)

with pij and qij defined as in Eq. (2.10) and Eq. (2.12). This becomes SNE
cost if λ = 1, and with λ set to zero tries to avoid showing wrong points
together in the embedding space.

2.4.5 Alternative approaches

Aligned mixtures of local views
There is a large family of methods that are based on the idea of a mixture
model [20, 169, 149, 217, 38, 189]. Several linear models (PCA, factor

26

Background

analysis, tangent space, or other, depending on the method) are speci-
fied, each placed in a different location. The locations may be data point
locations, or cluster centers, if the data has been quantized first. Low-di-
mensional coordinates for data are found by weighting coordinates, given
by the local models, by the responsibilities of the respective models. Pa-
rameters of the local models and the global responsibilities are optimized
together so that different local views are smoothly aligned.

Probabilistic methods
The focus of this section was on methods whose goal is formulated as a
cost function, and all studies presented later in this work relate to cost-
function based DR. There is also a growing group of DR methods, that are
based on probabilistic latent variable models. A small number of latent
variables, corresponding to the low-dimensional coordinates, is thought to
generate the data via a model. The model can be linear, like in the prob-
abilistic interpretation of PCA [173], or non-linear, like in the Gaussian
process latent variable model (GPLVM) [103].
An appealing property of probabilistic models is that they provide a

principled means for choosing model parameters. On the other hand,
they introduce the extra problem of having only a mapping from the la-
tent space to the data space available. Some external mechanism, like
back-constraints for GPLVM [104], is needed to ensure that also the map-
pings from the data space to the latent space behave as desired. Further,
inference in a probabilistic model is often computationally more demand-
ing than optimization needed in non-probabilistic methods.

2.5 Supervised dimension reduction

2.5.1 Dimension reduction for classification

In the following, generic data points are indexed with h, i, j and l. Co-
ordinates of point i in the data space are denoted as xi, and those in the
low-dimensional space as zi. N is the number of data points. Formulas
below are from the cited references, but with unified notation.

Maximizing classification accuracy
Classification accuracy is maximized in supervised dimension reduction
both directly and indirectly. An indirect approach is taken by linear dis-
criminant analysis [52], which sees each class as a cluster, and tries to
keep classes well separated by using a criterion similar to those found
in clustering [207]. More direct approaches build their cost functions on
classification performance: Neighborhood components analysis [66] maxi-
mizes the accuracy of leave-one-out classification, and large margin KNN-
classification is used in [202]. The latter two approaches have been used
as cost functions for deep neural networks, and will serve as comparison
methods for the supervised bottleneck classifiers in Sec. 5.3.

Linear discriminant analysis Linear discriminant analysis (LDA) [52],
also known as Fisher’s linear discriminant after its inventor, optimizes
linear separability of classes in the low-dimensional space by maximizing
between-class scatter B. At the same time, it tries to keep within-class
scatter W at a certain level.This is achieved by building the cost function

27

Background

to use relationship of within- and between-class variances and finding
a linear transformation T to maximize Tr[(T TWT)−1T TBT]. T can be
solved from a generalized eigenvalue problem. A different cost function
realizing the idea of minimal within-class and maximal between-class
scatter is used in [166].
If classes obey the assumption of Gaussianity, LDA works well. There

are obviously many situations where Gaussianity does not hold, and vari-
ants of LDA have been developed with this in mind. For example, local
LDA [168] computes LDA for each pair of points, allowing large errors
for distant points. This allows a multimodal class to split into several
clusters, although inside each cluster the LDA criterion keeps the points
together. Also a kernelized version of LDA exists [6].

Neighborhood components analysis Neighborhood Components Analy-
sis (NCA) [66] learns a discriminative Mahalanobis metric by maximizing
accuracy of nearest neighbor classification. The cost function measures
the expected number of correctly classified points, using soft neighbor as-
signments.
NCA tries to set neighborhood probabilities

qij =
exp(−‖zi − zj‖2)∑
i �=h exp(−‖zi − zh‖2) , qii = 0 (2.20)

in the low-dimensional space so that the number of correctly classified
points

nok =
N∑
i=1

∑
j:ci=cj

qij (2.21)

(where ci denotes the class of point i) is maximized. Classification accu-
racy is based on nearest neighbor classification. If a point is placed close
to same-class points, probabilities of same-class points being neighbors
go up. Equation (2.21) captures this idea by class-wise summing of neigh-
borhood probabilities. Computational complexity is O(N2).
The original NCA seeks a linear transform, i.e. it finds A in z = Ax to

optimize Eq. (2.21). Its neural net implementation [151] looks for a more
general mapping z = f(x;w), optimizing network weights w.
Another method essentially equivalent to (linear) NCA is informative

discriminant analysis [140, 139] . It can be seen as a generalization of
LDA, and can also be interpreted as performing PCA in Fisher metric
based on a discriminative model [140] (see Sec. 3.1.3).
Another cost function closely resembling NCA is suggested in [209]. In-

stead of global neighborhood probabilities, the cost uses neighborhoods
defined in terms of a local metric. This setting creates a "chicken-and-egg
dilemma" not met with global metrics: locality must be defined in order to
minimize the cost and thus find the metric, but to define what is local, the
metric must be known. In [209], this problem is solved by probabilistic
formulation and an algorithm resembling expectation maximization.

Large Margin KNN Classification A cost function for having a large KNN-
classification margin (LMNN) in the low-dimensional representation is
presented in [202], and applied as deep network cost function in [123].
Like NCA, the original LMNN looks for a linear mapping, and the neural

28

Background

network implements a nonlinear version. Minimizing the LMNN cost

N∑
i=1

N∑
j=1

N∑
l=1

ηilγij ·max(0, 1 + ‖zi − zl‖2 − ‖zi − zj‖2) (2.22)

requires that the distance from point i to an other-class point j must be
greater than the largest distance to k nearest same-class points (indexed
with j), with margin of one.
Comparisons to k same-class neighbors and all other-class neighbors

would make the computational complexity O(kN2). Therefore, only m
other-class neighbors from each class are used, lowering the complexity
to O((C − 1)kmN) (with C classes). Points to be used as neighbors are
indicated by binary variables ηil and γij . ηil equals one if point l is a
chosen same-class neighbor for point i, and γij encodes relationships to
the other-class points in the same way. As other-class neighbors from all
classes are needed, LMNN cost is sensitive to the number of classes.

Matching class-conditional distributions
In Parametric Embedding [62], a good supervised metric is assumed to be
such which collapses all points in a class into one point. This ideal situ-
ation is presented by neighborhood probabilities (1 for same-class points,
0 for other-class points). In the low-dimensional space, the neighborhood
probabilities are defined as in Eq. (2.10), but the locations of points are
restricted to be z = Ax. A is found by minimizing Kullback-Leibler diver-
gence between the ideal distribution and the neighborhood probabilities.
This method has been interpreted as a supervised version of SNE.
A resembling idea for binary classification is presented in [196], where

two Gaussian distributions are compared with KL-divergence. The goal,
keeping all points of one class together, is encoded as so called ideal kernel
Kideal = Y TY (Y is a matrix of binary classifications), that becomes the
covariance of one of the Gaussians. Covariance of the other Gaussian
is formed from the input points and the distance metric to be learned,
K = XTAX. Then A is found so that the KL-divergence between the two
Gaussians, with covariances K and Kideal, is minimized.
The match of distributions, measured by KL divergence, is also used

in [85]. Conditional distribution p(ck|xn) in the data space is matched
against a mixture of (unit variance) Gaussians, one for each class, in the
embedding space. This tends to place points of same class close together,
but also places two classes close to each other if they share many points.
Also this method can be considered a supervised generalization of SNE; it
reduces to SNE in the special case where each object forms its own class.

Other approaches
Supervision can be implemented as a cost function, which combines costs
for preserving the structure of the input data properly, and for preserving
the structure related to class predictions. A tuning parameter controls
the respective importance of the two terms. Some supervised variants
of autoencoders (Sec. 5.1.1) use this strategy. It has also been used to
supervise GPLVM [178], using LDA cost as a prior term.
Sometimes supervision is introduced by ignoring the roles of inputs

and targets, and simply using all variables as inputs. This approach is
adopted in class-augmented PCA [137], and supervised probabilistic PCA
[214] behaves equivalently [216], although the model has separate input
and target variables.
Although this approach does allow information from the target vari-

29

Background

ables to be included, ignoring the special role of the targets may lead into
problems. The goal of supervised dimension reduction is to find low-di-
mensional representations that have a meaningful relationship with the
target variables. If the nature of this relationship is not considered at
all in the method, consistently getting good results would be surprising.
Also, this approach suffers heavily from increasing input dimensionality.
One target variable among three inputs may make a difference, but one
among a thousand hardly will.
Class memberships can be emphasized by modifying the pairwise dis-

tance matrix, as do [60] and [193]. Both work by first computing a pair-
wise distance matrix in unsupervised fashion, and then applying a non-
linear transform to it. This transformation reduces distances for same-
class points and increases those between classes. The transforms used are
ad-hoc, but the general idea of using a metric which takes class member-
ships into account is not that different from many other better-motivated
methods.

2.5.2 Dimension reduction for regression

Dimension reduction of regression (DRR) deals with a specific subproblem
of supervised dimension reduction: to find low-dimensional representa-
tions such that a regression target can be reliably predicted based on the
low-dimensional representation only.
Many DRR methods have their roots in multivariate statistics and have

developed as a separate branch of research, distinct from the classification-
oriented supervised dimension reduction methods, which are more famil-
iar in the machine learning community. Ideas from unsupervised dimen-
sion reduction are sometimes applied in DRR problems, but the opposite
is seldom true.
One central concept for DRR is that of sufficient subspace. Given such a

subspace, predictions about the target variable can be made as accurately
as using the whole space. Because of this, DRR is sometimes called suf-
ficient dimension reduction (not to be confused with work of same name
[64], but about a related topic of doing DR on co-occurrence data).
We will not attempt to cover the whole field of DRR, but introduce those

methods which will be used in Chapter 5. The following descriptions
are brief, and mostly follow the flow of implementation rather than that
of theoretical derivations. See respective references for more thorough
treatment.

Notation We refer to the high-dimensional input variable as x, to the
regression target as y, and to the d-dimensional representation sought
by the DRR methods as z. Spaces where these vectors live are called
x-space, y-space and z-space, respectively. Subscripts of boldfaced vari-
ables denote numbered data points (xi), and when necessary, individual
elements of vectors are shown as subscripted non-boldfaced letters (xi). If
not mentioned otherwise, d=2. Tr[·] is the matrix trace operator. Gaussian
kernels are abbreviated as

Gauss(ai,aj ;σ) = exp (− ‖ai − aj‖2
σ2

). (2.23)

(A)ij is the element from row i, column j in matrix A.

30

Background

Kernel dimension reduction
Kernel dimension reduction (KDR) [58] uses a cost function, which goes
to zero if x and y are conditionally independent, given the low-dimension-
al variable z. This means that z has captured all information in x, and
can thus be used instead of x for predicting the values of y.
The KDR cost function

Tr[Gy(G
B
x +NεNIN)−1] (2.24)

uses two Gram matrices, GB
x and Gy, both built using Gaussian kernels.

One is computed in y-space

(Gy)ij = Gauss(yi,yj ;σy), (2.25)

and does not change during the optimization. The other Gram matrix

(GB
x)ij = Gauss(BTxi,B

Txj ;σx), (2.26)

is likewise built with a Gaussian kernel but with the input points pro-
jected to the dimension reduction subspace using B. Both matrices are
centered by multiplying by the centering matrix H = IN− 1

N
11T (where 1

is a vector of ones) from both sides. Mapping B is found so that Eq. (2.24)
is minimized. Minimization of B is carried out ensuring that B is orthog-
onal. We use simulated annealing for optimization. After finding B, the
low-dimensional points are computed from

zi = BTxi. (2.27)

In addition to GB
x and Gy, KDR cost function depends on a regulariza-

tion parameter εN , and two deviation parameters, σx and σy. Since εN
and the deviations have similar effect, εN can be fixed (we use εN=0.1)
and only the deviations chosen [58].

Manifold kernel dimension reduction
Manifold KDR (mKDR) [127] is an extension of KDR to situations where
the input data lies on a nonlinear manifold. Manifold KDR opens the
manifold structure by Laplacian eigenmaps (LE) [8] as a preprocessing
step. When LE is used as a dimension reduction method, only a few low-
est eigenvectors are used. Such preliminary dimension reduction can be
done also when LE is used in mKDR.
After finding the LE features of data, mKDR minimizes the KDR cost

function Eq. (2.24) in this feature space. Now the KDR cost is formulated
including the LE eigenvectors U,

Tr[Gy(U
TΩU+NεNIN)−1], (2.28)

with Ω the target of optimization. Ω is restricted to be positive semidefi-
nite.
Parameters needed for mKDR are neighborhood size c for LE, and εN ,

which is used to regularize the KDR x-space kernel. Finding Ω which
minimizes Eq. (2.28) is done by the projective gradient method [127].
It consists of successive steps of gradient descent and projection of Ω to
the cone of positive semidefinite matrices (which amounts to removal of
eigenvectors that correspond to negative eigenvalues).

31

Background

Sliced inverse regression
Use of inverse regression to find subspaces is based on the assumption
that the mean E(x|y) lies at the same subspace as E(y|x). The former
is easier to estimate, since y is usually much lower-dimensional than
x. Sliced inverse regression (SIR) [113] estimates E(x|y) by dividing the
range of y into slices, and computing mean mi for each slice. Covariance

V =
S∑
i

pi
N

mim
T
i (2.29)

is built by weighting each slice by the proportion of samples falling into
that slice. Directions of maximum variance, given by the d highest eigen-
vectors uk of V, are used as the dimension reduction subspace.
As a preprocessing step, the data is whitened by multiplying with a

whitening matrix M (inverse of square root of data covariance), and the
original scale is returned by using

βk = uT
kM (2.30)

as the low-dimensional points.
In [113] it is recommended to divide the range of y into slices so that

all slices have approximately equal number of samples, and we use this
strategy in our implementation. For two-dimensional targets, we divide
the ranges for each target into slices separately. This results in some
slices having fewer points than the others, especially near the ends of the
target ranges.

Covariance operator inverse regression
Covariance operator inverse regression (COIR) [93, 94] is based on eigen-
decomposition of inverse regression covariance matrix. Although based
on the idea of inverse regression like SIR, COIR does not need slicing,
since it uses covariance operators for both the data and the targets. This
makes it better suited for use with multivariate responses. COIR also
avoids the strong assumptions of SIR about the distribution of x. Main
benefit of COIR over KDR is that it has an analytical solution.
COIR estimates the inverse regression covariance matrix using two

Gram matrices, Kx and Ky. They are formed by computing similarities
from a training point i to all other training points j using Gaussian ker-
nels, separately in x-space and y-space,

(Kx)ij = Gauss(xi,xj ;σx), (2.31)
(Ky)ij = Gauss(yi,yj ;σy). (2.32)

These matrices can be thought as covariances1 of feature matrices Φx

and Φy,
Kx = Φx

TΦx, Ky = Φy
TΦy. (2.33)

Kx andKy are used for estimating inverse regression covariance, whose
d highest eigenvectors β are found from the generalized eigenvalue prob-
lem

1

N
Ky(Ky +NεNIN)−1Kxβ = λKxβ. (2.34)

1Correction: This part was sloppily implemented and explained in the author’s
earlier work [131], where the feature vectors were built using Gaussian kernels,
and their product was used as the Gram matrix. The inadvertent modification
led to a version of COIR formed with similar idea as simplified kernel SIR [212].
The modification corresponds to squaring the kernel spectrum [29], and should
not change the directions which COIR can find, although it changes the optimal
parameter values.

32

Background

From β and features Φx we find the basis vectors b of the dimension
reduction subspace, and the projections c of the training points to them

b = Φxβ, c = Φxb. (2.35)

Coordinates for the test points are obtained by projecting the feature
space representation Φ∗

x of the test points to the basis vectors b

c∗ = Φ∗
xb. (2.36)

33

3. Metrics bridging models and
dimension reduction

Since many DR methods are built by combining a suitable metric and
a cost functions, their behavior is easily changed by changing the met-
ric. In this chapter, we use different metrics to encode results of machine
learning models ("a model" is understood in a wide sense to include also
clustering methods). Combinations of a model and a DR method can be
seen from two perspectives, depending whether the model or the DR re-
sult is seen as important. On the one hand, we can visualize modeling
results (e.g. a clustering) or internal presentations of a model (e.g. fea-
ture space vectors) using DR. On the other hand, we can use a model as a
preprocessing step to highlight those properties of data that we are most
interested in when reducing the dimensionality.
In Sec. 3.2 we use a DR visualization as a tool for studying the results of

hierarchical clustering. DR representations of hierarchical structures are
space-efficient, and allow both showing the nestedness of structures and
giving information about distances between the clusters. Such use of DR
draws new attention to the distance-based DR methods, which advent of
neighborhood-based methods has made unpopular.
In Sec. 3.3 we concentrate on the other viewpoint, by using a model to

introduce supervision into unsupervised DR methods. In the literature
the idea has already been explored for both generative and discrimina-
tive models (see 3.1.3). The appeal of this approach lies in easiness of
implementation and in versatility of modeling tools as compared to ex-
isting supervised DR methods. We study this idea specifically in context
of multilayer perceptron models. Internal representation such models is
easily accessible through network weights, and this makes it possible to
do DR in the feature space of the model. The more general approach, to
which we compare our results, is based on changes in model predictions,
and is computationally heavy. Our experiments show than in the case of
neural network models the simple idea of using feature space metric can
give equally good results.
This chapter presents updated versions of earlier work in [132, 135].

3.1 Metrics that describe results of modeling

3.1.1 Hierarchical clustering and cophenetic distance

Hierarchical clustering (HC) creates a hierarchical description, that can
be cut at different levels to obtain partitionings with different granulari-
ties. A hierarchy describing the structure of data can be built in top-down
or bottom-up fashion. The latter, agglomerative hierarchical clustering,

35

Metrics bridging models and dimension reduction

is more commonly used, and that is the form we describe here. To start
with, each data point is placed in its own cluster. At each step, pairwise
distances between all clusters are calculated, and the two clusters with
the minimum distance are merged into one cluster. This process is con-
tinued until only one cluster remains. Results of the merging process are
presented in the form of a binary tree, which can be cut to clusters based
on criteria for the mutual distance or the number of clusters.
The gist of the HC algorithm is to define a way of measuring the dis-

tance between two clusters. This determines what kind of clusters will
be formed. There are various methods, referred to as linkage methods,
for determining the inter-cluster distance. Some common ones are single
linkage (shortest pairwise distance), complete linkage (longest pairwise
distance), average linkage (average distance) and Ward’s method. Ward’s
linkage [197] minimizes the cost of each new grouping, measured by error
sum of squares.
The hierarchical description of data which is given by HC can be used

to define a metric, called cophenetic distance [72]. The metric represents
the cluster structure in a form of pairwise distances of training points.
During the merging process, the linkage method is used to measure the
distance between any two clusters. When clusters A and B, whose dis-
tance is δ, are merged into one cluster, the cophenetic distances between
all a ∈ A and all b ∈ B are set to δ. When HC results are represented
by drawing dendrograms, the height of the link where the two points are
first joined shows their cophenetic distance. As the cophenetic distance
is only defined between two training data points, it cannot be used with
methods that need to compute distances to other points (e.g. to codebook
vectors in self-organizing maps).

3.1.2 Feature space of a one-layer feedforward network

Amultilayer perceptron network (MLP) with one layer can be interpreted
as a simple feature extractor. The hidden layer learns features relevant
for the prediction task, and the output layer performs linear classification
or regression in the feature space provided by the hidden layer. Since
the features are learned for a supervised task, they contain information
relevant for model predictions. Euclidean distances between such feature
vectors provide a simple supervised metric.
The hidden layer consists of H tanh-units. The output of the hth hidden

unit is given by

hidh(x) = tanh (bh +
D∑
i=1

wihxi) (3.1)

(notation: D-dimensional input vector x with elements xi, weights wih

from input xi to hidden unit h, and biases bh for hidden units).
A binary classifier has one logistic output that gives the probability of

class 1. A multiclass classifier has one linear output unit per class, and
their results are turned into class probabilities using softmax. Networks
performing regression have one or many linear output units. Output of a
binary classifier is

p(c = 1|x) = logsig(L(x)) = logsig
(
b′ +

H∑
h=1

w′
hhidh(x)

)
(3.2)

(notation: weights w′
h from hidden unit h to output, and output bias b′; L

36

Metrics bridging models and dimension reduction

data space feature space

x1

x2

x3

x4

x5

y

Figure 3.1. A one-hidden-layer MLP. The hidden layer extracts features, so that its out-
comes can be interpreted as a feature space vector.

is used as an abbreviation for the output of the linear part of the output
layer).
The feature vector for data point x is a vector of the outcomes from the

hidden units (illustrated in Fig. 3.1)

f(x) = [hid1(x), . . . , hidH(x)]. (3.3)

3.1.3 Discriminative Fisher metric

Fisher kernel and its derivatives are based on fitting a model to data, and
describing the data in terms of change rates of model parameters. Metrics
based on parameter changes were first built for generative models, and
later generalized for the discriminative setting. For an MLP model, a
discriminative Fisher metric contains much of the same information as a
metric based on the feature space, but it also takes into account how the
features are weighted in predictions.

Fisher information in generative models
A kernel for improving classification can be obtained by working in the
gradient space of a generative model [86]. So called natural gradient de-
scribes changes, as function of model parameter θ, along a manifold where
each point represents one possible model. Natural gradient φ = I−1U
can be computed from Fisher score U = ∇θ logP (X|θ), that describes the
contribution of θ-model in generating the sample X, and from Fisher in-
formation matrix I = E[UUT]. This leads to definition of Fisher kernel
K = φT Iφ = UT I−1U as a similarity measure between the data points.
For small distances, (Euclidean) distances in the natural gradient space
can be approximated by Kullback-Leibler divergences between the mod-
els.
Fisher kernel is a maximum a posteriori approximation to a more gen-

eral Bayesian approach called mutual information kernel [160]. Mu-
tual information measures how much information two data points share
through so called mediator distribution, that determines how strongly
prior and posterior distributions should be weighted when forming the
kernel. This corresponds to presenting data points by their likelihoods
under all possible models, which are then integrated out to give total
similarities between points.
Fisher information is used in [100] to define a kernel for model param-

eters. When a posterior for parameters has been found, the parameters
can be integrated out to yield a kernel for data. The approach is general
but difficult to compute.
A related approach, based on generative models but not using Fisher in-

formation, is to derive a metric from posterior probabilities of a mixture
model. One such metric is presented in [172]. It is a weighted sum of sev-
eral components, each of them aMahalanobis metric, which are described

37

Metrics bridging models and dimension reduction

by covariances of the corresponding Gaussians. The metric is local and
therefore requires path integrals if, a distance between faraway points is
needed. A related metric [146] measures the changes in generating densi-
ties, and captures the structure of the data with approximate of geodesic
distances.

Fisher information in discriminative models
The idea of the Fisher kernel can be generalized to discriminative models,
and different versions have been suggested. We will apply the metric by
[142], so called learning metric (LM), in experiments in Sec. 3.3.
The observation that the Fisher kernel can be interpreted as a feature

extractor leads into definition of a more general kernel in [177]. A kernel
that minimizes linear classification error in Fisher kernel feature space
is sought. As the approach is based on log-odds of classes, it only works
for binary classification.
The idea of [142] is to define an analogue of the Fisher metric for an aux-

iliary variable c. Change dx of variable x is considered the more mean-
ingful the more it changes the auxiliary variable. The auxiliary variable
can be the class probability in binary classification or a regression tar-
get, so the approach is more general than that of [177]. Changes in c are
measured by Kullback-Leibler divergence. For small dx, KL divergence
is symmetric and can be used as a local metric. Thus, squared distances
are computed as

d2(x,x+ dx) ≡ DKL(p(c|x), p(c|x+ dx)) = dxTJ(x)dx, (3.4)

where J(x) is Fisher information for a generic model p(c|x) (the model can
have parameters θ and should more accurately read p(c|x, θ); we omit θ
for brevity)

J(x) = Ep(c|x)[(∇x log p(c|x))(∇x log p(c|x))T]. (3.5)

3.2 Visualizing hierarchical clustering

This section shows an example of using cophenetic distances in Sammon
mapping visualizations, and discusses the combination as a visualization
tool. The USPS example was first used in a work that studied assessing
reliability of DR visualizations of hierarchical structures [132].

3.2.1 Cophenetic Sammon mapping and clusters in USPS data

We use cophenetic distances provided by the HC hierarchy tree as dis-
similarities in Sammon mapping. Cophenetic distances have earlier been
used for cluster-emphasizing MDS visualization [3].We also tried cophe-
netic distance matrix with t-SNE (not shown), but that combination tended
to create so strongly concentrated clusters that the visualizations were
hard to read.
Fig. 3.2 shows an example where 1000 random samples from the USPS

data set have been clustered using HC with Ward’s criterion. The visual-
ization clearly shows that although numbers are often clustered accord-
ing to their semantics, the ten digit classes do not form the most natural
clusters, at least not for this clustering criterion.
The locations of points are determined by the DR algorithm based on

the high-dimensional clustering, and a clustering based on the 2D coor-

38

Metrics bridging models and dimension reduction

 0

 0

 0

 0

 0
 0 0

 0

 0

 0

 0
 0

 0

 0 0

 0

 0

 0

 0

 0

 0

 0

 0

 0 0
 0

 0

 0

 0

 0

 0
 0

 0

 0
 0

 0

 0

 0

 0

 0

 0

 0
 0

 0

 0

 0

 0

 0

 0
 0 0

 0

 0

 0

 0

 0

 0

 0
 0

 0

 0

 0

 0

 0

 0

 0

 0 0

 0

 0 0
 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0 0

 0

 0

 0

 0

 0

 0

 0

 0

 0
 0 0

 0

 0

 0

 0

 0 0

 1

 1

 1

 1

 1

 1

 1

 1
 1

 1

 1

 1

 1

 1

 1

 1 1

 1

 1

 1 1

 1

 1

 1 1

 1

 1

 1

 1

 1

 1

 1

 1

 1
 1

 1
 1

 1 1
 1

 1

 1

 1

 1

 1

 1

 1

 1 1

 1

 1

 1 1

 1

 1

 1
 1

 1

 1

 1

 1

 1

 1 1

 1

 1

 1

 1 1

 1

 1

 1

 1

 1
 1

 1

 1
 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1
 1

 1

 1 1

 1

 1

 1

 1 1

 2

 2

 2 2

 2

 2

 2

 2

 2

 2

 2
 2

 2

 2

 2

 2

 2

 2

 2
 2

 2

 2
 2

 2

 2
 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2
 2

 2

 2

 2
 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2
 2

 2

 2

 2

 2

 2

 2

 2

 2

 2 2

 2

 2
 2

 2

 2

 2 2

 2

 2

 2

 2 2

 2

 2

 2

 2
 2

 2

 2

 2

 2

 2
 2

 2

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3 3

 3

 3

 3 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3 3

 3

 3
 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3
 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3

 3 3

 3 3 3

 3

 3

 3

 3

 3 3

 3

 3

 3

 3

 3

 3

 3
 3

 3 3

 3

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4 4

 4

 4

 4

 4

 4

 4

 4
 4

 4
 4

 4

 4

 4

 4

 4

 4
 4

 4

 4
 4

 4 4

 4

 4

 4

 4

 4 4

 4

 4

 4

 4

 4
 4 4

 4 4

 4

 4

 4

 4
 4

 4

 4
 4

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4

 4
 4

 4

 4

 4

 4
 4

 4

 4

 4
 4

 4

 4

 4

 4

 4

 4

 4 4

 4

 4

 4

 4

 4

 4

 4

 5
 5

 5

 5

 5

 5

 5

 5

 5

 5
 5

 5

 5

 5

 5
 5

 5
 5

 5

 5

 5

 5

 5

 5

 5

 5 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5
 5

 5 5

 5

 5

 5

 5
 5

 5

 5
 5

 5 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5

 5
 5

 5 5
 5

 5

 5

 5

 5

 5

 5
 5

 5

 5

 5
 5

 6

 6

 6
 6

 6

 6 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6
 6 6 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6
 6

 6

 6

 6

 6 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6
 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6 6

 6
 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6 6

 6

 6

 6 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 6

 7 7

 7

 7
 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7 7 7 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7 7

 7

 7

 7 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7 7

 7

 7
 7 7

 7

 7

 7

 7
 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7
 7

 7

 7

 7

 7

 7

 7
 7

 7

 7
 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 8 8
 8

 8
 8

 8

 8
 8

 8

 8 8

 8

 8

 8

 8

 8

 8

 8

 8 8
 8

 8

 8

 8

 8

 8

 8 8
 8

 8

 8

 8

 8

 8

 8

 8

 8

 8

 8

 8

 8

 8 8

 8

 8

 8

 8

 8

 8

 8

 8

 8

 8

 8

 8

 8
 8 8

 8

 8

 8
 8

 8

 8

 8

 8 8

 8

 8

 8

 8

 8

 8

 8

 8 8
 8

 8

 8
 8

 8 8

 8

 8

 8

 8 8

 8

 8
 8

 8

 8

 8

 8

 8 8

 8
 8

 8

 8

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9 9

 9

 9

 9

 9

 9

 9

 9
 9

 9

 9

 9

 9
 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9
 9

 9 9

 9
 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9
 9

 9 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9
 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

 9

Figure 3.2. HC results of USPS data (1000 points) visualized using Sammon mapping
with the cophenetic distance. The white areas inside the gray regions show
clusters where the cluster borders, which are based on the 2D result, do not
correctly show the high-dimensional clustering result.

dinates is used to draw boundaries. In ideal case, the user should under-
stand the high-dimensional clustering result by looking at the 2D visual-
ization – that is, any conclusions she draws about the clusters should be
the same as conclusions based on the dendrogram showing the HC result.
The visualization highlights areas where the 2D cluster boundaries differ
from the dendrogram (for details of the criterion used, see [132]). Gener-
ally, the 2D result reliably shows the highest levels of the hierarchy that
was derived from the high-dimensional data. When looking at smaller
and smaller clusters, differences emerge. When the data is divided into
50 clusters (lowest level shown with the cluster borders), unrelated points
are occasionally shown in the same cluster.

3.2.2 Properties of cophenetic Sammon visualizations

Using cophenetic distances with Sammon mapping tends to create struc-
tures with rounded shapes, resembling results of some network visual-
ization algorithms which are designed for clusters [128]. Compared with
such methods, cophenetic distance organizes the cluster shapes in a hier-
archical fashion.
Hierarchically organized circles have been applied in visualizations also

outside DR field [18, 171]. There are several ways to visualize hierar-
chies, mostly by different tree shapes, nested areas or repeated divisions
of space. Nested circles are one variant of nested area representation. In
comparison between different hierarchical visualizations in [121], nested-
circle methods are found to make good use of the image area available,
while having space for labels and allowing labels to be oriented the same
way for readability. Also cophenetic Sammon visualizations have these
properties. They differ from the basic nested circle representation in that

39

Metrics bridging models and dimension reduction

the distances between clusters can vary. This creates some empty space in
the results, but makes cluster distances informative about node heights
of the HC hierarchy tree.
Although Sammon mapping and other distance-based DR methods cur-

rently fall in shadow of locality-oriented methods, they can prove useful
with metrics that already encode locality information. When a clustering-
basedmetric is used, the metric structure is what we want to show. There-
fore a cost function which tries to preserve distances can be a right choice,
while a locality-emphasizing method like t-SNE may end up over-empha-
sizing cluster information. This may explain the better readability of
Sammon visualizations compared to t-SNE, when cophenetic distances
are used.

3.3 Comparison of feature space and LM visualizations

The idea for using MLP feature spaces in DR visualizations was first pre-
sented in [135], but that study failed to quantify the results, and also
lacked a comparison to the closely related learning metric. This section
repeats the most relevant experiments of [135] with different data sets
and a more representative set of DR methods. We also compare met-
rics obtained from the MLP feature space with those obtained using the
learning metric of MLP predictions.
LM is theoretically well-motivated. Its main drawbacks are heavy com-

putation, and suitability only to models with scalar predictions. MLP fea-
ture space is readily available for multiple response models. Distances
are fast to compute, since the Euclidean metric can be used. On the
other hand, there are no guarantees on the feature space structure. The
model may have learned some irrelevant features, which would be down-
weighted in the outcome, but are present in the feature space.
The learning metric has been used for improving SOM visualizations

in [141]. Both the learning metric and the MLP features have also been
applied in supervised clustering, where the goal is to find clusters which
are homogeneous with respect to a target variable. Discriminative clus-
tering [92] performs k-means in the learning metric. Use of the MLP
feature space is not tied to any specific clustering algorithm. It is applied
in finding and describing class-homogeneous subpopulations in [136].

3.3.1 Fisher information in a binary MLP classifier

The learning metric for an MLP model can be calculated (as in [136])
by using the MLP output Eq. (3.2) in place of p(c|x) in Eq. (3.5). Now,
the auxiliary variable c is the prediction of the MLP classifier. In case
of a binary classifier, expectation Eq. (3.5) becomes simply a sum of two
terms, one for each class. We also need to compute gradients of network
outcomes w.r.t. network inputs. For the binary classifier, the elements of
the gradient vectors for classes 1 and 0 are computed using chain rule,

∂

∂xi
log(logsig(L)) =

e−L

1 + e−L
· ∂L
∂xi

(3.6)

(3.7)

∂

∂xi
log(1− logsig(L)) = − 1

1 + e−L
· ∂L
∂xi

(3.8)

40

Metrics bridging models and dimension reduction

with the derivative of the linear part

∂L

∂xi
=

H∑
h=1

w′
h

(
1− tanh2(bh +

D∑
i=1

wihxi)
)
wih. (3.9)

3.3.2 Experiments

We use Euclidean distances in the MLP feature space (MLPfeat) and the
learning metric for forming (dis)similarity matrices for five DR methods.
We try the methods on five data sets: WDBC, TicTacToe, USvotes, Pima
and Arcene (see Appendix A for details). Due to the very high original
dimensionality of Arcene data, only its 500 highest eigenvectors (those
related to the largest eigenvalues) are used. Other data sets are used in
their original dimensionality. All MLP models have 20 hidden units.
The learning metric is local, that is, computing a distance between two

points requires computing a path integral over the metric. Following
[142], we use a piecewise linear approximation for this integral. The
path between points is divided into 3 (MLPfisher3) or 10 intervals (MLP-
fisher10), and Fisher information at first point of an interval determines
the metric for the whole interval.
We compare the metrics in creating 2D visualizations. The DR methods

used are kernel PCA, Sammonmapping, t-SNE, Laplacian eigenmap (LE)
and CCA. Kernel PCA corresponds to eigendecomposition of the model-
based similarity matrix; no external kernels are used. The list of DR
methods was chosen to contain both global and local methods. Methods
using geodesic distances or another way for explicitly following manifolds
are not considered, because we see no reason to assume that the model
feature space vectors or predictions would form a manifold.
KPCA, Sammon mapping and CCA do not have tuning parameters (ex-

cept for the schedule for decreasing CCA neighborhood size, for which we
use the default values of SOM Toolbox for Matlab). T-SNE and LE re-
quire the neighborhood size. Values k = 2j, j = 1 . . . 25 are tried for both
of them. With methods that do not give deterministic results (Sammon,
CCA, t-SNE) the method is run 10 times with each parameter value, and
the result with the best cost function value is used.

3.3.3 Results

Fig. 3.3 shows an example of visualizations with the two supervised met-
rics, for t-SNE and two of the data sets (USvotes and TicTacToe). Com-
pared with raw data, both supervised metrics result in more pronounced
separation into classes.
A supervised visualization should clearly show the class structure of the

data. Therefore KNN-classification accuracy is an appropriate numerical
criterion for evaluating the results. Neighbor numbers from 1 to 20 are
tried, and for each method, the best classification accuracy is recorded.
For methods with neighborhood size parameters, the best result is shown.
The numerical results are summarized in Fig. 3.4.
In the results we see a pattern which is common when comparing ma-

chine learning methods: results depend on the data set, and in our case,
also on the dimension reduction method used. No clear order of superi-
ority can be established between MLPfeat and MLPfisher. On the other
hand, this is not a complete non-result. We expected the theoretically
well-motivated, computation intensive MLPfisher to perform consistently
better thanMLPfeat, but that does not seem to be the case. That the more

41

Metrics bridging models and dimension reduction

Figure 3.3. Examples of t-SNE visualizations of the raw data (left), MLPfeat (middle)
and MLPfisher10 (right), for USvotes (top row) and TicTacToe (bottom row)
data sets. The shade shows probability of class 1, as predicted by the model.

heuristical but much faster MLPfeat often gives equally good and some-
times better results advocates its use for model visualization, especially
for larger data sets for which MLPfisher computations can become pro-
hibitively slow.

3.4 Conclusions

Changing the metric that a DR method uses provides an easy means for
adding supervisory information or information from a higher-level anal-
ysis into an unsupervised DR method. Cophenetic distances from hier-
archical clustering and Euclidean metric in the feature space of an MLP
model are examples of such metrics.
Combining cophenetic distances with Sammon mapping gives a space-

efficient way for visualizing hierarchies. The experiment also draws new
attention to Sammon mapping as a visualization tool. Sammon mapping
and other distance-based DR methods have fallen in the shadow of meth-
ods that emphasize close neighborhoods. They may find a new use in
situations, where the metric is used to describe the content we want to
show, like when the cophenetic distance is used to encode the clustering
results. In order to show the intended content, the distances in the vi-
sualization should reflect the metric. In such cases, distance-preserving
methods may work better than methods that concentre on neighborhoods.
Using features from a supervised model in an unsupervised DR method

results in a form of supervised DR. Many, if not most, DR methods allow
using different metrics, so the choice of DR methods poses few limitations
for this approach. Choice of the model is more restricted, since only mod-
els which provide an internal representation of data can be exploited. In
our experiments, the simple metric built on the MLP model feature space
performed as well as the theoretically better-motivated but computation-
ally more demanding learning metric.
Modular approach that separates model and DR provides more flexibil-

ity than conventional supervised DR. Building models on data has been
extensively studied, and consequently several useful tools have been de-
veloped for the task. One can choose model complexity, use prior informa-
tion, and validate models. In comparison, the cost functions of supervised

42

Metrics bridging models and dimension reduction

LE

t−SNE

Sammon

KPCA

CCA

Arcene

Pima

USvotes

TicTacToe

WDBC

Arcene

Pima
USvotes

TicTacToeWDBC

Arcene

Pima

USvotes

TicTacToe

WDBC

Arcene

Pima

USvotes

TicTacToe

WDBC

Arcene Pima
USvotes

TicTacToe

WDBC

orig

MLPfisher3

MLPfisher10

MLPfeat

Figure 3.4. Comparison of MLPfeat and MLPfisher in different DR methods and on dif-
ferent data sets. Distance from the center gives the classification accuracy,
100 % at the outer circle and 50 % at the inner circle. Label "orig" refers to
raw data.

DR mostly use the idea of nearest neighbor classification, possibly offer-
ing a choice of how many neighbors to use. More advanced tuning of such
methods can be difficult or impossible.

43

4. Feature space of the Extreme
Learning Machine

Dimension reduction deals with the problem of mapping data from a high-
dimensional to a low-dimensional space, using a mapping with some de-
sirable properties. Mappings between spaces are, of course, not unique
to dimension reduction. A similar setting is met e.g. kernel classifiers:
before the actual classification is carried out, the data is mapped to a fea-
ture space. Criteria which are used to study dimension reduction results
can be used to examine and compare feature space mappings as well, and
DR visualizations can be used to give a concrete idea of how the feature
space transformation changes data.
In this chapter we take a look at some models where feature spaces are

an essential part: MLP, two kernels commonly used in kernel classifiers
(squared exponential (SE) and neural network kernel (NNK)), and Ex-
treme Learning Machine (ELM), a neural network architecture based on
random projections.
Extreme Learning Machine is our main target of study. It is a rela-

tively new method which has been developed into many different vari-
ants, but so far its properties or connections to other models have not
received much attention. ELM consists of two layers. The first uses ran-
domly chosen weights, and the last layer learns a linear model on the
features provided by the first layer. This makes ELM fast and simple to
train compared to other neural network methods.
We compare the feature space of ELM to those of other models (Sec. 4.2),

noticing that although ELM is a supervised neural method, its random,
unsupervised feature space mapping clearly differs from the mappings
learned by MLP networks. Instead, ELM features resemble those of ker-
nel methods, which also rely on unsupervised features.
We point out a close connection between ELM and the neural network

kernel. NNK is a kernel which is derived as the feature space covariance
of an infinite neural network. Making the network infinite makes indi-
vidual network weights meaningless, thereby resulting in features which
only depend on the data points and the variance of weights. We propose
a novel interpretation of ELM (Sec. 4.3) : it can be seen as an approxima-
tion of the infinite network used in the derivation of NNK.
The connection between NNK and ELM highlights a need to reassess

the way ELM is usually parameterized. Currently, the only parameter
considered is the number of hidden units, and ELM is promoted for its
relatively easy model selection, since only one parameter needs to be cho-
sen. At the same time, the only parameter of the related NNK is weight
variance. We show (Sec. 4.4) that weight variance can have an impact on
ELM results as well, and explain the role of variance in determining the
properties of the feature space mapping. We also discuss the implications

45

Feature space of the Extreme Learning Machine

of our findings on some claims made about ELM (Sec. 4.5).
Thematerial in Secs. 4.3–4.5 has been published earlier in [134]. Sec. 4.2

is new material.

4.1 Random and infinite neural networks

In this section we describe the most relevant methods we need in this
chapter: Extreme learning machine and neural network kernel. Descrip-
tion of MLP models can be found in Chapter 3, and squared exponential
kernel will be briefly explained where it is first used.

4.1.1 Extreme Learning Machine

Extreme Learning Machine [83, 82] (ELM) is a recently proposed neural
network architecture based on random projections. ELM has one non-
linear hidden layer with random weights, and an output layer whose
weights are determined analytically.
ELM formalism places few restrictions to the activation of the hidden

units. We use the error function Erf(z) = 2/
√
π
∫ z
0 exp−t2 in all our ex-

periments, since it is the sigmoid used in the derivation of NNK. For
the same reason we use Gaussian distribution for weights, instead of the
more usual uniform. ELM only requires the distribution to be continuous.
Output weights β are obtained from a linear regression model

Y = β0 +
H∑

h=1

βhhidh(x) (4.1)

(where β0 is bias term and βh is for hidden unit h) fitted to the hidden
layer outputs hidh(x). In matrix notation, this becomes

Y = Hβ (4.2)
β = H†Y, (4.3)

with the hidden layer outputs collected into H and the linear model fit
realized by taking pseudoinverse H†.
In regression, prediction happens by feeding the test data through the

hidden layer and then using the regression weights to compute the model
output. In classification, regression predictor is turned into a class num-
ber by thresholding at zero. Nothing would prevent doing classification
by fitting a generalized linear model [120], which would yield class prob-
abilities instead of a binary choice. This is however usually not done in
ELM classifiers.
Basic ELM only learns the output weights, and the weights of the hid-

den layer remain independent of each other. Also many variants of ELM
have been proposed. They effectively introduce some form of indirect
training of the first layer weights. After applying the method the weights
are not independent any more, but have acquired some dependencies en-
coding information about the training data. Dependencies are introduced
e.g. by means of selecting the neurons [122] or whole networks [218]
based on their ability to predict the target variable. We concentrate on
basic ELM here.

4.1.2 Neural network kernel

Neural network kernel (NNK) is derived in [205] by letting the number
of hidden units in a one-hidden-layer network go to infinity. A Gaus-

46

Feature space of the Extreme Learning Machine

(a) Raw data (b) Squared exponential
kernel

(c) Neural network kernel

(d) ELM (e) MLP

Figure 4.1. Visualization of 2000 MNIST points, mapped to different feature spaces be-
fore applying t-SNE.

sian prior is set to hidden layer weights, which are then integrated out.
The only parameters remaining after the integration are variances for
weights. This leads to an analytical expression for expected covariance
between two feature space vectors,

kNN(xi,xj) =
2

π
sin−1 2x̃T

i Σx̃j√
(1 + 2x̃T

i Σx̃i)(1 + 2x̃T
j Σx̃j)

. (4.4)

Above, x̃i = [1 xi] is an augmented input vector and Σ is a diagonal matrix
with variances of inputs. As NNK is derived as a covariance, it is always
positive semidefinite.
NNK also arises as a special case of a more general arc-cosine kernel

[30]. Neural network kernel should not be confused with so called MLP
kernel, tanh(a(xT

i xj) + b), more often known as tanh-kernel or sigmoid
kernel (analyzed in some detail in [114]). A classifier using this kernel
implements a kind of neural network, where training data points take
the role of input weights [190].

4.2 Comparison of feature spaces

We use t-SNE to visualize feature spaces of ELM, MLP and two kernels:
NNK and squared exponential. Squared exponential is a very commonly
used kernel, and goes under different names, e.g. Gaussian and radial
basis function kernel. It is a stationary kernel, meaning that similarity
of two points only depends on their distance, and not on point locations.
Similarity is given by an unnormalized Gaussian, exp (− ‖x1 − x2‖/σ2).
ELM features are used like the MLP feature space in Sec. 3.1.2, just

computing Euclidean distances between the feature vectors. The kernels
are used to determine similarities between data points, and these are
converted into dissimilarities using Eq. (2.3). Pairwise dissimilarities are
then used in t-SNE instead of the usual Euclidean distance.
In Fig. 4.1, the visualizations obtained using kernels and ELM resem-

ble those created using raw data. They more or less preserve the original
structure of the data, as a stark contrast to the MLP feature space visu-
alization, which clearly separates the different digit classes. This finding

47

Feature space of the Extreme Learning Machine

10 20 30 40
0.7

0.75

0.8

0.85

0.9

0.95

k

tr
us

tw
or

th
in

es
s

data SE NNK ELM MLP

(a) Trustworthiness

10 20 30 40

0.8

0.85

0.9

0.95

k

co
nt

in
ui

ty

data SE NNK ELM MLP

(b) Continuity

10 20 30 40
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

k

k−
N

N
 a

cc
ur

ac
y

data SE NNK ELM MLP

(c) K-NN classification accuracy

Figure 4.2. Numerical quality of visualizations in Fig. 4.1.

supports the view, presented in [206], that the choice of kernel may not
matter very much, as the results depend more on the distribution of data.
Here any essential differences are between unsupervised and supervised
features.
SE kernel is stationary and only reacts to point distances. Although

NNK uses a covariance matrix, it is always diagonal, so also NNK only
considers importance (variance) of individual coordinates, ignoring their
mutual dependencies.
Same holds for ELM; although neural network weights could produce

location-specific behaviors, the random weights do not contain such infor-
mation. When point locations are not considered, all points behave more
or less the same under the feature space mapping. Especially, systematic
differences between the points of different classes cannot emerge, as this
would require awareness of point locations in space.
In a trained MLP network, a mapping is learned such that points of a

class are kept together, and points of different classes are pushed away
from each other – that is, any large nonlinearities introduced do not break
random neighborhoods, but mainly occur between the classes. This be-
havior results in a very different feature space from the unsupervised
methods, as was seen in Fig. 4.1.
Fig. 4.2 shows trustworthiness, continuity and k-NN accuracy for visu-

alizations in Fig. 4.1, comparing the 2D results to the original data. The
difference between the unsupervised and the supervised results is obvi-
ous also here. It is more interesting to notice that both trustworthiness
and continuity are high for the unsupervised feature spaces.
High continuity of unsupervised mappings is not surprising, since the

mappings to feature spaces are continuous. Points originally close to each
other tend to remain so, more clearly for closer points. Parameters of the
mapping determine how strong this behavior is. Smaller kernel widths
and larger weight variances allow more drastic folding of space in the
mapping, and may lead to stretching of some neighborhoods.

48

Feature space of the Extreme Learning Machine

Trustworthiness, which suffers if two originally distant points are placed
close together, is also high for kernel and ELM mappings. A kernel map-
ping emphasizes clusters of data by creating a matrix with large values
for similar and small values for dissimilar points. For such covariance
to appear, also the corresponding implicitly defined feature vectors must
not only keep neighbors together, but must also have dissimilar points,
i.e. non-neighbors, in different regions of feature space. This results in
trustworthy mappings.
High trustworthiness of random ELM features may seem counterintu-

itive, since there is no explicit mechanism preventing distant points from
meeting. Indeed, random mapping can sometimes produce overlapping
neighborhoods, but this happens with small probability, since the feature
space is fairly high-dimensional.
Again, the supervisedMLP behaves differently, producing features much

less true to the original neighborhood structure. Same-class points be-
ing kept together sometimes requires points from outskirts of the class
to move close to points which belong to the same class but are far away
distant-wise. This gives good k-NN-classification, as seen in Fig. 4.2, but
less trustworthy mappings.
Kernel classifiers first map the data to the high-dimensional feature

space of a kernel, and then classify. High trustworthiness and conti-
nuity of kernel mappings, combined with easier classification in high-
dimensional spaces, can produce good classification results in an unsu-
pervised feature space.
In dimension reduction, on the other hand, first mapping the data into

an unsupervised feature space and then to a lower-dimensional space
does not seem to bring obvious benefits. The structure of data is pre-
served in the possibly high-dimensional feature space, but due to high
dimensionality, it may be even more difficult to find than in the original
data. This casts some doubt on feasibility of methods, like kernel PCA and
kernelized variants of unsupervised DR methods, where the mapping is
not data-based at all. Methods which actively build a kernel to describe
the metric structure of the data, e.g. by following manifolds or recogniz-
ing directions relevant to target prediction, seem better motivated from
this perspective.

4.3 Extreme learning machine approximates the neural network
kernel

Above we saw that the ELM feature space behaves much like that of
a kernel, although ELM is predominantly known as a neural network
method. In this and following sections we study the connection between
ELM and neural network kernel more closely. We interpret ELM fea-
tures as an approximation to NNK feature space. A similar connection
probably exists between random weight radial basis function networks
and squared exponential kernels, although we do not study it here.
Essential property of a fully trained neural network is its ability to ex-

tract features from the data. The features should be good for predicting
the target variable of a classification/regression task. In a network with
one hidden and one output layer, the hidden layer learns the features,
while the output layer learns a linear mapping. We can think of this as
first non-linearly mapping the data into a feature space and then per-
forming a linear regression/classification in that space.

49

Feature space of the Extreme Learning Machine

ELM has no feature learning ability. It projects the input data into
whatever feature space the randomly chosen weights happen to specify,
and learns a linear mapping in that space. Parameters affecting the fea-
ture space representation of a data point are type and number of neurons,
and the variance of the hidden layer weights. Training data can affect
these parameters through model selection, but not directly through any
training procedure.
This is similar to what a kernel classifier, e.g. a support vector machine

(SVM) [33], does. A feature space representation for a data point is de-
rived, using a kernel function with a few parameters, which are typically
chosen by some model selection routine. Features are not learned from
data, but dictated by the kernel. Weights for linear classification or re-
gression are then learned in the feature space. The biggest difference is
that where ELM explicitly generates the feature space vectors, in SVM
or another kernel method only similarities between feature space vectors
are used.
The mapping ELM uses is random. Therefore, the individual weights

of the ELM hidden layer have little meaning, and essential information
about the weights is captured by their variance. This thought is similar
to derivation of the neural network kernel, which is parameterized with
weight variance.
We interpret ELM as an approximation to the infinite neural network,

which is used to derive NNK. In the experiments below, we demonstrate
that ELM and NNK can, to certain extent, replace each other in compu-
tations. Namely, ELM can be used to compute a kernel, whose behavior
approaches that of NNK when the number of hidden units grows. On the
other hand, decomposition of NNK produces features which can be used
instead of the random features of ELM computations.
We use five binary classification data sets, detailed in Appendix A.

4.3.1 ELM kernel

We can use ELM hidden layer to compute a kernel, and use it in any
kernel method. This idea has been suggested for support vector machine
in [57] and briefly tried in Gaussian process classification in [134].
ELM kernel function [57] is defined as

kELM(xi,xj) =
1

H
f(xi) · f(xj), (4.5)

that is, the data is fed trough the ELM hidden layer to obtain the feature
space vectors, and their covariance is then computed and scaled by the
number of hidden units.
When the number of hidden units grows, this kernel matrix approaches

that given by NNK. Fig. 4.3 shows the approach of ELM to NNK, mea-
sured by the Frobenius norm, as function of H. Although some variance
due to random weights remains, ELM kernel seems to converge towards
NNK.

4.3.2 Deriving ELM features from NNK

We can use NNK to replace the hidden layer computations in ELM. This
is done by first computing a similarity-based representation for data points
using NNK, and then deriving a possible set of explicit feature space vec-
tors by matrix decomposition. This corresponds to using ELM with an
infinite number of hidden units.

50

Feature space of the Extreme Learning Machine

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

#hidden

||K
E

LM
−K

N
N

K
|| F

Figure 4.3. ELM kernel (mean by black dots, 95% interval by shading) approaches the
neural network kernel in Frobenius norm, as function of H. Variation is
caused by randomness in weights. WDBC data set was used.

When using ELM, we only deal with vectorial data, with data space vec-
tors transformed into feature space vectors by the hidden layer. Kernel
methods rely on pairwise data, where only similarities from any point to
all training points are considered. Kernel matrix specifies the pairwise
similarities. In order to use pairwise information from the NNK instead
of ELM hidden layer, we must find a vectorial representation for the data.
As a covariance matrix, NNK is positive semidefinite. Any PSD matrix

can be decomposed into a matrix and its Hermitian conjugate

C = LLH . (4.6)

There are different methods for finding the factors [67]. Matlab cholcov
implements a method based on eigendecomposition. If we take C in
Eq. (4.6) to be output of the NNK function Eq. (4.4), then L can be thought
as one possible set of corresponding feature space vectors.
We use L to determine the output layer weights the same way we used

H in ELM,

β = L†Y. (4.7)

The factors L are unique only up to a unitary transformation, but this
is not a problem in ELM context, as the linear fitting of output weights is
able to adapt to linear transformations.
With an infinite number of hidden units, the feature space is infinite-

dimensional. Meanwhile, the data we have available is finite, and the
N data points span at most an N -dimensional subspace of the infinite-
dimensional feature space. Therefore, the size of L is at most N ×N ; the
number of columns can be smaller.
The one remaining problem is the mapping of test points to the feature

space. In ELM, the test data is simply fed through the hidden layer. In
our case, the hidden layer does not physically exist, and we must base the
calculations on similarities from test points to training points, as given
by NNK Eq. (4.4). This means that NNK output for test data C∗ is a
covariance matrix of the form

C∗ = LLH
∗ . (4.8)

We have already determined the pseudoinverse of Lwhen training the
model with Eq. (4.7). L∗ is recovered from

L∗ = (L†C∗)
H = (L†LLH

∗)H , (4.9)

and the predictions for test targets are computed as

Y∗ = L∗β. (4.10)

51

Feature space of the Extreme Learning Machine

50 100 150 200 250
0

25

50

75

100

σ=
0.

1

 Arsene

50 100 150 200 250
0

25

50

75

100
 USvote

50 100 150 200 250
0

25

50

75

100
 WDBC

50 100 150 200 250
0

25

50

75

100
 Pima

50 100 150 200 250
0

25

50

75

100
 TicTacToe

50 100 150 200 250
0

25

50

75

100
 Internet Ad

50 100 150 200 250
0

25

50

75

100

σ=
0.

32
5

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

σ=
0.

55

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

σ=
0.

77
5

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

50 100 150 200 250
0

25

50

75

100

#hidden

σ=
1

50 100 150 200 250
0

25

50

75

100

#hidden
50 100 150 200 250

0

25

50

75

100

#hidden
50 100 150 200 250

0

25

50

75

100

#hidden
50 100 150 200 250

0

25

50

75

100

#hidden
50 100 150 200 250

0

25

50

75

100

#hidden

Figure 4.4. ELM results (mean as black dots, 95 % interval as shading) for different
values of σ. Variation is that due to data, results have been averaged over 10
ELM runs to handle uncertainty from random weights. The means of NNK
results (horizontal line) are shown for comparison.

In Fig. 4.4 we compare the predictions given by ordinary ELM to those
produced using feature vectors derived from NNK. We notice that when
the variance is properly chosen, using NNK gives equal or better results
than ELM for most data sets. Pima data set is an exception, ELM has
some predictive power whereas NNK-based network performs almost at
level of guessing.
We also notice that the choice of variance has a marked effect on two

and some effect on other data sets, both for ordinary ELM and the NNK
variant. In the following section we will look at variance effects in more
detail and discuss the reasons for importance of variance.

4.4 Variance parameter in ELM

An infinite network performing equally well or often better than ELM
raises a question about meaningfulness of choosing model complexity
based on hidden units only, as is traditionally done with ELM. NNK is
parameterized using weight variance. In this section we study effect of
variance on ELM, concluding that variance should be used as a tuning
parameter in ELM as well as in NNK.

4.4.1 Experiments

For simplicity, we assume all variances equal both in NNK and ELM.
It would also be possible to use a separate variance parameter for each
input variable.
Variance effects already noticed in Fig. 4.4 are summarized in Fig. 4.5.

Averages over repeated data samples are shown. Maximum number of
hidden units for ELM experiment is 250, to make sure to stay in the

52

Feature space of the Extreme Learning Machine

50100150200250

0.05

0.055

0.06

0.065

0.07

 Arsene

#hidden
co

rr
ec

t %
, m

ea
n

50100150200250
0.86

0.88

0.9

0.92

0.94

 USvote

#hidden

co
rr

ec
t %

, m
ea

n

50100150200250
0.5

0.6

0.7

0.8

 WDBC

#hidden

co
rr

ec
t %

, m
ea

n

50100150200250

0.6

0.65

0.7

 Pima

#hidden

co
rr

ec
t %

, m
ea

n

50100150200250

0.7

0.8

0.9

 TicTacToe

#hidden

co
rr

ec
t %

, m
ea

n
50100150200250

0.084

0.086

0.088

0.09

0.092

0.094

 Internet Ad

#hidden

co
rr

ec
t %

, m
ea

n

Figure 4.5. Effect of variance on mean of ELM predictions. Darker shade indicates
smaller variance.

sensible operating range of ELM (up to N hidden units) for all data sets,
some of which are small.
Fig. 4.5 shows the mean predictions of ELM as function ofH, for various

values of variance. For TicTacToe and WDBC data sets the predictions
are clearly affected by the variance parameter. For Internet ad data the
overall effect of both H and σ is very small. In that scale, the smallest
variance nonetheless gives clearly different results than the larger val-
ues. Results for other data sets are not very sensitive to the variance
values that were tried. For TicTacToe and Internet ads smaller variance
gives better predictions, for WDBC the biggest one does. Clearly no fixed
variance can be used for all data sets.

4.4.2 Explaining the results

When thinking about the mechanism by which the variance parameter
affects the results, differences between data sets are to be expected. Vari-
ance affects model complexity, and obviously, different models fit differ-
ent data sets. Variance and distribution of the data together determine
the magnitude of values seen by a hidden unit. The operating point of
the sigmoidal unit determines the flexibility of the model. When weights
are small, the sigmoid produces a nearly linear mapping. Large weights
result in a highly non-linear mapping. This is illustrated in Fig. 4.6. One-
dimensional data points, spread over range [-1,1] (the x-axis), are given
random weights drawn from a zero-mean Gaussian distribution and then
fed through an error function sigmoid, repeating this 10000 times. Mean
output and 95 % interval are depicted. On average, the sigmoid produces
a zero response, but the distribution of responses is determined by the
variance used. Small variance means mostly small weights, and linear
operation. Large variance produces many large weights, which increase
the proportion of large responses by the network, allowing nonlinear map-

53

Feature space of the Extreme Learning Machine

−1 0 1
−1

−0.5

0

0.5

1

data

er
f o

ut
pu

t

σ = 0.1

−1 0 1
−1

−0.5

0

0.5

1

data

er
f o

ut
pu

t

σ = 0.325

−1 0 1
−1

−0.5

0

0.5

1

data

er
f o

ut
pu

t

σ = 0.55

−1 0 1
−1

−0.5

0

0.5

1

data

er
f o

ut
pu

t

σ = 0.775

−1 0 1
−1

−0.5

0

0.5

1

data

er
f o

ut
pu

t

σ = 1

Figure 4.6. Distributions of predictions of an error function sigmoid for different σ.

pings.

4.5 On properties of ELM

Authors of [83] promote ELM by speed, dependence on a single tuning
parameter, small training error and good generalization performance.
These claims have often been repeated by subsequent authors, but we
have not come upon much discussion of them. Here we present some
comments on these properties, largely based on our observations about
the role of weight variance.
Training of a single ELM network is fast, provided the number of hidden

units is small. Speed of training as the whole, however, depends also
on the number of individual training runs. Model selection may require
considerable number of repetitions.
Complexity of model selection is determined by the number of tuning

parameters, since all sensible value combinations should be considered.
First parameter is the number of hidden units. The only theoretically
motivated upper limit for the number of hidden units to try is N (which
is enough for zero training error). At that limit, computing pseudoinverse
corresponds to ordinary inversion of an N ×N matrix, with a complexity
of O(N3). In practice, smaller upper limits are used.
Traditionally, somewhat arbitrary fixed values have been used for weight

variance, and model selection has only considered the number of hidden
units. Importance of variance, or more often the range used for uniform
distribution, is recognized in ELM works (e.g. [122]). However, it is not
seen as a model parameter, but simply a constant which must be suitably
fixed to guarantee that the sigmoid operation neither remains linear nor
too strongly saturates to ±1.
Our results show that also the weight variance has an effect on results,

and should thus be considered a tuning parameter. Although both the
number of hidden units and the variance affect flexibility of mappings the
network can implement, variance is more clearly associated with model
linearity or nonlinearity. For neural networks with non-random hidden
layers, weight variance is known to have more effect than network size
[5]. Perhaps variance should be the primary tuning parameter for ELM
as well.
Generally, small training error and good generalization may be contra-

dictory goals. ELM is proved [83] to be able to perfectly classify its train-
ing data, if the number of hidden units equals or exceeds the number of
data points. This behavior, though important in proving computational
power of ELM, is usually not desirable in modeling. A model should gen-
eralize, not exactly memorize the training data. This view is indirectly
acknowledged in practical ELM use, where the number of hidden units is
much smaller than N . This may prevent ELM network from overfitting

54

Feature space of the Extreme Learning Machine

to the training data, a factor usually not discussed in ELM literature.
Generalization ability of ELM is attributed to the fact that computing

output layer weights by pseudoinverse achieves a minimum norm least-
squares solution. The generalization ability of a neural network is in
[5] shown to relate to small norm of weights. However, [5] considers the
neural network as whole, not only the output layer. Although ELM mini-
mizes the norm of the output layer weights, the norm of the hidden layer
weights depends on the variance parameter, and does not change in ELM
training.
In the hidden layer, the generalization ability is related to the operat-

ing point of hidden unit activations, discussed in Sec. 4.4. A model with
small hidden layer weights is nearly linear, and generalizes well. A highly
non-linear model, produced by large weights, is more prone to overfitting.
Therefore, conclusions about the generalization ability of ELM should not
be based on the output weights only.

4.6 Conclusions

In this chapter we studied ELM, a neural network method whose func-
tionality in some sense falls between a neural network and a kernel method.
ELM classifies data based on random features. DR visualizations of fea-
ture spaces of ELM, a trained MLP, and two different kernels illustrate
the resemblance of the ELM feature space to kernel feature spaces. Both
kinds of feature spaces seem to preserve the structure of the original data
fairly closely, strengthening a finding by [206] that choosing a kernel may
not matter very much, since the results mostly depend on data.
We gave a new interpretation of ELM as an approximation of an infinite

neural network, such as is used in the derivation of the neural network
kernel. The close connection between ELM and NNK was demonstrated
by showing that they can, to some extent at least, replace each other in
computations.
In NNK, the only parameter is weight variance. This is in stark con-

trast with ELM, which is usually only parameterized by the number of
hidden units, while weight variance is arbitrarily fixed. We studied the
effect of weight variance in ELM, and found it to affect the results. Al-
though the role of variance is known in other neural network research, to
the author’s knowledge its importance has not been pointed out in ELM
context before. The finding has practical implications for how ELM mod-
els should be constructed. Especially model selection, if done carefully,
becomes more time-consuming than earlier ELM works claim, since two
parameters must be considered.

55

5. Supervised dimension reduction
with bottleneck networks

Bottlenecked regression and classification networks can be thought as su-
pervised versions of autoencoders. Their idea is very simple: the network
has a low-dimensional bottleneck layer like autoencoders have, but the
network is trained to perform nonlinear classification or regression, not
to reconstruct the data.
One of the current topics in neural network research are deep networks.

Their training remained a challenge until 2006, when a method of unsu-
pervised pretraining was developed [81]. Pretraining finds a good ini-
tialization for weights, so that good solutions can be found by gradient
descent methods. The reasons for why and how pretraining works are
not completely clear [47]. In spite of this, the practical possibility to train
deep networks has in practice started a new branch of neural network
research, including alternative pretraining methods [192], studies about
pretraining effects, [47], criticism of methods [51], and use in dimension
reduction [151, 123, 180, 124], among other applications.
Some work on neural networks and dimension reduction, notably on

autoencoders but also other methods, was done in 1990s with shallow
networks. The surge of interest to deep networks has meant revival
or re-invention of ideas for doing dimension reduction with neural net-
works. Unsupervised dimension reduction with deep autoencoders was
followed by supervised networks with DR-oriented, quadratically scaling
cost functions [151, 123], which combine deep nets and supervised DR
exactly the same way as shallow networks and Sammon mapping were
combined in [118].
Although autoencoders have long been a familiar tool for dimension re-

duction, supervised dimension reduction was not a topical task in 1990s,
and the supervised variant of bottleneck networks that was developed at
that time [84] did not find widespread use. When the idea of using deep
networks for supervised dimension reduction came up, supervision was
done by quadratically scaling cost functions. This development leaves
a void, which inevitably calls for re-introduction of the simpler way of
supervision. In this work we fill this void by a deep-net variant of super-
vised bottleneck classifiers (Sec. 5.3). Our work contributes to the current
deep network research by showing that supervised bottleneck networks
can perform as well as the currently used supervised neural DR methods,
while being faster to train. The bottleneck classifier experiments have
been published in [130].
Although from neural network point of view classification and regres-

sion are closely related tasks, in the field of supervised dimension re-
duction these two problems are usually solved with different methods.
Dimension reduction for regression (DRR) is a research branch of its

57

Supervised dimension reduction with bottleneck networks

own. With its roots in multivariate statistics, it has developed some-
what separated from the more clearly machine learning oriented meth-
ods, which mostly use class labels for supervision. We therefore comple-
ment our experiments on the bottleneck classifiers with a separate study
(Sec. 5.4), which compares bottleneck regression networks to established
DRR methods. Unlike the classifier case, we use shallow networks, since
the comparison methods can only be used on smallish data sets, not suf-
ficient for the data-intensive pretraining of a deep network. We are not
aware of earlier use of bottleneck networks in DRR, although related net-
work architectures have been applied in other fields. Part of the DRR
experiments is from [131], while most is new material.

5.1 Feedforward neural networks in dimension reduction

5.1.1 Autoencoders and their variants

Autoencoders were proposed as a nonlinear extension of principal compo-
nents analysis (PCA) already two decades ago [46, 155, 97, 41]. An au-
toencoder is a feedforward neural network with (usually) symmetric layer
structure and a low-dimensional middle layer (see Fig. 5.1(a) for illustra-
tion). It is trained to reconstruct the data, by presenting the same data
to the network both as the input and as the learning target. Dimension
reduction happens at the middle layer, whose output provides a low-di-
mensional representation of the data. The connection to PCA stems from
the observation that a network with autoencoder structure, when using
linear hidden units, learns the highest principal components of the data
[4]. Not until in 2000 it was fully recognized that using non-linear hidden
units leads to a non-linear model [89]. Nowadays, and also in this work,
the term autoencoder usually refers to a network with sigmoidal hidden
units, with linear units in the middle and output layers only.
Although the idea of autoencoders is old, until now they were little used

due to problems of training. With invention of efficient pretraining meth-
ods, the deep networks, among them autoencoders, have become a current
topic.
Several ways of introducing some supervision into autoencoders have

been proposed. In divergent autoencoders [99], the layers up to the bot-
tleneck are shared by all classes. After the bottleneck, the network di-
verges into several parts, each of which is trained with samples of one
class only. Supervisory information can also be added via regularizers
[204], either layerwise or to the cost function of the whole network. A re-
sembling approach is to couple each layer with a linear classifier, and use
a tuning parameter to decide the respective importance of unsupervised
and supervised costs in training [145].

5.1.2 Pretraining deep networks with a generative model

Feedforward neural networks are usually trained using gradient descent
algorithms. The gradients are computed by backpropagation, invented
already in the 1970s but made widely known in 1986 [150]. The gradi-
ents of the network error w.r.t. layer weights are obtained by chain rule
(layer error w.r.t. layer output, layer output w.r.t. layer weights). The
key observation is that the current-layer error can be computed from the
next layer gradient, using network weights to determine respective con-
tributions of the current layer units in the formation of error. Using this

58

Supervised dimension reduction with bottleneck networks

1000

500

250
d

250

500

1000

x x̃

(a) Autoencoder.

1000

500

250
d

H
C

x ỹ

(b) Bottleneck network (H
hidden units, C-dimension-
al output).

1000

500

250
d

x e

(c) Quadratic cost
functions.

Figure 5.1. Illustration of network layouts for the bottleneck network and the compar-
ison models, each performing dimension reduction to d dimensions. The d-
dimensional coordinates are the outputs of the middle layer (for the bottle-
neck networks) or the output layer (with the quadratic cost functions). The
autoencoder (a) minimizes mean square reconstruction error to achieve re-
construction x̃ ≈ x when trained with input x and target x. Error function
of the supervised bottleneck network (b) is cross-entropy classification error
for the classifier, and mean square error for the regression networks. The
network produces an estimate ỹ ≈ y when trained with input x and target
y (y are either class numbers, presented in 1-of-c binary encoding, or regres-
sion targets). With the quadratic cost functions (c), distance between two
low-dimensional points, obtained from the network output e is compared to
the distance between the corresponding input points, using a suitable cost
function (see text).

observation, the gradients can be computed layer by layer, starting from
the last and backpropagating the error to previous layers.
Deep neural networks can learn mappings more effectively, that is, with

less neurons, than shallow networks [13, 10]. As a downside, complicated
energy landscapes of deep networks, are a challenge to gradient descent
algorithms. Training is likely to land in a local energy minimum, and can
result in a badly trained network. Due to the huge number of possible
weight combinations, looking for a global optimum is not a feasible strat-
egy. Instead, better solutions can be looked for by choosing the initial
values of weights so that the starting point for gradient descent is near a
good optimum.
The currently used way of training deep networks follows a two-phase

paradigm, started by the breakthrough work of [81].
First, the network is pretrained in unsupervised fashion, even if the

final use of the network will be in a supervised task. Then it is finetuned
by minimizing the network cost function, which trains the network e.g.
as an autoencoder or a classifier. Since pretraining has found good initial
values for weights, finetuning can be done by gradient descent methods
[47].
Currently, two main strategies for pretraining deep networks are to

train each layer as a restricted Boltzmann machine (RBM) [81], or as
a shallow autoencoder [12, 102, 192]. Here we use RBMs for pretraining.
A restricted Boltzmann machine [165] is a generative model of data. It

consists of two layers of nodes, connected in bipartite fashion. Nodes of
the visible layer present values of data, and the hidden layer nodes can be
thought as latent variables generating the data. Weights between the lay-
ers are found so that the distributions of visible and hidden node values
match as closely as possible, measured by Kullback-Leibler divergence.
The gradient of this cost contains a term which cannot be analytically
calculated. Therefore, an approximate cost function called contrastive di-
vergence is developed in [79]. It has a simpler gradient, so that the cost

59

Supervised dimension reduction with bottleneck networks

can be minimized by ordinary gradient descent.
Several RBMs can be collected into a stack, resulting in a deep gener-

ative model (deep belief network or DBN, [80]). The layers of the stack
are trained one at a time, using the hidden layer output of one RBM as
the visible layer input for the next one. Connection between DBNs and
feedforward neural networks is made in [81], where it is noticed that a
deep neural network can be initialized with DBN weights. This is a very
natural idea for autoencoders, which resemble a generative model in that
they attempt to reproduce the data, but the same initialization can be
used for deep classifiers [102].

5.1.3 Network cost functions scaling O(N2)

Networks with quadratically scaling cost functions have been used to cre-
ate deep supervised networks for dimension reduction. Two such cost
functions will serve as comparison methods in our bottleneck classifier
experiments in Sec. 5.3.
Usually feedforward networks are trained by presenting the net with an

input and a target, computing errors for each data point, and adjusting
the weights to reduce the error.
It is also possible to train a network with a cost function which uses

pairwise comparisons of network outputs to evaluate the cost. Such cost
functions scale quadratically in the number of data points, so from now
on we refer to them as quadratic cost functions.
A network with a quadratic cost function has no layers after the bot-

tleneck (see Fig. 5.1(c)), but the cost is defined directly on outputs of the
bottleneck layer. A separate target variable is not used. Instead, the cost
function specifies requirements for point relationships, and the results of
pairwise comparisons determine the error. This means that all inputs
must be presented to the network at once, and that the cost of evaluating
the error is quadratic in the number of training points. Any cost function
which is defined for a matrix of pairwise (dis)similarities can be used.
After computing the error, the need to adjust weights is determined by

backpropagating errors the same way as for usual cost functions.
The idea of using cost functions of this type is not new. In 1990s, a

feedforward neural network was trained in [118, 115] to minimize the
cost function of Sammon mapping [152], and was also studied in [36].
The idea of quadratic cost functions surfaced again after the invention
of pretraining with generative models, now in connection with deep net-
works and supervised cost functions. It has been used with NCA [151]
and LMNN [123] cost functions. Also a deep net version of t-SNE cost
has been implemented [180], as well as a t-distributed extension of NCA
[124].

5.2 Supervised bottleneck networks

Like the idea of quadratic cost functions, the idea of supervised bottleneck
networks [84, 59] and related nonlinear discriminant analysis networks
[117] was tried during the neural network boom of the 1990s. Super-
vision in a bottleneck network was noticed to make the network ignore
directions that have no relation to classification [84], and the effect was
also seen in visualizations. Nonlinear discriminant analysis [118] resem-
bles the idea of bottleneck classifiers in that the network reduces dimen-
sionality, but the network is trained as a linear classifier that gives a

60

Supervised dimension reduction with bottleneck networks

low-dimensional output, not as a bottleneck network.
In DR context, the goal is to find a low-dimensional representation, and

some compromizes can be made regarding to quality of predictions that
can be made on DR results. The view of sacrificing some accuracy for
size is especially strong in visualization tasks, where dimensionality is
drastically reduced, so that some prediction ability is almost necessarily
lost. In other fields of research, networks that reduce dimensionality as
an intermediate step have been used for other goals than DR. Creating a
bottleneck effect can force the network to generalize better, since the de-
grees of freedom in the bottleneck are not sufficient to repeat noise in the
data. In such networks, addition of a bottleneck is expected to improve
predictions. One example where such effect is sought are convolutional
networks [105].
Computational resources of 1990s were usually not sufficient for han-

dling large data sets or training deep networks with many hidden units.
This work brings the idea of supervised bottleneck networks up to date,
using modern pretraining and real data sets of tens of thousands of sam-
ples, and comparing bottleneck networks to recently developed dimension
reduction methods.
Bottleneck classifier networks have been interpreted as generalizations

of discriminant analysis. The same way as linear-unit autoencoders were
shown [59] to perform PCA, bottleneck classifiers with linear units were
shown to give results similar to linear discriminant analysis (LDA), and
in [154], a multiclass classifier network is trained using the LDA cost
function to obtain weights for the output layer, an optimization task which
requires a costly eigendecomposition. The relation of the internal repre-
sentation of a classifier network and discriminant analysis is also noted
in [199].
Neural networks naturally bridge the gap between classification and re-

gression methods: a multilayer network performing regression turns into
a classifier by a simple change in the activation function of the output
layer. Therefore, neural networks can be easily adapted to both dimen-
sion reduction for regression, and supervision with class labels. Training
a bottleneck network scales linearly in the number of data points, which
is a benefit over many dimension reduction methods with more complex
cost functions. Also, networks are relatively insensitive to structural pa-
rameters (number of hidden units).
The appeal of neural network models in dimension reduction is largely

due to their ability to map data from the input space to the low-dimen-
sional space. Once the mapping has been learned, it stays the same, no
matter whether training points or test points are fed through the net-
work. For a neural network this behavior is obvious, but in the field of
dimension reduction not so. Many methods in unsupervised dimension
reduction only produce locations for the training points, with no unam-
biguous way of determining where the test points should go. The ability
to treat the training points and the test points similarly is especially im-
portant in supervised dimension reduction, where it is natural to build
models using the training data and test the prediction ability with new
points.

5.3 Bottleneck classifier experiments

This chapter contains the experiments of [130].
We compare bottleneck classifiers (BC) to two closely related deep net-

61

Supervised dimension reduction with bottleneck networks

work architectures: autoencoder (AE), and networks finetuned with a
quadratic cost function. Two of the quadratic cost functions are super-
vised (NCA and LMNN), and one is unsupervised (t-SNE). These cost
functions were described in Chapter 2. To justify the often heavier compu-
tation required in the supervised setting, a supervisedmethod should pro-
duce better results than a good unsupervised one. As t-SNE has achieved
remarkably good results on several data sets, especially on clustered data,
we include it in our comparison as the unsupervised baseline method.
We use MNIST, USPS and 20 newsgroups data sets, and reduce the

dimension to 2D, which is easy to visualize, and to 30D, which could be
appropriate in a data-packing problem.
Network layouts for the methods are summarized in Fig. 5.1. A deep

layout, with pretraining as an RBM stack and finetuning with the respec-
tive cost function, is used for all networks. See Appendix A for parameter
values and other details.
In the autoencoder, the encoder layers (those before the bottleneck) use

DBN weights as such. The decoder layers (after the bottleneck) reuse
the same weights in mirrored fashion, so that the first layer after the
bottleneck uses the same weights as the last layer before it, and so on. In
the bottleneck classifier, the encoder layers are initialized from the RBM
stack, and the classifier layers are randomly initialized.
For each data set we first pretrain a network, and use it as the starting

condition for all the cost functions in turn, so that all methods start their
finetuning from exactly the same configuration. The finetuning error is
backpropagated through the network. A conjugate gradient optimizer is
used for minimizing the error.

5.3.1 Results

Figs. 5.2 and 5.3 show 2D visualizations of MNIST and USPS data sets.
Visualizations of the newsgroups data did not show much structure with
any method, and only numerical results shown (Fig. 5.4). T-SNE does
clearly better than the other two unsupervised conditions (pretrain only
and the autoencoder).
ForMNIST, the supervisedmethods separate the challenging digit groups

4–7–9 and 3–5–8 better than t-SNE does. The other digits are handled
about as well by all methods. Based on visual inspection, all super-
vised methods seem to do equally well with MNIST data, although the
numerical results differ. With the more difficult USPS data, the super-
vised methods keep the classes together better than t-SNE. LMNN re-
sults seem weaker than those of NCA and BC, but whether NCA or BC
performs better cannot be determined on visualization only.
Numerical results for 2D and 30D cases are shown in Fig. 5.4. We use

k-NN classification accuracy as our quality measure, since keeping dif-
ferent classes separate is a natural goal for class-supervised dimension
reduction. Here we show k-NN results as function of k. Changing k does
not seem to change the order of superiority of the methods (with excep-
tion of newsgroups 2D results where BC/NCA results are very close to
each other). In 2D, BC does better on MNIST and USPS, and equals NCA
with newsgroups data. In 30D, NCA and LMNN give lower errors.
Based on these results, no clear order of superiority can be established

between the three supervised methods. Therefore, issues like computa-
tional complexity become important when choosing a method. The bot-
tleneck classifier is worth considering because of its computational sim-
plicity. Good performance of BC in 2D case suggests that the bottleneck

62

Supervised dimension reduction with bottleneck networks

(a) RBM-pretraining.

0

0

0

0

0

0
0

0

0

0

0

0
0

00

0

0
00

0

0

0
0 0

0
0

0 0

0

0
0

0

0

0

0

0

00

0

0

0
0

0 0

0

0
0

0

0
0

0

0

0

0
0

0

0

0

0

0

0 0

0
0

0

0

0

0

0
0

0

0

00

0

0

0

0

0

0

0

0
0

00
0
0

0

0
0

0

0

0

0

0

0

0

0

0

0
0

0
0

0

000

0

0

0

0

0

0

0

0

0
0

0
0

0 0
0

0

0

0

0 0

0
0 00

0

00
0
0

0
00

0

00

0

0

0

0

0

0

0 0

0

0

0

0

000
0 0 0

000

0

0

0

0

00

0

0

0

0

0

0

0 0
00

00

0

0

00
0

0

00

00

0

0

0

0

0

0

00
0

0

0

0

0

0

0
0

0

0

0
0

0

0

0
0

0

0

0

0

0
0

0

0

0
0

0
0

0

00
0

0

0

0

0

00

0
0

0

0

0
0
0

0

0

0
0

0 0

00
0

0
0

00

0

0
0

0
00

0

0

0
0

0
0

0

0

0
0

0
0

0

0
0

0
0

0

0

0

0

0 0
0

0
0

0

0

0

0

0

0

0

0

0

0

1
11

1
1
111

1

11
11

1

1
111

1
111

1 111
1

1
11
1

1111
1

11
1

1
1

1

1

111
1

1
11

1

1
11 11 11

1 11 111
11 111

1

1
1

1
1
11

1
1

1
1111

111
1 1111

111111111
1

1
1

1
1

1

111111111 11
1

11
11 11

1

11
1

1
1 11
11
1

111111
1
1 1

11 1

1
1
111

1111

1

1
11 11
1 1

1
11
1
11111
1
1

1
1

1
111 11

11
11

11

1

111
1

1

1

1
1

1
1111

1
1

1

1
1
111

1
1
1111

1

1

1
1

1

1
1
11 1
11
1

1

1 11 1
111111

1
1 1
11

1
111
1
1
11
1

1

1
1
1

1
11

1
1

1
11
11111

1

1 1
1

11
11

1

1

1

1
1

1 11
11
11111

1 11
1
1

11
1
1

1

11
1
11

1
1

1 111
1 1111
1
1

11111

1
1 1
1

1

1111 2
2

2

2

2

2

2

2 2

2
2

2

2

2

2

2

2

2

22
2

2

2

2
2

2

2

2

2
2

2

2

22
2

2 2

22

2

2

2

2

2
2

2 2

2

2
2

2

2

2

2
2

2

2

2
22

2 22

2
2

2
22
2

2
2

2

2

2

2

22

2

2

2

22

2

2

2
2

2
2

2

2

2

2
2

2

2

2 2 2
2

2
22

22

2

22

2

2
2 2

2

2
2 2

2

22

2

2

2

2

2

2

2

2

2 2

2

2

2

2 2 2
2

2
22

2

2

2

2

2

2

2

2
2

22

2

2

2

2 2
2

22

2

2
2

2
2 2

2

22

2

2

2

2
2

2

2

2

2

222
2

2

2

2
2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2
2

2

22

2
2

2

2

2

2

2
2

2

2

2

2

2
2

2

2
2

2

2

2 2
2

2 2

2

2

2

2
2

2

2

2
2

2

2

2

2
2

2

2 2

22
2

2

2

2

2

2

2
2

22
2

22

2

2 2
2

2

2

2

2

2
2

2

2
2

2

2

2

2
2

2

222 2

22

2

2

2

2

2 2
22 2

2

2

2
2

2

2

2

2

2 2

2

3
3

3
3

33
3

33
3 33

3
33

3
3

33 3 33
3

33
3

3

3

3
3 3

3

3

3

3 33
3

33 3
33 33 3

3

3

33

3

3

3

3
33
3
3

3
3

3

3
3

3
3

3
3 333

3

3

3

3
3

3

3
33

3

3
3

3

3

3
3
3

3

3
3

3

33 33
3

3
333

3

3 3333
3 33

3

3 333

3

3
3

333 33

3

3

3

3
3
3

3 3
3 3

333
3

33

3

3
3 3 3

33
3

3

3

3

3
3

3

3

3
33

33 3
3

3

333

33
3

3

3

3

3
3 333 3

3

3

333
3

3
3

3
333
3
33

3

3 3
3

3

3

3

3
333
33

3

3

33

3

3

3

3

3

3
3
3

3

3
333

3
3

3

3 3

3

3

3
3

33 33
33
3

3 3

3
3
3

3

3

3 3
3

3
33

33
333

3
3333

3
3

3

3 333
3

3

3

3

3

33

3

3
33

3

3

33
3

3

3

3

3
3

3

3
3

33
3

3
33

33 33
33

3
3

3
3

3

3

33 3

3

444

4 4

4

4
4

4 4
4

4
4

44

4

4

4

44
4

4

44

4

4

4
4

4

4

4

444

4
44

4

4

4

4
4 4
4

444

4

4 4
4

4
4

4
4

44

4

4
4

4
44

444
4

4

4

4

4
4

4

4
44
4

4

4 4

4

4

4

4
44
4

4

44 44

44

4

4

4
4 44

4
4

44
4

4
4

4

4

4
44 44

44

4

4

44
44

4 4

4

4

4

4

4

444

4
4

4

44 4
4

4
4 4

4

4
44 44

4

4

4

4
4

4
4 4

444
4

444
4

4

4

44

44
4

4
44

4
4

4

4
4

4
4

4

4

4
4
4

4

44

4

4

4

4 4
4

4
4

4

4

4

4

44

4
4

44
4
4

4

4

4

4

4
4
4 4

4

4
4

4

4

4
4

4
44

4

44
4

4 44

4

4
4

44

44
4
4 4

4

4
4
4

4

4
44

4

444

44 4
4

4
4

4

444
44

4
4 4

4

4

5
5

5

5

5

5
5

5
5

5

555
5

5
5

5
5

5

5

5

5
5

5

5
5

5

5

5
5

55
5

5

5
5 5

5

55
5

5
5

555
55 5

5

5

5

5
5

5

5
5

5

5

5
5

5

5
5 5

5

5

5

5

5

5

5 5
5

5

5
55
5

5

5

555

5
5

5
5

5

5

5

5

5

5
5 55

5

5
5

5

5

5
5
5
5

5

55 5
5

5 55
5

5

55

5

5
5 5

5
5

5

5
5

5

55
5 5

5
5

5
5 5

5

5 55

5
5

5
5

55
5 5

5
55
5 5

5

5 55
5
5
55

5

55

5
5

555
5

5

5

5

5

555 5

5 555

5
5

55
5 5

5

5

5

5

5

5
5

55

5

5
55

5 5
555

5

555
5

5
5

5

5

5

5
5

5

5
555 5

555

5

5

5
5

5
5

5

5 55

5

5
5

5 55
5

5
5

55
5

5

5 5
5

5

5

5
5

5

5
55

55
55

5

5

5

5
5

5

5
5

5
5

5

5

5

5 5
55 555 5

5

5

6
6

6
6

6

6
66

6

6

6
6 6

6

6 6

6

6
6

6
6

6

66
6
6

6

6
6

6

6

6 6

6

6

6
6

6

6
66

6

6
6

6
6

66

666

6

6

6

6

6
6

66
6

6

6

6

6

6

6

6

6

6
6

66 66

6

6

6
6

6
66

66

66

6

6

6

6

6
6 6

6

6

6
66
6

6
6

6

6

6
6

6 6 6

6

6
666

6 66

66

6

6

6
6 6

6 6

6
6

6

6
6

6

6 6
6 6

66

66

6

6
6

6
6

6

6

6

6
6

6

6

6

6
66

6

666
66

6

6
6

6
6

6

6
6

6

6

6 6

6
6

6

6
6
66

66
6

6

6
6

66
6
6

6
6
6

6 66

6 6
6

6 6
66

6
6

6

6 6

6

6

6
6

6

6

6

6

66

6

6

6

6 6

6

6
6

6

6

6
66

6

6

66

6

6
6

6 666
6

6

6
6

6

6

6

6 6
6

6

6 6
6

6

6

66

6

6
6

6
6 66

66
6

6
6

6

6
6

6

6
6 6 6

6

6

6

6

6

6
6

6

6

6

6 66

7
7

7

7

7

7

7

7

7

7

7

7

7 77

7

7

7

7

7

7

7 7

7
7

7 7

7

7

7

77

7

7 77 7

7

7

7

7

7

7

7 777
7

7
7

7 7

7

7 7
7

7

7
7

7

7

7 7

7

7

7

7

7

7

7
7

7

7

7

77

7

7

77

7

7

77

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

77

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7
7

7

7

7 7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7
77

7

7

7

7

7

7

7

7

7

7

7

7 7

7

7 7

7

7

7

7
7

7

7

7

7 7

7

7

7 7

7

7

7

7
7

7

7
7

7

7

7
7

7

7

7

77

7
7

7

7

7

7
77

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7
7

7
7

7

7

77

7 7

7

7

7

7
77

7

7

7

7

7

77

7

8
8
8

8
88

8
88

8

8
8

88
8

8
8 888

8

8
8
8

8

8

8

88

8

8
8 88

888
88

8
8

8

8

8
8

88

88
8 888
88

8

88

8 8
8

8

8

8

8

8
8

8
888

8

8

8
88
888

8

8

8

8

8

8

88
8

888
8

8
8

88
8

8

88
8

8
8
8

8
88 8

8

8

8
8

8
8
8

8 8
8
88

8
8
8
88888

88

8
88

8

88

8
8

88

8

88
88
8
88 8

888
8

8

88
8
8

8 8

8
888 8

8
8

8 88
8

8
8

8

8

8

8 8
88 8

88

8

88
8

8

8

8

8 8

8 8

8

8
8

8
8 88

88 8 8 8
8 8

8

8 888
88

8
888

8

8
8
8 88

8
8
88

8

8888
8

8

888

8

8

8

8 88
8

888 88 8

8
8

8
8

8
8

8
88
8

8
8 88

888
8 8

88 8
8

8

8

8
8

888
8

88
8

8
888 8

8

88

8

8

8
88

8

8
8 88

8
8
8 8

9 9

9

9
9

9

9
9

9

9
9

9
99

9

9 9
9

9 9 99

9

9

9

9

99
9

99
9

9
9
9

9
9

9
9

9 9
9
99

9

9

99
9
9

9

99
99

9
9
99

9

9

9
9

9

9
9

9

99

9 9

9

9 9
99

9
99 9

9

9

9

9

9

99
99

9
9

9
9

9

9

9 9

9

9
9

9

9

9

99
9

999 9

9

99

9
9

9

9 99

9

9 9
9999

9

9

9

9

9

99

9

99
9

9

9

9 9

9

9
99

9
9

9

9

9 999

9

9
9

9

9

9

9
9

9
99 99

9
9

9

9
99

9
99

9
9 9

9

9

9

99

9

999
99 9
9

9

9
9

9

9

9

99

9
9
99 99

9

99

9
9

9
9
9 9

99

9

999 9
9

9

9
9

99

9

9

9

9

9

9

9 9
9

9

9

9

99
999

9

9

99

9

9

9
9 9

9

9
9

999

9

999
9

99
9

99
9

99
9

99 9

9

9

9
99

9

9

99 9

9

9

9

99
9

(b) NCA cost.

(c) Autoencoder.

0

0
0

0

00
0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0
00

0 0

0
0

0

0
0

0

0

0

0

0

0

0

0

0

0

00

0

0 0

0

0

0

0

0

0

0

0

0

00

0
0

0
0

0

0

0

0 0000

0

0

0
0 0

0
0

0

0

0

0

0

0

0
0

0
0 0 0

0

0

0 0 0
0

00

0 0

0

00
0

0

0
0 0

0

0

0

0

0

0
0

00
0

00
0

0

0

0

0
0

0

0

0
0

0

0
0 0

0

000

0

0
0

0

0

0

0

00

0

0 0
0

0 00

0

0

0

0
0

0
0

0
0

0

0
0

0

0

0

0

0
0

0
0

0
0

0
0

0

0
0

0

0

0

0

0

0

0

0
00

0

0

0
0
0

0
0

0

0

0
0

0

00
0

0

0

0

0
0

0

0
0

0
0

0

0

00 0

0
0

0

0

0
00

0

0 0

0

0

0

0
0

0 0

0 0

0

0
0

00

0

0
0

0
0

0

0
0

0 0

00

0 00

0 0

0

0

0

0

0

0

0 0

0
0

0

0

0

00
0

0

0 0
000

0
0

00
0

00

0

00

0

0

00

0

0

0

1

11

1

1

1

1
1 1

1

1

1
1

1
1 1

1
1

11

1

11
1

1

1

1

11

1

1

1

1

1
11

1

1

1

1
1

1
1

1
11
111 1

1

1
1

1

1
1

1
1

1 111
1

1
1

11

1

1

1 1 1
1

1
1

1
1

1

1

11
1 1 11

1

1

11 11
1

1
1

1
1 11

1

1

1

1
1

1
1

1
1

11
1 11 1 11

1

11

1

1

1
1

1
1

1

11
1

11
11

1

1

1
1

1

1 1
1 1

1
1
1

1 1
1

1

11 1 1
11

11
1

1

1
1 1

1 11 1
1 1

1

1

1
1

1
1

1
1 1

1
1

1
1
11

1
1 1

1

1
1

1

1

1

1
1

1
1

1

1

1 1
1 1

1

111 11
1

1
11

1
1

1
1

1
11 1

1
1

1

111
1 1

1
1

1
11

1
1 1

1
1

1
11

1
1 1

1
1

1

1
11

1
1

1 1
1

1
1

1

1

1

1
1

1
1

1 11

11
1

1
1

1
1

11 1
1

11

1 1

1 1
11

1

1

1

1

1
1
1 1

1

1
1

1

1
1

1

1

1

1

1

1

1

11

1
11

1

1
1

111

1 1
111

1
111

11

1

11 1
1

1

1

1 1

2
2 2

2

2
22

2

2

2
2

2
2

22
2

2

2

22 2

2

2

2

2
2 2

2

2

2
2

2

2
2 2

2

2

2

2

2

2
2

2
2

2

2

2

2

2

2 2
2

2

22

2

2

2 2

2
2

2 22
2 2

2

2

2

2
2

2

2
2

2
2

2
2

2
2

2
22

2

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2
2

2

2
2

2
2

2

22

2

2

2

2

2

22

2
2

2

2

2
2 2

22
2

222

2
2

2

2
22

2

2

2

2

2
2

2

2
2

22

2

2

2

2

22

2

2

2

2

2
2
2

2

2

2

2

2
2

2 2
2

2

2
2

2

2

2

2
22

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

22
2

2
2 2

2
2

2
2

2

2

2

2

2

2

2
2

2
2

2

2
2

22
2

2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2
2 2

2

2

2

2
2 2

2
2

2
22

2

2

2

2

2

2
2

2

2

2

2

2
2

22
2

2

22

2
2

2
2

2
2

2 22

2

2

2

2
2

2
2

2

2

2

2

2

2

2
2

2
2

2
2

22

2

2

2

2
2

2

2

2

33

3
33

3

3

3

3 3

3

3
3

3

33

3

3

3

3
3

333
3

3
3 3

3 3
3

3

3

3
3

3 3
3

3

33
3
3

3 3
3

3

3

3
3

3

3

3

3

3
3

3
3 3

33
33

3 3
3

3

3

33

3

3

33
3

3

3
3

3 3
3

3

3
3

3 3
3

33

3
3

3

33 3
3

3 33 3
333

3
3

3
33

3

3

3

3

3

3

3

3
33

3

33

3

3

3

3

33
3

3
3

3
33

3
33

3 3

3
3

33
3 3

3
3

3

3
3

3

3

3

3

3
3

333 3
3

3

3
3

3

3

3
3

3 33
3 33

3

3

33

3 3

33

3

3

3
3

3

3 3

3

3

333

3
3

3

3

3
3

3
3

3

3
3

3

3
3

3

3

33

3

3

3
3

3
33 3

3

3
3

3

3

3 3

3

3

3

3 333

3
3

3
3

3

3

3

3

3

3 33 3
3

3

3

3

3

3
3

33 3

3

3

33
3

3

33

333

3
3

3
3

3

3 3

3
3 3

3

3
3

3
3

3

3 3
3

3
3

3

3
3

3 3

33

3

3

33
3

3

3

3
3

3

33

3

3
3

3
3

3

4

4

4
4

44 44
4

4
4 4

4

4

4
4

4

4
4

4

44

4
4

4

44

4

4

4
4

4

4

4

4 4
4

4
4

4

4

4
4

4

4

4

4

4

4
4

44 4

4

4

44

4

4

4

4

4
4

4

4 4 4
4

4
4

44

4

4
4

4

4
4 4
4

4

44

4

4
4

4

4

4
4

4

4
44

4
4

444
4

4

4 4
4

44 4

4

4
4

4

4 4
4

4

4

4

4

4
4

4

44
4

4

44

4

4

4

4

4

4

4

4
4 444

4
4

4

4
4

4

4

4

4

4

4

4

4

4

4

4
4

4
4

4

4

4

444
4

4

4
4 4

4

44

4
4

4

4

4

4
44

4

4

4

4

4 44 4

4

4

4

4
44
4

4
4

4
44

4

444

4

4

4
4

4

4

4

4 4

4

4
4

4

4

4
4

4
4 4

44
4

4

4

4

4

4
4

4

4

4

4 4
4 44

4

4
4

4

4 4

4

4

44

4

4

4

4

4
4

4
4

4

4

4
4

44

4

4

44 4

4
4

4
4

5

5

5

5

5

5

5

55
55

5
55

5

5

5
5

5

5

5
5

5
5

5
5

5
5

5

5

5

55

5

5

5 5

5
55

5

5
55

5
5

5
5

5

5
5

5

5 5
5555

5

5
5

5
5 55

5

5
5

5

5
5

5
5
5

5

5
5

5

5

5
5

5

5

5

55
5

5

5

5 5

5

5
5

5

5 55

5

5

5 5

5
5

5
5

5

5 5
55

5

5

5

5
5

55

5

5
5

5

5

5
55

5

5 5

5

5

5

5
5

55
5

5

5

5
55

5
5

5

5

5

5

5
5

5

5

5

5

5

55
5

55
55
5

55
5

5

5

5

5

5
5

5
5

5

5 5
5

5 5

5

5
5

5

5

5 5
5

5

5

5
55

5

5
5

5

5 5

5
555

5

5
55

5
5

5
55

5 5

5
5

5 55

5

5

5
5

5

5
5

5

5

5

5
5

5

555

55

55
5

5

5
5

5
5

5
5

5

5

5

5

5

5

5 5

5
55

5
5

5

5
5

5

5

5
5

5

5

5
5 5

5

5
5 55

5

5

5

55
55 5

5

5

5
5

6

6

6
6

6

6

6

6

6
6

6
6

6
6

6
6

66

6
6

6

6

6
6

66
6

6

6

6

6
6 66

6

6
6 6 6

6
6

6

66
6

6

6
6

6

6

6
6

6

6
6 66

6

6
6

6

6

6

6
6

6
66

6

6 6

66
6

6 6
6

6

6
66

6 6
66

6

6

6

6

6
6

6

6

6

6
6

6 6

6
6

66 6
66 6

6
6

6

6
6

6
6

6

6

6

6

6
6

6
6

6
6

6
6

6
6

66 6

6

6

6
6

6

6 6

6

6

6 6

6

6

6
6

6

6
6 6

6

6

6 6

6

6

6

6

6
66

6

6

6

6
6

6 6
6

6

6

6

6

6 6

6

6
6

6

6

6

6

6

6

6

666
6

6

6

6

6 6

6

6
6

6

6
6

6

6
6

6

66

6

6

6

6
6

6

6

6

6

6 6

6

6

6

6

6

66

66

666

6

66

6 6

6

6

6
6

6

6

6

6

6 66

6

6

6

6
6 6

6
6

6

6

6

6

6

66

6

6

66
6

6

6 6

6
6

6

6

6
6

6

6

6

6 6
66 6

66

6
6 6

6

6

6
6

66

7
7

77
7 77

7

7

77

7
7

7
77

7

7

7

777
7 7

7
7

7
7

7

7

7

7

7

7

77

7

7

7
7

7

77

7
7

7 77

7
7

7

7 7

7 7
7

7
7

7
7

7

7

7

7

7
7

7
7

7
7

7
77 77

7

7

7 7

7

7
7 7

7

7
7

7

7

7
7

7

7

7

7
7 7

7

7
7

7

7

77

77 7

7
7

7

77

7

7

7

7

7 7

7

7
7
7 7

7

7
77

7
7

77
7

7
7

77
7 77

77
7

7

7

7

7

77
7

7

7

7

7
77
7

7
7 77

7

7

7

77

7

7

7

7

7

7

7 7

7

7

7

7
7

7

7

7

7

7

77
777

7

7

77 7
7

7 7

7

7

7
7

7
7

7

77

7

7
7

7

7
7

7

7

7

7

7
7

7
7

7

77

7

7
7 7

7

7
7

7
7 7

7

7

7

7 7
7

7 7

7

7

7

7
7

7
7

7
7

7

7

7 7

77

7
77

7

7

7
7

7

7

7 77

7
7

7
7

7 7

7

7 7
7

7
7

7

77
7

7
7 7

7 7
7

7

7 7
7

7

88

88

8
8

8
88

8

8
8

8

88

8

8

8 8

8

88
8

8

8

8
88 8

8

8

8
88

8 88

8
8

8

88

8

8 88

8

8

8
8

8 8
88

8
8

8

8

8

8

8

8

8

8

8

8

8

8
8 8

8 8
8 88

8

8
8

8

8

8
8888

8 8

88

8

88

8
8

8
8

88 8
8

8 8
8
8

8

8 8
88

8

8

8
8

8

8

8 8

8

8
8

8

888

8

8

8

8

88

8

8
8

8

8

88

8

8
8

8

8

8

8 8

8
8

8
8

8

8
8

8
8

8 8
8

8
8 8

8 88 8

8

8 8

88 8

8

8
8

8

8

8

8

8

8

8

88 8
88

8

8

8

8

8

8
8 8

8
8

8

8
8

8
8

8
8

8

8

8

8 8
8

8 88

8

8
8

8

8

8 8

8

8
8

8
8

8

8

88
8

8

88

8
8

8
8

8

88

8

8

8
8

8
8

8

8

8
88

8

8

8

8
8

8

88 8

8 8

8
8 8

8

8

8

8

8
8

8

8

8 8

8 8

8

8
8

8 88

8

8

8

8
8

8
88
8

8

8

8

8

8

8

8

8
8

8

8
8

8
8

8

8
8 89

9
99

9

9

9

9

9

9
9

9

9
9

9

9
9

9 99 99
99

9
9

9

9 9
9

9 99 99
999 99

9

9
9
9 9

9

9

9

9

9

999
9

99 9
9

9

9

9

99 9
9

9 9
9 9

9

9

9
9

9

9
9

9

9

9

9

9
9

9

9

9

9

9

9

9
99

99
9

9

9
9

9
9

9 9

9

9

9
9

9

9 9
9

999 9

9

9

9

9
9

9
99

9 9
99

99

9
9

9
9

9

9
9

9

99
9

9

9

9
9

9

9
99 9
9

999
9

9

9
9

9
9

9 9
9

99 9
999

9

9

9

9
9

99

99 9

9
9 9

9

9

9

9

9

9
9

9
9

99

9
9

9
99

9

9

9

9
9
9

9

9 9

9

9

9

9

99

9

99
9

9

9

9

9

9
9

9

9

9

9 9

9

9

9
9

9
9

9
9

9

9

99

9

9
9

9

9
9

9
9

99 9

9 9

9

9 99 9
99 9

9
9

9

9
9

9
99 9

9

99
9

9

9

99
9

9
9

9
9

9

9 9

9
9

9 9
9

9

9

9

9

(d) LMNN cost.

0

00

0

0

0

0

0
0

0

0
0

0
0

0

0
0

0 000

0
0

0

0

0

0

0 0

0

0
00

0

0

0

0

0

0

0

0
0

0

0

0

00

0

0 00

0

0

0

0

00

0

0

0 00

0
0

0
0

0

0 0
0
0 0

0

0
0

0

0

00
0 00

0

0

00

0

0

00

0

0

0

0

0

0

0
0

0

0

00
0

0 0
0

0
0

0

0

0

0

0

0
0

00

0
0

0

0

0
0

0 0
0

0

0

0

0
0

00
0

00

0
0

0
0

0

0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

00
0

0 00

0

0

0

0

0
0

00

00

0
0

0

0

0

0

0
0

0
0
0

0

0
0

0

0

0

00

0

0

0

00

0

0

0

0

0
0

0

0

0

0

0

0

0

0 0

0
0

0

0

0

0

0
0 0

0
0

0

0

0

0
0

0
0

0

0

0

0

0 0
0

0
0 0

0

0

0

0

0
0

0

0

00

00 0

0

0

0

0

0

00 0

00

00 0

0

0
0

0

0

0

00

0
00

0

0

0

0

0 0

0

0

0 0

0

0

0

0

0

0

00

0

0

0
0

0

11
11

1

1

1

1

1

1
1

1

1

1
1

11

1

1
1

1
1

1

1

1

1 1
1

1
1

1

1

1

1
1

1

1
1

11

1

1
1

1

1
1

1

1

1

1

1

1 1 11 1
1

1

1
1 11

1
11 1

1

1

1
1

1 1

1

1

1
1

1

1

1 11
1

1

1 1

1

1

1 1

11
1

1
11

1

1
1

1
1

1

1

1
1 1

1

1
1

1
1

11
1

11

1 1

1

1
1

1

11 1

1

1
1

1

1
1
1

1
11

1 1
1

1

1
1

11 11
1

1

1

1
1

1
1

111

1 1

1

1
1

1

11

1
1

1

1

1
1

1

1

1

1
1

1

1
1

11 1

1

111

1 1

1 1

1

1
1

1
1

1

1

1

1
11

1

1 1

1

1

1

11
1

1

1
1

1

1

1 1

1

11
1

1

1
1

1

1

1
1

1
1

11
1

1

1
1 1

1
1

11
1

1

11

1
1 1

1

1

1
1

1

1

11

1

1

1

1

1

1

1

1

1
1

1

1 1
1

1

1
1

1
1

1

1

1 11

1

1

1

1

1

1

1 1
1 1

1
1 11

1

1
1

1
1

1

11

1

11 1

1

1

1
11

1

1

1
1

1
1 1

1
1 11

1

1

1

1

1
11

1
1 1 1

1
1

1

11 1
1

2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2
2

2 22

2

2

2

2

2

2
2

2

2

22

2
2

2

2

22

2

22

2 2
2

2

2

2

2

22
2

2

2

2

2
2

2

2
2

2

2
2

2

22

22

2

2

2
2

2

2

2

2

2

2
22

2

2 2

2

2

2

2

2

2

2

2

2

2

222

2

2

2

2

2

22
2

2

2
2

2

2

2

2

2

2

2

2

2

2
2 2

2

2

22

2
2 2

2

2

2
2

2

2

2

2

2

2
2

2

2

22

2

2

2

2

2

22 2

2

2

2

2
2

2 2

2

2

2

2

2 2

2

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2

2
2

2

22

2

2
2

2

2

2

2

2 2

2

2
2

2

2
2

2
2

22

2

2

22
2

2

2

2 2

2

2
2

2

2

2

2
2

2

2

22
2

2

2
2
2

2

2

22

2

2 2

2

22

2

2

2

2

2

2

22

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2
2

2

22

2

2

2
2

2
2

2

2 2

22
22 2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2
2 2

2

2

2

2

3
3

3

33

3 3

3

3
33
3

3

3
3

3

3

3
3

3

3
33
3

3 3
3

3
3 3

3

3 3

3

33

3

33
3

3

3

3
3
3

33

3

3

3

3

3
3

333
3

33

3

3

33
3

3

3
33
3 3

3

3
33

3 3

3

3

3
333 3

3

3
3

3

3

3

3

3

3

3333

3

3

3

3

3

3
3

3 3
33

33

3

3

3
3
3

3

3
3

3
33

3

3
3

3

3

3
3

333
33

3
3

33

3

3

3
3
3

3

3
3 3

33

3

3

3

3
3

3 33

3

3

3

3
3 3

3 3

3

33
3

3
3

3

3

3

3

33 3

3

3

3

3

3

3

3
3 3 3 3

3
3

3
3

3

3
3

3

3

3

3

3

33
3

3 3
3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3 3

3

3
3

3

333 33

3

3

3

3

3

3
3 3

333

3

3

3

3
3

3
3

3

3
3

33

3

3

3
3

3

3
3

3

3 3

3
3

3

33

3

3

3

3

3

3
3

3

3

3

3

3

33

3

3
3

33

3

3
3
3

33 33

3

3

3

3

3
3

3

3
33

3

44

4

4

4
44 4

44

4

4

4

4

4

4
4

4

4

44

4

4
44

4

4
4

4

4
4
4 4

4
4

4

4

4

4
4

4
44

4

4

4

4

4

4

4

4

4 4

4

4

44

4

4
4

44

4

4
44

4

4

4

4

4 4

4

4

4
4

44
4

4

4

4

4

4

4 44

4
4

4
4

4
4 4

4

4
4

4 44 4

4

4

4

4

4

4

44
4

4 44
44 4

4

4

4

4

44

4
4

4

4

4

4

44

4

44
4

4
4

4

4

44
4

4
4

4
44

4

4

4

4

44
4

4
4

4
4

4
44

4

4
4
44

4

44

444
4

4
4

4
4

4

4

4

4
4

4

44 44
4

4

4

4

4

4

4

4
4

4

4
4

4

4 44
4

4

4
4

4

4

4

4
4

44

44

4
4

4 4

4

44
4

4 4
4

44
44

4
4

4

4

4

4

4

4

4
4

4

44

4

4
4

44

4

4 4

4
44

4

4

4
4

4

4

4

4

4

4

4

4

4

44
4

4

4

4

5

5

5

5

5

5
5

5

5

5

5

5
5

5

5

5 5

5

5

5

5

5

5

5

5

55

5

5

5
5

5

5
555

5

5

5

5

5

5 5

5
5

5

55

5

5

5

5

5
5

55

5

5

5

5 5

5

5

5 5

5 5

5

5

5

5

5

5 5

5

5

5 5

5

5

5

5

5

5

5

5

55

5

5

55
5

5

5

55

5

5

5

55

5

5
5 5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5
5

5

5

5

5

5 5

5
5

5

5

5

5

5

5
5
5

5

5

5 5

5

5

5

5

5

555

5

5
5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

55 5

5

5

5

5

5

5
5

5

5

5

5

5

5
5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5
5

5

5

5

5

5

5

5
5

5

5

5

5
5

5

5
5

55

5
5

5

5

5

5

55

55

5

5

5

5

5

5

5
5

5

5

5

5
5

5

5

5

5

5

5

6

6

6 6

66

66

6 66

6

66

6

6
6

6

66

6

6

6

6

6
6

66 6
6

6

6

66

6

6

6 6

6

6

6

6
6

66

6

66

6

6
6

6
6

6

6 6

6

6
66

6

6

6

66

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6
6

6

6

6

6

6
6

66

6

66
6

6

6

666

6

666

6

6

6

6

6

6

6

6
6 6

6

6

6 6
6

6

6

6
6

6

6

6
66

6

6

6

6
6

6
666

6

6

6
6

66

6

6 6

6

66

6
6 6

6

66

6

6

6
6

6

6

6

6

666

6

66

6

66

6
6

6

66

6
6

6

6

6

6

66
6

6

6
66 6

6

6

6

6

66

6

6
6 6

6
6

6

6

6

6

6

6
6

6

66

6

6
6

6
6

6

6

66

6 6

6

66

6

6

6
6
6

6
6

6 6

66

6

6

6

66

6
666

6

6

6

6

66

6

6

6

6

6
6

6

6

6

6 66 6
6

66

6

6

6
6

66

6

6

6

66

7

77
7

7
77

7

7
7

7
7

77
77

7

7
7

77
7

7
77

7
7

7 7
7

7

7

7
7

77 77

77

7

7

7
7

7

7

7
77

7

7

7
7

7

7
7

7
7

77

7
7

7

77

77

7
7

7

7

7

77
7

7

7

7
7

7
7

7 77 7

77

7

7
7

7

7

7
77

7

7

7
7

7 7

77
7

7

7
7

7 77
7 7

7
7

7
7

7

7
7 77

7

7

7

7

7
7

7

7

7
7

777 7
777

7

7
7

7

7

7

7

7

7

7

7
7 7

77
7

7
77

7
77

77

7

7

7
7 7

7

7

7

7
7

7

7

7
7 7

7
7

7

7

7

7 77
7

7
777

7

7

7 7

7

7

7
7

7

7 7
7 7

7

7

77
77 7

77
7

7

7
7 7

7

7

77 7

7 77

77

7 7
7

7

7

7
7

7
7

7
7

7

7 7
7

7

7
7
7

7
7

7

7

7

77

77

7

7

7

7 7

7

7

7

7
7

7 7

7

7

777 7
7 7

7
77 7

7

7 7

7

7 7

7
7 7

7

7

7

7

7

8

8
8

8
8

8

8

88
8

8

8

8

8

8

8

8

88
8

8

8

8

8

8

8
8

8

8

8

8

88

8

8

8

8

8
8

8
8

88

8
8

8

8

8

8

8

8

88

88

8

8

8

8

8

8

8
8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8
8

8

8
8

8

8

8

8

8
8

88

8

8

88

8

8
8 8

88
8

8

8

8

88

8
8
8

8

8

88

8

8

8

8

8

8

88

8

8
8

8

8

88

8

88

8
8

8

8

8

8

88

8

8

8

8
8

8

888

8

8

8

8

8

8

8

88

8

8

8

88

8

88

8

8
8

88

8

88
8

8
8

8

8

8

8

8

8
8

8

8
8

8

8

8

8

8

8

8 8

8

8

8

8

8

8 8 8 8

8

8
8

8

8

8

8

88 8

8

8

8 88

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8 8

8

8

8

8

8
8

8

8

8

8

8
8

8

8

8 8

8

8

8

8

8

8

8

88

88

8

8

8

8

8

8

8

8
8

88
8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8
8

8 8

8

8 8

8

8
8

8

888

8

8

9

9
9

9

9

9

9

9

9

9
9

9

9

9

9

9
9

9
9

9

9
9

9
9

9

9
9

9

9

9
9

9

9

9

9

9

9

9

9

9
9

9

9

9

9

9
9 9

9

9

9

9 99

9 9

9

9
9

9

9

9

9 999
9

9

9 9
9

9
9

9
9

9 99

9 99
9

99

9

99

9

9

9

9

999
9

9

9

9

9

9

9

9

9

9

9 9

99 9
9

9

9

9

9
9

9

9

9
9

9

9

9

9

9

9

9
9

9

9
9

9
9

9

9

9

9 9

9
9

9

9

9

9

9
9

9

9

9

9

9

99

9 9

9

9

9

9

9

9

9
99

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9 9

9

9

9
9

9

99

9

9

9

9

99

99

9

9
9

9

99 9
9

9

9

9
9

9

9

9

9
9

9

9

9

9
9

9

9

9
9

9 9

9

9
9 9

9
9

9

9

9

9

9

9
9

9

9

9

9
9

9
9

9

9
99

9

9
9

9

9

9

9 9

9
9

9 9
9

9

9

9

9
9

9

9

9

9

9

9

9
9

9

9
9

9

9

9 99

9

9

9
9

(e) T-SNE cost.

0

0
00

0
0

0
0
0

0
0

0 0

0

0 0
0

0
0

0
0

0
0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

00 0
0

0

0

0

0

0

0 0
0

0
0

0
0

0

0
0

0 0

0 00

0

00
0

0

0

0

0
0

0

0

0

0
0 00

0
00

0

0

0

0

0
0

0
0

0

0 00

0

0

0

0

0

0

00
0

0

0

0

0

0

0

0
000

0
0

0

0

0

0 0

0

0

00
0
0

0

0

0

0

00

0

0

0

0

00

0

0

0

0

0
0

0
0

0

0 0

0

0

0

0 0
0 0

0

0
000

0

0 0

0
0

0

0

0
0

00

0
0

0
00

0

0

0

0
0

0

00
0

00

0

0

0 0
0
0

0
0

0

0

0

0
0

0
0

0

0
0

0

00

0

0

0

0

0

0

0
0 0
0

0

0
0

0

0

0
00

0

0

0

0

0

0
00

0

0
0

0

0

0

00

0

0

0

0

0
0

0

0

0

0

0
0

0

0

0

0

0

0

0
0

00
0

0

00

0
0

0 0

0

0
0

0

0
0

0

0
0

0
0

0 0

0

0

00
0

0

0

0
0

1

1

1

1 11

1
1

1

1
11

1

1

1
111 1

1

1

1

11

1

1

1

1

1

1

1
1

1

1
1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

11
1

11
1

1

1

1
1

1

1

1
1 1

1

1

1

1
1 1

1

1
11

1

1

1

1
1

111
11 1

11

1

1 1

1

1

1

1

1

1
1

1

1

1
11

1

1

1
1

1
1 11

1
1

1

1

1

1

1

1

1
1

1 1

1

1

1

1
1

1

1
1

1
1
1

1

1

1

11

1

1

1

1

1 11
11

1
1

11

1
1

1 1

1

1
1

1

1

1

11 1
1

1

1

1 111
1

1
1 1
1

1
11

1

1

1

1

1

1 1

1

1

1

1
1

1

1

1
1

1

1
1

1

1 1

1

1

1

1

1

1
11
1

1 1
11

1

1

1
11 1

11
1

1

1

1

1

1

1 1

1

1

1

1
1

11

1

1
1

1
1

1

11
1

1

1

1

1

1

1

1

1

1
11

1
1

1
1

1

11 1
1 1

1
1

1

1

1
1

1

1
1

1

1

1
1

1

11
11 1
1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1
1

1

1

1
1

1 1

1

1

1

11
1

1
1

1
1

1

1

1

1

1
1 1

2

2 2

2 2
2

2

2

2
2

2
22

2

2
2

2

2

2

2

2

2

2

2

2 2
2

2

2

2

2

2

2

2
2

2

2
2

2 22
2

2

2
2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2
2

22 2 2
2

2

2
2

2

2
2

2

2

22

2

2
2

2

2

2

2

2

2

2 2

22

2

2

2

2 2

2
2

22
2

2
2

2

2
2

2

2

2 2

2

2

2
2

2

2
2

2

2

2

2

2

2

2

2
2
2

2

2

2
2 22

2
222

2

2

2
2

2
2

2

2 2

2
2

2

2
2

2

2
2

2

2
2

2
2

2

2

2

2
2

2

2

2

2

2

22

2

2 2

2

2

2

222
2

2

2

2

2

22
2

2

2

2

2

2

22

2

2

2

2

2

2
2

2

2

2

22
2

2

2 2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2 222

2

2
2

2
22

2
2

2
2

2

2
2

2

2
2

2
2

2
2

2
22

2
2

2

2

2

2

2

2

2
2

2

2

2

2
2

22

2

2

2 2

2

2

22

2
22 2

2

2
2

2

2

2

2

2 2
2
2

2

2

2

2
2

2 2

2
3

3

3
3

3
3

3
3

3
3
3 3

3
3
3

3 3

3
3

3

33

3
333 3
3

3

3
33

33

3
3

3

33 3
33

3
333

3

3

3
3 3

3

3

3
3

3

3

3
3

3 33
33
33

3
33

3

3
3

33

3

3 3
33 3 3

3

33
3

33

3

3
3

3

3

3 3
3 33 3

3
3

33

3
3

3

3 33

3 3

33
33

3

3

3
3

3

3
3

3
3

3

3

3 3

3

33 33 33
3 3

33

3

33 3
33 3

3

3

33
3

3

3 3
3 3

3
3

3
3

3
3
3
33
33
3

33

33

3
33

3
3

3

3
3 33

3
3 3

3
3

3 3
3

33
3

3
333
33 3
3

3

3

3
3

3

33
3 333

3
33

3
3

3

33
33 3

3

3

33

3

3
3

3

3
3
3

33

33
3

33
33 3

33
3

3
3

33

3

3 3
3 3
3 333

33
3

3

3

3
3

3

33

3

3

3

3 3
3
3

33

333

3333

3 33

33

33
3

33

3

3
3

3
3

3

3

3
3 3

3
3

3
3 3

3

3

3

44

4

4

4
4

4

4
4

4

4

4

4

4
4

4

4
4

4

4
4

4

4
4

4 4
4

4

44

4

4

4
4

4
44

4

4

4

4
4 4

4
4

4

4

4

4

44

4
4 4

4

4

4

4

4
4

444
4

4

4

4

4

4

4

44

4

4

4

4

4

4
4 4

4

4

44 4
4

4

4

4
4

4
4

4
4

4

4

4
4 4

4
4

4

4

4
44

4 4

4
444

4

4

44
4

4
4

4

44

4

4

4

4
4

4
4 4

4

4
4

4
4 4

4

4

4

4

4

444

4

4

4

4

4

4

4
4

4

4
4

44

4
4

44

4
4 4

4

4

44
4

44

4
4

4
4

4

4

4 444

4

4

4

4 44
44

4

4

4

4
4

44
4

4 4
4

4
4 4

4

4

4

4
4

4
4

4

4

4

4

4

4
4 4

4

4
4

4
444

4

4
4

4

4

44

4

44
444 4

4
4

44

4
4

4

4
4

4 4 4
4

4

4

4 4

4

44
4

4 4
4

4

4

4
44

4

4

4
4

4
5

5 5
5

5

55
5 5

5

5
55
5

5

5

5

5 5

55
5
5

5

55

5

5
5

5 5
55

5

55
5

5
5

5

5

555

5
555 5

5
5

555

5

5 5
5

5
5
5 5 555

5

5

5

5

5

5

5 5

5

5

5 55
5 5

5

5
5 5

5

5

55
5

5
5

5
5

5
5

5
5

5
5
5

55 5

5

5
5

5

5
5

5
55
5

55
5

55

5

5
5

55 5
5
5

5

5

5

5

555
5

5 5
5

55 55
55

5 5
5

5

5
55

5
5
5

5 5
5 5 555

5

5
5

555

5

5 5
555 55

5

55

5

5
5

5 5
5

5
55

5
5

5

5

5 55
5

5
5 5

5

55
5 5

5
5

5

5
5

5
5

5
55

5 5 55 5 55
5

5
55

5

5 5

55

5

5
5

5

5

555 5
55 55

5

5

5

5
55

5
5

5

5

5

5

5 5

5 555
5 5

5
55
55

5

5
55555

5

5

5

5
5

5

5 555

5

5

555

5

6
66

6

6

6

6
6

6
6

6

6

6

6

6

6
6

66

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6
66

66

6

6

6

6

6

66

6

6 6
6

6

6
6

6

6

6

6 6 6

6

6
6

6 6
6

6

66

6

6

6

6

6

6

6

6
6

6
6

66

6

6

6

6

6

6

6

6

6

6

6

6

66

6
6

6

6

66

6

6

6
6

6

6
6 6

6
6

66

6
6

6

6

66

6
6

6

6

6

6
6

6

6

6
6

6

6
6

6

6

6
6

6
6

6
6

6

6

6

6
6

6

6

6 6

6

6

6 6
66

6

6

6

6 6
6

6
6 6

6
66 6

6

6
6

6

6

6
6

6

6
66

6

6 66

66
6

66

6

6 6

66

66
6

6

6

6

6

6

6

6

6

66

6 6 6

6

6

6

6
6

6

6
6

6
6

6

6

6

6

66
6

6

6

6

6 6

6

6

6

6 66
6

6

6

6

666
6

6

6

66
6

6

6
6

6

66
6

6

6
6

6
6

6

6

6
6

6

6

6

66

6

6

6

6

66

66
6

6
6

6

6
66 6

6
6

7

7

77

7

7

7

7

7

7
7

7

77
7

7

7

7

7

7

7
7

7
7

7

7
7

7

7

77
7

7

7

7

7

7

7

7

7

7
7

7

7

7
7 7

7

7
7

7

7

7

7

77

7
7

7
7

7
7

7

7 7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

77

7

7

7

7

7

77
7

7

7

7

7

7

7

77

7

7

7
7

7

7

7

7

7 7

7
7

7

7

7

77

7

7

77

7

7

7
7

7
7

7

7777 7

7

77

7

7 7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7
7

7

7

7

7
7

7
7

7

7

7

7

7

7

7

7

7

77

7

7
7 77

7

7

7

7 7

7

7
7

7

7
7

7

7 7
7
7

7
7

7

7
7

7

7
7

7

7

7
7

7
7

7

7 7

7

7

7
7

7
7 7

7

77
7

7
7

7

7

77
7

7

7

7
7

77 7

7

7
7

7

7

77 7

7

7

77

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7
7 7

7

7
7

7 7

7
7

7

7
7

77

7

7

7
7

7

7

77

7
7

7

7

7

7

7

7

88

8
8

88
8

88

8

8 8
8

8
8

88
8

8

8
8

8

8
8

8
8

8

8

8

8
88

88 8
8

88
8

888
8

8

8
8

8
8
888 8

8
8

8 8

8

8
8
8

8
8

8

8 8

8

8

8

8
8
8

8

8
8

8
88

8 8

88
8

8

8

8
8

8

8

8

88

88

8 88

8

8

8 8

8
8

8

8 8

8

8
8
88

8
8

8

8
88

8

8

88
88

8
8

8

8
88

8
8

8 8
8

8

8
8

8

8 88

8

8
88
8 8

8
8

8

8
8

8
8
8

8
8

8
88 8 8

8
8

8 8
8

8 888 8
8

8

8

8

8

8
8

88

8

88 8

88
8

8

8

8

8

8

8

8

8

8
88

88888
8

88

8
8

8
8 8
8

8
88

88

8
8

8

8
8

8
8
88

88 88

8
8

8
8 8

8
888

8

8

8

8

8
8

8 8
88

8
88

88

8

88 8

8

8
8

8 8
88

8
8

8 8

8
88 8888

8
8 888

8
8

8

8 88

8
8

8
8

8
8

8

8

8

8

8

8

8
88

8
8

8
8
88

9
9

9

9
9 99

9
9

9 9

9

9
9

9 9
99 9

9
99

9

9

9

9

9 9

9

9
9

9

9
9

9 99

9 9

9

9
99 99

9
9

9
9

9

9

9 9
99 9

9 9
99
9

9

9 99
9

99

9

9 9
9

9

999
9

9

9 9

9

9

9

9

9

99 9

9

9
9

9
9

9

99
9

9

9
9 9

9

9 99
9

99

9 9
99

9

9

9

9

9
99

9
9
9

9
9

9 9

9
99

9

9 99
99

9

9

9

9

9
9

9
9

9
9
9

9

9

9

9

9
9

9
999 9

9

9
9

9

9
9

9
9

9
9

9

9

9 9 99

9
999 9

9

9

9

9 9

9
9
9

99 9

9 9 9
9

9
9

9

9

9

9
9

9

99
9

9

9 9 9

9 9
9 9

9
9

9

9

9
9

9
9

9

9

9

9
9
9

9 9
99

9 9

9
99

9
9

9

9

9
9

9
9

9
9

9

9

9
9
9

9

99 9

9

9

9
9

9
9 999

9
9

9

9

9

9

9

9

9
9

9
9

9
9

9

9

9
9

9
9

9 9

9

9

9

9
99 9

(f) Bottleneck classifier.

Figure 5.2. Visualizations of the MNIST test data. The left column shows unsuper-
vised and the right column supervised results. For readability, only half of
the points have been plotted. The visualization does not show clear quality
differences between the different supervised methods. For numerical com-
parisons, see Fig. 5.4.

63

Supervised dimension reduction with bottleneck networks

0

0

0

0

0
0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0
0

0
0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0
0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

00

0

0

0
0

00

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

00

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0
0

0

0

0

0 0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0
00

0

0

0

0

0

0

0

0

00

0

0

0

00
0

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

1

11

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
11

1

1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

12

2 2

2

2
2

2

2

2

2

2

2

2

2
2

2

2
2

2

2

22

2

2

2

2
2

2

2

2
2

2

2
2

2

2

2

2

2
22

2

2

2

2

2

2

2

2

2

2 2

2

2

2
2

2

2

2
2

2 2
2

2

2

2
2

2
2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

2

2
2 22

2

2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2
2

2

2

2
2

22

2

2

2

2
2

2

2

2

2 2 2

2

2

2

22

2

2
2

2

2

2

2

2
2 22

2

2

2

2
2

2

22

2
2

2

22

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2
2

2

2

2
2

2

2

2
2

2

2

2

2

22

2

2

2

2

2

2

2
2

2

2

2

2

2

2
2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

33

3

3

3

3

3

33 3 3

3

3

3
3

3
3

33

33

3

3

3

3
3

3

3

3

3
3

3

3
3

3

3

3

3

3

3

3

33

3

3

3

3

3

3
3

3

33

3

3
3

3

3
3

3

3

3

3

3
3

3

3

3
3

3

3

3

3

3

3 3

3
3

3

3

3

3

3

3

3

3

3
3

3
33

3

3
3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3

3
3

3
33

3
3

3

3

3

3

3

3
33

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3 3
3

3

33

3 3

3 33

3

3

3

3

3
3

3

3

3

3
33

3

3

3

33

4
4

4 4

4

4

4

4

4 44

4

4
4

4

4

4

4

4

4

4

4
4

44 4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4 4

4

44

4

4

4 4
4

4
4 44

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4 4

4

4
4 4

44

44

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

44

44

4 4

4
4

4

4

4

4

4
4

4
4

4

4
4

4

4

4

4
4

4

4

4

4

4

44

4

4
4

4

44
4

4

44

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4
4

4

4

4 4
4

4 4

4

4

4

5

55

5

5

5

5

55

5

5
5

5

5

5

55

5

5

5

55
5

5 5

5
5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5
5

5

5

5

5

5

5

55
5

5

5

5

5

5

5

5

5

5

5

5

5

5 5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5 5

5

5

5
5

5
5

5

5

5

5

5

5

5 5

5

5

5

5

5

5

5 5

5

5

5
5

5

5 5

5

5

5

5

5

55

5

5

5

5

5

5

5

5
5 5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

6

6

6

6
6

6
6

6

6
6

6 6

6 6

6

6
6

6
6

6

6

6

6

6

6

6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

6
66

6

6

6

6

6

6

6

6
6

6

6

6

6
6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

6

6

6
6

6

66

6

6

6

6

6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6
66

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7 7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7
7

7

7

7
77

7

7

7

7

7

7
7

7

7 7

7

7

7

7

7

7

7

77 7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

777 7
7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7
7

7
7

7
7

7
7

7

7
7

7

7

7

7

7

7

7

7
7

7

7

77

7

7

7

7

77
7

7

7

7

7

7

7

7

7

7

77

7

7 7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7 7

7

7

7

7

7
7

7

7

7

7
7

7

7

7

7
77

77

7

7

7

7
7

7
7

7

8

8

8
8

8
8

8

8

8

8

8

8

88
8

8
8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8
8

8

8

8

8

8

8

8

8 8

8

8

88

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8
88

8

8

8

8

8

8

8

8

8

88

8

8

8

8

8

8

88

8
8

8

8

8

8
8

8

8

8

8

8
8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

88
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

88
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8
8

8

8
8

8

8

8

8

8
8

8
8

9
9

9

9

9

9

99

9

9

9

9

9
9

9 9

9

9

9

9

9

9

9

9
9

99 9

9

9

9

9

9
9

9

9

9

9 9
9

9

9

9

9

9

9
9

9

9

99

9

9

9

9

9 9

9

99
9

9

9

9

9

9

99

9

9

9

9

9

9

9

9

9
9

9

9

9

9 9
9

99 9

9

9
9

9

9

9

9

9
9

99

9

9

9

99

9

9

9

9

9

9

9

9
9 99

9

9

9

9

9

9

99
9

9

9

9

9

9

9

99

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9 9

9

9 9
9

9

9

9
9 9

9

9

9

9

9

9

9

9

9

9 9
9

9
9

9

9

9

9

9

9

9

9

9

99

9

9
9

9

9

9 9

9

9

9

9

9

9

9
9

9

9

9

9

(a) T-SNE cost

0

0

0
0

0

0

0

0

0

0

0

0
0

0

0

0

0
0

0
0

0

0

0

0

0
0

0
00

0

0
0

0

0

0
0
0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0 0

0

0

00

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

00

00

0

0

0

00

0

0

0

0

0

0
0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

00

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0

0

00

0

0

0

0

0

0

0

00

0

0
0

0

0

0

0
0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0
0

0 0
0

0

0

0

0

0

0

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

11

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1
11 1

1

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1

1

1

1 1

1

1 1
1

1

1

1

1
1 1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

11

1

1

1

1
1

1

1

1

11

1

1

1

1

1
1

1

1

1

1
1

1

1
1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1
1

1

1

1

1

1
2

2

2

2
2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2
2

2

2
2

2
2

2

2

2

2

2

2
2

2

2

2

2
2

22

2

2

2

2

2
22

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2
2

2 2

2

2

2
2

2

2

2

2
2
2

2

2

2

2

2

2
2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 22

2

2

2
2

2

2

2

2

2

2

2

2

22
22 2

22

2
2 2

22

2

2

2

2

2

2

2

2

2
2

2

2

2 2

2

2

2
2

2

2

2

2
2

2

2

22

2
2

2
2 2

2 2

22

2

2

2

2

2

2

2

2

2
2

222
2

2 2
2

2

2

2

22

2

2

2

2

3

3

3

3

3

3

3
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 33
3

3

3

3
3

3

3

3

3

3
3

3

3

3

3

3

3

3 3
3

3

3
3

3
3

3
33

3

3

3

3

3

3

3

3

3

3

3

33
3

3

3

3

3

3
3

3
3

3
3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3

3

3
3

3

3

3

3

3

3

3

3

3

3 33

3

3 3

3
33
3

3

3

3

3

3
3

3 3

3

3

3

33

3 3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3 3

3
3

3

3

3

3
3

3
3

3

3

3

3

3

3 3
3

3

3

3
3
3

3

3

3
3

3

3 3

3
3

4 4

4

4

4
4

4

4
4

4

4

4

4

4

4

4
4

4

4

4

44

4
4

4

4

4 4
4 4

4

4

4

4

4
4

4

4

4

4

4

4

44

4

4

4

4

4
4

4

4

4

4
4

4

4

4
4

4

4

4

4

4

4

4

4
4

4

4

4
4

4 4

4 4
4 44

4

4
4

4

4

4

4

4

4

4

4
4

4

4
4

44

4

4

4

4
4

4

4
44

44

4
4

4

4

4

4

4

4

4
4
4

4

4

4

44

44

4
44

4

4
4

4 4

4

4
4

4

44
44

4

4
4

4
4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4
4

4

4

4
4

4

4

4

4

4
4

4
4

4

4

4

4

4

4 4

4

444 4
4

5
5 5

5

5

5

5
5

5

5
5

5

5

5
5

55

5

5

5

5

5

5

5
5

5

5

5

5

5

5

55

5

5

5

55

5

5

5
5

5
5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

55
5

5
5 5

5

5

5

5

5

5

5

5

55
5

5
5

5

5

5

5

5

5

5

5

5
5

55

5

5

5

5

5

5
5

5

5

5

5

5

5
5

5
5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5 5

5

5

5

5

5

5

5

5 55

5

5

5

5

5

55 5
5

5

5

5

5

5

5

5
5

5

5

55

5

5

5
5

5

5

5

5

55

5

5

5

5
5

5

5

5

5

5
6

6

6

6

6 6

6

6
66

6

6
6

6

6

6

6

66

6

6

6

6

6

6

6
6

6

6

6

6

6

66 66

6

6

6

6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

6

6

6

6

6

6
6
6
6

6

6

6

6
6

6

6

66

6
6

6
6

6

6

6
6

6

6 6

6

6

6 6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6
6

6

6

6

6 6
6

6

6

6
6

6

6

6

6

6

66

6

6
6

6

6

6

66
6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

66

66

6

6

6

6

6

6
6

6

6

6

6
6

6

6

6

6

6

6
6

6

6
6

6

6

6

6

6

6
6

7

7

7
77

7

7
7

77

7

7

7

7

7
7

77

7

7
7

7

77

7

7

7

7

7

7

7

7
7

77

7

7

7

7 77

7

77

7

7

7

7 7

7 7

7

7

7

7
7

7

77

7

7
7

7
7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

77 7

7

7

7

7

7

7

7

7

7
7

7

7

7
7

7
7

7

7

7

7

7

7
7 7

7
7

7 7

7

7
7

7
7

7

77

7

7

7

7

7

7
7

7 7

7
7

7

7

7

7

7
7

7

7

7 7
7

7
7

7

7

7

7

77
7

7
7

77
7

7

7

7
7

7
7

7

77

7

7

7

7

7
7

7

7

7
7

7

7

7
7

7

7

7 7

77

77

7
7

7

7

7

7

7

7
7

7

8

8

8

8

8

8

8
8

8

8

8

8

8
8

8

88

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

88

8

8

8

8

8

8 8

8

8

88

8

8

8

8
8

8
8

8

88

8

8
8

8

8

8
8

8

8

8

8
8

8

8

8

8

8

8
8 888

8

8

8

8
8

8

8
8

8 8
8

8

8

88
8

8

8
8

8

8
8

8

88

8

8
8

8

8
8

8 8

8

8
8

8

8

8

8

8
8

8

8

8

8

8

8

8

8
8

8 8

8

8

8
8

8
8

8

8 8

8
8 8

8

8 8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8
8 8

8 8

8

8

8
8

8 88

8

8

88

8

88
8

8

8

8

8

8

8
8

8 8

8

8

8

88

8

8
8

8

8

8
8

8
8

8

8

9

9 9

9

9
9

9

9
9 9

9

9

9

9
9

9

9

9

9
9

9

9

9

99

9 9

9

9

99

99

9

9

9

9

9

9
9

9

9

9 9

9

9

9

9
9

9

9

9
9

9
9

9

9 9

99
9

9

9

9

9

9
9

9 9

9 9

9

9

9

9

99 9

9

9

9

9

9 9
9

9

9
9

9

9

9

9
9

9

9

9

9

9 99

9
9

9

9

9

9
9

9
9

9

9 9
9

9
9

99 9

9
999

9

9

9

9
9

9

9

9

9

9

9
9

9
9

9

9
9

9

9
9

9
9

9

9

9

9

9

9

9
9

9
9

9

9
9

9
99 9

9

9

9

9 9

9

99

9

9

9

9

9
9

9

9

99

9

9

9

9
9

9

9

9
9

9

9

9

9
9

9

9

9
9

9
9

9

9
99

99

(b) NCA cost

0

0

0

0
0

0

0 0

0

0
0

0

0 0

0

0
0

0
00

0

0
0

0

0

0

0

0
0

0 0
0

00

0
0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

0

0

0
00

0
0

0
0 0

0
0

00

0

0

0

0

0
0

0

0

0

0

0

0
0

0

0

0

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

00

0

0

0 0

0

0
0

0
0

0

0

0
0

0

00 0
0

0

0 0
0

0

0

0 0

0

0
0

0

0
0

0

0

0

0

0

00

0
0

0

0

0

0

0

0 0

0

0

0
0 0

0

0 0

0

0
0

0

0

0
0

0

0

0

0

0
0

0 00

0

0

0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0

00

0
0

0

0
0

0

0
0

0
0

0

0

0

0
0

1
1

1

1

1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1

11

1

1

1
1

1

1

1

11
1

1

1

1 1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1
1

1

1
1

1

1

1
1

1
1

1

1

1

1

1

1

1
1

1

1

1 1
1

1

1

1
1

1

11

1

1
1 1

1

1
1

1

1

11

1

1

1

1 1
1

1

1

1
1

1

1

1

1

1

1

1
11

1
1 1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1
1
11 1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1
1

1

1 1

1

1

1
1

1

1

1
1

11

1

1
1

1

1

1

1 1
1

1

1

1

1

1

1

1

1

1
1

1

1

1
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2
2

2

22

2 2

2
2

2

2

2

2

2
2

2

2
2

2

2

2

22

2

2

2

2

2

2

2

22

2

2

2

2
2

2

222

2

2 2

2

2
2

2

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2
2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
22

2

2

2

2

2

2

2
2

2 2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2
2

2

2

2

2

22
2

2

2

2

22

2
2

2

2

2
2

2

2

2

2

2

2

2

2
3

3

3

3

33
33

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3 3
33

3
3

3

3

3

3

3

3
3

3

3
33

3

3

3

3

3

3

3

3
3

3

33

3

3
3

3
3

3

3

3

33

3

3

3

3

3

333 3

3

3

3

33

3

3

3

3

3
3

3 3

3

3

3

3
3

3
3

3

3

33

3
3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3
3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

33

3

3
3

3

3

3 3

33

3

3

3

3

3

3
3 3

3

3
3

3

3

3

3

3

3

3

3

3
3

3

3

33 3
3

3
33 3

3

4

4

4
44

4

4 4

4
4

4

444

4

4

4

4

4
4

4

4
4

4
4

4

4

4

4

4

4

4

4

44

4
4

4

4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4
44

4

4

44

4 44

4

4

4

44

4

4

4

4

4

4
4

4

4
4

4

4

4

4

4
4

4

4

4

4

4
4

4

4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4 4

4
44

4
4

4

4

4

4 4

4

4
4

4
4

4

4

4

4

4

4
4

44

4

4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4
4

4
4

4

4

4

4
4

4

44

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

5

5 55
5

5

5
5

5

5

5

5

5

5

5 5

5 5

5

5

5
5

5

5

5

55

5
5

5

5

5
5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

55

5

5

5

5

5

5

55

5
5

5

5

5
55

55

5

55

5

5

5

5

5
5

5
5

5

5

5

55

5

5 5
5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5
5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5
5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5
5

5

55

5
5

5

5

5

5
55

5

5

5

5

5

5 5

5

5

5

5

5

5

5

5

5

5
5

5 5

5

5

5

6

6

6

6
6

6

6

6

6

6 6

6

6 6
6

6 6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6
66

6 6

6

6

6

6

6

6

6
6

6
6

6

6

6

6
6

6

6

6

6

6
66

6

6

6

6
6

6

6

6

6

66 6

6

6

6

6
6
6

6
6

6

6

6

6

6

6

6

6

6

6

6

66 6

6

6

6

6 6
6

6

6
6

6
6

6

6

6 66 6

6
6

66

6

6

66
6

6

6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

66
6

6

6

6

6 6

6

6

6
6

6

6
6

6
6

6

6

6
6

6

6

6 66
66

66

6

6

6

6 6

6
6

6

6
6

6

6

6

6

6

66
6

6

6
6

6

7

7

7

7

7
7

7

7

7

7

7

7

7

7 77

7

7

7

7 7

7

7

7
7

7

77

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7
7

7

7

7

7

7

7
7

7

77

7

7
77

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7
7

7

7 7

7
77

7
7

77

77

7

7

7
7

7
7

7

7

7
7

7

7

77

7

7

7

7

7

7 7

7

7

7
7

7

7

7

7

7

7
7

7
7

77

7

7

7

7

7 7

7
7

7

7

7 7

7
7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

77

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7
7
7 7

7

7

7

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8
8

8

8

8

8

8
8

8

8

8

8

8

88

8

8

8

8

8
8

8

8
8

88

8

8

8
8

8

8
8

8

8

8
8

8

8

8

8

8

8

8
8

8

8

8
8

8

8 8

8

8 8

8

8

8

8

8

8

8
8

8

8

8

8

8
8

8

8
88

8
8

8

8
8

8

8

8
8

8

8

8
8

88

8

8

8

8

8

8

8

8 8
8

8

8

8

88

8

8 8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8 8

8
8

8

8
8

8

8

8 8

8

8

8
88

8

8

8

8

8

8

8

8

8

8
8 8

8

8

8

8
8

88
8

8

8

88

8

8 88

8

8

8

8 8

8

8

8
8

8 88

8
8

8

8

8

8

8

8

8

8

8 8

8

8

9
9

9
9

9

9

9

9

9

9
9

9

9

99
9

9

9
9

9

9
9

9
9

9

9 9

9

9
9 9

9

9

9

9

9 9

9

9
9

9

9

9

9

9

9

9 9

9
9

9

9 9

99

9

9
9

9

9

9

9

9

9
9

9

99

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9

9

9

9

9
9

9

9 9

9

9
9

9
9

9

9

9
9

9

9
9

9

9
9

9
99

9

9
99

9
9

9
9

9

9 99

99

9

9

9

9

9

9

99

9

9

9
9

9

9

9
9

9

9

9

9

9

9

9

9
9

9

9

9

9 9

9

9

9

9
9

9

9

9

9

9

9

9

9
9

9

9

9

9 9

9

9

99

9 9
9

9

9 9
9

9

9

9

9

9

9 9

9

9

9

9 9

99

9
9

9

9
9

9

9

9

(c) LMNN cost

0

0
0

0

00

0
0

0

0

000

0

00

0 0
0

0
0

0

0

0
0

0 00 00 00

0

0
0

0

0

0
0

0
0

0

0
0

00

0

0
0

0

0

0

0

0

00

0

00 0
0

0

0

0

0
0

0
0

00
0

0 00 0 0

0

0
0

0
0

0
0

00

0
0

00

0

0

0

0

0

0

0

0
0

0
0

0

0

00
0

00
0

0

0

0

0

0

0

0 0

00
0

0
0

0

0

0

0

0

0

0

0

0

0 00

0

00

0

0 0

0

0

0

0
0

0

0

0

0

0

0

00

0

0

0
0 0

0

0
0

0

0
0

0

00
0

0

0

0
0

0

0

0

0 0

0 0

0

0

0
0

00
00

0
0

0

0

0

0

0

0

0

0

0

0
0

0
0

0

0

000

0

0

0
1

1

1
11

1

1
1

1

1 1
1

1

1
1

1

1

1
1

1

1

1
1

1 11

1

11

1

1 1

1
1

1
1

1
1

1

1

1
1

1
11

1

1

1

1
1

1

1

1

1
1

1

1
1

1

1
1

1

1

1

1

11
1

1

1

11

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1
1

1
11

1

1

1

1

1

1

1

1
1
1

1

1

1

1

1

1

1

1

1

1
1

1
1

1

1

1
1

1

1

1

1

1
111

1

1

1

1
1

1
1

1

11

1

1

1

1

1

1

1 1 11

1
1

1

1

1

11 1

1

1

11
1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1 1

1

1

1
1

2

2

2

2 2

2 2

2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

2

2

2
2

2

2

2 2

2

2

2

2

2
2

2

2

2

2

2

2

2

22

2
2

2

2
2

2

2

2

2

2

2

2

2

22

2

2
2

2

2

2

2 2

2
2

2

2

2

2

2

2

2

2

2
2

2

2
2

2

2

2

22

2

2

2

2

2

2 2

22

2

2

2

2

22

2

2

2

2

2

2

2

22

2

2

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2222

22
2

2

2

2

2

2

2

2
22 2

2

2

2

2

2

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2
2

2
2

2

2

2

2 2

2

2

2

2

2

3

3

3

3

3

3

3
3

3

3

3

33

3

3
3

3

3

3

3

3
33

3

3
3

3

3

3

3

3

3
3

3

3
3

3
3

3

3

3
3

3

3

3

3

3

3

3 3

3

3

3

3
3

3

3
3

3

3 33

3

3

3

3

3

3

3

3

3

3

33

3

3
33

3

33
3

33

3

3

3

3

3

3
3

3

3

3

3
3

3

3
3

3

3

3

3
3

3

3

3

3

3

3 3

3
3 3

3

3

33

3

3

3

3

3

3

3

3
3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3 3

3

3
3

3

3

3
3

33

3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

33
3 3

3

3

3

3

3
3

3

3

3

3

3
3

4

4

4

4 4
4 4

4

4

4

4

4

4
4

4

4
4

4
4

4
4

4

4 4

4

4
4

4

4

4

4

4

4
44

4

4

4
4

4

4

4

4

4

4

4

4
4

4

4

4
4

444
4

4
4

4
4

4

4
4

4

4

4

4

44

4

4

4

44
4 4

4

4

4

4

4
4
4

4

4

4

4

4
4

4 4

4

4 4

4
4

4

4

4

4

4
4

4

4
4

4

4
4
4

4

4

4

4

4

4

4
4

4
4

4

44

4
4

4

4
4

4

4

4
4

4

4

4

4

4

4

4

4
4

4

4
4

4
4

4

4

4

4

4

4

4

4

4
4

4
44

4
4

4

4

4
4

4

4

4 4

4 4

4

4

4

4

4

4

4
4

4
4 4

4

4

4

4

4

4

4

44 4

4

4
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5
5

5

55 5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5
5

5

5

5
5

5

5

5

5

5

5

5 55

55
5

5

5

5

5

5

5

5

5 5

5

5
555

5

5

5
5 5

5

5
5

5

5

5
5

5

5

5
5

5

5

5

5

5

5

5
555

5

55

5

5
5

5

5

5

5
5

5

5
5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

55
5

5

5

55

5
5 5

5
5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5
5

5

5 5 5

5
5

5
5

55 5

5

5

5

5
5

5

5

5

5

6

6

66

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6
6

6

6

6
6

6

6

6
6

66

6

6

6

6

6

6
66

6
6

6

6
6

6

6

6
6

6
6

6

6

6

6

6

6

6

6
6

6

6
66

6

6

6

6 6
6

66
6

6

6

6
6

6

6

6

66

6

6

6

6
6

6

6

6

6

6

6 6

66 6

6

6
6

6

6

6

6

66

6

6
6

6

6 6

6

6

6

6

6

6

6

6
6

6

6

6 66
66

66

6

6

6

6
6

6

6

6
6 666

6

6
6

6

6
6

6
6

6

6
6

6

6

6 6

6

6

6

6
66

6

6

6

6
6

6

6

6
6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6
6

66

6

66

66

6

6

6
6

6

7
7

77

7

7

7

7
7

7 7

7

7

77

7

7 7
7

77

7

7 7
7

7
7

7
7

7

7

7

7
7

7
7

7

7

7

7

7

7

7

7
7

7

7

7

7

77

7
7

7

7
7

777

7

7
7

7

7

7
7 7

7

7

7

7

7

7
7

7

7

7

7

7

7

7
7

7

7

7

7

7

7
7

7

7

7

7
7

77

7

7

7

7
7 7

7

7

7
7

7
7

7

7 7

7
7

7

7

7

7 7

7

7

7
7

7

77
7

7
7

7

7

77

7

7 77

77

7 7

7
7

7

7

7
7

7

77

7

7
77

7
7

7
77

7

7
7
77 7

7
77

7
7

7

77

7

7

7

7

7

7

77

7

7

7
7

7

7
7

77

7
7

7

7

7

7

8

8

88

8
8

8

8

8

8

8

8

88

8

8

88

8

8

8

8

8

8

8

8

8 8
8

8

8

8

8
8

8

8
8 8 8

8
8 8

8

8

8

8

8

8

8

8

8

8

8
8

88

8
8

8

8

8

88

8

88

8

88
8

8

8
8

8
8

8
8

8

8 8

8
8

8

8

8

8
88

8

8

8

8

8

8

8

8

8888

8

8
8

8

8

8

8

8

8

8

8

8
8

8
8

8

8

8

8
8

8

8

8

8

8

8

8

8

8 8

8
8 8

8

8 8

8

88
8

88

8

8 8

8

8

888

8

8

8

8

8
8

8

8

88

8 8

8

8

8

8

8
8

8

8

8

8 8

8

8

8

8

8

8
8

8

8

8

8
88

8

8

8

8

8

8

8 8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

9

9

9

99

9

9

9

9

9

9

9

9

9
9

9

9

9
9 9

9
99

9

9

9

9

9

9

9

9

9

9
9

9

9

9

9
9

9
9

9

9

9

9
9

9
9

9
99

99

9

9
9

9

9

9

9

9

9

9

9

9
9

9

9

9

9

9
9

9
9

9

99

9

9

9

9

9
9

9
9

9

99
9

9

9

9 9

9
9

9

9

9

9

9

9

9

9

9

9
9

9

9

9 9

9
9

9

99

9
9 9

9

9
9

9
9

9

9

99

9

9

9

9

9

9 9

9
9

9 9

9

9

9

9

9

9
9

9

9 9

9
9

9

9

9

9

9

9

9

99

9

9

9

9

9

9
9

9

9

9 99
99

9

9

9

99
9

99

9

9

9

9

9

9

9
9

9

9

9

9

9 9
9

9
9

9

9

9

9

9

9

9

(d) Bottleneck classifier

Figure 5.3. Points from USPS test data in 2D. NCA and BC do better on this data than
LMNN, and all supervised methods perform better than the unsupervised
t-SNE.

classifier could be the method of choice for visualization tasks, where the
representation is forced to 2D or 3D, and NCA would do better in data-
packing tasks where the embedding dimension can be higher.

5.4 Bottleneck regression network experiments

We complement the bottleneck classifier results by studying performance
of supervised bottleneck regression networks (BRN) in dimension reduc-
tion for regression. We are not aware of other neural network based DRR
methods, so we use other established DRR methods for comparison. This
experiment is an extension of that in [131], where a comparison between
BRN and covariance operator inverse regression (COIR) was performed.
We compare BRN to two linear methods (sliced inverse regression (SIR)

and kernel dimension reduction (KDR)) and two nonlinear methods (man-
ifold KDR (mKDR) and COIR). Two versions of BRN are implemented:
one with a nonlinear first layer (noted simply BRN), and a linear BRN
(linBRN), which is able to learn only linear subspaces and therefore com-
parable to linear methods. LinBRN has no layer before the bottleneck,
since having a linear mapping from the inputs to the hidden units and an-
other linear mapping from the hidden units to the bottleneck units would
be superfluous; the same operation can be implemented by connecting the
inputs directly to the bottleneck layer.
Two-dimensional representations of five data sets with varying input

dimensionalities are sought. Data sets used are Head Pose, Yale, Parkin-
son, Concrete and Community crime (see Appendix A). As some of the
data sets are quite small, using a deep network seems like an overkill,

64

Supervised dimension reduction with bottleneck networks

1 2 3 4 5 6 7 8 9 10
0
7

14
21
28
35
42
49
56
63
70

k

K
N

N
 te

st
 e

rr
or

 %

pre AE t−SNE NCA LMNN BC

(a) MNIST

1 2 3 4 5 6 7 8 9 10
0
7

14
21
28
35
42
49
56
63
70

k

K
N

N
 te

st
 e

rr
or

 %

pre AE t−SNE NCA LMNN BC

(b) USPS

1 2 3 4 5 6 7 8 9 10
0
5

10
15
20
25
30
35
40
45
50

k

K
N

N
 te

st
 e

rr
or

 %

pre AE t−SNE NCA LMNN BC

(c) newsgroups

1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

k

K
N

N
 te

st
 e

rr
or

 %

pre AE t−SNE NCA LMNN BC

(d) MNIST

1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

10
12
14
16
18
20

k

K
N

N
 te

st
 e

rr
or

 %

pre AE t−SNE NCA LMNN BC

(e) USPS

1 2 3 4 5 6 7 8 9 10
0
4
8

12
16
20
24
28
32
36
40

k

K
N

N
 te

st
 e

rr
or

 %

pre AE t−SNE NCA LMNN BC

(f) newsgroups

Figure 5.4. K-NN errors (for the test data) for the different data sets and methods. The
top row shows 2D results, the bottom row the 30D case. As expected, the
supervised methods do better than the unsupervised ones. BC works best in
2D, NCA and LMNN in 30D. Errors have been evaluated for 500 test points,
finding the nearest neighbors among 2000 training points.

65

Supervised dimension reduction with bottleneck networks

and there would not be enough data for RBM pretraining. We therefore
use a shallow architecture, with layers numbered as L1, L2 (bottleneck),
L3, and L4 (output). the network is trained using simulated annealing
[157]. Since even stochastic training is affected by initial values, a mul-
tistart strategy is used (the best result of 20 runs is kept). Details of
training are given in Appendix A.
Parameters for the comparison methods are chosen by trying several

values and using the best results. For KDR with Yale and Parkinson data,
only 1500 randomly chosen training samples are used, to keep running
times reasonable. For the other methods and the other data sets, full
train and test data are used.

5.4.1 Results

Visualizations of three data sets are shown in Fig. 5.5. Of nonlinear meth-
ods, COIR and BRN give good results for all data sets. Also linear meth-
ods find reasonable subspaces, but results for all of them seem worse than
those of nonlinear methods. This is to be expected, since at least Yale and
Head Pose data are known to be sampled from nonlinear manifolds.
We measure numerical quality of results by nearest neighbor regression

[34]. In NN-regression, yi is predicted as the mean of the target values of
the nearest (in the 2D representation) train data neighbors of a test point
i. Results, as function of number of nearest neighbors (k), are shown in
Fig. 5.6 for the linear methods (linear BRN, SIR and KDR) and in 5.7 for
the nonlinear methods (BRN, mKDR and COIR).
Generally, both linear and nonlinear BRN do well in comparisons. With

Concrete data in Fig. 5.6, it is difficult to choose any one method as best,
since the results depend heavily on k. With Yale data, both SIR and lin-
BRN perform well. With Parkinson data, linBRN fails to find a good
mapping.
All linear mappings make close x-space neighbors into close z-space

neighbors. Therefore NN-errors with small k do not tell very much. NN-
errors for larger k tell more clearly about points with wrong y-values en-
tering a local neighborhood. This indicates that the slope of the chosen
2D-plane is not best possible.
For most data sets, errors of the linear BRN have a fairly flat profile;

error increases slowly as function of k. SIR and KDR usually show a
steeper increase in errors. While BRN does not usually give the best 1-
neighbor predictions, when more neighbors are used, for three data sets
it gives consistently lower errors than the other methods. This suggests
that linBRN finds directions that spread the data points out, so that the
overall structure of data is better seen.
Similar behavior is seen in the comparison of nonlinear BRN to mKDR

and COIR, Fig. 5.7. Manifold-KDR errors are small for small k, but in-
crease rapidly. This tells about tendency of the mKDR mapping to col-
lapse several unrelated x-points to same z-space region; nearest neighbor
might be a correct one, but a bit larger neighborhood already contains a
lot of alien points. This is also seen in the visualization in Fig. 5.5 where
the mKDR plots, especially of Head Pose and Crime data sets, are much
more crowded than the plots of BRN and COIR. COIR and BRN errors
increase more slowly, indicating a good spread of points. For four data
sets, BRN errors for other than smallest k are lower than the errors of
the other methods. For Crime data, COIR gives better results.

66

Supervised dimension reduction with bottleneck networks

(a) COIR (b) COIR (c) COIR

(d) mKDR (e) mKDR (f) mKDR

(g) BRN (h) BRN (i) BRN

(j) KDR (k) KDR (l) KDR

(m) SIR (n) SIR (o) SIR

(p) lin. BRN (q) lin. BRN (r) lin. BRN

Figure 5.5. Visualizations of Head Pose (left), Yale (middle) and Crime (right) data sets.
Point locations are determined by the DRR method, the shade shows the true
target values. Note that in cases with two targets the point clouds are the
same and only the target coloring differs, as all the methods use multivariate
inputs and targets for determining a single set of low-dimensional coordi-
nates.

67

Supervised dimension reduction with bottleneck networks

5 10 15 20

5

10

15

x 10
−3

#neighbors

N
N

 r
eg

r.
 R

M
S

 e
rr

or

Concrete

(a) Concrete

5 10 15 20

2

4

6

8

10
x 10

−3

#neighbors

Crime

(b) Crime

5 10 15 20
0.115

0.12

0.125

0.13

0.135

0.14

#neighbors

Parkinson

(c) Parkinson

5 10 15 20

0.005

0.01

0.015

0.02

0.025

0.03

#neighbors

N
N

 r
eg

r.
 R

M
S

 e
rr

or

Head Pose

(d) Head Pose

5 10 15 20
0.03

0.04

0.05

0.06

0.07

0.08

0.09

#neighbors

Yale

(e) Yale

Figure 5.6. NN-regression RMS errors for the linear DRR methods.

68

Supervised dimension reduction with bottleneck networks

5 10 15 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

#neighbors

N
N

 r
eg

r.
 R

M
S

 e
rr

or
Concrete

(a) Concrete

5 10 15 20

2

4

6

8

10

12

x 10
−3

#neighbors

Crime

(b) Crime

5 10 15 20
0.14

0.145

0.15

0.155

0.16

#neighbors

Parkinson

(c) Parkinson

5 10 15 20

5

10

15

x 10
−3

#neighbors

N
N

 r
eg

r.
 R

M
S

 e
rr

or

Head Pose

(d) Head Pose

5 10 15 20

0.02

0.04

0.06

0.08

0.1

#neighbors

Yale

(e) Yale

Figure 5.7. NN-regression RMS errors for the nonlinear DRR methods.

69

Supervised dimension reduction with bottleneck networks

5.5 Conclusions

In this chapter we experimented with supervised bottleneck networks for
classification and regression. Our work on bottleneck classifiers serves
to bring class-supervised bottleneck networks up to date. Earlier work
used shallow networks and small data sets, and only compared super-
vised networks to unsupervised ones [84]. The only supervised dimension
reduction method available for comparison at the time was LDA, a linear
method. It was compared to nonlinear discriminant analysis (in terms of
this work, a bottleneck classifier with linear classifier part) in [118], but
the finding that a nonlinear network outperforms a linear method in clas-
sification accuracy is hardly newsworthy today. We performed a compar-
ison to nonlinear versions of two recently developed dimension reduction
methods, using deep networks.
We found bottleneck classifier to be able to compete with the two com-

parison methods. Based on these experiments it seems that NCA may
outperform BC with larger bottleneck dimensionality, whereas BC gives
better results when the bottleneck has only a few units. This suggests
NCA could be a better choice for data packing, provided the quadratic
training time is not a problem, and BC would be better for visualizations
or other tasks where very low-dimensional representations are needed.
With large data sets, the O(N) scaling of the evaluation of the cost func-
tion is a benefit over the competitors, which scale O(N2) or worse. In ad-
dition to the number of data points, the overall training time depends on
the structure of the network and the number of iterations needed to train
it. In our experiments, all networks had identical encoder parts. BC has
also a decoder part, but the number of weights in it is much smaller than
in the encoder, so this should not introduce large differences in running
times. The number of finetuning iterations was determined by early stop-
ping, and was different in different runs. As we did not notice systematic
differences between methods, we have no reason to believe that change of
cost function would significantly change the number of iterations needed.
To the author’s knowledge, bottleneck networks have not been applied

in the field of dimension reduction for regression before. Bottleneck re-
gression networks provide a versatile DRR method which can be used for
finding both linear and nonlinear subspaces, and with linear and nonlin-
ear response functions. Mappings that a neural network can learn can
be controlled by adjusting the number and type of hidden units. Training
time scales linearly in the number of data points, so BRN has potential
to be used with large data sets. Neural networks are a mature and well-
established class of methods, and several approaches for weight initial-
ization, training, and regularization of weights are known.
In performance, BRN is comparable to other state-of-the-art DRRmeth-

ods. For other than smallest k, BRN generally gives low k-NN-regression
errors compared with the other methods. This tells about ability to pre-
serve overall structure of data well, although at the expense of sometimes
yielding higher errors if only immediate neighbors are considered.
Greatest challenge for widespread BRN use is the existence of local min-

ima of the cost function. Energy landscapes of neural networks, especially
large ones, are complex, and the cost function has several minima. In
the BRN experiments we approached this problem by stochastic training
and multistart strategy. While this is adequate for small networks, more
complicated data sets might require larger networks, and the number of
weights to be optimized could be much larger than what we have used
here. This would mean slower evaluation of the cost function and neces-

70

Supervised dimension reduction with bottleneck networks

sity to sample a larger energy landscape to find good minima. In this
sense, BRN is also sensitive to dimensionality of input data, since each
input coordinate generates a whole set of weights which connect it to the
network. Bad scaling of training times as function of number of weights
may cancel some benefits obtained from linear scaling in number of data
points.
Two routes out from this situation are in sight: developing methods for

finding good initial values for weights, which improves results of both gra-
dient descent and stochastic methods, or using deep networks, for which
successful initialization strategies [81, 102] are already known. Some
strategies might work for shallow networks as well, with adequate train-
ing data available. In this work we used small data sets, that can be han-
dled by quadratically or cubicly scaling DRR methods as well as BRN,
so we did not experiment with data-intensive initialization. Problems
caused by large input dimensionalities can be alleviated by preprocessing
the data e.g. by principal component analysis before using it with BRN.

71

6. Dimension reduction with a sparse
metric

The quadratic complexity of DR methods that use full pairwise (dis)simi-
larity matrices is obviously a hindrance for using DR with large scale
data. It is therefore appealing to reduce computational times by resorting
to sparse methods.
We present a novel approach for doing dimension reduction using sparse

matrices, which has been published in [133]. The modern trend of concen-
trating on local relationships easily conjures up the idea that local infor-
mation should be kept, and that a global view would somehow grow out
from locally correct parts. Unfortunately, this is not the case. Discard-
ing global information, i.e. the longest distances, can ruin the embedding
quality [70]. This calls for a controlled tradeoff of local and global in
sparse DR methods. In Sec. 6.2 we show that a sparse version of t-SNE
can be created by suitably balancing local and global information.

6.1 Existing sparse approaches

6.1.1 Dealing with naturally sparse data

Sparse data, which is regularly met in graph theory and e.g. in social
network applications, is seldom used as such in DR methods. More often,
even if the input data is sparse, a dimension reduction method is applied
to a full distance matrix, that is created e.g. by computing shortest paths
or filling in missing distances by some large value [28]. This allows using
dimension reduction methods on network data, but loses the potential for
faster computation, which would result from exploiting the sparse struc-
ture of data. Sparse data is used in some methods that build local views
based on nearest neighbors, since such information is readily available in
network data [162, 163].

6.1.2 Landmarks

Landmark algorithms are a sparse dimension reduction approach, that is
able to give good global view on data, with the price of possibly sacrificing
local details. The landmark idea has been used in several works in dif-
ferent forms. Common feature of all landmark algorithms is to designate
a subset of data points as landmarks, which are treated differently from
the rest of the points. Usually, the landmark points are embedded accu-
rately, and locations for other points are decided based on the landmarks.
With N data points and L landmarks this leads to complexity O(L2+NL)
in methods that use pairwise comparisons.

73

Dimension reduction with a sparse metric

A sparse version of Sammon mapping [27] first embeds a subset of land-
mark points, and fixes their locations. Other points are placed by mini-
mizing the Sammon cost between all (landmark, non-landmark) pairs,
without considering the pairwise non-landmark distances.
More common approach for placing non-landmarks is triangulation, where

the data-space distances to nearest landmarks determine weights for the
landmarks, and point locations are weighted combinations of landmark
locations. In LandmarkMDS [37] this results in projection of non-landmark
points to highest principal axes of landmarks. Another fast MDS version
[50] uses a similar idea.
Point locations in landmark MVU [200] are based on a linear mapping,

which as accurately as possible reconstructs the data by using L land-
marks. The mapping is found from LLE-like representation of points as
linear combinations of their neighbors, and the Laplacian of the resulting
graph.
A different approach, slightly confusingly termed a "landmark" approach,

is presented in [182]. A set of landmark points is used, but unlike in other
landmark methods, only these points are embedded in the final result.
The role of the other points is to provide information about data distribu-
tion, so that the embedding of the landmark points will give a represen-
tative view of all data. Information about all points is used when deter-
mining landmark locations. This happens via a random walk in a graph
that has weighted connections between k-neighbors. Random walks are
started from all landmark points, and ended as soon as they hit another
landmark. Relative frequency of ending in landmark j when starting
from i determines the neighborhood probability pj|i of the two landmarks.
This probability is used to compute the embedding.

6.1.3 Sparse optimization updates on full matrices

It is also possible to keep the full matrix but consider only randomly cho-
sen entries in each iteration. This speeds up computations, although it
does not reduce the need for memory. A full pairwise matrix is highly
redundant. When location of one point changes, N entries of the matrix
are affected. This is exploited, although not in any systematic fashion,
in [2] and [27]. The former chooses a random point pair in each iteration
and updates their locations. Also the latter optimizes the locations of one
pair at a time, but the optimization is completed and the locations fixed
before a new pair is considered. In curvilinear component analysis [76]
the gradient is computed and updates made w.r.t. one of the points at a
time, which on average produces results like that of normal gradient de-
scent. Extra benefit of this approach is that although the cost on average
decreases, it can also temporarily increase, which should help in escaping
from local minima [76].

6.1.4 Using only local distances

Accurately preserving local information is emphasized by many dimen-
sion reduction methods [148, 8, 201]. Moving into local scale happens by
just considering nearest neighbors for each data point. Locally linear em-
bedding, for one, contains such localization step, and eigendecomposition
of sparse kernel matrices thus produced is much faster than decomposing
full matrices.
As local approach has worked well with manifold methods, it may seem

like a natural idea to keep either shortest distances or distances to k-

74

Dimension reduction with a sparse metric

neighbors when creating sparse matrices for other DR methods. This
idea has not proved successful. The locality-oriented manifold methods
contain also a global step, which makes sure the local views are turned
into a global view in a sensible way. In methods which were not originally
designed to use sparse, local-only information, there is no mechanism
which would guarantee global quality given only local information.
Limitations of local methods have been noticed in different works when

using multidimensional scaling. The issue is studied experimentally in
[70], where deleting largest entries from a pairwise distance matrix dete-
riorates the quality more than discarding the short distances. A localized
variant of MDS produces spherical shapes unrelated to underlying struc-
ture of data, a phenomenon which is theoretically explained in [21].

6.1.5 Using randomly chosen distances

The following methods are related to our work in that some randomness
is used when choosing which entries of a distance matrix to use. A sparse
data version of Sammon mapping is developed in [119]. The algorithm
starts with a full distance matrix, but number of nearest neighbors con-
sidered decreases in each iteration. A sparse multidimensional scaling
approach with an iteratively updated set of near neighbors and randomly
chosen sets of other neighbors is developed in [26, 125], and some correc-
tions to complexity analysis are presented in [156].

6.2 Local and global in sparse distance matrices

Many dimension reduction methods use a pairwise distance matrix, and
this significantly restricts the number of data points which can be embed-
ded. It would be tempting to reduce computational burden by using only
part of the distances.
Since importance of local distances is widely recognized in dimension

reduction research [148, 8, 201], a natural approach to sparsifying is to
keep the local, short distances and discard the long distances. However,
purely local approaches to multidimensional scaling are inadequate, since
removing the large distances can decrease quality more than removing
the short ones [70]. This finding may have resulted in generally pes-
simistic views regarding sparsification of distance matrices, judging from
the small number of works on this topic. Some work on partially filled
matrices or naturally sparse data has been done [26, 119, 28], but most
sparse dimension reduction methods are based on landmarks [37, 200], a
different approach, where only a subset of points is embedded, and loca-
tions for other points are inferred from the landmark locations.
We show that part of the distances can be discarded without too much

impact on quality. The sparse pairwise matrix should contain both short-
scale and long-scale distances. Results from such a matrix can give much
better embedding results than a purely local approach.
We parameterize the mixture of local and global distances borrowing

ideas from random graph theory [198]. We see the sparse distance ma-
trix as a graph, with a link between points if the corresponding distance
is present in the matrix. Some links between near neighbors are always
kept, and some links point to randomly chosen, possibly far-away, neigh-
bors. Randomness of the graph determines, how big proportion of the
links is chosen randomly. We study connection between randomness level
and embedding quality, measured by trustworthiness and continuity.

75

Dimension reduction with a sparse metric

6.2.1 Sparse t-SNE

We use t-SNE [182] in the experiments, but modify it to use a sparse
similarity matrix.
In the following, we identify data points with graph nodes, and pair-

wise distances with links between nodes. N denotes the number of data
points in each experiment (usually a subsample of the full data set), and
L is the average number of links from a point to other points. Relation-
ship of L and N determines sparseness of a matrix. We determine the
sparsity structure with similar "link to nearest neighbors, then rewire"
-construction as Watts and Strogatz used in their celebrated study [198]
on small world graphs. The fraction of rewired links, or randomness, is
denoted with R.
Let E denote a set of ordered pairs that contains a pair (r, c) if the simi-

larity matrix has a non-zero element at row r, column c. Then the sparse
t-SNE cost (cf. the full cost function Eq. (2.16)) becomes

Csparse =
∑

(i,j)∈E

pij log
pij
qij

. (6.1)

Since E has (roughly, see below) NL elements, this changes the time com-
plexity from O(N2) to O(NL).
The set E is built as follows. First, approximately L nearest neighbors

cj are listed for each point r. The number of neighbors is approximate,
because the neighborhood relationships are not symmetric, and we need
a symmetric matrix. We use a < L neighbors, but insert both (r, cj) and
(cj , r) into E. The value a is chosen by a rough rule of thumb, which
ignores the distribution of data and basicly assumes that having a con-
nection from A to B does not affect the probability of B being connected to
A. If we use a neighbors out of N possible, then A will connect to B with
probability a

N
, B will connect to A equally often, and some of the links

will be two-directional. We want to link the two points with probability
L
N
, so the necessary value of a can be solved from 2a

N
− (a

N
)2 = L

N
, giving

a = N −√
N2 −NL.

After inserting the nearest neighbor links into E, we change part of
them into long distance links. The set E has M ≈ NL entries. We delete
RM elements from the set, with uniform probability. This means un-
doing some work from the previous step, but this two-step procedure is
conceptually simple, easy to implement and allows reusing the neighbor
lists for different values of R. We pick r and c from range 1, . . . , N , insert
pairs (r, c) and (c, r) into E if r
= c and (r, c)
∈ E, and repeat this until we
have created RM new links. Most links thus created will be long-distance
links, simply because there usually are much more long-distance than
short-distance neighbors available.
The original t-SNE determines kernel widths from a perplexity param-

eter, which is essentially a soft number of nearest neighbors. This means
that widths can differ for different points. Determining kernel widths
when only sparse matrices are available is not straightforward, and re-
sults might be affected by varying widths. Because of this we use ε-
neighborhoods, using same fixed kernel width everywhere. This lowers
overall quality, but is suitable in an experimental setting, since we focus
on randomness effects and not on absolute quality. Developing sparse
t-SNE into a usable method, complete with a way of choosing kernel
widths in the sparse setting, is left for future work.
Another experimental feature is the use of a full distance matrix for

finding the nearest neighbors. This is done for making sure we do not

76

Dimension reduction with a sparse metric

introduce unexpected side effects by any approximate nearest-neighbor
schemes. In real use, a full matrix would not be used as an intermediate
step. Instead, the nearest neighbors would be found with an approximate
method, or the probability of linking two points would be based on their
distance.

6.2.2 Experiments

We use three data sets in the experiments. We will only show results for
MNIST data set but qualitatively similar results (with somewhat smaller
sample sizes and smaller parameter ranges) were obtained using two
more data sets, the USPS and Yale data. See Appendix A for details
of the data sets.
We create a continuum of sparse matrices by varying L andR, and study

the effects of randomness and sparsity on visualization results. We mea-
sure visualization quality by trustworthiness and continuity. Trustwor-
thiness and continuity values at 5-neighborhoods are used.

6.2.3 Effect of randomness

In the first experiment, we look at trustworthiness and continuity as func-
tion of randomness. We repeat the experiment for several sparseness lev-
els, by fixing L and letting N change.
The regular connection pattern R = 0 % gives poor results. Trustwor-

thiness levels around 0.5 are typical when a random set of points is com-
pared to the original data. This is seen both in the 2D visualization in
Fig. 6.1 an in the numerical results in Fig. 6.2.
When R increases, results get more trustworthy. Fig. 6.2 shows an up-

ward sloping line, and Fig. 6.1 has more clearly separated classes. When
matrices are not very sparse (cases N=2000 and N=4000), the completely
random matrix gives best results. When matrices are sparser, best re-
sults are obtained with R = 80 %. Continuity, on the other hand, stays at
roughly the same level or only slightly increases, up to R = 80 %. When
the matrix is made completely random, continuity drops. Matrix sparse-
ness affects the steepness of the drop.
These observations are in line with the nature of the two criteria. Achiev-

ing high trustworthiness requires global information, i.e. long distance
links, because different neighborhoods must be kept separate in the vi-
sualizations. Before rewiring, the nearest neighbor matrix has only lo-
cal links. Each random link is a potential long distance link; therefore
increasing proportion of random links increases trustworthiness. Conti-
nuity, more easily created by local constraints, is much less sensitive to
matrix randomness. As long as points from a neighborhood stay together
the result is continuous; it does not matter if the points mix with other
neighborhoods.
High quality with R = 80 % and a drop with R = 100 % brings up an

important point regarding the connection patterns: although global links
are important, also enough local information must be provided. Missing
local information is suggested by different behavior of the continuity and
trustworthiness criteria. Continuity, associated with local constraints,
drops very clearly, whereas the more global trustworthiness is not af-
fected as drastically.
Existence or steepness of the drop depends on matrix sparseness. When

the matrix is not very sparse, some random links will necessarily be be-
tween near neighbors. This provides some local information, even in com-

77

Dimension reduction with a sparse metric

pletely random matrices. The sparser the graph, the smaller the proba-
bility of hitting a pair of near neighbors by chance. Therefore, effects
of having an insufficient number of local links are seen more clearly in
sparser matrices.

6.2.4 Effect of sparseness

Our second experiment fixes randomness and lets the sparseness change.
We use randomness R = 80 %, which gave the best results in the first
experiment.
Our most important discovery is the form of dependence of trustworthi-

ness on sparseness in Fig. 6.4. Trustworthiness increases rapidly in the
beginning, but growth slows down when L approaches N . For N = 3000,
using 2000 neighbors gives the same trustworthiness as the full matrix.
Although numerical results for L = 1000 are lower, in the illustration in
Fig. 6.3 it is difficult to visually tell the L = 3000 and L = 1000 results
apart. Lines for larger N in Fig. 6.4 have not reached a constant level
within the L range used, but also their growth decelerates with growing
L. This suggests that the number of neighbors needed for certain quality
can be a sublinear function of N .
This has promising practical implications. A sparse dimension reduc-

tion method is really useful only, if a reduction in computational com-
plexity is achieved. A method scaling O(NL) is still quadratic, if we must
use an L which a linear function of N . Figs. 6.3 and 6.4 suggest that for
satisfactory results with sparse t-SNE, L may grow more slowly than N .
This makes the overall complexity subquadratic.

6.3 Conclusions

The idea of reducing computation times of dimension reduction methods
by discarding part of pairwise distances has been considered in the lit-
erature. The natural approach is to favor local accuracy by using only
distances to nearest neighbors. It has been shown, however, that large
distances have a large impact on quality, and therefore cannot be dis-
carded. This has resulted in preconception that creating sparse dimen-
sion reduction methods by keeping all points but only part of distances
would be next to futile.
In this work we brought new light on this overly simplified view. We

pointed out that keeping the nearest neighbors is not the only way to
sparsify a distance matrix. Indeed, it is much more advisable to replace
some local links with random links. Proportion of random links has a
clear impact on results.
We discussed the effect of randomness, changing from a matrix with

purely local links to a matrix with purely randomly chosen neighbors. Ef-
fects on trustworthiness and continuity of visualizations were measured.
We found a general connection between increasing randomness and in-
creasing trustworthiness. Completely random matrices do not work well,
however. Trustworthiness is lower for completely random than highly
random matrices. Continuity stays high until high randomness levels,
but drops sharply for completely random matrices. This effect is reduced
if the matrix is not very sparse. In such case, also random links will
sometimes be between near neighbors, which helps to maintain high con-
tinuity.
Sparseness seems to have little effect on continuity of visualizations.

78

Dimension reduction with a sparse metric

Trustworthiness is affected, but we made a promising observation that
the number of links needed for certain quality seems to be a sublinear
function of N . This makes the overall operation subquadratic, an im-
provement over the quadratic full-matrix version of t-SNE. The lower
complexity with not too much decrease in quality could stretch the feasi-
ble range of t-SNE use from thousands of points to at least tens of thou-
sands.
Some work remains to be done before sparse t-SNE is ready for serious

use. For this work we implemented an experimental version, which used
simplified parameterization (same kernel width everywhere). The near-
est neighbor approach we used for creating the sparse matrices forms
a slow preprocessing step, and forces a somewhat artificial division into
local and global links. While the experimental version was adequate to
studying randomness effects, a sampling-based approach, that chooses
links by certain probability depending on their length, will probably be
better for real use.

79

Dimension reduction with a sparse metric

0

0

0

0

0

0

0

0

0

0

0 0
0

0 0

0

0

00

0
0

00

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0
0

0

0 0

0

0

00

0

0

0

0
0

0

0

00

0

0

0

0

0

0

0

0

00

0

0

0
0

0
0

0

0

0

0

0
0

0

0
0

0

0

0

0

0

0

0

0

0
00

0

0

0

0

0

0 0

0
0

0
0

0 0

0

0

0

0

0

0
0

0

00

0

0

0

0

0

0

0

0

0

0 0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

00

00

0

0

0

0

0

0 0

0

0
0

0

0

0

0

0

0

0

0

0

00

0

0

0

0
0

0

0

0

0

0

0

0

0

00

0

0
0

0

0
0 0 0

0

0

0

00

0

0

0

0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0
0

0

0

0

0

0
0

0

0
0

0

0

0 0

0

0

0
0

0

00

0

0

0

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1 1

1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1 1

1

1

1

1
1

1
1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

11

1
1

1

1

1

1

1

1 1

1

1
1

1

1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1 1

1

1

1
1

1

1

1

1
1

1
1

1

1
1

1

11

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

11

1
1

1
1

1

1

1

1

1

1

1

1

1

11

1

1 1

1

1

1
1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

1
1

1

1

11

1

1

1
1 1

1

1

11

1 1

1 1

1

1

1

1

1

1
1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

11

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

2

2

22
2

2 2

2

2
2

2

2

2

2

2
2

2

2

2

2
2

2

2

22

2

2

2

2
2

2

2

2
2

2
2

2

22

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2
2

2
2

2

2

2

2

2

22 2

2

2

2

2
2

2 2
2

2

2

2

2

2

2

2 2

2

2

22

2

22

2

2
2

22

2 22
2

2

22

2

2
2

2

2

2

2

2

2

2
2

2

2

2 2

2

2

22

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

22

2

2

2

2
2

2

2

2

22
2

2

2

2

2

2 2
2

2

2

2

2
2 2 2 2 2

2

2

2

2
2

2

2

2

2

2
2

2
2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2 2

2

22

2

2

2

2

2

2

2
2

2

2 2

2
2

2

2

2

2
2

2

2

2

2

2

2
22
2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2
2

2
2

2
2

2
2

2

3

3

3

3
3

3

33

3

3

3

3

3

3

3

3

3

3

3
3 3

3

3

3
3

3

3

3

3

3
3

3

33

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3 3

3

3

3

3
3

3 33

3

33

3

3 3

3

3

3
3

3

3

3

3

33

3

3

3
3

3

3

3
3

3

3

3

3
3

3

3

3

3

3

3

3

3

3
3

3

3

3
3

3

3

3

3

333

3
3

3

3 3

3

3

3

3

3
3

3

3

3

3

3

3
3

3

3

3

3

3
3

3

3

3

3

3
3

3

3

3

3

3

3
3

3

3

3
3

3

3
3

3

3

3

3

3

3

3 3
3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

33

3

3

3

3
3

3
3

3

3

3

3

3

3

33

3

3

3

3
3

3

3 3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3
3

3

3

3

3

3

3
3

3

3

3

3 3

3
3

3

3

3

3

3

3

3

3

3 3

3
3

3

3

3

3
3

3
3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3

3

3

3

3
3

3
3

3

3 3

3

3

3

3
3

3

3

3

33

3

3

3

3
3

3

3

3

3

44

4 4

4

4
4

4

4

4

4

4

4

4

4
4

4

4

44

4
4

4

4

4

4

44
4

4

4

4
4

4

4

4

4

4

4

4
4

4
4

4

4

4

4

4

4
4

4

4

44

4

4

44

4

4

4

4

4

4 4

4
4

4

4
4

4

4 4

4 4

4

4
4

4

4

4

4
44

4

4
4

4

4

4

44

4
4

4

4

4

4

4
4

44

4
4

4 4

4

4

4

4

4

4

4

4
4

4
4

4

44

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4
44

44

4 4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

44
4

4

4

4

4

4
4

4

4

44

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4 4

4

4

4

4
4

4

4

4

4

4

4

4
4

4

4

44

4

4

4

4

4

4

4

4
4

4

4

4
4

4

4

4

4

4

4

4

4

4
4 4

4

4
4

4
4

4 4

4

4

4
4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4
4

4
4

4

4

4
4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4
4

4

44

4

4

4 4

55

5

55

5

5
5

5

5

5

5
5

5

5

5

5

5

55

5

5
5

5

5

5

5

5

5

5
55

5

5

5

5

5

5

5

5

5

5 5
5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5 5

55

55

5

5

5

55

5

5
5

55
5

5
5

5 5

5

5

5

5

5 5

5
5

5

5

5

5

5
5

5

5

5

5 5

5
5

5
5

5

5
5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5
5

5

5

5 55

5

5

5

5

5

5

5 5
5

5
5

55

5 5

5

5 5

5

5

5

55

5

5

5

5

5

5

5

5

5

55
5

5

5
5

5

5

5

5
5

5

5

5

5

5
5

5 5

5

5

5

5

5

5

5 5

5

5

5

55

5

5
5

5
5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5
5

5

5

5

55
55

5

5 5

5

5

5

5

5

6

6

6

6

6

6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6
6

6

6

6

6

6

6

6
6

6

6

6
6

6 6

6

6

66

6

6

6

6

6
6 6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6 66
6

6 6

6

6 6

6

6
6

6

6
6

6

6

6

6

6

6

6
6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6 6
6

6

6

6

6

6

6

6
6 66

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6 6

6

6

6

6

6

6

6
6

6

6

6

6
6 6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6
6

6

66

6
66

6

6

6

6

6

6

6 6

6

6

6

66
6

6

6

6
6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

66

6

6
6

66

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6
6

6

6 6

6

6

6

6

6

6

6
6

66
6

6

6
6

6
6

6

66
6

6

6

6
6 6

6 6

6

6
66

6

6

6

7 77
7

7

7

7

7

77

7

7

7 7

7

7

7

7

7

7
7

7
7

7
7

7
7

7

7

7

7

7

7

7

7

7
7

7

7
7

7

7

7

7

7

7

7

77

7

7

7

77

7

7

7

7

7

7
7

7
7

7

77

7

7

7

7

7

7

7
7

7

7

77

7

7

7

7

7

77

7

7

7

7

7

7

77
7

7

7

7

7

7

7

7

7
7

7

7

7 7

7

7

7

7

7

7

7
7

7

7

7
7

77

7

7

7

7

7
77

7

7

7
77

7

7

7

7

7

7
77

7
7

7

7

7

7

7

7
7

7

7

7

7
7

7

7 7
7

7

7

7

7

7

7

7

7

77

7 7
7

7

7

7

7
7

77

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

77 7

7
7

7
77

7

7
7

7

7

7

7

7

7

7
7 7

7

77

7

7

7

77

7

7

7
7

7
7 7

7

7

7

7
7

7
7

7 7

7

7

7

7

7

7

77

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7
7

7

7

7

77

7

7

7 7

8

8

8

8
8

8

8

8

8 8
8

8

8

8

8

88

8
8

8

8

8

8
8

8

8

8

88

8
8

8
8

8

8

8

8

8 8

8
8

8

8
8

8

88
8

8

8

8

8

8

8

8

8

8

8

88

8

8

8

8

8

8

8 8

8

88

8
8 8

8

8

8

8
8

8

8

8

8

8
8

8

8

8

8
8

8

8

8

8

8

8 8

8

8

8

8

8 8

8

8

8

8 8

8

8
8

8

8

8

8

8

8

8

8

88

8 8
8

8

8

8

8

8

8
8

8

88 8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8
8

8
8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8 8

8
8

8
8

8

8 88
8

88
8

8

8

8

8

8
8

8 8
8

8

8

8

8 8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8 8

8

8

8

8
8

8

8

8
8

8

8

8

8

8 8

8 8

8
8

88

8

8

88

8

8

8

8

88
8

8

8

8

8

8

8

8

8

8

8 8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8 8

8
8

8

8

8
8

8

8
8

8
8

8

8

8

8

(a) R=0 %

0

0
0

0

0

0

0

0

0

0

0
0

0

00

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0
0

0 0
0

0

0

0
0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

00

0

0

0

0

0

0

0

0

0
0

0

0

00

0

0 0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

00

0 0

0

0 0

0 0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
00

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 00

0

0

0
0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0
0

0

0

0

0
0 0

0
00

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1 1

1 1
1

1

1

1

1

1

1

1

1

1

1
1

1

11
1

1

1
1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

11

1

1
1

1
1

1

1

1

1

1

1
1

1

1
1

1

1

1

1

1

1

1

1

1

1

11

1

1
1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1 1

1

1

1
11

1

1

1

1

1

1

1

1 1

1

1

1
1

1

1

1

1

1 1

1 11

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1
1

1
1

1

1

1

1

1
1 1

1
1

1

1

1

1

11

1

1

1 1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1
1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1
1

1

11

1

1

1

1

1

1
1

1

1

1 1

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1
1

1

1 1

1

1

1

1

1

1

1

11

1

1

1

1
1

1
1

11

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

11

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2
2

2

2
2

2

2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

2

2

2

2
2

2

2

2

2
2

2
2

2

2

22

2

2

2

2
2

22

2

2

2

2

2

2

2

2

2

22
2

2

2 22
2

2

2

222

2

2
2

2 2
2

2

2

22

2

2

2

2

2

2 2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

22

2 2

22

2

2

2
2

2

2
2

2

2

2

2
2

2
2

2

2
2

2
2

2

2

2

2
2

2

2
2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

22

2

2

2

2

22

2

2

2

2

22

2

2

2

2
2

2
2 22

2

2 2

2

2
2

2

2

2

2

2

2

2

2

2

2 2

2

2

2
2

2

2

2

2

2

2

2

222

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

22

2

2
2

2

2

2

2

2

2

2

2

2

2
22

2

2

2
2

2
2

2
2

2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2

2

2

22 2
2

2

222 2
2

2

2

2

2

2
3

3

3
3

3

3

33
3

3

3

3

3

3 3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3
3

3

3

3

3

3

3

3 3
3

3

3

3

3

33

3

3

3

3

3
3

3

3

3

3 3

3

3

3

3

3

3
3
3

3

33

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

33

3

3

33
3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

3
3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3 3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3
3

3

3
3

3

3

3
3

3

3

3

3
3

3

3

3

33

3

3

3

3

3

3

3

3

3
3

3 33
3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3
3

3

3 3
3

3

3 3

3
3

3

3

3 3

3

3

3

3

3

3

3
3

3
3

3 3

3

3

3

3 3

3

3

3

3

3

3
3

3
3

3

3

3

3

3
3

3

3

3

3

3
3

3
3

3

3

3

3

3

3 3 3

3

3

3

3 3

3

3

3

3

3
3

3

3

3

3 3

4

4

4 4
4

4

4

4

4

4

4

4

4 4

4
4

4

4

44

4
4

4

44

4
4

4

4

4
4

44

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
44

4

44

4

4

4
4

4

4

4

4

4

4

4

4

4

4
4

4
4

4

44 4
4

4

4

4

4

4
4

4

4

4
4

4
4

4

4

4

4

4

44

4

4
4

4 4

4

4

4

4

4

4

4

4

44

4

4

4

44

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4
4

4

4

4 44

4

4

4

4

4 4

4

4

4

4

4
4

4

4

4

4

4

4 4

4

4

4

4

4

4

4
4

4

44

4

4

4

4

4

4

44

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

44

4

4

4

4
4

4

4

4

4

4 4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

444
4

4
4

4
4

4
4

4

4

4
4

4

4

4

4

4

4

4

4
4

4

4
4 4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

44

4

4

4

4

5

5

5

5

5

55
5

5

5

5

5

5

55

5

5
5

5 55

5 555
5

5

5

5

5

5

5

55

5

5

5

5 5

5

5

5

5

5 5
55

55

5

55

5

5

55

5

5

5

5

5

5
5

5
5

5

5

55

55

5

5

5

5

5 5

5

5

5
5

5

5

5 5

5

5

55 55

5

5
5

5
55

5

55
5 5 5

55

5

5

5

5 5

5
5

5

5

5

5
5

5
5

5

5

5

5

5
5 5

5

5

5

5

5
5

5

5
5 5

5

5

5

5

5

5

5

5

5

55
5

5

5
5

5

55

5

5

5

55555
5

55

5

5
5

5

5
5

5

5

5
5

5

55

5

5

5

5
5

5
5

5
5 5

5
55

55

5

5
5
5

5

5

5

5

5

55

5

5
5 5

5

5

5

5
5

55

5
5

5 5

5

5

5

5

5

5

5
5

5

5

5

555

5

5

5

5

5

5

5

55

5

5
5

5

5

5

5

55

5

5

5

5

55

55

5
5

5
5

5

5 55

5

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

6

6

6
6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6
6

6

6
6

6
6

6

6

6

6

6

6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6 6 6
6

6

6

6

6

6

6
6

6

6
66

6

6

6

6

6

6

6

6

6

6

6

6
66

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6
66

6

6

6

6

6

6

6 6

6

6

6
6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6 6

6

6

6

6

6

6

6
6

6

6

6 6

66

6

6 6

6

6

6

6

6

6

6

6

6

66

6

6

6

66

6

6

66

6

6
6

6

6

6

6

6
6 6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6
6

6
6

6
6

6
6

6

6

6

6

6

66

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

66

6

6
6

6

6
66

6

6

6

6

6
6

6

6

6
6 6

6

6

6

66

6

6

6
7
77

7

7

7 7

7

77

7
7

7 7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

77 7

7

7

7

7

7

7 7

7

7

7

7

7

7

7

7

7

7

77

7

77

7

7

7

7 7

7 7

7

7

7
7

7

7

7

7

7

7

7

77

7

7

7

7

7 7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7
7

7

7

7

7 77
77

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7 7

7 7

7

7

7

7

7

7

7

7

7

7

7 7

7

7

7

7

7
7 77

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7
7

7

77

7

7

7

7

7

7

7 7

7

7

7

7 7

7
7

7

7

7

7
7

7

7

7
7

7

7

7

7
7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7 7

7

77

7

7

7

7

7

7

7

7
7

7

7

8

8
8

8

8 88

8 8

8

8

8
88

8

8

8

88

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

88

8

8

8

8

8

8 8

8

888

8

8

8

8
8

8

8

8 8
8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8
8

8
8

8

8

8

88
8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

88

8
8

8

8

88

8

8

8

8

8

8
8

8 8
8

8
8

8

8

8

8

8
8

8

8

8

8

8
8

8 8

8

8
8

8

8
8 8

88

8

8

8
8

8

88

8

8

8

8
8

8
8

8

8

8

8

8

8

8

8

88

8

8

8

88

8
8

8

8

8

8

8

8

8

8 8
8

8

8

8

8

8

8

8

88

8 8

8

8

8
8

8

8

8

8

8
8

8

8
8

8

8

8

8
8

8

8

8

8
8

8

8
8

8

8

8

8

88
8

8

8

8

8

8

8

8
8

888

8

8

8

8

8

8

8

8

8
8

8

8

8

8
8

8

8
8

8 8
88

8

8
8

8

8 8

8
8

8

8

8

8

8

8

8

8

8

8
8

8

8

8
8

8

8

8

88 8
8

8

(b) R=60 %

0

0

0

0

0

0

0

0

0

0

0

0

00
0
0

0

0

0

0
0

00

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0
0 0

0

00

0

0

0

0

0

00

0

0

0

0
0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

00

0
0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0
0

00

0

0

0

0

0

0

0

0

0

0

0
0

0

0 0

0 0

0
0

0

0

0
0

0

0

0

0
0

0

0

0 0

0

0

0

0

0

0
0

0

00

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

00

0
0 0

0

0

0

0

0

0

0 0

0

0

0
0

0

0

0
0

00

0

0

0

0
0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00 0

0

0

0

0

0

0

0
0

0

0 0

0

0

0

0

0
0

0

0

0

0

0
0

0 00 0

0

0

0
0

00

0

000

0

0

0

0
0

0

0

0
0

0

0

0

0

0 0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
00

0

0

00

0

0

0

0
0

0

0

0 0

0

0

0

0

0

0

0

0

0

00

0

0 0

0

0
0

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

11

1

1

1

1

1

1

1

1

1

1

1
1

1

11

1

1

1

1
1

1

11

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1
1

1

1

1

1

1

11

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
11

1

1

1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1
1

1
11

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1
11

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1 1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

1

11

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

11
1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1
1

1
1

1

1
1

1

1

1

1

1

1

1

1

1

1 1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

1
1

1

1 1

1

1
1

1

1

1

1

11

1

1

1

1

1

1
1

11

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

11

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

2

2

2

2

2

2

2
2

2

2
2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2 2

2

2
2

2

2
2

2

2

2

22

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2
2

2

22

2

2

2

2

2

2
2

2

2
2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2
2 2

2

22

2

2

2

22

2222
2

2
2

2

2

2

2

2

2 2

2

2
2

2

2

2

2 2

2

2

2
2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

2

2

2

22

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

22

2

2

2
2

2

2

2

2

2

2 2

22

2

2

2
2

2

2

2

2

2

2

2
3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3
33

3
3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3
3 3

33
3

3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

33

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3
3

3

3

3

3

3
33

3

3

3 3

3
3

3

3

3

3

3

3

3

3 3

3

3

3

33

3

3

3

3
3 3

3

33

3

3

3

3
33

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
33 3

3 3

3

3

3

3

3 3

3
3

3

3

3

3
3

3

3
3

3

3

3

3

3

3

3
3

3

3 3
3

3

3

3

3

3

3

3

3

3

3

3
3

3

333
3

3

3
3

3

3

3
3

3

3

3

33

3

3

3 3

3

3

3

3

3

3

3
3

3

3

33

3

3

3
3

3

3

3

3

3
3

3
3 3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

33 3

3

3

3

3

3
33

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3
3

3

3

3

3

3

3

3
3

3

3 3

3

3

3

3

3

4

4

4

4
4

4

4

44

4

44

4

4

4

4

4

4

44
4

4

4 44

4

4

4
4

4

4

4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4
4

4
4

4

4

4

44

4

4

4

4

4 4
4

4

4 4

4

44
4

4

4

4

4

4

44

4

4

4

4

4

4

4

4

4

4
4

4

4

4
4

44
4

4

4

4

4
4

4

44

4

4

4

4

4

4

4

4
4

4

4

4
4

4

4

4
4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4
4

4

4
44

4

4

44

4

4

4
4

4

4

44

4

4

4

4

4

44

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4
4

4

4

4

44 4
4

4

4
4

4

4

4

4

4
4

4

44

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4
4

4

4 4

4

4

4

4

4

4

4

4

4

44

4

4

4

4

4

4

4

4
4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5
5

5

5

5

5

5
5

5

5
5

5

5

5

5

5
5

5
5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

55

55

5

55

5

55

5

5

5
5

5

5

55
5

5 5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

55

55
5

5

5

5
55

5

5
5 5

5

5

5

5

5

5

5
5

5

5
5

5
5

5
5

5

5
5

5

5

5
5

5

5

55

5

5

5

5

5

5

5
5

55

5

5

5

5

5

5

5

5

5

5

55

5

5

5
5

5

55
55

5

5

5

5

55
5

5

5

5

5

5 5
5

5

5

5

5
5

5

5

5
5

5

5

5

5

5
5

5 5

5

5

5
5

55

5
5

5

55

5

5

5

5

55

5

5

5
5

5

5
5

5

5

5
5
5

5

5

5

5

5

5
5

5

5

5 5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5 5

5
5

5

5

5 5

5

5

5

5

5

5

5

5

5

5

5

5

5

5 5 55
6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6 6

6

6 6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

6

6

66

6

6

6
6

6

6

6

6

6

6

6
6

6

6

6
6

6
6

6

6

6
6

6

6

6
6

6

6

6

6
6

6

6

6

6
6

6

6

6

6

6

6

6
6

6

6

6

6 6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6 6

6

6

6

6

6
6

6

66

6 6

6

6

6

6

6

6

6

6

6

6

6

6

66

66

6

6

6

6

6

6

6

6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6 6
6

6

6
6

6

6

6

6 6

6
6

6

6

6

6

6

6

6

6 6

6

6 6

6

6

6

6
6

6

6

6

6

6

6

6

6
6

6

6 6

6

6

6

6

6
6

66

6

6
6 6

6

6

6

6

6

6 6
6

6

6 6

6

6

6

7
7

7

7

7

7

7

7

77
7

7

77

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7
7

7 7

7

7

77

7

77

7

7

7
7

7

7
7

7

7

7

7

7

7

7

77

7

7

7

7 7

7

7

7

7

7
7

77

77

7
7

7

7

7

7
7

7
77 7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7 7

7

7
7

7

7

7

7

77

7 7

7

7 7

7

7

7

7

7

7

7
7

7

7

77

7
7

7 77

7

7

7

7 7

7

7

7

7
7 7

7

7
7

7

7

7

77

7

77

7
7 7

7

7

777

7

7

7

7

7

7

7
7

77

7
7

7

7
7

7

7

7
77

7

7 7

7

7

7

7

7

7
7

77

7

7 7

7
7 7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7 7
7

7

7

7

77

7

7
7

7

7

7

7

77

7

7
7

7

77 7 7

7 7

7

7

7

7

7

7

7

7

7
7

7

7

7

7 77

7

7

7

7

7
7

8

8 8

8

8

8

8
8

8
8

8

8

8 8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8 8
8

8

8

8

8

8

8

8

8

8

8 8

8

8

8

8

8

8

8

8
8

8

8

8

8
8

8

88
8

8

88

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

88

8

8

8

888

88

88

8

8

8

8

8

8
8

8

8

8

8
8

8

8

8

8

88

8

8

8 8

8

8

8

8
8

8

8

8

8

88

88

8

8

8

8
8

8

8

8

8

8

8

8

8

8
8

88

8

8

8

8

8

8 8
8

8

88
8

8

8

8
8

8 8

8

8
8

8

8

8

8

8

88

8

8

8

8

8

8

8

8

8

88

8
8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

88

8

8

8

8

8 8

8
8 8

8

8

8

8

8

8

8

8

8 8

8

8

8

8

8
8

8

8

8
8

8

8
8

8

8

8

8

8

8

8 8

8
8

8

8

8

8

8
88 8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8
8

8
8

8

(c) R=80 %

0
00

0

0

0 0

0

0
0

0
0 0 0

0

0

0

0

0

0
0

0

0

0

0

0

0

0
0

0

00

0

0
0

0
00

00

0
0

0
0

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0
0

0

0

0

0
0

0

0

0

0

0 0

0

0
0

0

0

0

0

0

0

0

0

00
0 00

0

0

0

0

0

0 00

0
0 0

0

0

0

0

0
0

0

0

0
00

0

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0
0

0 0
0

0

0

0

0

0

0
0

0

00

0

0
0

0
0

0

0

0

0

0
0

0

0

0

0

0

0

0

00
0

0
0

0

0

0 0

0

0

0
0 0

0

0

0

00
0

0

0

00
0 0

0

0

0
0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0 0
0 0

0

0

0

0

0

0

0

0

0

0

0

0
0 00

0

0
0

0

0

0

0

0

0

0

0
0

0

0
0

0
0

0

0

0

0

0
0

0

0

0

0

00 0

0
0

00

0

0 0

0

0

0
0

0

0

0

0

0
0 00

0

0 0

0

0

0
0

0
0

0

0
0

0 0

0

0

0

0 0

0 0

0

0

00

0

0

0

0

0

0

1

1 1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

11 1

1

1

1

1

1

1

1

1

1

1
1

1

1
11

1

1
1
1

1

1
1

1

1

1

1

1

11

1

1

1

1

1

1
1

1
1

11

1

1
1

1

1

1

1

1

1

1

11

1

11

1

1

1

1

1

1 1
1

1

1

1
1

1

1
1

1

1

1

1

11
1

11

1
1

1

1

1

1

1 1

1

1

11
1

1
1

1

1

1

1

1

11

1
1

1
1
1

1
1

1

1

1

1
1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

11

1

1

1

1

1

1

11

1

1
1
1

1
1

1

1

1

1

111

1 1

1

1

1

1

11

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1

1 1
1

1

11

11

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

11

1

1

1

1
1

1
1

1

11

1

1

1
1

1

1

1

1

11
1

1

1 1

1

1 1

1

1
1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

1

1
1

1
1

1

1

11

1

1

1
1

1

1 1
11

1
1

1

1

1

1

1

1

1

1

1
1

1

1

1

11

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

11

11

1

1

1

1

11

1

1

1

1

1

1 1
1

1

1

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

22
2

2

2

2

2 2
2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

22

2

2

2 2

2 2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2
2

2

2

22

2

2

2

2

2

2

2

2

2

2

2
2

2 2
2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22
2

2

2

22
2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

22
2

2

22

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2
2

2

2

2

2

2

2
2

2

2
2

2

2

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2
2

2

2

2

2

2
2

2

2

2

22

2
2

2

2

222

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

22

2

222

2

2

2

2

2

2

2

2

2

33

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

33

3 3
3

3

3

3

3

3

3

3
33

3

3

33

3

3

3

33
3

3

3

3
3

33

3

3

3

3
3

3

3

3

3

3

3

3
33

3
3

3

3

3

3
3

3

3

3 3 3

3
3

3

3

3

3
3

3

3
3

3
33

3

3

3

3

3

3

3

3

3

3
3

3
3

3
3

3

3 3

3

33

3

3

3

3

33 3

3
3

3

3

3

3

3

3

3

3

3
33

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3
3

33

3 3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

3

3

3

3

3
3

3

3

3

3

3

3 33

3
3

3

3
3

3

3
3

333 3

3

3

3

3

3 3
3

33

3

3

3

3

3

3

3

3

3

3

3
33

3

3

33

3

3 3

3

3

3
3

3

3
3

3

3
3 3

3
3

3

3

3

3 3
3

3

3

3

3
3

3

3

33

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

33

3

33
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3
3

4

4

4

4

4

4

4

4

4
4

4

44

4

4

4

4
4

4

4

44

4

4
4

4
4

4
4

4

4 4

4

4

4

4

4

4

4 4

4 4

4

4

4

4

4

4

4

4

4

4 4
4

4

4

44

44

4
4

4

4

4

4

4

4
4

4

4

4

4
4

4

4 4

4

4

44
4

4
4

4

4 4

4

4

4
4

4

4

44

4

4

4

44

4

4

4

4

4
4

4

4

4

4

44

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4
44

4

4 4

4

4
4
4

4

4

4

4

4
4

4

4

4

4

4
4

4

4

4

4
4

4

4

4

4

4

4

4
4

4

4

4

4

44

44

4

4

4

4
4

4

4

4

4

4

4
4

4

4

4

4
4

4 4

4

4

4

4
4

4

4

4

4

4

4

4

4
4

4
4

4

4

4
4

4

4

4

4

4
4

4

4

4

4

4
4

4

4
4

4

4

4

4

4

4
4

4

4

4

4

44

4 4

44

4 4 4

4

4

4

4

4

4
4

4

4

4

4
4

4

4

4
4

4

4
4

4
4

4
4

4

4

4

4
4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4
5

5
5

5

5

5 5

5 5

55
5

5

5

5

55
5

5

5 5

5

5

5

5

5

5

5

5

5

5

55

5

5

5
5

5 5

5

5

5

55

5

5

5

5
5

5

55

5

5

5
5

5

5

55
5

5
5

5

5
5

5 5

5

5

5

5

5

5

5

5

5

5

5

55

5
5

5

5

5 5
5

5

55

5

5

55

55

5

5 5

5

5
5 5

5

5

5

5

5
5

5

5

55

5

5

5

5

5

5

5

5

5 55
5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5
5 5

5

55
5

5

5 5

5

5

5

5

5
55

5

55

5
5

5

5

5

5

5

5

5

5
5

55

5

5
5

5

5

5

5 5
5

5

5 5

5

5

5

5

5 5

5

55
55

5

5

5

5

55

5

5

5

5
55

5
5

5

5

55
5

5

5
5

5

5 5
5

5
5
5

5

5

5

5

5

5

55

5
5

5

5

5

5

5

5

5

5

5
5

5

5

555

5

55

5

5 5

5

5

5

5

5

5

5

55

5

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

6

6 6
6

6
6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6
6

6

6

6 66

6

6

6

6 6

6

6
6

6

66

6
66

6

6

6

6

6

6

6

6
6

6
6

6

6

6

6
6

6

6

6 6

6

6

6

6

6

6

6

6

6

66
6

6

6
6

6

6

6

6

6

6 66
6

6
6

6

6

6

6

6

6

6

6

6 6

6

6

6

6

6

6

6
6

6
6

66

6

6

6

6

6

6

6

6

66

66

6

6

6

6

6

6

6

6

6

6

6

6

6 6
6

6
6

6 6

6

6

6

6
6

6

6 6
6

6

6

6

6
6 6

6
6

66 6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6
6

6
6

66

6

6

6

6

6

6

6 6 6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
66

6

6

6
6

6

6

6

6 6
6

6
6

66

6

6

6
6

6

6

6
6

6

777

7

7

77 7

77

7

7

77

7

7

7

7

7

7

7

7

7

7

7

7 7

7 7

7

7

77

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7
77

7

7

7

7

77

7

7

7
7

77
7

7
7 7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7 7

7

7

7

7
7

7

7

7
7 7

7

7
7

7

7
7

7

7

7

7
7

7
7

7

7

7
7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

77

7

7

7
7

7

7 7 7 7

7

7

7

7

7
7

7 7

7

7

7

7

7

7

7

7 7

7

7

7

7

77

7

7

7

7

7 7

7
77

7

7

7

7

7

7 7 7
7

7

7

7

7

7

7

7

7

7
7 7

7

7

7

7

77
7

7
7

7

7

7

7

7

7
7

7

7

7
7

77

7

7
7

7
7

7 7

77
7

7

7

7 7
7

7
7

7

77
7

7 7
77

7

7

7

7

7
7

7

7

7

7

77 7

7

7 7

7

7
7

7

7

7

7

7

8

888

8

8

8

8
8

8

8

8

88

8

8
8

8

8

88

8
8

8

8

8

8

8

8
8

8

8
8

8

8

8

8

8

8

8

8
8

8

8

8

8

8 8
88

8
8

8

8

88

8 8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

88 8 8

8
8

8

8

8

8

8

8

8

8

8

8

88
8

8
8

8

8

8

8

8
8

8

8

88

8

8

8

8

8

8

8

88
8

8
8

8

8

8
8 8

8

8

8

8
8

8

8

8

8

88 8 8

8
8

8
88

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8
8 8

8

8

8

8

8

8

8 8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8
8

8

8

8
8

8

8

8

8

8

8

8

8
8

8

8 8

8

8

8
8

8 8

8

8

8

8
88

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8 8

8

8

8

8 8

8
8

8

8

8

8 8

8

8

8

8

8

8

8

8

8

8

8

8

8

88

8

88
88

88

8

(d) R=100 %

Figure 6.1. 3000 MNIST points, with L = 450 and varyingR. Colors denote digit classes.

0 20 40 60 80 100
 0.5

 0.6

 0.7

 0.8

 0.9

 1

randomness, %

tr
us

tw
or

th
in

es
s

 2000
 4000
 6000
 8000
10000
12000
14000
16000
18000
20000

0 20 40 60 80 100
 0.5

 0.6

 0.7

 0.8

 0.9

 1

randomness, %

co
nt

in
ui

ty 2000
 4000
 6000
 8000
10000
12000
14000
16000
18000
20000

Figure 6.2. Effect of randomness level, for different N and L=200.

80

Dimension reduction with a sparse metric

0

0

0

0 0
0

0 0

0

0

00
0

0

00

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

0
0

0
0

0

0

0

0

0
0

0

00 0
0

0

0

0

0
0

0

0

0
0

0

0

0 0

0
00

0
0

00
0 0

0

0
0

0

0

0

0

0
0

0
0

0

00 0

0 0

0

0

0

0

0

0

0

0

0

0

0

00

0

0
0

0
0

0

0

0

0

0

0
0 0

0
00

0

0
0

0

00

0
0

0

0

0

0

0

0
0

00

0
0

0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

00

0

00
0 0

0

0

0

0

00

0

0

0

0

0

0

0

0
0

00

0

0

0

0

0
0

0

0
0

0

0

0

00
0

0

0

0

0 0
0

0

0

0

0

0

0

0

00
00

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
00

0

0

0

0

0

0

0

0

0

00

0
0

0

0 0

0

0

0

0

0

0
0

0

00

0

0

0

0

0

0
0

0 0

0

0

0

0

0

0

0

0

0

0

0

0
0

0
0

0 0

0

0

0
0

0
0

0

00

0
0

0

0

0

0

0

00

0

00
0

0
0

0

0

0

0

1

1
1 1

11
1

1

1

1
11

1

1
1

1

1
11 11

1
1

1

1
1

1

11

1

11

1

1
1

1
11

1
1

1
11

1
1

1

11

1

11

1
11

1

111
1

1

1
1

1

1 1
1

1
11

1

1
1

1
1

1

1

1

1

11

1

111
1

1
1

1

1
1

1

1

1

1
1 1

1

1
1

11
1

1

1
1 1 1

11
1

1

1

1

1
1 1

1

1

1
11

1

1
1 1

1

1
1

1

1

1
1

11
1

1
1

1

11 1
1

11 111
1 1

1

1
1

11

1
1

1

1

1

1

11

1

1
1

1 1
1

1 1
1

1

1

1

1 11
1

1
1 1

1 1

1 11 1
1

1

1

1
1

1
1

1
1

1
1

1

1

1
1

1
1 11 1

1
1

1
1

11
11

1

1

1 1

11

1 11

1
1

1

1
1

1
1

1 1
1

1

11

1

11 1

1
1

1
1
1

1

1
11

1

1
1

1 1

1
1

1
1
11

1

111
11

1

1
1

1
1

1
11

1
11

1 1
1

1
11

1 1
1

1
1 111

1
1

1

1

1
1

1 11

1

11
1

1
1

1

1

1

1

11
1

1
1

1

11 11 1

1

1
1

11
1

1
1

1 1

1

1

1 1

11 1

1 1
1 1

11 111 1
11
1

1
1

1 1

1
1

1
1 1

1
11

1

1

2

2
2

2

2

2 2

2
2

2

2

22

22

2
2

2

2

2

2

2
2

2

2

2
2

2

2

2

2
2

2

2

2

2

2
2

2

2

2

2 2

2
2

2

2

2
2

2

2
2

22
2

2

2

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2
2 2

2

2

22
2

2

2

2

2
2

2

2

2
2

2 22
2

2

2

2

22

2

2 2
2

2

2

22

2

2

22

2
2

2

2

2

2

22

2

2

2

2

2
2 2

2

2
2

2
2

2
2

2

2

2 2
2

2

2
2

2

2

2

2
2

2

2

2

2

2

22

2

2

22

22

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2 2

2

2
2

2

22

22

2
2

2

2

2
2

2

2

2

2

2

2

2
22

2

2

2

22

2

2

2

2

2 2
22

2

2

2
2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

22

2

2

2

2

22 2

2

2

2
2

2

2

2
2

2
2

2

2 22

2

2

2

22

2

2
2

2

2

2

2

3
3

33
3

3

33
33

3

3

3
3

3

3

3

33
3

33

33
3

3

3

3

3

3

3
3 33

3

3

3

3

3

3
33

3
3

3

3
3

3
33

3

3

3

3

3

3

3

3

3 3

3

33

3 3

3

3

3 3

3

3 333

3

3

3

3 3
3 3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3

3

33

3

3
33

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3 33
3

3

3

3

3

3
3

3

3

3

33

3

3

3
3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

3

3 3

3
3

3 3

3

3

3
33

3
3 3

3
3

3

3
3
3

3

3

3

3

3 3

3

3

3

3
3

3

3

3

3
3

3
3

3

3

3

3
3

3

3 3

33

3

3

3
3

3

3

3
3

3

3

3
3

3

3

3

3

33

3

3 3

3

3

3
3

3

3
33

3

3

3

3

3

3

3

3

3

3

3 33

3

3

3
3

3

3
3

3

3

33

3

3

33

3

3

3

3

3

3

3
3

3

3

3

3

3
3

3

3

3
33

3
3 3

3
3

33

3

3
33

3

3

3
3

3 3
33

3

3

3

3

3

3

3

3

3 33

3

3
3

3

4

4

4

4
4

4
4

4
4

4

4

4

4

4
4

4

4

4

44

4
4

4
44

4

4

4
4

4

4 44

4

4

4
4

4

4

4

4

4 4

4
44

4

4

4
4

4

4

44

4

4
44

4 4

44

4 4
4

4

4

4

4 4

4

4

4
44 4

4

4

4

4444
4

4
4
4

4

4 4

4

4

4

44
4

4

4

44

4

4

4

4

4
4

4
44

4

44

4

4

4

4

4

4

4
44

4

4

4

4

4
4

4

4
4

4

4

4
4

4
4

4
44

4
4

4

4
4

4

4

44
4

4

4

4

4
4

4

4
4

4
4

4
4

4

4

4

4

4

4

4
4

4

4

4

4

4

4
4

4

4

4 4

4

4

4

4

4 4 4

4

4

4

4

4

4
4

4

4

4

44
4

4
4

4

44

4

4

4 44

4

4
4

4
4
4

4

4
44

4

44

4

4

4

4

4

4

4

4

4

4
44 4

4

4

4

4

44
4

4

4 4 44 4

4
4

4

4
4 4

4

4

4

4

4
4

4

4

4
44

4 4
4

4
4

4

4 4
4

4

4

4

4

4

4

4

4
4

4

4
4 4 4

4

4

44

5

5

55

5

5
5

5

5

5
5 5

5

5

5

5

5

5

5

55

5

5

5

5

55

5

5

5
5 5

5

5

5
5

5

5
5

5

5

5

5

5 5

5

5

5
5

5

55

55

5
5

5

5

5

5

5

5
5

5
5

5 5

5
5

5

5

5

5

5

5

5
5

5

5 5

5
5

5 5
5

55
5

5

5
5

5
5

5555

55 5

5

5

5

5

5
5

5

5

5 5 5

5

5

5

5
5

5
5 5

5

5

5

5

5

5

5
5

5

5
5 5

55

5

5

5

5
55

5

5

5 5
5

5 5
555 5

5

5
5 5

5
5

5
5

5

5

55

5

5

5

5
5

5

5

5
5

5
5

5 5

5
5

5

5
5

5
5

5
5
5

55
5 5

5

5

55

5

5
5

5
5

5

5

5

5

5
5

5
5

5
55

5
5

5

5
5

55
5

5

5

5

5

55

5

5

5
5

5

5

5
5 5

5

55

5

5

5 55 5

5 5

5

5

5 55

5

5 5

5

5

55

5

55
5

5

5

5

5 5

5
5

5

5

6

6

6
6

6

6
6

6
6

6

6

6

6

6
6

6

6
6

6
6

6

6
66

6

6

6

6
6

6

6

6
6

6
66

6

6

6

6

6

6
6

66 6

6

6

6

6

6

6

6

66
6

6

6
6

6

6

6

6

6

6

6

6
6

6

6
6

6

6 6

6

66
6

6

6
66

6

6

6

6

6 6
6 6

6

6

66

6
6

6
66

6

66

6
6

6

6
6 6

6 66 6
6

6

6

6
6

6

6
6

6
6

66
6
6

6
6

66
6 6

6

6

6

6

66 6
6 6

6

6

6

6

6

6 6

6

6

6
6

6

6

6

6 6 6

6
6 66

6

6
6

66

6

66

6
6

6
6

66

6
6

6
6

66 6

6

6

6

6
6

6
6

6 66

6 6
6

66

6

6
6

6

6

66

6

6

6

6

6
6

6

6 6
6

6
6

6 6

6

6
66

6
6

6 6

6

6

6
6

6

6
6 66

6

66 6

6

6 6

66 6

6

6

6

6

6

6
6

6

6
6

6

66
6

6
6 6

6
6

6
6

6
6

6

6

6

6

66

6

6

66
6

66

777

7

7

7
77

7
7

7 777 7
7

7

7

7

7

7
77

7

7

7

7

7

7

7

7 7
7

7

777

7

7

7
7

7

7

7
7

7

7

7 7
7

7
77

7 77

7

7

7

7 77
7

7

77

7

7

7
77

7

7

7

7

7

7

7
7 7

7

7

7

77
7
7

7

7 7
7

7
7 7

7
7

7
7

7

7
7

7

7

7

7

7

7

7
7

7
7 7
7

7
7

7

7 77

7

7

7

7
7

7

7 77

7

7
7

77
7

7
7

7
7

7

7

7

7
7

7
7

7
77

7
7

7

77

7 7

77

77

77

7
7

7 7
77

7

7
77

7

7
77

77
7

7
7

7

7

7

7 7

7
77

7
7

7

7

7
77

7

7

7
7
7 7

7

7

7

7

7

7

7
7 777

7 7
7

7

7
7 7

7

7

7

77

7 77

7

7
77

7 7

7

7 7
7
7

7

7

7
7

7

7

7

7

7
7

7

7

7
7

7 77

7

7
7

7

7
77

7

7

77

7
7

777

7

7

7

7 7

7

7

7

77

7
8

8
8

8

8
8 8

8

8 8

8

8

8
8

8

8

8

88
8

8

8

8

8

8

8
8

8
8

8

8

8

8

8
8

8

8

8

8
8 88

8

8
8

8
8

8

88 8
8

8

8
8

8

8

8

8

8
8

8
8

8
8

8

8

8
8

8

8

8
8

8
8

8

88
8

8

8

8

8

88

8

8

8

8

8
8

8

8

8
8

8

8 8

88

8

8

8
8

88
8 8

8
8

8
8

8

8 8

8

8
8 8

8
8

8

8

8

8
8 88

8

8
8

8

8

8

8

8

8
8 8

8

8

8
8

8
88 8

8

8

8

8

8

8
88

8

8

8
8

8

8

8
8

8

88 8
8

8
88

8
8

8

8
8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

88

8 8

8

8 8
8

88

8

8

8
8

8

8
8

8

88
8

8

8

8

8

8

8
888

8 88
8

8

8
8

8

8
8

8
8

8
8

8

8
88

8

8

8
8

8

8

8

8 8

8
8

88

8

8
8

8

888

8
88

8

8 8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8
8

8

8 8

8

8

8

88

8

(a) L=3000 (full matrix)

0

0
0

0

0

0

0

0

0

0

00 0
0 00

0
00

0
0

0

0
00

0

0

0
0

0
0

0
0

0
0

0
0 0

0

0

0

00

0

0
0

0

0

00

0

00
0

0

0

0

0
0

0
00

0 0

00

0
0

0

000
0

0
0

0

0

00
0 00

0

0
0

0

0
0

0
0 00 0

0

0

0

0

0
0 0

0
0

0

0

00

0

0

0 0

0

0

0
0

0

0

0

0

00

0
0

0

0

0

0

0

0
0

00

0

0
0

0

0

0
0

0

0

0

0
0

0 0
0 0

0
0

0 0

0

0
0 0

0

0

0

0

0

0
0

0

0

0

0
00

0

0
00

0

0

0

0

0

0 0

0

0

0
0

0

0

0
00

0

0
0

0
0

0 0
0

0

0
0

0

0
00 00

0

0

0
0

0

000

0

00 0
0

0 0
0

0

0
0

0

0

0

00 0

0

0

0

0

0
0

0

00

0

0

0
0
0

0

0

0

0
0

0
0

0

0
0

0

0

0

0

0

0
00

0
0

0

0
0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0
0

0

0
0

0
0

0
0

0

0

0

0

0
0 0

00 0

0

0
0 0

0

0

0

1
1
111

1
1

1
1 1 1

1

1 1
1

1 1

1 11 1
1

1
1 1 1

1

11
1 1

1

1

1

11
1

1
1 1

1
11

1

1

1
11

111 1
1

1
1

1

11

1 1
1 1

1
1

11111
11

11
1

1
1

1

1 1
1
11

11
1

1

11
11

1 11
1

11
1

11 1
1

11 1 1
11

1

1
1

1 1
1 1

1
11

1

1
11

1
1

1
11

1
1

1
1

1
1 1 1

1
1

11 1
1

1
1

1
111

1
1

1
1 1

1
1 1

1
1

1

1
1

11

1
1 1

1

1

1

11
1

1
1

1

1

1
11

1 1
11

1
1

111

1

1

1

1 1

1

11

1

1
1

1

1
1

1 1 1 11
1

1

1

1

1

1
1

111
1

1 1
1

11
11 1

1 1

1

1
11

1
1

1

1

1
11

1 1

1
1

1

1 1

1
1

1 1
11

1

11 1111
1

1
1

1
1 1

1

1

11

1
1

1 1
11

1
1 1

1 1
11

1 1
1

1

1

1
1

11
1

1 1

1
1 1

1
1

1

11 1
1 11

1 1

1
1

1 1
1
11

11
11 1

1

1
1

11
11

1

1

1 1
1 11

11

1

11
1

1
1

1

1

1
1 1

1

11

11

1
1

1111

1

1

1
11

11 1
11

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2
2

2

2 2

2

2
2

2

2

2

2

2

2

2

2
2

2

2

22

2

2 2

2
2

2

2
2

2

2

2
22

2

2

2
2

2

2

2

2

2

2

2

2

2
2

2

2

222

2
2

2

22
2

2

2

2

2
2

2

2 2
2

2

2

2

2

2
2

2

2

2

22

2

2

22

2 2

2

2

2

2

2
2

2

2
2

2

2

2

2

2

2
2

2 2

2
2

22

2

2

2

2

2
2

2

2

2
2

2
2

2
2

2

2
2

2

22

2

2

2

2

2
2

2

2
2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2
2 2

2

2 2

2

2

2

2

2
2

2

22

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22 2 22

2

2

2

2

2

2

2

2

2

2

2

2
2 2

2

2

2

2

2

2

2
2

2

2

2

2
2

2

2

2

2

22

2

2

2

2

2

2

2

3
3

3

3
3

3 33

3

3
3

3
3

3

3

3
3

3

33

3

3
3

3
3

3

33

3

3

3

3

3

333

3

3

3

3

33 3
3

3
3

3 3
3

3

3

3

3 3

3
3

33

3

3

3 333 3
3

3

3
3

3

3
3

333 3

3

3

3 3

3

3

3

3

33

3

3

3

3

3

3
3

3
3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3 3

3

3

3
3

3

33

3
3

3

3

3

3
3 3

3

3

3 3
33

3

3 33

3

3

3

3

3

3

3

3

3

3 3
3

3 3

3

3
3

3

3

3

3

3

3

3

3

3333
3

3

3

3

3
3

3
3 3

3

3

3

3
3

3

3
3

3

3
3

3

3

3

3

3

3

3
3

3

3 3

3

3
3

3

3

3

3
3

3

3

3

333
3

3
3

3

3

3

3
3

33 3

3

3

3

3

3

3

3
3

3

3

3

3
3

3
3

3

33

3

3

3
3

33

3

3

3

3
3

33

3
3

3

3

3
33

3

3

3

3

3

3
3

3

3

3

3

3

3
3

3
3

3
3

33
3

3

3

3
3

3

3
3 3

3

3
3

3

3

3
33

3

3
3

3

3

3
33

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4
4 4

4

4

4

4

4

4

4

4

4

44

444
4
4

4

4

4 4

4

4
4 4

4

4

4
4

4

4

4
4 4

4
44 44

4

4
4

4

4

4

4

4

4 4
4

4

4
4

4

4

4

4 4

4

4

4

4

4
4

44

44

44

4

4

4 44

4

4

4
4

4

4

4

4

4

4

44

4
4

4
4
4

4

4

4

44
4

4
4

44

44

4

4

4
4 4

4 4

4

4

44

4

4

44

4

4

4

4

4

4

4

4
44

4

4

4
4

4

4

4

4
4

4

4
4

4

4
4 4

4

4
4
4

4
4

4

4

4
4

4

4

4

4

4 4

4

4

4

4

4

4 4
4

4

4
4

4

4

4
4

4
4

4

4

4

4 4

4

4
4

4

4

4
4

4

4

4

4

4
4

4

4

4 4
4

4

4

4

4

4
4

44

4

4
4

4

4

4
4

44

4
4

4

4

4
4

4

4

4

4
4

4

4

4 44
4

4

44
44

4

4

4

4

4

4
4

4

4

4

4
44 4

4

44

4

4
4

4 44

4

4

4
4

4

4

4

4

4

4
4 44

4

4 4

4
4

4 4

44

5
5

5

5

5

55
5

5

5
5

5

5

5

5
5

5

5

5 55

5

5

5

5

55

5

5

5

5
5

5

5
5

5
5

5

5

5

5

5 5

5

5

5
5 55

5

5
5

5

5

5 5
5

5

5
5

5
5 5

5
5

5
5

5
5

5

5

5

5

5
5

5 5

5

5

5

5

5

5

5

555

55

5
5

5

5

5
5

5

5

5

5

5

5
5 5

5

5

5
5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5 55

5

5
55

5
5 5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

55

5 5

5

5

5

5

5

5
55

5
5

5

5

5
5

5

55

5
5

5

55

5

5

5
5

5

55

5

5
5 5

5

5

5

5

5

55

5
5

5 5

5

5

5

5

5
5

5
5

5

5

5

5

5
55

5

5

5

5

5

5
5

5

5

5

5
5

5

5

5

5
5

5

5
5

5
5

5

55

5

5 5
5

5
5

5

5

5
555

55
5

5

5 5
5

5

6
6

6

6

6

6
6

6
6

6

6

6

6

6

6
6

66

6
6

6

6
6

6

6

6

6
6

6
6

6

66

6

6

6

6

6

6

6

6

6

6
6

6 6

6

6

6

6

6
6
6

6
6 6

6

66

6

6

6

6

6

6

6

6
6

6

66

6

6
6

6

66
6

6

6
6

6

66

6

6 6 6
6 6

6

6

66

66 6
66

6

6
6

6
6

6

6

6 6
6 66

6
6

6

6
6

6
6

6
6

6 666 6
6

6
6

66

6

6

6

6
6 6

6
6

6
6

6

6

6
6

6

6

6
6

6

6

6 66
6

6
6 6 6

6 6 66

6

6
6

6
6

6

6
6

6
6

6 6
66

66
6 6

66

66
6

6

6
66

6

6 6
6

6 6

6
666 6

6

6

6

6

6 66

6

6

6
6

6

6 6
6
6

6

6

6
6 6 66

6

6

6 6

6

6

6

6

6

66

66

6

6

6 6

6
6

6
66 66

6

6

6 6

6
6

6

6

6

6
6 6

6
66 6

6
6

6
6

6
6

66

6

6

66 6 6
66

6

6
6

7
77

7

7

7 7 7

7
7

7

7

77

7

7

7

7
7

7

7

7 7

7

7

7

7

7

7
7

7

7

7

7

7

7 7

7

7

7

7

7

7

7

7

7 7

7

7

7

7
7

7

7

7

7

7

7

7

7
7

7

7

7

7

7
7

7

7

7

7

7

7

7
7

7

7

7
7

7

7

7

7

77

7
7

7

7
7

7

7

7

7

7
7

7
7

7

7
7

7

7

7
7

7

7

7

7

7

7

7
7

7
7

7

7

7

7

7
7

7

7

7

7

77 77

7

7

777 7

7

77

7

7

7

7

7

7

7

7

7

7

7

7
7

7
7

77

7

7

7 7

7
7

7

7

7
7

7 7

7

7

77

7

7

7 7
7

7
7

7

7

7

7

7

7

7

7

7
7 7

7

7

7
7
7

77

7 7
7

7
7

7

7

7

7

7

7
7

7
7

7
7

77

7

7

7
7

7
7

7
7

77

7

7

7

7

7

7

7

77

7

77
7

7
7

7

7

77

7
7

7

7
7

7

7

7

7

7
7 7

7

7

7

7

7

7

7

7

7

7

7

7

7

77
7

7

7

7

7

7

7
7

7

7

7

7

8

8
8

8

8

8

8
8

8
8

8

8

8
8

8

8

8

88

8

8

8

8

8 8
8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8
8

8

8

8

88

8

8

8
8

8

8

8

8

8

8

88

8

8

8

8

8
8

8

88
8

8
8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

88

8

88

8
8

8

88

8
8

8

8

8

8

8

8
8

8

8

88

88 8
8

8

88

8

8

88

8

8

8 88

8

8
8

8

8

8 88 8
8

8

8

8

8

8

8

8
8

8

8

8

8

8

8 8

8

8
8

8

88

88

8

8
8

88

8

8 8

8

8

8

8

8

88
8

88 88

8

8

8

8

8

8

8

88
88

8

8
8

8

8

8

8

8

88

8
8

8
8

8

8

8

8
8 8

8

8

8 8

8

8

8

8

8

8

88
8

8

88 8

8

8

8
8

888

8

8

8
8

8
8

8

8

8

8

8

8

88

8

8
8

8

888

88

8

8
8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8
8

8

8

88
8

8

8

(b) L=2000

0

0

0 0

0

0

0

0

0

0

0 0
0

0
0

0

0

0

0

0
0 0

0

0
0

0

0

0
0

0

0

0
0

0

0

0
0

0

0

0

0

0

00
00

0
0

0

0

0

0

0
0

0

0
00

0

0

0
0

00
00

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0 0

0

0
0

0

0

0
0

0

0

0

0
0

0

0

00

0 0
0

0

00

0

0

0

0

0 0

0

0
00

0

0

0 0

00

0 0

0

0

0

00 0

0

0

0

0
0

0

0

0
0

0

0
0 0

0
0

0

0

0

0
0

0

0 0

0

0

0

0

0

0

0

0
0

0

0

0
0 0

0 0

00

0
00

0

0

0
00

0 0 0
0

0

0
0

0

0

0
0

0

0

0
0

0 0
0

0

0

0

0

0
0

00 00

0

0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0 0

0

0

0

0

0

0

00

0

0

0

00

0
0

0

0

0

0

0

0

0
00

0
0 0

0

0

0

0

0
0

0

0 0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

00
00

0

0 0

0

0

0

0

0 0

0

0

0
0

0

0
0

00

0
0

0

00

00

0

0

0
0

00

0
0

1

1
1 1

11 1
1

1
1

1

1
1

11 1
1

11 1
1

1

1
1

1
1

1

1
1

111

1

1

1 11

1
111 11

1
1

1

1 1

1
1 1

1 1

1
1

1

11

1
1

11
11 1 1 1 1

1

1
1

1 1
1

1

1
1

11
1

1
1

11
1

1

1 1

1
1

11
11

1
1 1

1
11

1

1 1
11 1 1

1

11
1

1
11

1
1

1 1

1
1
1

1

1
1 1 1

11 1
1

1

111
1 1

1
1

1

1

1
1

1

1

11
1 1

1

1
1

1 11 11
1

1
1

1
1

1 11

1

1

1

1
1

1 1
1

1

1
1

1 1 1
1
1

1
1 1

1
1

1

1
1

1
11

1 1
1

1

1
1

1

1

1
11

1
1

11 1

1

11

1
1

1
11

1
1

1 1

1 1
1 11 1

1

1

1

1 1 11 1
1

1
11

1
1

1 1

1
1

1

1
1 1

1
11

1
1

11 1
1 11 1

11 1
11

1

1 1

1

1 1
1

1
1

111
11

1
1 1

1
1

1

1

1 1

1 1
1

11

111 11

1

1 1
1

111 11 1
1

11
1

11

1 11 11

1

1

1

1 11 1
1

1

1
1

1
1 1

1
1

1
1 11 11

1

1

1

1
1 1

1 1
11

1 11 1 1 1

1

1

1

1 11 11
1 1

2

2
2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2
2

22

2

2
2

2

2

2

2

2
2

2 2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

22

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

22

2 2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2
22

2

22

2

2

2

2

2

2

2
2

2

2

2

2

22 2

2

2

22

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2
2

2
2

2

2

2

2

2

3

3

33
3

3

33

33

3

3

33
3

3

3

3

3
3 3

3

3
3

3

3

3
3

3
3

3

3

3

3

3

3
3
33

3

3

3

3
3

3

3

3
3

3
3

3

3

3

3

3

3

3

3

3
3

3

3
3

3

3 333 3

3

3

3
3

3

3

3

3

3
3 3

3
3

3

3

3
3

3

3

3

3 3

3

3
33

3

3

3

3

3

3

3

3

3

3 3

3
3

3 33

3

3

3

3

3 3

3

3

3

3

3

3 33

3

3

3

3
3 3

3
3

3

3

3
3

3

3
3

3

3
3

3

3
3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

33
3 3

3

3

33

3
3

3
3

3

3

3

3
3

3

3

3

3

3
3

3
3

3

3

3

3
3

3 3 3

3
3

3

3

3

3

3
3

33

3
3

3

3

3
3

3
3

3

3 3 3
3

3
3

3

3

3

3

3

3
3

3

3
3

3
3

33
3

3 3

33

3

3

3

3

3
3

3

3

3

3
3

3

3

3
3

3

3
3

3

3

3

3

3
3
3

3

3

3
3

3

3

3
3

3

3

3

3

3

3
3

3
3

3
3

3

3
3

3

3

3
3

3

3
3

3

3

3

3
3

3

3

3

33

3

3

3 3
3

3

3

3

3
33

3

3

3

3

4

4

4

4

4

4

4
4

4
4

4

4
4

4

4
4

4

4

44

4 4

44
4

4 4
4

4

4 4
4

4

4

444

4
4

4
4

4

4

4 4

4

4

4

44

4

4
44

4

4

4
4

4

4

44

4

4
4

4

4

4

4
4

4

4

4
4

4

4

4

4

4

4

444

4

4
4

44

4

4

44

4

4
4

4

44 44

4

4

4

4

4
4

4

4 4

4

44

4

4
4

4

4

4

4

44

4

4

4

4

4

4

4

4

4 4
4

4
4

4
4

4
4

4

4
44

4

4
4

4

4

4

4

4

4

4
44

4

4

4
4

4

44

4

4

4

4

4

4

4

4

4

4
4

4
4

4
44

4

4
4

4

4

4

4

4

4

4

4

4

4

4
4

4

4
4

4

4

4

4

4 4
4

4

4

4
4

4

4

4

4

4

4

44

4

4

4

4

4 4

4

4

4

4

4
4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4 4

4

4

4
4

4
4

4
4

4
4

4

4

44

4

4

4

4
4

4

4

4
4 4

4

4

44
4

4
4

4

4

44

4

4

4

4

4

4

4

4

4

4

44

4

4

4 4

5

5

55

5

5

5
5

5 5

5

5

5 5

5

5

5

5

5

5

5

5
5

5

5
5

5
5

5

5

5

5

5 5

5

5

5
5

5
5

5

5

5

5
5

55

5
5

5

5
5

5

5

5

5

5

5
5

5

5

5

5

55

5
5

5

5 5
5

5
5

5

5

5

5

5

5
5

5

5

55

5

5
5

55
5
5

5

5

5

5

5

5

55

5

5

5

5

55

5
5

5

5

5

5

5

5
5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5
5

5

5

5

5
5

5

5

5

5 5
5
5

55

5

5
5

5

5

5
5

5
5

5
5

5

5

5 5

55

5

5

5

5

5

5

5

5

5

55

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

5

5
5

5

5

5
5

5

5

5

5

5

55

5

5

5

5

5
5

5

55

5

5
5 5

5

5

5

5

55

5

5

5
5

5
5

5

5

5

5

5
5

5

5

5 55 5

5
5

5

5

5

55

5

5
5

5

5

5

5

5

5

5

5

55

55
5

5
5
5

5

66

6

6

6

6

6

6

6

6

6

66

6 6

6

6
6

6 6
6

6 6

6

6

6

6

6
6

6

6
6

6

6

6

6 6
6

6

6

6

6

6
66

6

6

6

6

6

6

6 6

6

6

66

6

6
6

6

6

6

6

6

6

6

6

6

66

6

6

66

66
6

66

6

6

6

6

6
6

66

6

6

6
6

66

6

6

6

6

66

6

6

6

6

6

6

6
6

6

6

6

6

6 6

6 6
6

6

6
6
6

6

6

6

66

6

6

6

6
6

6

6

6

6

6

6

6

6
6

6

6

6

6

6
6

6
6

6

6 6

6
6

6

6
6

6

6

6
6

66

6

6

6
6

6

6

6

6

6

6

6

6

66

6

6
6

6
6

6

66

6
6

6

6

6

6

6

6

6

6

6

66
6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6 6

6

6

6
6

6

6 6

6

6

6

6

6

6

6

6

6

66
6

6

6

6

6

6

6

6

6
6

6

6

6
6

6

6

6
6

6

6

6
6

6

66

6

66 6

6

6

6 6
6 6

6

6

66

6

6

6

6

66

6

6

6

77
7

7

7

7
77

77

7

7

7
7

7
7

7

7

7

7

7
7

7

7

7

7

7

7

7 7

7

7

7

7 7

7

7

7

77

7

7

7

7

7

7 7

7

7

7

77

7

7

7

7

7

7

7

7 77

7

7

7

7

7

7
7 7

7

7
7

7
7 7

7

7

7 7

7

7

7

7
7

7
7

7

7 7

7

7

7

7

777
7

7

7
7

7

7

7

7

7

7

7
7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7
7777

7 7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

77

77

7
7

7

7

7

7

77

7
7

7

7

7
7

7

7

7
7

77

7

7

7

7

7

7
7

7

7

7

7
7

7
7

77
7

7

7

7

7

7 7 7

7

7

7

7

7

7

7

7 7
7
7

7

7

77

77

7

7

7

7
77

7

7

7

7

7
77

77

7

7
7

7
7

7

7

7
77

7

7
7

7 7

7

7

7

7 7
77

7

7

7

7
7

7
7

7

7

7

7

7
7

77
7

7

7

7

7

7

7

7

7

7

7

7

8
8

8

8

8

8

8
8

8

8

8

8

8

8

8

88

8

8

8

88
8

8

8

8

8

8 8
8

8

8

8

8

8

8

8

8

8

8

8 8

8 8
8 88

8

8
8

8
8

8

8
8

8

8

8

8

8
8

8

8

8

8

8

8

8
8

8

8

8

8

8
8

8

8

888
88 8

8

8

8

8

8

8

8

8

8

88

8

8

8

8

8

88

88

8

8

8

8

8

8

8

8

88
8
8

8

8

8
8

88

8

8

8

88

8

8

8
8 8

8

8

8

8

8

8

8

8

8

8

88 8

8

8

8

8

8

8

8
8

8

8

8

8

8

8 8

8

8

8 8

8

8

8

8

8

8

8
88

8

8

8
8

8

8

8

8
8

8

88

8 8 88
8

8

8

8

8

8

8 8

8

8
8

88 8

8

8
8 8

8

8

8

8

8 8
8

8

8

88

8

8

88

8

8

8

8
8

8

8

8

88
8

8

8
8

8 8

8

8

8

888

8

8

8
8

8

8
8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8
8

8
8

8
8

8

8

8

8

8

8

8

8

8

88

8

8

8

8

8

8

8

8

8

8

8

8
8

8

(c) L=1000

0

0
0

0
0 0

0

0

0

0

0
0
0

0

0

0

0 00

0 0

0

0

0

0

0
00

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0
0

0

0

00

0

0

0

0

0

0

0

0
0

0

0

0

0

00

0
0

0

0

0

0
00

000

0

0

00

0

0

0

0

0
0

0
0

0

0

0

0

0

00

0

0

0

0

00

0

0

0
00

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0
00

0
0

0

0

0
0

0

0
0

0

0

0

0

0

0
0

00

0

00

0

0

0

0

0

0
0

0

0

0

0

0
0

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0
0

0
0

0

0

00

0

0

0 0

0

0

0

0

0

0

00

0

0
0

0

0

0

0

0 0
0

0

0

0 0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0 00
0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0
0

0
0

0

00 0

0

0

0

0

0

0
0

0

0
0 0

0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0
0

00

0

0

0
0

0 0

0

0

0

0 0
0

0

0
0

0

00

0

0

0

0

0

0

0

0
0

0

11

1
1 1

1

1

1

1

11

1

1
1

1

1
1

11

1

1

1

1

1

11 1

1

1

11

1

1

1

1

1

1

1

1

1

1

111

1

1
1 11
1

1

1

1

1

1
1

11

1

1

1

1
1

1
1

1
1 1

1
1

1
1

1
11 1

1

1
1

1

1 1

11

1

1

1

11 1 1
1

1

1

1
1

11 1

1

1

1

1

1

1
1

1
1

11

1

1
1

1

1
1

1
1

1
1
11
1

1

1
11

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

11

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1 1

1
1

1 1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

11
1

1

1

1

1

1

1
1

1

11

1 1

1

1

1 1

1
1

1

1
1

1

1

1 1

1

1

1

1

1
1

1

11

1

1

1

1

1

1 1

1

1

11

1

1

1

1
1

1 1

1

11

1

1
1

1

1

1 1

1

1

1

1

1

1
1

1
1 1

1

1

1

1

1

1

1

1

1

1

1 1

1

1
1

1

1

1

1

1
1

1
1

1

1

11

1

1

1
1 1

1
1

11

1 1

1

1

1

1

1

1

1

11 11

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1
1

1

1

1

1 1
1 1

1

1

1
1

1
11

1

1

2

2

2

2

2

2
2

2

2
2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2
2

2

2 2
2

2

2
2

2

2

2

2

2

2

2

2

2

22

2

2

2

22

2

2

2

2

2

2

2

2

2
2

2

2

2
2

2

2
2

2

2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2 2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2

2

2

2

2

2

2

2
2

2

2

2

2
22

22

2 2

2

2

2

2

2

2

2

2

2

2

22

2

2

22

2

2

2

2

2

2
2

2

2

2

2

2

22

2
2

22

2 2
2

2

2

2

2

2

22
2

2 2

2
22

2

2

22 2

2

2
2

2

2

2

2 2

2

2
2

2

2

2

22

2

2
2

2

2

2

2

2

2 2

2

2

2
2

2

2

2

2

22

2

2

2

2

2

2 2

2
22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2

22

2

2

2

2

2

2

2

3
3

33

3

3

3
3

3
3 3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

3

3
3

3

3
3 3

3

3 3

3

33

3

33 33

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3
3

3

3
3

3

3 3

3

3
3

3
3

3

3

3

3

3

3

3
3 3

3

3

33

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3 3

3
3

3

3
3

3 3

3

3

3

3

3 3

3

3

3
3

3

3

3

3

3

3

3

33 3

3

33

3

3
3

3

3

33

3

3

3

3

3

3

3

3
33

33

3

3

3

3
3 3

33

3

3

3
3

3

3

3

3
3

3

3 33

3

3

3

3
3

3

3

3
3

3

3

3

33
3

3

3

3

3
3

3

3

3
33

3

3

3
3

3

3

3

33

3
3

3
3

3

3

3

3

3

3

3
3

3

3

3
3

3

3

3

3
3

3

3

3

3

3
3

3
3

3

33

3

3

33

3

3

3

3

3

3

3

3

3

3
3
3

3

3

3

3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3
3

3 3
3

3

3

3

3

3 3

3
3

3

3

3

3 3

3

3

3
3

3

3 3
3

3 3
3 33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

4

4

4

4
4

4

4

4

4
4

4

4

4

4

4
4

4

4

44

4
4

44 4

4

4

4

4
4

4
44

4

44

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
44

4

4

4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4
4

4

4
4

4

4

4

4
4

4

4

44 4

4

4

4

4

4

4
44

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

44

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4
4

4

44

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4 4

4

44

4

4

4

4

4
4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4
4

4
4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4

44
4

4
4 4

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4
45

5

5

5

5

5
5

5

5

5 5

5

5
5

5

5

5
55

5 5
5

5

5

5

5

5 5

5

5 5

5

5 5

5

5
5

5

5
5

5

5

5 5
5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

55
5 5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5 5

5

5

5

5
5 5

5

5

5

5

5

5

5
5

5

5
5

5

5

5

5

5

5

55 5

5

5 555

5 5

5

5
5 55

5

55

5
5

5

5
5

5

5

5
5

5

5

5

5
5

5
5

5

5 5

5

5 5

5

5

5

5 55

5

5

5

5

5

5

55

5 5

5

5

55

5

5

5

5

5

5
5

5

5

55

55

5

5
5 55

5

5

5

5

5

5

5

5 55
5

5

5

5

5 5

5

5

5

5

5

5

5

5

5
5

5

5
5

5

5

5

5
5 5

5

5

5

5

5
5

5

5

55

5

5

55
5

5

5 5

5

5

55

5
5

5

5

5 5
5

55

5

5
5

5

5

5
5

5

5

5 5
5 5

5

5

5
55

5
5

6

6

6

6

6

66

6

6

6

6

6
6

6

6

6

6

6

6
6

6

6
6

6

6

6

6

6
6

6

6

6 6

6

6

6

6
6

6
6

6

6

6

66

6

6

6

6

6

6
6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

666
6

6

66
6

6

6

6

66

6

6 6

6

6
6

6

6

6
6

6
6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6
6

6

6

6
6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

66

6
6 6

6

6
6

66

6

6

6

6

6
6

6 6
666

6

6

6

6

6

6

6

6

66

6

6

66

6
6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6

66 6

6

6

6

6

6

6

6 6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6
6

6
6

6

6
6

6

6

6

66

6

6

6

6

6
66

6

6
6

6

6

6
6

66

6

6

6
6

6
6

6
6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7

7 7

7

7

7

7

7

7

7
7

7

7

7

7

7
7

77

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7
7 7

7

7

7

7

7

7

7

7

7

77

7

7

7

7

7

7
7

7

7

7
7

7

7

7

7

7
7

7

7

7

7

7

7

7
7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
777 7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
7

7
7

7
7

7
7

7

7

7

7
7

7

7

7

7

7

7
7

7

7

7

7

77

7

7

7

7

7

7

7

7

7
7 7 7

7

7

7

7
7

7

7

7

7

7

7

7

7

7

7
7

7

7

7

7
7

7
7

7

7

7
7

7

7
7
7

7

7

7

7

7

7

7

7

7

7

7

77

7

7

7

7
7

7

7

7

7
7

7

7

7

7

7

7

7

7

777

7

7

7

7

7

7

7
7
7

7

7

7

7
7

7
7
7

7

7

7

7

7

7

7

7

7

7

7

8

8
8

8

8 8
8

8

8 8

8

8

8

8

8

8

8

88

8

8

8

8

8

8

8

8 8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8
8

8
8 8

8

8

8

8

8

8

8

8

8

8

8

88

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8
8

8

8 8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8 8

8
888

8

8

88

8

8

8

8

8
88

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

88

8

8

8

8

8

88

8

8
8

8

8

8

8

8

8

88 8

8

8

8

8 8

8

8

8

8

8

8

8

8

8

8 8

8
8

8

8

8

8

8

8

88
8

8

8

8

8

8

8
8

8

8

8

8

8 8
8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

88 8

8

8

8
8

8

8

8

8

888

8

8

88

8

8
8

8

8

8

8

8
8

8

8

8

8

8
8

8

8

8
8 8

8

8

8

8

88

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

8

8

(d) L=300

Figure 6.3. 3000 points of MNIST data, with different average neighbor numbers. Ran-
domness level is 80 %.

300500 1000 2000 3000
 0.7

0.75

 0.8

0.85

 0.9

0.95

 1

avg #neighbors

tr
us

tw
or

th
in

es
s

 3000
 6000
12000
16000

300500 1000 2000 3000
 0.7

0.75

 0.8

0.85

 0.9

0.95

 1

avg #neighbors

co
nt

in
ui

ty

 3000
 6000
12000
16000

Figure 6.4. Effect of average number of neighbors, for different N , with R = 80 %.

81

7. Discussion

Although predominantly a dimension reduction study, this work contri-
buted also to two current topics of neural network research: deep net-
works and networks that use random projections. We also promoted a
neural network approach in dimension reduction for regression. DRR is
a subfield of dimension reduction research, where neural methods are to
our knowledge currently not used, although similar architectures have
been applied in other fields.
Deep bottleneck classifiers we studied in Chapter 5 complement cur-

rent research on deep autoencoders and deep supervised networks that
use quadratically scaling cost functions. Bottleneck networks are an at-
tractive tool for dimension reduction, since evaluation of their cost func-
tion scales linearly in the number of data points, and since they naturally
specify a mapping from data space to low-dimensional space. The cost
functions of many supervised DR methods scale quadratically or worse,
and many cannot determine locations for test points, or do so only approx-
imately.
In Chapter 4 we studied extreme learning machines (ELM). ELM is a

relatively new method, and initial hype, easily caused by novel ideas, is
not over yet. There is already a lot of research on ELM, but much of it
is incremental, combinatorial, or applied. ELMs are being trained with
evolutionary algorithms, collected into ensembles, used in fuzzy fashion,
refined by pruning hidden units – soon ELM will have been combined
with every single machine learning technique ever invented. More ana-
lytical ELM works are scarce, however. We presented a novel interpreta-
tion of ELM, pointing out its resemblance to kernel classifiers. We also
discussed some claims made about ELM, which we feel may have been
too strongly presented in earlier work. A point with practical consequen-
cies to ELM training is the role of variance of weights in the randomly
weighted hidden layer. We found the variance to affect classification re-
sults. We therefore emphasize that weight variance should be a tuning
parameter of ELM, and not an arbitrarily fixed constant as is the current
practice.
Chapters about bottleneck networks and extreme learning machines

presented studies, which are in some sense closed: they studied a prob-
lem, answered some questions, and were finished. While there is always
room for improvement and new views, no obvious follow-up problems
were left dangling. Chapters about model-based metrics and sparse di-
mension reduction, on the contrary, open some potential directions for
further study.
Cophenetic distances with Sammon mapping proved a viable tool for

visualizing hierarchical structures in Chapter 3. We presented an exam-

83

Discussion

ple of visualizing hierarchical clustering results on a small data set. The
point in this work was to use the visualization for presenting results in a
clustering problem, as an alternative to e.g. dendrograms or other tree-
shaped visualizations. Hierarchical approach, however, may be useful
also in problems were the main goal is not clustering, but simply presen-
tation of data. Data sets that are studied today can contain millions of
points, which is too much information to be shown at once. Arranging
data hierarchically enables controlling the level of detail, and zooming
into areas of interest. Hierarchical clustering is already possible on large
data sets. If large-data versions of Sammon mapping could be created,
for example by using sparse matrix technique from Chapter 6, cophenetic
Sammon mapping could become a new tool for visualizing large data sets.
Successful use of Sammon mapping with a clustering metric draws new

attention to distance-preserving DR methods. The modern trend is to em-
phasize local neighborhoods, since showing them accurately is thought to
give reliable view on data. But, if the view on the data has been built into
a metric, like in the case of cophenetic distances, then showing the metric
as accurately as possible becomes important. In such cases, distance-
preserving methods may outperform neighborhood-oriented methods. Al-
though many dimension reduction methods are combinations of a metric
and a cost function, the interplay of the two warrants further study.
Another metric we used with dimension reduction was derived from the

feature space of a neural network model. In this work we mainly used
the model-based metric for creating supervised variants of unsupervised
DR methods (Chapter 3). As demonstrated by visualizations of feature
spaces in Chapter 4, model-based metrics can also be used for studying
the model. One area where visualizations of feature spaces of neural net-
works might prove useful are deep networks. Understanding the effects
of pretraining and the nature of mappings that the layers learn is cur-
rently an important research topic. Layerwise visualizations of feature
spaces might shed new light to these questions.
The work on sparse dimension reduction in Chapter 6 is just started.

We showed that, contrary to the current belief, using sparse matrices for
creating fast dimension reduction methods is a feasible idea. This brings
up the intriguing possibility to apply sparse t-SNE in naturally sparse
data, abounding e.g. in social networks research. We already learned
that a proper balance between short-distance and long-distance links is
needed for good results, but we do not yet know how the proportion should
be chosen, and which other factors have an effect. From technical point of
view, the sparse version of t-SNE we used in this work is incomplete and
rather clumsy to use, and needs reworking. Developing sparse dimension
reduction further along the lines sketched in this work is a promising
direction for further research.

84

A. Data and parameters

A.1 Description of data sets

Table A.1. Binary classification data sets (from UCI repository)

name # samples # dims data types
Arcene [71] 200 10000 cont.
US votes 435 16 bin.
WDBC 569 30 cont.
Pima 768 8 cont.
Tic Tac Toe 958 27 categ.
Internet ads 2359 1558 cont., bin.

Table A.2. Multiclass classification (available from
http://www.cs.nyu.edu/˜roweis/data.html)

data set dimensions classes
MNIST 28x28 10
USPS 16x16 10
20 newsgroups 100 4

The MNIST data contains 70000 digit images of 28x28 pixels, with
roughly equal numbers of digits from each class. USPS contains hand-
written digits from US Postal Service. USPS data has 1100 16x16 pixel
images from each class. The newsgroups data consists of 16242 docu-
ments collected from internet newsgroups, with binary occurrence vec-
tors for 100 chosen words. The documents are classified into four broad
categories (comp.*, rec.*, sci.*, talk.*).
"UCI" as the source refers to the UCI Machine Learning Repository [56]
http://archive.ics.uci.edu/ml/ and "ExtYaleB", the Extended Yale Fa-
ce Database B, is available from
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html. The ta-
ble lists the dimensions as used in the experiments; in some cases the
original data was preprocessed (smaller images, dimensions with miss-
ing data dropped etc).
Two of the data sets are face images, one (Head Pose data) where the

task is predicting the horizontal and vertical pose of the head, and one
(Yale data) where the target variable is direction (azimuth and eleva-
tion) of illumination. Three other data sets are smaller dimensional. The

85

Data and parameters

Table A.3. Regression data sets

name targetsdata dim #train #test data source ref.

Head
Pose

2 64x64 349 349 isomap.stanford.edu/datasets.html

Yale
small

2 48x64 2419 1728 ExtYaleB [61]

Parkinson 2 16 4165 1710 UCI [176]

Crime 1 99 1396 598 UCI [147]

Concrete 1 8 500 50 UCI [211]

covariates are different measurements or statistics, and the prediction
tasks are two disease symptom scores (Parkinson data), number of violent
crimes per population (Crime data) and compressive strength (Concrete
data).

A.2 Data and parameters of experiments

Visualizing hierarchical clustering results (Sec. 3.2)

USPS, with 100 samples from each class. For more detail, see [132].

Studying ELM behavior (Chapter 4)

Arcene, US votes, WDBC, Pima, TicTacToe, Internet ads. Data are scaled
to range [−1, 1]. Each data set is divided into 10 parts. Nine parts are used
for training and one for testing, repeating this 10 times. Five different
deviations (σ ∈ {0.1, 0.325, 0.55, 0.775, 1}) are used. For more detail, see
[134].

Visualizing MLP features (Sec. 3.1.2)

Arcene, US votes, WDBC, Pima, TicTacToe, Internet ads.

Sparse t-SNE (Sec. 6.2

MNIST, USPS, Yale. We sampled random subsets from these data to cre-
ate matrices of varying sizes. For more detail, see [133].

Bottleneck regression networks (Sec. 5.4)

Head Pose, Yale, Parkinson, Crime, Concrete. Target variables are scaled
to [0,1]. The input data are centered at 0.
Initial weights for BRN are drawn from a zero-mean normal distribu-

tion with deviation 0.01. The cooling schedule of simulated annealing is
to set new temperature to 80 % of the old, and proposals for new weight
vectors are obtained by adding small normally distributed random num-
bers to all weight vector entries.
Numbers of hidden units are fixed to 50 for L1 and 10 for L3. We use

fixed values based on the finding that BRN is not very sensitive to number
of hidden units.
For more detail, see [131].

86

Data and parameters

Bottleneck classifiers (Sec. 5.3)

MNIST, USPS, 20 newsgroups.
The MNIST data set has a fixed division into training data (60000 sam-

ples) and test data (10000 samples), which was respected also in our ex-
periments. USPS was divided into training data of 9000 samples and test
data of 2000 samples. In 20 newsgroups data, we used 12000 randomly
chosen documents for training and 4200 for testing (for easier division
into training batches some documents were left out).
We used 1000-point batches for finetuning MNIST and USPS, and 800-

point batches for newsgroups. Part of training samples (10 %) was used
as validation data for choosing parameter values and for determining the
number of finetuning epochs with early stopping.
For more detail, see [130].

Table A.4. Parameter values used in method comparisons. BC L5 size gives the number
of hidden units in BC classifier layer.

MNIST USPS newsgroups
encoder layout 1000× 500× 250 400× 200× 100 100× 75× 50

BC L5 size 2D: 210, 30D: 130 2D: 10, 30D: 90 2D: 10, 30D: 170
t-SNE perplexity 2D: 10, 30D: 50 2D: 10, 30D: 130 2D: 110, 30D: 10
LMNN neighbors k = 3, m = 10 k = 3, m = 10 k = 3, m = 10

pretrain epochs 50 50 50

87

Bibliography

[1] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior
of distance metrics in high dimensional spaces. In Proc. of ICDT, volume
1973 of LNCS, pages 420–434, 2001.

[2] D. K. Agrafiotis. Stochastic proximity embedding. Journal of Computa-
tional Chemistry, 24(10):1215–1221, 2003.

[3] B. Alewijnse, J. Nerbonne, L. J. van der Veen, and F. Manni. A compu-
tational analysis of Gabon varieties. In Proc. of RANLP workshop on
computational phonology, pages 3–12, 2007.

[4] P. Baldi and K. Hornik. Neural networks and principal component anal-
ysis: Learning from examples without local minima. Neural Networks,
2:53–58, 1989.

[5] P. L. Bartlett. The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size of the
network. IEEE Transactions on Information Theory, 44(2):525–536, 1998.

[6] G. Baudat and F. Anouar. Generalized discriminant analysis using a ker-
nel approach. Neural Computation, 12:2385–2404, 2000.

[7] H.-U. Bauer and K. R. Pawelzik. Quantifying the neighborhood preserva-
tion of self-organizing feature maps. IEEE Transactions on Neural Net-
works, 3(4):570–579, 1992.

[8] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural Computation, 15:1373–1396, 2003.

[9] M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-
basedmanifold methods. Journal of Computer and System Sciences, 74:1289–
1308, 2008.

[10] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1–27, 2009.

[11] Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent, andM. Ouimet.
Learning eigenfunctions links spectral embedding and kernel PCA. Neural
Computation, 16:2197–2219, 2004.

[12] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise
training of deep networks. In Proc. of NIPS, volume 19, pages 153–160.
MIT Press, 2007.

[13] Y. Bengio and Y. LeCun. Scaling learning algorithms towards AI. In
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large-scale
kernel machines, Neural Information Processing Series, chapter 14, pages
321–359. MIT Press, 2007.

89

Data and parameters

[14] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, andM. Ouimet.
Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and spectral
clustering. In Proc. of NIPS, volume 16, 2004.

[15] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is "nearest
neighbor" meaningful? In Proc. of ICDT, volume 1540 of LNCS, pages
217–235, 1998.

[16] J. C. Bezdek and N. R. Pal. An index of topological preservation for feature
extraction. Pattern Recognition, 28(3):381–391, 1995.

[17] C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: The generative
topographic mapping. Neural Computation, 10(1):215–234, 1998.

[18] R. Boardman. Bubble trees: the visualization of hierarchical information
structures. In T. Turner and G. Szwillus, editors, Extended abstracts of
ACM conference on Human Factors in Computing Systems, pages 315–316.
ACM Press, USA, 2000.

[19] I. Borg and P. J. F. Groenen. Modern multidimensional scaling. Springer
Series in Statistics. Springer, 2nd edition, 2005.

[20] M. Brand. Charting a manifold. In Proc. of NIPS, volume 15, 2002.

[21] A. Buja, B. F. Logan, J. A. Reeds, and L. A. Shepp. Inequalities and
positive-definite functions arising from a problem inmultidimensional scal-
ing. The Annals of Statistics, 22(1):406–438, 1994.

[22] K. Bunte, B. Hammer, T. Villmann, M. Biehl, and A. Wismüller. Neighbor
embedding XOM for dimension reduction and visualization. Neurocom-
puting, 74(9):1340–1350, 2011.

[23] C. J. C. Burges. Geometric methods for feature extraction and dimen-
sional reduction. In L. Rokach and O. Maimon, editors, Data mining and
knowledge discovery handbook: A complete guide for practitioners and re-
searchers, chapter 1. Kluwer Academic Publishers, 2005.

[24] M. Á. Carreira-Perpiñán. A review of dimension reduction techniques.
Technical Report CS-96-09, University of Sheffield, UK, 1996.

[25] M. Á. Carreira-Perpiñán. The elastic embedding algorithm for dimension-
ality reduction. In Proc. of ICML, 2010.

[26] M. Chalmers. A linear iteration time layout algorithm for visualising
high-dimensional data. In Proc. of IEEE Visualization ’96, pages 127–132,
1996.

[27] C. L. Chang and R. C. T. Lee. A heuristic relaxation method for nonlinear
mapping in cluster analysis. IEEE Transactions on Systems, Man and
Cybernetics (part B), 3(2):197–200, 1973.

[28] L. Chen and A. Buja. Local multidimensional scaling for nonlinear di-
mension reduction, graph drawing, and proximity analysis. Journal of the
American Statistical Association, 104:209–219, 2009.

[29] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Cazzanti. Similarity-
based classification: Concepts and algorithms. Journal of Machine Learn-
ing Research, 10:747–776, 2009.

[30] Y. Cho and L. K. Saul. Kernel methods for deep learning. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Proc. of
NIPS, volume 22, pages 342–350, 2009.

[31] F. R. K. Chung. Spectral graph theory. Number 92 in CBMS Regional
Conference Series in Mathematics. American Mathematical Society, 1997.

90

Data and parameters

[32] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and
S. W. Zucker. Geometric diffusions as a tool for harmonic analysis and
structure definition of data: Diffusion maps. PNAS, 102(21):7426–7431,
2005.

[33] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20:273–297, 1995.

[34] T. M. Cover. Estimation by the nearest neighbor rule. IEEE Transactions
on Information Theory, 14(1):50–55, 1968.

[35] T. Cribbin. Visualising the structure of document search results: A com-
parison of graph theoretic approaches. Information Visualization, 9(2):83–
97, 2010.

[36] D. de Ridder and R. P. W. Duin. Sammon’s mapping using neural networks:
A comparison. Pattern Recognition Letters, 18:1307–1316, 1997.

[37] V. de Silva and J. Tenenbaum. Sparse multidimensional scaling using
landmark points. Technical report, Stanford University, 2004.

[38] V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear
dimensionality reduction. In Proc. of NIPS, 2003.

[39] P. Demartines and J. Hérault. Vector quantization and projection neural
network. In J. Mira, J. Cabestany, and A. G. Prieto, editors, Proc. of
IWANN, volume 686, pages 328–333, 1993.

[40] P. Demartines and J. Hérault. Curvilinear component analysis: a self-
organizing neural network for nonlinear mapping of data sets. IEEE
Transactions on Neural Networks, 8(1):148–154, 1997.

[41] D. DeMers and G. Cottrell. Non-linear dimensionality reduction. In Proc.
of NIPS, pages 580–587, 1993.

[42] E. W. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[43] C. Ding, X. He, and H. D. Simon. On the quivalence of nonnegative matrix
factorization and spectral clustering. In Proc. of SDM, pages 606–610,
2005.

[44] D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embed-
ding techniques for high-dimensional data. PNAS, 100(10):5591–5596,
2003.

[45] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, 2nd
edition, 2001.

[46] J. L. Elman and D. Zipser. Learning the hidden structure of speech. Jour-
nal of the Acoustic Society of America, 83(4):1615–1626, 1988.

[47] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Ben-
gio. Why does unsupervised pre-training help deep learning? Journal of
Machine Learning Research, 11:625–660, 2010.

[48] P. A. Estévez and A. M. Chong. Geodesic nonlinear mapping using the
neural gas network. In Proc. of IJCNN, pages 3287–3294, 2006.

[49] P. A. Estévez and C. J. Figueroa. Online data visualization using the
neural gas network. Neural Networks, 19:923–934, 2006.

[50] C. Faloutsos and K.-I. Lin. FastMap: a fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets. In Proc.
of ACM SIGMOD international conference on Management of data, pages
163–174, 1995.

91

Data and parameters

[51] A. Fischer and C. Igel. Empirical analysis of the divergence of Gibbs sam-
pling based learning algorithms for restricted Boltzmann machines. In
Proc. of ICANN, volume 6354 of LNCS, pages 208–217. Springer, Heidel-
berg, 2010.

[52] R. A. Fisher. The use of multiple measures in taxonomic problems. Annals
of Eugenics, 7:179–188, 1936.

[53] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,
5(6):345, 1962.

[54] I. K. Fodor. A survey of dimension reduction techniques. Technical Report
UCRL-ID-148494, Lawrence Livermore National Laboratory, USA, 2002.

[55] D. François, V. Wertz, and M. Verleysen. The concentration of fractional
distances. IEEE Transactions on Knowledge and Data Engineering, 19(7):873–
886, 2007.

[56] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[57] B. Frénay and M. Verleysen. Using SVMs with randomised feature spaces:
an extreme learning approach. In Proc. of ESANN, pages 315–320, 2010.

[58] K. Fukumizu, F. R. Bach, and M. I. Jordan. Kernel dimension reduction
in regression. The Annals of Statistics, 37(4):1871–1905, 2009.

[59] P. Gallinari, S. Thiria, F. Badran, and F. Fogelman-Soulie. On the rela-
tions between discriminant analysis and multilayer perceptrons. Neural
Networks, 4:349–360, 1991.

[60] X. Geng, D.-C. Zhan, and Z.-H. Zhou. Supervised nonlinear dimensional-
ity reduction for visualization and classification. IEEE Transactions on
Systems, Man and Cybernetics (part B), 35(6), 2005.

[61] A. S. Georghiades, P. N. Belhumeur, and D. Kriegman. From few to many:
Illumination cone models for face recognition under variable lighting and
pose. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(6):643–660, 2001.

[62] A. Globerson and S. Roweis. Metric learning by collapsing classes. In
Proc. of NIPS, volume 18, pages 451–458, Cambridge, MA, USA, 2005.
MIT Press.

[63] A. Globerson and S. Roweis. Visualizing pairwise similarity via semidefi-
nite programming. In Proc. of AISTATS, pages 139–146, 2007.

[64] A. Globerson and N. Tishby. Sufficient dimensionality reduction. Journal
of Machine Learning Research, 3:1307–1331, 2003.

[65] C. Godsil and G. Royle. Algebraic graph theory. Number 207 in Graduate
texts in mathematics. Springer, 2001.

[66] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood
components analysis. In Proc. of NIPS, volume 17, pages 513–520, 2005.

[67] G. H. Golub and C. F. Van Loan. Matrix computations. The Johns Hopkins
University Press, 3rd edition, 1996.

[68] G. J. Goodhill and T. J. Sejnowski. Quantifying neighbourhood preserva-
tion in topographic mappings. In Proc. of 3nd Joint Symposium on Neural
Computation, volume 6, pages 61–82, Pasadena, CA, USA, 1996. Califor-
nia Institute of Technology.

[69] J. C. Gower. Some distance properties of latent root and vector methods
used in multivariate analysis. Biometrika, 53(3 and 4):325–338, 1966.

92

Data and parameters

[70] J. Graef and I. Spence. Using distance information in the design of large
multidimensional scaling experiments. Psychological Bulletin, 86(1):60–
66, 1979.

[71] I. Guyon, S. R. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the
NIPS 2003 feature selection challenge. In Proc. of NIPS, 2004.

[72] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation
techniques. Journal of Intelligent Information Systems, 17(2/3):197–145,
2001.

[73] J. Ham, D. D. Lee, S. Mika, and B. Schölkopf. A kernel view of th dimen-
sionality reduction of manifolds. In Proc. of ICML, 2004.

[74] X. He, D. Cai, S. Yan, and H.-J. Zhang. Neighborhood preserving embed-
ding. In Proc. of ICCV, 2005.

[75] X. He and P. Niyogi. Locality preserving projections. In Proc. of NIPS,
2003.

[76] J. Hérault, C. Jausions-Picaud, and A. Guérin-Dugué. Curvilinear com-
ponent analysis for high-dimensional data representation: I. theoretical
aspects and practical use in the presence of noise. In Proc. of IWANN,
LNCS, pages 635–644, 1999.

[77] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest neigh-
bor in high dimensional spaces? In Proc. of VLDB (International Confer-
ence on Very Large Databases), 2000.

[78] G. Hinton and S. Roweis. Stochastic neighbor embedding. In Proc. of
NIPS, pages 857–864, 2003.

[79] G. E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Computation, 14:1771–1800, 2002.

[80] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527–1554, 2006.

[81] G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313:504–507, 2006.

[82] G.-B. Huang, L. Chen, and C.-K. Siew. Universal approximation using in-
cremental constructive feedforward networks with random hidden nodes.
IEEE Transactions on Neural Networks, 17(4):879–892, 2006.

[83] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: The-
ory and applications. Neurocomputing, 70:489–501, 2006.

[84] N. Intrator and S. Edelman. Learning low-dimensional representations
via the usage of multiple-class labels. Network: Computation in Neural
Systems, 8(3):259–281, 1997.

[85] T. Iwata, K. Saito, N. Ueda, S. Stromsten, T. L. Griffiths, and J. B. Tenen-
baum. Parametric embedding for class visualization. Neural Computa-
tion, 19:2536–2556, 2007.

[86] T. S. Jaakkola and D. Haussler. Exploiting generative models in discrimi-
native classifiers. In Proc. of NIPS, volume 11, 1998.

[87] D. W. Jacobs, D. Weinshall, and Y. Gdalyahu. Classification with non-
metric distances: Image retrieval and class representation. IEEE Trans-
actions on Pattern Analysis andMachine Intelligence, 22(6):583–600, 2000.

93

Data and parameters

[88] E. Jakkula, K. Rehnström, T. Varilo, O. P. Pietiläinen, T. Paunio, N. L.
Pedersen, U. deFaire, M.-R. Järvelin, J. Saharinen, N. Freimer, S. Ripatti,
S. Purcell, A. Collins, M. J. Daly, A. Palotie, and L. Peltonen. The genome-
wide patterns of variation expose significant substructure in a founder
population. The American Journal of Human Genetics, 83:787–794, 2008.

[89] N. Japkowicz, S. J. Hanson, and M. A. Gluck. Nonlinear autoassociation
is not equivalent of PCA. Neural Computation, 12:531–545, 2000.

[90] L. O. Jimenez and D. A. Landgrebe. Supervised classification in high-
dimensional space: Geometrical, statistical and asymptotical properties of
multivariate data. IEEE Transactions on Systems, Man and Cybernetics
(part C: Applications and reviews), 28(1):39–54, 1998.

[91] S. Kaski, J. Nikkilä, M. Oja, J. Venna, P. Törönen, and E. Castrén. Trust-
worthiness and metrics in visualizing similarity of gene expression. BMC
Bioinformatics, 4(48), 2003.

[92] S. Kaski, J. Sinkkonen, and A. Klami. Discriminative clustering. Neuro-
computing, 69:18–41, 2005.

[93] M. Kim and V. Pavlovic. Dimensionality reduction using covariance oper-
ator inverse regression. In Proc. of CVPR, 2008.

[94] M. Kim and V. Pavlovic. Covariance operator based dimensionality reduc-
tion with extension to semi-supervised learning. In Proc. of AISTATS,
volume 5 of JMLR: W&CP, pages 280–287, 2009.

[95] T. Kohonen. The self-organizing map. Neurocomputing, 21:1–6, 1998.

[96] R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete
structures. In Proc. of ICML, 2002.

[97] M. A. Kramer. Nonlinear principal component analysis using autoassocia-
tive neural networks. AIChE Journal, 37(2):233–243, 1991.

[98] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, 29:1–27, 1964.

[99] K. J. Kurtz. The divergent autoencoder (DIVA) model of category learning.
Psychonomic Bulletin & Review, 14(4):560–576, 2007.

[100] J. Lafferty and G. Lebanon. Information diffusion kernels. In Proc. of
NIPS, volume 15, 2002.

[101] S. Lafon and A. B. Lee. Diffusion maps and coarse-graining: A unified
framework for dimensionality reduction, graph partitioning, and data set
parameterization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(9):1393–1403, 2006.

[102] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strate-
gies for training deep neural networks. Journal of Machine Learning Re-
search, 10:1–40, 2009.

[103] N. Lawrence. Probabilistic non-linear principal component analysis with
Gaussian process latent variable models. Journal of Machine Learning
Research, 6:1783–1816, 2005.

[104] N. D. Lawrence and J. Quiñonero-Candela. Local distance preservation in
the GP-LVM through back constraints. In Proc. of ICML, pages 513–520,
2006.

[105] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

94

Data and parameters

[106] J. A. Lee, C. Archambeau, and M. Verleysen. Locally linear embedding
versus Isotop. In Proc. of ESANN, pages 527–534, 2003.

[107] J. A. Lee, A. Lendasse, and M. Verleysen. Nonlinear projection with curvi-
linear distances: Isomap versus curvilinear distance analysis. Neurocom-
puting, 57:49–76, 2004.

[108] J. A. Lee and M. Verleysen. Nonlinear projection with the Isotop method.
In Proc. of ICANN, volume 2415 of LNCS, pages 933–938, 2002.

[109] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer,
2007.

[110] J. A. Lee and M. Verleysen. Quality assessment of dimensionality reduc-
tion: Rank-based criteria. Neurocomputing, 72:1431–1443, 2009.

[111] J. A. Lee and M. Verleysen. Simbed: similarity-based embedding. In
C. Alippi, M. M. Polycarpou, C. Panayiotou, and G. Ellinas, editors, Proc.
of ICANN, volume 5769 of LNCS, pages 95–104. Springer, 2009.

[112] E. Levina and P. J. Bickel. Maximum likelihood estimation of intrinsic
dimension. In Proc. of NIPS, volume 17, pages 777–784, 2005.

[113] K.-C. Li. Sliced inverse regression for dimension reduction. Journal of the
American Statistical Association, 86(414):316–327, 1991.

[114] H.-T. Lin and C.-J. Lin. A study of sigmoid kernels for SVM and the train-
ing of non-PSD kernels by SMO-type methods. Unpublished manuscript,
available from http://www.csie.ntu.edu.tw/∼cjlin/tanh.pdf, 2003.

[115] D. Lowe and M. E. Tipping. NeuroScale: novel topographic feature ex-
traction using RBF networks. In Proc. of NIPS, volume 9, pages 543–549,
1997.

[116] P. C. Mahalanobis, R. C. Bose, and S. N. Roy. Normalisation of statistical
variates and the use of rectangular co-ordinates in the theory of sampling
distributions. Sankhyā, 3:1–40, 1937.

[117] J. Mao and A. K. Jain. Discriminant analysis neural networks. In Proc. of
Int. Conf. Neural Networks, volume 1, pages 300–305, 1993.

[118] J. Mao and A. K. Jain. Artificial neural networks for feature extraction
and multivariate data projection. IEEE Transactions on Neural Networks,
6(2):296–317, 1995.

[119] M. Martín-Merino and A. Muñoz. A new Sammon algorithm for sparse
data visualization. In Proc. of ICPR, 2004.

[120] P. McCullagh and J. A. Nelder. Generalized linear models, volume 37 of
Monographs on statistics and applied probability. Chapman & Hall, 2nd
edition, 1989.

[121] M. J. McGuffin and J.-M. Robert. Quantifying the space-efficiency of 2d
graphical representations of trees. Information Visualization, 9(2):115–
140, 2009.

[122] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse. OP-
ELM: Optimally pruned extreme learning machine. IEEE Transactions
on Neural Networks, 21(1):158–162, 2010.

[123] R. Min, D. A. Stanley, Z. Yuan, A. Bonner, and Z. Zhang. A deep non-linear
feature mapping for large-margin kNN classification. In Proc. of ICDM,
2009.

[124] R. Min, L. van der Maaten, Z. Yuan, A. Bonner, and Z. Zhang. Deep
supervised t-distributed embedding. In Proc. of ICML, 2010.

95

Data and parameters

[125] A. Morrison, G. Ross, and M. Chalmers. A hybrid layout algorithm for
sub-quadratic multidimensional scaling. In Proc. of IEEE Symposium on
Information Visualization, 2002.

[126] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis. Diffusion maps,
spectral clustering and the reaction coordinates of dynamical systems. Ap-
plied and Computational Harmonic Analysis, 21(1):5–30, 2006.

[127] J. Nilsson, F. Sha, and M. I. Jordan. Regression on manifolds using kernel
dimension reduction. In Proc. of ICML, 2007.

[128] A. Noack. An energy model for visual graph clustering. In Proc. of GD,
pages 425–436, 2003.

[129] V. Onclinx, V. Wertz, and M. Verleysen. Nonlinear data projection on
non-Euclidean manifolds with controlled trade-off between trustworthi-
ness and continuity. Neurocomputing, 72:1444–1454, 2009.

[130] E. Parviainen. Deep bottleneck classifiers in supervised dimension reduc-
tion. In Proc. of ICANN, volume 6354 of LNCS, pages 1–10. Springer,
2010.

[131] E. Parviainen. Dimension reduction for regression with bottleneck neural
networks. In C. Fyfe, P. Tino, D. Charles, C. Garcia-Osorio, and H. Yin,
editors, Proc. of IDEAL, volume 6283 of LNCS, pages 37–44. Springer,
2010.

[132] E. Parviainen. Reliability of dimension reduction visualizations of hierar-
chical structures. In Proc. of ESANN, pages 105–110. d-side publications,
2010.

[133] E. Parviainen. Effects of sparseness and randomness of pairwise distance
matrices on t-SNE results. In Proc. of ESANN, pages 357–362. d-side
publications, 2011.

[134] E. Parviainen, J. Riihimäki, Y. Miche, and A. Lendasse. Interpreting Ex-
treme Learning Machine as an approximation to an infinite neural net-
work. In Proc. of KDIR, pages 65–73. INSTICC, 2010.

[135] E. Parviainen and A. Vehtari. Features and metric from a classifier im-
prove visualizations with dimension reduction. In C. Alippi, M. M. Poly-
carpou, C. Panayiotou, and G. Ellinas, editors, Proc. of ICANN, volume
5769 of LNCS, pages 225–234. Springer, 2009.

[136] E. Parviainen and A. Vehtari. Explaining classification by finding response-
related subgroups in data. In Proc. of SNPD 2010 (ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing), pages 69–75. IEEE Computer Society,
2010.

[137] M. S. Park and J. Y. Choi. Theoretical analysis on feature extraction capa-
bility of class-augmented PCA. Pattern Recognition, 42:2353–2362, 2009.

[138] E. Pȩkalska and R. P. W. Duin. Learning with general proximity measures.
In Proc. of PRIS, 2006.

[139] J. Peltonen, J. Goldberger, and S. Kaski. Fast discriminative component
analysis for comparing examples. In Proc. of NIPS, 2006.

[140] J. Peltonen and S. Kaski. Discriminative components of data. IEEE
Transactions on Neural Networks, 16:68–83, 2005.

[141] J. Peltonen, A. Klami, and S. Kaski. Learning more accurate metrics for
self-organizing maps. In J. R. Dorronsoro, editor, Proc. of ICANN, volume
2415 of LNCS, pages 999–1004. Springer, 2002.

96

Data and parameters

[142] J. Peltonen, A. Klami, and S. Kaski. Improved learning of Riemannian
metrics for exploratory analysis. Neural Networks, 17:1087–1100, 2004.

[143] T. Pisanski and J. Shawe-Taylor. Characterizing graph drawings with
eigenvectors. Journal of Chemical Information and Computer Sciences,
40:567–571, 2000.

[144] M. Quist and G. Yona. Distributional scaling: An algorithm for structure-
preserving embedding of metric and nonmetric spaces. Journal of Machine
Learning Research, 5:399–430, 2004.

[145] M. Ranzato and M. Szummer. Semi-supervised learning of compact docu-
ment representations with deep networks. In Proc. of ICML, 2008.

[146] M. Rattray. A model-based distance for clustering. In Proc. of IJCNN,
volume 4, 2000.

[147] M. A. Redmond and A. Baveja. A data-driven software tool for enabling
cooperative information sharing among police departments. European
Journal of Operational Research, 141:660–678, 2002.

[148] S. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, 290:2323–2326, 2000.

[149] S. Roweis, L. K. Saul, and G. E. Hinton. Global coordination of local linear
models. In Proc. of NIPS, volume 14, 2002.

[150] D. E. Rumelhart, G. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Nature, 323:533–536, 1986.

[151] R. Salakhutdinov and G. Hinton. Learning a nonlinear embedding by
preserving class neighborhood structure. In Proc. of AISTATS, 2007.

[152] J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE
Transactions on Computers, C-18(5):401–409, May 1969.

[153] G. Sanguinetti. Dimensionality reduction of clustered data sets. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(3):1–6, Mar
2008.

[154] C. Santa Cruz and J. R. Dorronsoro. A nonlinear discriminant algorithm
for data projection and feature extraction. In C. von der Malsburg, W. von
Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Proc. of ICANN, volume
1112 of LNCS, pages 563–568. Springer, 1996.

[155] E. Saund. Dimensionality-reduction using connectionist networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(3):304–314,
1989.

[156] A. Schilling. Analyse von Verfahren zur Effizienzsteigerung von multidi-
mensionaler Skalierung. Bachelor’s thesis, Bauhaus-Universität Weimar,
Fakultät Medien, 2007.

[157] J. J. Schneider and S. Kirkpatrick. Stochastic optimization. Springer,
2006.

[158] B. Schölkopf, A. Smola, and K.-R. Müller. Kernel principal components
analysis. In Advances in kernel methods: support vector learning, pages
327–352. MIT Press, Cambridge, MA, USA, 1999.

[159] L. Scrucca. Dimension reduction for model-based clustering. Statistics
and Computing, 2009.

[160] M. Seeger. Covariance kernels from Bayesian generative models. In Proc.
of NIPS, volume 14, pages 905–912, Cambridge, MA, USA, 2002. MIT
Press.

97

Data and parameters

[161] F. Sha and L. K. Saul. Analysis and extension of spectral methods for
nonlinear dimensionality reduction. In Proc. of ICML, 2005.

[162] B. Shaw and T. Jebara. Minimum volume embedding. In Proc. of AIS-
TATS, 2007.

[163] B. Shaw and T. Jebara. Structure preserving embedding. In Proc. of
ICML, 2009.

[164] R. N. Shepard. The analysis of proximities: multidimensional scaling with
an unknown distance function. Psychometrika, 27(3):219–246, 1962.

[165] P. Smolensky. Information processing in dynamical systems: Foundations
of harmony theory. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel distributed processing, volume 1, chapter 6, pages 194–281. MIT
Press, Cambridge, USA, 1986.

[166] M. Strickert, P. Schneider, J. Keilwagen, T. Villmann, M. Biehl, and B. Ham-
mer. Discriminatory data mapping by matrix-based supervised learning
metrics. In L. Prevost, S. Marinai, and F. Schwenker, editors, Proc. of
Artificial Neural Networks in Pattern Recognition (ANNPR), volume 5064
of LNAI, pages 78–89. Springer, 2008.

[167] M. Strickert and U. Seiffert. Correlation-based data representation. In
M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors, Similarity-
based Clustering and its Application to Medicine and Biology, number
07131 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany.

[168] M. Sugiyama. Local Fisher discriminant analysis for supervised dimen-
sionality reduction. In Proc. of ICML, pages 905–912, 2006.

[169] Y. W. Teh and S. Roweis. Automatic alignment of local representations. In
Proc. of NIPS, volume 15, 2003.

[170] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290:2319–
2322, 2000.

[171] S. T. Teoh and K.-L. Ma. RINGS: A technique for visualizing large hierar-
chies. In S. G. Kobourov and M. T. Goodrich, editors, Proc. of GD, pages
268–275. Springer, 2002.

[172] M. E. Tipping. Deriving cluster analytic distance functions from Gaussian
mixture models. In D. Willshaw and A. Murray, editors, Proc. of ICANN,
pages 815–820. IEE Press, 1999.

[173] M. E. Tipping and C. M. Bishop. Probabilistic principal components anal-
ysis. Journal of the Royal Statistical Society B, 61:611–622, 1999.

[174] W. S. Torgerson. Multidimensional scaling: I. Theory and method. Psy-
chometrika, 17(4):401–419, 1952.

[175] W. S. Torgerson. Multidimensional scaling of similarity. Psychometrika,
30(4):379–393, 1965.

[176] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig. Accurate
telemonitoring of Parkinson’s disease progression by non-invasive speech
tests. IEEE Transactions on Biomedical Engineering, 2009.

[177] K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R. Müller. A
new discriminitive kernel from probabilistic models. Neural Computation,
14:2397–2414, 2002.

98

Data and parameters

[178] R. Urtasun and T. Darrell. Discriminative Gaussian process latent vari-
able model for classification. In Proc. of ICML, 2007.

[179] R. van der Heiden and F. C. A. Groen. The Box-Cox metric for nearest
neighbour classification improvement. Pattern Recognition, 30(2):273–
279, 1997.

[180] L. van der Maaten. Learning a parametric embedding by preserving local
structure. In Proc. of AISTATS, volume 5 of JMLR: W&CP, pages 384–
391, 2009.

[181] L. van der Maaten. Preserving local structure in Gaussian process latent
variable models. In Proceedings of Benelearn-09, pages 81–88, 2009.

[182] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9:2579–2605, 2008.

[183] L. van der Maaten, E. Postma, and H. van den Herik. Dimensionality
reduction: A comparative review. Technical Report TiCC-TR 2009-005,
Tilburg University, 2009.

[184] J. Venna and S. Kaski. Neighborhood preservation in nonlinear projec-
tion methods: An experimental study. In G. Dorffner, H. Bischof, and
K. Hornik, editors, Proc. of ICANN, volume 2130 of LNCS, pages 485–491,
2001.

[185] J. Venna and S. Kaski. Local multidimensional scaling with controlled
tradeoff between trustworthiness and continuity. In Proc. of WSOM, 2005.

[186] J. Venna and S. Kaski. Local multidimensional scaling. Neural Networks,
19:889–899, 2006.

[187] J. Venna and S. Kaski. Nonlinear dimensionality reduction as information
retrieval. In Proc. of AISTATS, 2007.

[188] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information re-
trieval perspective to nonlinear dimensionality reduction for data visual-
ization. Journal of Machine Learning Research, 11:451–490, 2010.

[189] J. J. Verbeek, S. Roweis, and N. Vlassis. Non-linear CCA and PCA by
alignment of local models. In Proc. of NIPS, volume 16, pages 297–304,
2004.

[190] J.-P. Vert, K. Tsuda, and B. Schölkopf. A primer on kernel methods. In
B. Schölkopf, K. Tsuda, and J.-P. Vert, editors, Kernel Methods in Compu-
tational Biology, chapter 2, pages 35–70. MIT Press, 2004.

[191] T. Villmann, R. Der, M. Herrmann, and T. M. Martinetz. Topology preser-
vation in self-organizing feature maps: Exact definition and measurement.
IEEE Transactions on Neural Networks, 8(2):256–266, 1997.

[192] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep net-
work with a local denoising criterion. Journal of Machine Learning Re-
search, 11:3371–3408, 2010.

[193] M. Vlachos, C. Domeniconi, D. Gunopulos, G. Kollios, and N. Koudas. Non-
linear dimensionality reduction techniques for classification and visual-
ization. In Proc. of the 8th ACM SIGKDD (International conference on
Knowledge discovery and data mining), pages 645–651. ACM, 2002.

[194] U. von Luxburg. A tutorial on spectral clustering. Statistics and Comput-
ing, 17:395–416, 2007.

99

Data and parameters

[195] Q. Wang and J. Li. Combining local and global information for nonlinear
dimensionality reduction. Neurocomputing, 72:2235–2241, 2009.

[196] S. Wang and R. Jin. An information geometry approach for distance metric
learning. In Proc. of AISTATS, pages 591–598, 2009.

[197] J. H. Ward. Hierarchical grouping to optimize an objective function. Jour-
nal of the American Statistical Association, 58(301):236–244, 1963.

[198] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small world’ net-
works. Nature, 393:440–442, 1998.

[199] A. R. Webb and D. Lowe. The optimised internal representation of multi-
layer classifier networks perfoms nonlinear discriminant analysis. Neural
Networks, 3:367–375, 1990.

[200] K. Q. Weinberger, B. D. Packer, and L. K. Saul. Nonlinear dimensionality
reduction by semidefinite programming and kernel matrix factorization.
In Proc. of AISTATS, 2005.

[201] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image man-
ifolds by semidefinite programming. International Journal of Computer
Vision, 70(1):77–90, 2006.

[202] K. Q. Weinberger and L. K. Saul. Distance metric learning for large
margin nearest neighbor classification. Journal of Machine Learning Re-
search, 10:207–244, Feb 2009.

[203] K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for non-
linear dimensionality reduction. In Proc. 21st International Conference on
Machine Learning, pages 839–846, 2004.

[204] J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised
embedding. In Proc. of ICML, 2008.

[205] C. K. I. Williams. Computation with infinite neural networks. Neural
Computation, 10:1203–1216, 1998.

[206] C. K. I. Williams andM. Seeger. The effect of the input density distribution
on kernel-based classifiers. In Proc. of ICML, 2000.

[207] M. P. Windham. Parameter modification for clustering criteria. Journal
of Classification, 4:191–214, 1987.

[208] L. Yang and R. Jin. Distance metric learning: a comprehensive survey.
Technical report, Michigan State University, USA, 2006.

[209] L. Yang, R. Jin, R. Sukthankar, and Y. Liu. An efficient algorithm for local
distance metric learning. Proc. of AAAI, pages 543–548, 2006.

[210] J. Ye, Z. Zhao, and H. Liu. Adaptive distance metric learning for clustering.
In Proc. of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 1–7, 2007.

[211] I.-C. Yeh. Modeling of strength of high performance concrete using artifi-
cial neural networks. Cement and Concrete Research, 28(12):1797–1808,
1998.

[212] Y.-R. Yeh, S.-Y. Huang, and Y.-J. Lee. Nonlinear dimension reduction with
kernel sliced inverse regression. IEEE Transactions on Knowledge and
Data Engineering, 21(11):1590–1603, 2009.

[213] G. Young and A. S. Householder. Discussion of a set of points in terms of
their mutual distances. Psychometrika, 3(1):19–22, 1938.

100

Data and parameters

[214] S. Yu, K. Yu, V. Tresp, H.-P. Kriegel, and M. Wu. Supervised probabilistic
principal components analysis. In Proc. of KDD, pages 464–473, 2006.

[215] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Proc.
of NIPS, 2004.

[216] Y. Zhang and D.-Y. Yeung. Heteroscedastic probabilistic linear discrimi-
nant analysis with semi-supervised extension. In Proc. of ECML PKDD,
volume 5782 of LNAI, pages 602–616, 2009.

[217] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimension re-
duction via local tangent space alignment. Technical Report CSE-02-019,
Pennsylvania State University, CSE, 2002.

[218] Q.-Y. Zhu, A. K. Qin, P. N. Suganthan, and G.-B. Huang. Evolutionary
extreme learning machine. Pattern Recognition, 38:1759–1763, 2005.

101

9HSTFMG*aedbbb+

ISBN 978-952-60-4312-8 (pdf)
ISBN 978-952-60-4311-1
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934

Aalto University
School of Science
Dept. of Biomedical Engineering and Computational Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 9

4
/2

011

Parviainen
Studies on dim

ension reduction and feature spaces
A

alto
 U

n
ive

rsity

Dept. of Biomedical Engineering and Computational Science

Studies on
dimension reduction
and feature spaces

Eli Parviainen

DOCTORAL
DISSERTATIONS

