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A B S T R A C T 

Dimensionality Reduction (DR) is attracting more attention these days as a result of the 
increasing need to handle huge amounts of data effectively. DR methods allow the number 
of initial features to be reduced considerably until a set of them is found that allows the 
original properties of the data to be kept. However, their use entails an inherent loss of 
quality that is likely to affect the understanding of the data, in terms of data analysis. This 
loss of quality could be determinant when selecting a DR method, because of the nature of 
each method. 

In this paper, we propose a methodology that allows different DR methods to be ana­
lyzed and compared as regards the loss of quality produced by them. This methodology 
makes use of the concept of preservation of geometry (quality assessment criteria) to 
assess the loss of quality. Experiments have been carried out by using the most well-known 
DR algorithms and quality assessment criteria, based on the literature. These experiments 
have been applied on 12 real-world datasets. 

Results obtained so far show that it is possible to establish a method to select the most 
appropriate DR method, in terms of minimum loss of quality. Experiments have also high­
lighted some interesting relationships between the quality assessment criteria. Finally, the 
methodology allows the appropriate choice of dimensionality for reducing data to be 
established, whilst giving rise to a minimum loss of quality. 

1. Introduction 

The use of Dimensionality Reduction (DR) in recent decades has been motivated by the difficulties in analyzing very high 
dimensional data. Historically, the main DR applications have been, amongst others, the elimination of data redundancy and 
noise, the reduction in the number of features for minimizing the computational cost in data pre-processing, the identifica­
tion of the most discriminative features and the reduction of features for visualization tasks. 

However, the use of DR entails an inherent loss of quality that is likely to affect the understanding of the data, in terms of 
data mining. That is, patterns discovered and extracted from a dimensionally reduced data will probably be a small part of 
the patterns extracted from the original data. Furthermore, the meaning of these patterns may be altered by this reduction. 



On the other hand, each DR algorithm has been created to achieve a specific aim, which defines its specific nature. It is 
also true that, depending on its specification, a DR algorithm can give rise to more or less loss of quality at the time of reduc­
ing the data. 

Different comparative studies comparing the different DR algorithms are currently being addressed in the literature 
[74,108,66]. Specifically, a set of quality assessment criteria, based on geometry-preservation concepts, have been used in 
several comparative research studies [77,37,119]. However, these studies are not sufficiently complete because of the lack 
of quality criteria and datasets used, as well as the fact that an exhaustive analysis of the geometry preservation is not carried 
out throughout the entire DR process (instead, it is carried out on a particular dimensionality, usually 2). 

In this paper we propose a methodology for comparing DR algorithms based on the concept of loss of quality. Thus, the 
loss of quality could be strongly linked to the preservation of geometry. That is, the greater the loss of quality, the less the 
preservation of geometry. Hence, this methodology uses 11 quality assessment criteria to make a comparative analysis. Fur­
thermore, this new approach attempts to address some of the shortcomings of the aforementioned studies. 

The rest of this paper is structured as follows: Section 2 explains the basic concepts of a DR process and classification of 
DR algorithms. Quality assessment measures to calculate the preservation of geometry of data, used in the proposed meth­
odology, are presented in Section 3. Previous comparative studies on DR, presented as related work, are detailed in Section 4. 
The proposed methodology for the comparison of DR methods is presented in Section 5. In Section 6 the environment for 
carrying out the experiments is described. The experimental results are also presented. Finally, Section 7 draws the main 
conclusions of the paper. 

2. Dimensionality reduction methods 

2.1. Basis 

Based on the nomenclature stated in Table 1, Dimensionality Reduction (DR) can be defined as follows: Xis made up of n 
datavectorsx,(¡ e 1,2,... , n) with dimensionality D. The DR techniques transform X with dimensionality D into a newdataset 
Y with a target dimensionality a" (where a" < D, often a" <c D), while retaining the original geometric structure of high-
dimensional data as much as possible [113]. The fundamental assumption that justifies the DR is that the original data actu­
ally lies, at least approximately, on a manifold (often nonlinear) of lower dimension than the original data space. The aim of 
DR is to find a representation of that manifold (a coordinate system) that will allow X to be projected on it and obtain V, that 
is a low-dimensional and compact representation of the data. 

Let d be the intrinsic dimensionality of the dataset. The intrinsic dimensionality of data is the minimum number of 
parameters needed to account for the observed properties of the data [29,62]. Ideally, the reduced representation Y should 
have a dimensionality that corresponds to the intrinsic dimensionality of the data. 

There are currently two canonical ways of dealing with data when carrying out a DR process. The first one does so in a 
linear way (Linear Dimensionality Reduction or LDR), while the second one is in a nonlinear way (Nonlinear Dimensionality 
Reduction or NLDR). LDR handles data containing linear dependencies. However, they are not powerful enough to deal with 
complex data. NLDR methods are assumed to be more powerful than linear ones, since the procedure to connect the latent 
variables (aka intrinsic dimensionality) to the observed ones (the dimensionality of the original space) may be much more 

Table 1 
Main nomenclature. 

Notation 
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md 
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Xik 

Yik 

Description 

Dimensionality of the high-dimensional data 
Intrinsic dimensionality of the high-dimensional data 
Total number of datapoints 
Topological manifold 
D-Dimensional Euclidean space where high-dimensional datapoints lie 

d-Dimensional Euclidean space (low-dimensional space using d dimensionality) 

the ith datapoint in *RD 

the ith datapoint in 9id 

Original dataset in *RD (X = x-¡,x2,... ,x„). 

Reduced dataset in 9id (Y = y-i,y-2,...,y„). 
Pairwise geodesic distance matrix in *RD 

Pairwise euclidean distance matrix in *RD 

Pairwise euclidean distance matrix in 9id 

Pairwise geodesic distance between x¡ and x¡ 
Pairwise euclidean distance between x¡ and x¡ 
Pairwise euclidean distance between y¡ and y¡ 
Number of neighbors of a datapoint 
Set of k nearest neighbors of x¡ 
Set of k nearest neighbors of y¡ 



complex than a simple matrix multiplication operation. Furthermore, the behavior of many data, such as a DNA Microarray, 
cannot be explained by means of LDR because it may contain essential multiple nonlinear relationships between attributes 
that cannot simply be interpreted by using linear models. This suggests the design of other techniques (NLDR methods) in 
order to highlight the true underlying structure of the data. These methods assume that data are generated in accordance 
with a nonlinear model [62]. 

2.2. Classification in DR 

Different taxonomies or classification of DR techniques, in terms of Feature Extraction (FE), have been proposed, van der 
Maaten et al. [74] carried out a thorough comparative review of the most important linear DR techniques, and twelve front-
ranked NLDR techniques. They divided the DR techniques into two criteria (Fig. 1). 

First of all, they took into consideration the convex and non-convex intrinsic nature of the techniques. Convex techniques 
optimize an objective function that does not contain any local optima (i.e., the solution space is convex [12]), whereas non-
convex techniques optimize objective functions that do contain local optima. The second division criterion is related to full 
or sparse spectral techniques. The first one carries out an eigendecomposition of a full matrix that captures the covariance 
between dimensions or the pairwise similarities between datapoints. The other case solves a sparse eigenproblem. 

John A. Lee et al. proposed a different taxonomy of DR-FE techniques [62] in accordance with procedures that reduce the 
features or dimensionality of the data by preserving the overall shape of the geometry, or by preserving the local properties 
and neighborhood information of the data. Thus, there is a possibility of distinguishing both the local and global quality. [18]. 

2.2.1. Distance preservation 
Historically, distance preservation (DP) has been the first criterion used to achieve a DR in a nonlinear way. From the 

point of view of an ideal case, the preservation of the pairwise distances measured in a dataset ensures that the low-dimen­
sional embedding inherits the main geometric properties of the data, such as the overall shape. However, in nonlinear cases 
distances cannot be perfectly preserved. To explain this, it is necessary to define a manifold. A topological manifold JW is a 
topological space that is locally Euclidean, meaning that around every point of JW there is a neighborhood that is topologically 
the same as the open unit ball in 3id [67]. 

DP methods can be divided into three groups as considered by Lee et al.[62]: 

Spatial distance algorithms as Multidimensional Scaling (MDS) [17], Sammon Mapping or Curvilinear Component 
Analysis. 
Geodesic distances and, specifically graph distances, were conceived to deal with some of the shortcomings in the spatial 
metrics (Fig. 3). The geodesic distance between two points is defined as the distance along the mathematical manifold 
where the data points are embedded. It can be partially approximated by constructing a neighborhood graph, and con­
sidering the distances between the points as paths in the graph (Fig. 2). Examples of algorithms using this distance are 
Isomap, Geodesic Nonlinear Mapping (GNLM) [23,61,59] and Curvilinear Distance Analysis (CDA) [58,59]. 
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Fig. 1. van der Maaten's Taxonomy (taken from [74]). 



Other distances There are also NLDR methods that rely on less geometrically intuitive ideas. These techniques are char­
acterized by the use of other distances. For instance, Kernel PCA [88], which is closely related to the spectral methods. 

2.2.2. Topology preservation 
Techniques that reduce the dimensionality of the data by preserving their topology (TP) rather than their pairwise dis­

tances are also called local preservation approaches. These techniques help to overcome the drawback of using the DP prin­
ciple: the manifold could be constrained with distance conditions and, in many situations, the embedding of a manifold 
requires some flexibility because some sub-regions must be locally stretched or shrunk to embed them into other dimen­
sional spaces. 

Most of these techniques work with a discrete mapping model, and the topology is also defined in a discrete way. This 
discrete representation of the topology is called a lattice [3], i.e., a set of points regularly and homogeneously spaced on a 
graph. Topology preservation (TP) techniques can be divided into two types according to the kind of topology they use. 
The first one deals with methods relying on a predefined lattice, i.e., the lattice is fixed in advance and cannot change after 
the DR process has begun. Self-Organizing Maps (SOM's) [48] and Generative Topographic Mapping (GTM) [9] are well-
known as predefined lattice methods. The second group contains methods working with a data-driven lattice. This concept 
means that the shape of the lattice can be modified or entirely built while the methods are running. Locally linear embed­
ding, Laplacian eigenmaps and Isotop [57] are in this category. As we will see in future sections, maybe working with ranks is 
the best and most reliable criterion. 

2.3. Methods 

Once the possible classifications of DR algorithms are presented, it is interesting to highlight those algorithms that are 
most used in the literature. Table 2 presents each one, with its references in the literature as well as its preservation criterion 
(DP, TP or other). These are also the DR algorithms used in our experiments (described in Section 6). 

3. Quality assessment measures for DR 

There are many different quality assessment measures for evaluating the performance of the DR algorithms. Historically, 
most of the approaches have focused on evaluating the local-neighborhood-preservation and the overall-structure-holding 
performance of the DR methods. In this section the most used measures in the literature are classified (using global or local 
preservation criteria) and described (see Table 3). Firstly, local-based approaches are presented. Secondly, global-based ap­
proaches are explained and finally, several approaches based on different criteria are described. 

Before explaining the different approaches for quality assessment, it is very important to highlight a basic concept to bet­
ter understand the following measures. 

Multidimensional scaling. Multidimensional scaling (MDS) is a statistical method for fitting a set of points in a space so that 
the distances between points correspond as closely as possible to a given set of dissimilarities between a set of objects. 
Developed primarily by psychometricians and statisticians, MDS is widely used in a variety of disciplines for visualization 
and DR. The literature on MDS includes books [10,17,25] and book chapters ([24, chapter 5]; [53, chapter 5]; [76, chapter 
14]; and [91, Section 5.5]). The method devised by Torgerson [104] and Gower [36], called classic MDS and principal coor­
dinate analysis, could be formulated as an optimization problem with an objective function whose minimum value is called 
the stress criterion. 

Later, Kruskal [51,52] defined MDS in terms of the minimization of this stress criterion, which is simply a measure of the 
lack of fit between dissimilarities S and fitted distances f. In the simplest case, stress is a residual sum of the squares: 

StressD(yu...,yn)=( ] T (Sy - ||£s||)
2) (1) 

\Mj=l...n / 

where the outer square root provides greater spread to small values. For a given S, MDS minimizes Stress over all different 
configurations (y1 ; . . . ,yn)

T, thought of as n x D-dimensional hypervectors of unknown parameters. The minimization is 
carried out by gradient descent applied to StressD, viewed as a function on $VD. 

Fig. 2. This dataset consists of a list of 3-dimensional points. It is, a two-dimensional manifold embedded into a three-dimensional space (taken from [62]). 
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Fig. 3. Left: when performing an unfolding process, the appearance of short circuit induced by the Euclidean distance is likely. Right: the benefits of the 
geodesic distance. The two points are not neighbors as they are far away in accordance with the geodesic distance. 

Table 2 
Most used DR algorithms in the literature, listed chronologically. 

Year DR algorithm Reference Criterion 

1901 
1969 
1997 
1998 
2000 
2000 
2001 
2001 
2004 
2006 
2008 

Principal Component Analysis (PCA) 
Sammon Mapping (SM) 
Curvilinear Component Analysis (CCA) 
Kernel PCA (KPCA) 
Isomap 
Locally Linear Embedding (LLE) 
Linear Discriminant Analysis (LDA) 
Laplacian Eigenmaps (LE) 
Maximum Variance Unfolding (MVU) 
Diffusion Maps (DM) 
r-Stochastic Neighbor Embedding (t-SNE) 

[44,41] 
[86[ 
[201 
[88,89] 
[103,18] 
[85,87] 
[22,38,29] 
[5,6] 
[114,117,116] 
[80,56) 
[72] 

Other 
DP 
DP 
DP 
DP 
TP 
Other 
TP 
DP 
TP 
TP 

Table 3 
Summary of methods for evaluating the quality of DR algorithms, listed chronologically. 

Year Name of the measure Criterion Reference 

1962 Sheppard Diagram (SD) 
1964 Kruskal Stress Measure (S) 
1969 Sammon Stress (Ss) 
1988 Spearman's Rho (SB) 
1992 Topological Product (Tn-) 
1997 Topological Function (Tf) 
2000 Residual Variance {Rv) 
2000 Konig's Measure (JCM) 
2001 Trustworthiness & Continuity (T&C) 
2003 Classification error rate 
2006 Local Continuity Meta-Criterion (0_k) 
2006 Agreement Rate (AB)/Corrected Agreement Rate (CAB) 
2007 Mean Relative Rank Errors (MRRE) 
2009 Procrustes Measure (PM)/Modified Procrustes Measure {PMC) 
2009 Co-ranking Matrix (OJ 
2011 Global Measure (0_y) 
2011 The Relative Error (i?£) 
2012 Normalization independent embedding quality assessment (NIEQA) 

Global 
Global 
Global 
Local 
Local 
Local 
Global 
Local 
Local 
classification error 
Local 
Local 
Local 
Local 
Local 
Local and 
Global 

global 

Local/global/local&global 

[93,94] 
[51,52] 
[86] 
[98] 
[4] 
[111] 
[103] 
[49] 
[107] 
[87,114,106] 
[13,14] 
[2] 
[62,65,64] 
[31] 
[65,63] 
[77] 
[37] 
[119] 

3.1. Local-neighborhood-preservation approaches 

Spearman's Rho Siegel and Castellan presented one of the first measures to estimate the topology preservation (TP) after a 
DR process, Spearman's rho(SR) [98]. This measure estimates the correlation of rank order data. That is, it tries to assess how 
well the corresponding projection preserves the order of pairwise distances between data-points in high-dimensional space. 
In order to compute the SR, the following equation is used 

6£li (*(«')-W (2) 

where z(i),i = 1,1 is the different rank (order numbers) of pairwise distances in the original space, sorted in ascending order. 
z{i), i = 1, T is the same for the output space. T is the total number of distances to be compared ( I = n(n - l)/2). The interval 
is SR e [-1,1], where 1 means a perfect preservation. SR is often used for estimating the TP with a view to reducing dimen-



sionality [8,34,50,7]. Karbauskaite and Dzemyda [45] successfully demonstrated that SR can be used to analize the TP when 
visualizing the data through the embeddings generated by the LLE algorithm. 

In contrast to MDS, that only focuses on fitting the distances from S to f (the order of these distances do not matter), the SR 

measure also takes into account the rank of pairwise distances in S and f for the quality assessment. 
Topological Product. The following attempts are found in the particular case of SOM. In this sense, Bauer and Pawelzik pro­

posed the topographic product (TPr) [4]. TPr is one of the oldest measures that quantifies the TP features of the SOM, and it is a 
measure for the preservation of distances within the local neighborhoods. Let Q] (¡,j) be the distance between point i in SRD 

and its jth nearest neighbor as measured by distance orderings of their images in SRd, divided by the distance between point i 
in SRD and its jth nearest neighbor as measured by distance orderings in SRD. Q2 (i, j) gives analogous information where i and j 
are points in SRd. The Qjs are then combined to yield a single number Tpr, the topological product, which defines the quality of 
the mapping: 

^ = n ( n ^ y E D o g ( n ^ 1 Q 1 f e , P ) Q 2 f e , P ) ) * (3) 

The result of the Tpr indicates whether the size of the map is appropriate to fit into the dataset. Tpr = 0 means a perfectly 
order-preserving map. 

Topological Function. Five years later Villmann et al. presented the topological function (7>, 1997) [110]. The 7> was one of 
the simplest TP measures in SOM. 7> is based in the Delaunay triangulation graph D of the weight vectors. These vectors w, 
and w, were defined as being adjacent on the manifold V, if their receptive fields are adjacent. Thus, the adjacency of 
these receptive fields can be approximated by computing C (the connectivity matrix) of the induced Delaunay triangulation 
graph D: 

1. Given a data sample, find its first best matching unit i and second best matching unit j . 
2. Create a synaptic link between neurons i and j , i.e. set C¡¡ = 1. 
3. Go back to step 1 and repeat for all datasamples. 

If the number of weight vectors is "dense" enough on the manifold V, then D represents a perfect TP mapping of V that also 
preserves the paths on V. Villmann et al. demonstrated that the 7> presents reliable results only for almost linear datasets 
[111]. 

Konig's Measure. Kónig. A developed a TP measure, the Kónig's measure (KM) [49]. KM was used to estimate the local pres­
ervation of the maps, obtained when using self-organizing neural networks. It is also based on the analysis of rank order in 
the input and output spaces. The KM is calculated as follows: 

*« = ¿¿J>. (4) 
KM e [0,1], where 1 means a perfect preservation. KM¡j represents the TP between point i and j , and k-¡ is the neighborhood 
value. 

Trustworthiness & Continuity. Venna and Kaski proposed a method which assesses two different concepts, trustworthiness 
and continuity (T&C) [107]. It is based on the exchange of indices of neighboring samples in D and d (by using the pairwise 
Euclidean distances), respectively. The T&C criterion involves two evaluations, the trustworthiness and the continuity mea­
sure, defined, respectively, as: 

MT = 1 -nk ( 2n-3 /< - l )¿ £ W-O" «0 (5) 

Mr 
nk(2n-3k- 1) . , . „ ,,,„ ,. T)E E «u)-fc) (6) 

where feis the size of the neighborhood, r(i,j) and r(¡,j) are the rank of x¡ and y¡ in the ordering according to the distance from 
x¡(y¡) in the original (representational) space. Uk(i) and Vk{i) are the set of those data samples that are in k of x¡(y¡) in the 
representational (original) space. As regards the meaning of MT and Mc, the former measures the degree of trustworthiness 
that data points which were originally farther away enter the neighborhood of a sample in the embeddings. The latter eval­
uates the degree of continuity that data points that are originally in the neighborhood are pushed farther away in data rep­
resentations. Therefore, the T&C measure is defined as: 

QT = xMT + (1 - a)Mc (7) 

where a e [0,1] is the compromise parameter. The trade-off between the two terms, tunable by a parameter a, governs the 
trade-off between trustworthiness and continuity. A properly selected a value, can reflect the consistency between the local 



neighborhoods of the original data and the corresponding ones in the embeddings calculated by the NLDR method. The inter­
val of Q_T e [0,1] which are the higher values means a good preservation of trustworthiness and continuity. 

Local Continuity Meta-Criterion. There are also several methods that assess the performance of the DR algorithms by 
checking the degree of overlap between the neighboring sets of a data sample and of their corresponding embedding. This 
is the case of the Local Continuity Meta-Criterion (Q_k) [13,14], presented by Chen and Buja. The Q_k can be defined as: 

where k is the pre-specified size of the neighborhood, fjí(¡) is the index set of x\s k points and S^(i') is the index set of y\s k 
points. If the overlap between two k neighboring sets of the original and representational sets is computing, the Q_k gives a 
general measurement for the local faithfulness of the computed embeddings. The interval of Q_k e [0,1], whose values next to 
1 mean a high neighborhood overlap between the two dimensional spaces, and next to 0 values the opposite. 

In contrast to TPr, which attempts to measure the distance preservation (DP) between the local neighbors, the Q_k measure 
focuses on comparing the identities of these local neighbors. 

Agreement Rate/Corrected Agreement Rate. The agreement rate (AR} originally called 'rate of agreement in local structure') 
technique was presented by Akkucuk and Carroll [2]. This method is very similar to Q_k, and RAND or corrected RAND index 
[84,42]. AR was originally developed for comparing embeddings of sets of objects in [1]. It works as follows: it takes two con­
figuration of points X and Y. For each embedding, AR calculates the distances between each pair of datapoints, this give us S 
and f. For each datapoint, it calculates its neighborhood in both configurations, producing Xik and Yik. Finally, it attempts to 
compute the percentage of overlapping datapoints in the neighborhood of each point, for X and Y. Here, the order is not 
important. Let us consider u¡ as the number of overlapping points in both Xik and Y\k, for datapoint i. Therefore, the AR is 

1=1 

where an AR value equal to 1 means a perfect preservation. The authors also suggested another quality criterion called the 
corrected agreement rate (CAR). This method computes anAR, by randomly rearranging the indices of datapoints in Y. France 
and Carroll also proposed a method in [27], where they combined the use of theAR and RAND index in order to assess DR 
methods. 

Mean Relative Rank Errors Lee and Verleysen developed a quality assessment measure, the mean relative rank errors 
(MRRE) [62,65,64]. It is based on ranks of pairwise Euclidean distances within local neighborhoods. In 2009, Karbauskaite 
et al. analyzed the efficiency of MRRE when reducing the dimensionality using LLE [46]. The MRRE criterion is based on a 
very similar principle to that of the T&C, but it includes two elements defined as 

WT = 1 

Wr 

^fy\r(i,J)-n,J)\ (10) 
H^,_4n, r{i,j) l ' ¡=ljeUt(i) 

1 y y |r(U)-f(ij)| 
H»f-4- r(li) ( > 

¡=ljeVt(i) 

where k is the size of the neighborhood and Eq. 12 is the normalizing factor. The MRRE criterion is Eq. 13 where ¡i e [0,1] is 
the compromise parameter. The main difference between the MRRE and the T&C is that the first one considers all of the k 
samples in the representational (original) space, and the latter focuses on the k of the samples in the representational (ori­
ginal) space but not in the original (representational) space. Although we are talking about subtle differences between them, 
they are significant enough to be considered. Hk is a normalizing factor. The interval of Q_M e [0,1], whose values near to 0 
will indicate a small rank error in the final embedding, are result of the error-based nature of MRRE. 

H* = n¿i^±IÍ (12) 
¡=i 

QM = PWT + (\-P)WC (13) 

In contrast to SR, which focuses on assesing how well the corresponding low-dimensional projection preserves the order 
of pairwise distances between the high-dimensional data points converted to ranks, the QM measure evaluates (using an er­
ror value) that the order of Xik and Yik is the same. 

Procrustes Measure/Modified Procrustes Measure. The Procrustes analysis [96,97,90] has been widely used for the study of 
the distribution of a set of shapes. Based on this concept, Goldberg and Ritov [31] developed the Procrustes measure (PM). PM 
allows the isometric embeddings to be compared. The method can be described as follows: using the procrustes analysis, the 
aim is to find a rigid motion (a translation and a rotation), after whichXik best when it coincides with Yik (for i = 1 to n). Once 
the transformation has been computed, the local similarity for the i-th element is calculated as 



LsMiarityiXk, Yik) = ¿ | |X i , - OYij - 3\\2
2 (14) 

j=l 

ais the selected rotation matrix and 3 the translation vector (||.. .||2 indicates the l 2 norm for a vector). To finish, the PM value 
is obtained by 

PM = 1 /n¿L s i m i t o %(X¡ t , Yik)/ \\XikBkfF (15) 
¡=i 

1 T Bk = Ik - j{qkq
l
k (16) 

where Ik represents the identity matrix of size k x k, qk a k dimensional column vector of ones, and ||.. .||f indicates the Frobe-
nius norm for a matrix. APM close to zero means a perfect preservation. At this point, it is important to highlight that PM was 
originally devised for assessing the quality of isometric embeddings, such as Isomap or MDS. Nevertheless, PM will fail when 
assessing normalized embeddings (such as LLE, [32]), as they are known to distort the local neighborhood. To overcome this, 
in [31] the authors also suggested a modified version (PMc) that addresses this drawback. This version eliminates the global 
scaling factor in each neighborhood, so it is appropriate for conformal embeddings. To summarize, the main difference be­
tween the two versions of the measure is that PM takes into account the stretch/shrink factor, and PMc does not. In the par­
ticular case of different scaling of coordinates in low dimensional embeddings, neither PM nor PMc solves the problem. 

Co-ranking Matrix. Many different concepts and quality criteria for DR can be summarized using the Co-ranking frame­
work (Q), presented by Lee and Verleysen [65,63]. Several of the aforementioned methods (based on distance ranking in local 
neighborhoods: Q&, MRRE, T&C), are easily unified into an overall framework. Q. works as follows: let p y be the rank of x, 
respect to x¡ in SRD, 

Pij = |{fc|«5ik < <5,j or (Sik = «5,j and 1 < k <j < n)}| (17) 

and Ty is the rank of y¡ in respect to y, in SRd, 

Ty = | {fc|Cffc < k or (;ik = Cv and 1 < k < j < n)} | (18) 

Therefore, Q. can be defined as 

Qw = |{(i,J)|Py = k and Tfj = i} | (19) 

The errors after the DR process are reflected in the non-diagonal entries of Q, So, an intrusion can be defined as a point j 
where p y > Ty (i.e. points entering a neighborhood erroneously). If py < Ty it is called an extrusion (points leaving a neigh­
borhood erroneously). Q. provides a framework, in which several existing evaluation measures can be expressed in an intu­
itive method for visualizing the differences between Q_k, MRRE and T&C. Basically, these quality criteria correspond to 
weighted sums of entries Qj¡( of Q. for different regions as k, I sg K and a fixed neighborhood range K (Fig. 4). 

Lee and Verleysen also proposed a new criterion in [65], Q_NX. Q_NX is the criterion that summarizes Qin the very simplest 
way, without arbitrary choices (weighting schemes, coefficient, scale preference, etc). It is defined as 

Q N X ( K ) = ¿ E ¿ Q « (20) 
k = l 1=1 

QJVXW is the same as Q̂  without the subtraction of the 'random' baseline. Note that QJVX(K), Q* andAR basically represent the 
same. Here, the range is Q.NX(K) e [0,1], where 1 means a perfect embedding. There are two other quality criteria, BNX(K) and 
RNx(K). The first one subtracts elements of Q.that are above or below the main diagonal: it indicates whether a given embed­
ding tends to favor intrusions or extrusions. The range is BNX(K) e [—1,1]. The sign depends on the dominating type of errors 
(BNX(K) > 0 represents intrusions, and BNX(K) < 0 are extrusions). Zero means an equal number of intrusions and extrusions. 

The last one, RNX(K) [60], can be considered a renormalized Q ,̂ allowing us to compare values at different scales. RNX(K) is 
based on Q_k with a baseline subtraction and a normalization: it indicates the relative improvement in a random embedding. 
Thus, the main advantage of RNX(K) is straightforward, as two different embeddings can be compared on different values of K. 
This is very difficult to achieve and less interpretable with other criteria. The range is RNX(K) e [0,1], where 1 represents a 
perfect embedding. 

In [66], Lee and Verleysen studied and proposed several solutions to solve the issue of overall scale dependency. 

3.2. Global-structure-holding approaches 

Shepard Diagram and Kruskal Stress Measure. Shepard presented in [93,94] the Shepard Diagram (SD). The SD is known to 
be one of the oldest DP methods. The SD can be formally considered as the diagram obtained by plotting the n(n - l) /2 dis­
tances of the original configuration S against the approximated distances f (Fig. 5). The SD visualizes the goodness-of-fit of all 
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Fig. 5. Shepard Diagram example. A and B: different types of diagrams (the ideal case is when all the points lie in the diagonal line. It means that all the 
distances in the reduced space match the original distances, so the representation in B is better than in A). C: intuitive explanation of the SD diagrams; 
Original distances on a vertical axis, embedded distances on a horizontal axis. Green represents projection in a reduced space accounting for a high fraction 
of variance (relative positions of points are similar). Red represents projection accounting for a small fraction of variance (relative projections of objects are 
similar). Yellow represents projection accounting for a small fraction of variance (but the relative projection of objects differ in the two spaces). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

sets of distances. It can be useful to detect anisotropic distortions in the representation. Thus, Kruskal [51,52] proposed a 
measure for the deviation from monotonicity between S and f, called the stress function (S): 

S = 
d«) 

(21) 



Note that S does not appear in this equation. Instead, the discrepancy between Cy and the target distances d* are measured, d* 
can be computed by finding the monotonic regression [51,52]. In the SD, instead of showing individual points for d*, they are 
connected by a solid line. The target distances d* represent the distances that lead to a perfect monotonic relationship to S 
that minimizes S for the given Cy- S is a 'lack of fit' measure: if S equals 0, there is a perfect monotonic relationship between Cy 
and St¡. 

Note that, the Shepard Diagram and the Kruskal Stress Measure are based on a concept very similar to MDS, since in fact 
they originate from it. 

Sammon Stress. The Sammon stress (Ss, Eq. 23) [86] measure is also used in order to compare the DR algorithms, in terms 
of DP. Examples of other error measures frequently used for structure preservation are S stress [100] (Eq. 22) and Quadratic 
error [11] (Eq. 24). 

S stress - l £^(¿g ~ Cg) 
;2 i-2-2 

"' (22) 
KJ"1) 

Sammon stress(Ss) = = r
1—- V ^ ^ (23) 

-kj ó« ¡<j 

Quadratic Loss = V"(<S,j - C,j)2 (24) 
kj 

The range is Ss e [0, +oo), where 0 represents a perfect DP, and the quality decreases as the DP increases in value. Ss must be 
minimized by carrying out a gradient descent, or by other means, usually involving iterative methods. 

Residual Variance. Tenenbaum et al. [103] used the residual variance (RV) for assessing the overall quality of an embed­
ding. RV is computed by RV = 1 - R2{GX, Q, where R{GX, Q represents the standard linear correlation coefficients over all en­
tries of Gx and f. The term Gx is the graph distance matrix [103]. The range is RV e [0,1], where 0 value represents a perfect 
quality of the embedding. An RV quality criterion has been also successfully applied to choose the embedding dimensionality 
for Isomap [103]. 

The Relative Error. Handa [37] introduced the Relative error (RE) to be used with another quality criteria, such as MRRE and 
Q_k, for evaluating the quality of DR methods. The RE is calculated as 

* = EE^+i ) /2 (25) 

3.3. Others 

There are different quality criteria approaches that do not merely focus on evaluating the TP or DP, for example: Classi­
fication error rate, Global Measure and NIEQA. 

Classification Error Rate. Another approach mentioned in the literature consists of using an indirect accuracy index, such as 
a classification error. See [87,114] and other references in [106]. It can be defined as: 

Ce = ACC^D - Acc^d (26) 

where Acc^o is the classification accuracy in SRD, and Acc^d represents the same in SRd. Logically, the classification error can be 
used only with labeled data. 

The last two quality measures have recently appeared, and they share a particular feature: they combine both local and 
global quality measure approaches. Here, the main aim is to provide an overall or 'mixture' value that assesses the TP and DP 
capabilities of a DR algorithm. 

Global Measure. Meng et al. [77] proposed a new quality criteria (Q.Y) that evaluates the neighborhood-preserving and glo­
bal-structure performances when performing manifold learning tasks. To compute Q.Y, the shortest path tree (SPT) is gener­
ated from the k neighborhood graph. After this, the global-structure assessment is calculated using the Spearman rank order 
correlation, defined in the rankings of branch lengths (Q.GB). So, the overall assessment (Q.Y) can be defined as a linear com­
bination of the global assessment, Q_GB, and a local assessment, such as Qj. (Q_M or Q_T could also be used). Then, 
Q_Y = jtiQcB + (1 - íOQjí. where fi e [0,1] and represents a parameter to balance Q_GB and Q_k in quality assessment. Q_Y is val­
ued between 0 and 1, where 1 represents a perfect global-structure-preserving. 

In contrast to methods, such as SR and Q.M, QY provides a more sophisticate and complete approach, since it assesses both 
local and global quality. However, there is a certain similarity to SR measure, as it uses the Spearman rank order correlation 
on the main branches of the SPT in order to evaluate the DP. 

Normalization independent embedding quality assessment. Zhang et al. [119] presented a normalization independent 
embedding quality criterion, for manifold learning purposes (NIEQA). In the paper, they first developed a measure called 
the anisotropic scaling independent measure (ASIM), which compares the similarity between two configurations under rigid 



motion and anisotropic coordinate scaling. NIEQA is based on ASIM, and consists of three assessments, a local one, a global 
one and a linear combination of the two. In our review we use the local one, so we merely focus on it. The local measure 
evaluates how well local neighborhood information is preserved under anisotropic coordinate scaling and rigid motion. That 
is, the local assessment is defined as: 

NIEQAWCAL(X, Y) = Í ¿M a s i m (X¡ , Y,) (27) 
¡=i 

where Masim(Xik, Yik) is the ASIM value for index i. NIEQA is valued between 0 and 1, where 0 represents a perfect preserva­
tion. NIEQA has three characteristics to be highlighted: it can be applied to both normalized and isometric embeddings, it can 
provide both local and global assessments, and it can serve as a natural tool for model selection and evaluation tasks. 

4. Related work 

Different comparative studies amongst the different DR algorithms are currently being carried out as reported in the lit­
erature. In this section the most complete studies will be described, in chronological order. 

Pólzlbauer [82] presented a comparative study in which he described some of the major SOM quality measuring methods. 
The aim was to test empirically how well the measures are suited for different map sizes. Finally, the author highlighted sev­
eral advantages and disadvantages for each method. In the same year, Fukumizu et al. [28] proposed a novel DR kernel-based 
approach, KDR, for supervised learning problems. KDR provides data visualization capabilities, it can also identify and select 
important explanatory variables in regression and it can yield a better classification performance than the performance 
achieved with the full-dimensional covariate space. 

Vinay et al. worked [112] on a comparison of the DR techniques for text retrieval. Basically, they compared four different 
DR techniques and assessed their performance in the context of text retrieval. They concluded that ICA (Independent com­
ponent analysis) and PCA offered the best improvements. In the field of text clustering, Tang et al. presented in [101] a study 
of the comparison and the combination of DR techniques for efficient text clustering. Thus, they compared the performance 
of six DR algorithms when applied to text clustering. DR algorithms consisted of three DR-FE algorithms: ICA, Latent Seman­
tic Indexing (LSI), Random Projection (RP); and three DR-FS algorithms based on Document Frequency (DF), mean TF-IDF (TI) 
and Term Frequency Variance (TfV). They observed that for DR-FE, the ranking (considering classification accuracy and sta­
bility) was: ICA > LSI > RP. However, in the case of DR-FS methods, DF was inferior compared to TI and TfV. 

Chikhi et al. [16] carried out a comparative review of DR techniques for web structure mining. They used several DR algo­
rithms (PCA, Non-negative Matrix Factorization - NMF, ICA and RP) in order to extract the implicit structures hidden in the 
web hyperlink connectivity. The conclusions were that NMF outperforms PCA and ICA in terms of stability and interpretabil-
ity of the discovered structures. In the same year [81], Ohbuchi et al. experimentally compared six DR algorithms for their 
efficacy in the context of shape-based 3D model retrieval. They discovered that nonlinear manifold learning algorithms 
(KPCA, Locality Preserving Projections - LLP, LLE, LE, Isomap) performed better than the linear one (PCA). Specifically, LE 
and LLE algorithms produced significant gains in retrieval performance for different shape features. France and Carroll intro­
duced in [27] a new metric (AR) for evaluating the performance of DR techniques. Furthermore, they proposed three potential 
uses for the measure: comparing DR techniques, tuning parameters, and selecting solutions in techniques with local optima. 

Lacoste-Julien et al. [55] presented a new method, DiscLDA, based on a variation of the LDA algorithm for DR and clas­
sification tasks. DiscLDA retains the ability of the LDA approach to find useful low-dimensional representations of docu­
ments, and also to make use of discriminative side information (labels) in forming these representations. Tsang et al. 
[105] focused on the attributes reduction with fuzzy rough sets. They developed an algorithm using a discernibility matrix 
to compute all the attribute reductions. 

van der Maaten et al. [ 74] carried out one of the most extensive and complete comparative studies in the field of DR. They 
investigated the performances of the NLDR techniques in artificial and natural tasks. To do so, the authors carried out a com­
parison between several DR algorithms, by using the T&C quality criteria on artificial and natural datasets. They concluded 
that NLDR methods performed well in artificial tasks, but that this does not necessarily extend to real-world tasks. They also 
suggested how the performance of the NLDR techniques may be improved. Karbauskaite and Dzemyda tested the efficacy of 
several TP measures in [46]. Specifically, they used the KM, MRRE and SR criteria for estimating the TP of a manifold after 
unfolding it in a low-dimensional space. The authors pointed out that KM and MRRE produced better results than SR in all 
the cases. In the same year, Ji and Ye [43] studied the role of DR in multi-label classification. They proposed a new iterative 
algorithm and showed that when the least squares loss is used in classification, the joint learning decouples into two sep­
arate components. 

Venna et al. [108] presented a new DR algorithm, Neighborhood Retrieval Visualizer (NeRV), as well as new measures of 
visualization quality {mean smoothed precision and mean smoothed recall methods). The performance of NeRV was compared 
with 11 unsupervised DR algorithms: PCA, MDS, LLE, LE, Hessian-based locally linear embedding (HLLE), Isomap, CCA, CDA, 
MVU, Landmark MVU (LMVU), and local MDS (LMDS). Two NeRV approaches were developed: one supervised and another 
unsupervised. To compare the methods, the authors used five pairs of quality measures: mean smoothed precision-mean 
smoothed recall, mean precision-mean recall curves, mean rank-based smoothed precision-mean rank-based smoothed 
recall, T&C criteria, and the classification error. The tests showed that NeRV outperformed existing DR methods. Lee and 



Verleysen [66] suggested a way of summarizing the quality criteria that are based on ranks and neighborhoods into a single 
scalar value. This allows the user to compare DR methods in a straightforward way. Qian and Davidson [83] studied a novel 
joint learning framework which carries out optimization for DR and multi-label inference in semi-supervised setting. The 
experimental results validated the performance of their approach, and demonstrated the effectiveness of connecting DR 
and learning tasks. 

With the aim of validating their new quality assessment criterion, Meng et al. [77] compared it to four quality criteria: 
T&C, MRRE, SR and Q_k, when reducing the dimensionality through different DR algorithms. In particular, the authors used 
PCA, MDS, ICA, Isomap, LLE, LE, HLLE, Local Tangent Space Alignment (LTSA), MVU, Locally Linear Coordination (LLC), Neigh­
borhood Preserving Embedding (NPE), and Linearity Preserving Projection (LPP) for the experiments. Handa [37] also ana­
lyzed the effect of DR through manifold learning for evolutionary learning. He proposed a method for reducing the 
difficulty in designing the allocation of sensors. To achieve this, he used Isomap and LLE for DR tasks and compared them 
by using RE, MRRE and Q̂  measures. In the same year, Lespinats and Aupetit [68] proposed the CheckViz method to evaluate 
the mapping quality at one single glance. Particularly, they defined a two-dimensional perceptually uniform color coding 
which allows tears and false neighborhoods to be visualized, the two elementary and complementary types of geometrical 
mapping distortions, straight onto the map at the location where they occur. 

Recently, Zhang et al. developed a new quality assessment method for manifold learning tasks [119]. In the paper, they 
conducted an exhaustive comparison with other quality criteria (PM,PMC,RV and Q_k) in order to test the efficacy of the new 
method. Empirical tests on synthetic and real data demonstrated the effectiveness of the proposed method. Chen and Lin 
[15] presented a novel approach, to Label Space DR (LSDR, is a paradigm for multi-label classification with many classes) that 
considers both the label and the feature parts. The approach is based on minimizing an upper bound of the popular Hamming 
loss. They demonstrated that their approach is more effective than existing ones to LSDR across many real-world datasets. 
Can et al. [30] proposed a filter-dominating hybrid SFFS method, aiming at high efficiency and insignificant accuracy sacrifice 
for high-dimensional feature subset selection. 

Very recently, Mokbel et al. [78] proposed a way of linking the evaluation to point-wise quality measures which can be 
used directly to augment the evaluated visualization and highlight erroneous regions. Furthermore, they improved the 
parameterization of the quality measure to offer more direct control over the evaluation's focus, and thus help the user 
to investigate more specific characteristics of the visualization. Finally, Musa [79] carried out a comparison of £1 -regularized 
logistic regression, PCA, KPCA and ICA for feature selection in classification tasks. To do so, he assessed the performance of 
these methods using different statistical measures, e.g.: accuracy, sensitivity, specificity, precision, the area under receiver 
operating characteristic curve and the receiver operating characteristic analysis. 

5. Proposed methodology 

The goal of this methodology is to compare different DR methods in terms of loss of quality. To achieve this, the loss of 
quality is quantified when reducing the dimensionality of the data over a pre-specified dimensional range. The loss of quality 
concept is defined as: 

Quality Loss = (1 - quality value) (28) 

where 1 represents a perfect preservation of geometry, and the quality value is the value obtained by a particular quality 
measure. The domain for quality value is [0,1 ], where 0 means the worst preservation of geometry and 1 is the best possible 
result (this is explained better in Section 5.2). The loss of quality is the achieved quality value subtracted from 1. Therefore, the 
smaller loss of quality value, the better preservation of geometry. 

The loss of quality concept could be seen as a simple way of referring to the process of losing the original data geometry 
associated with a reduction in the data dimensionality, when using a DR algorithm. The rationale for using this concept is 
that we wanted the methodology presented here to emphasise the loss of quality that occurs in a DR process, rather than 
the value itself obtained by a quality measure. 

The methodology is based on the following steps (Fig. 6): dimensional thresholding computation, quality loss quantifier 
curves (a.k.a. QLQC, explained below in Section 5.2) obtaining, increasing/decreasing stability function and quantification 
analysis of loss of quality. 

In the first step, a dimensionality interval (by using the minor and major thresholds) is defined in order to quantify the 
loss of quality over the dimensionality reduction process. After this, the quality curves associated to each assessment mea­
sure are obtained. The increasing/decreasing stability function deals with the selection of those curves that meet a set of con­
straints. Finally, an analysis of the loss of quality on the selected curves is carried out. 

5.1. Dimensional thresholding computation 

In order to quantify the loss of quality in a DR process, it is necessary to define a major (JV') and minor (n') dimensionality 
threshold. The minor threshold n' is considered a fixed value independent of the data and the DR algorithms. This value is 
usually the lowest possible dimensionality to be reduced (2 dimensions). 
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Fig. 6. Proposed methodology. 

The major threshold JV' is limited by the selected DR algorithms. Theoretically, the methodology presented here proposes 
that JV' could correspond to the dimensionality value of the original dataset in order to carry out a more extensive study of 
the loss of quality, but in fact there are some cases in which this is not always possible due to technical issues. That is, there 
are several DR algorithms that do not allow us to select a target dimensionality greater than the number of individuals of the 
data analyzed in the study. There is a simple theoretical justification for this: according to linear algebra and vector spans, 
the intrinsic dimensionality of a given set of points can never be higher than the number of points. Therefore, some DR meth­
ods explicitly exclude the option to reduce the data dimensionality to any number larger than the number of points. 

In this study, the major threshold JV' is usually limited to the number of individuals (instances) of the data. 

5.2. Quality Loss Quantifier Curves (QLQC) obtaining 

In order to quantify the loss of quality when performing a DR task, 11 quality assessment measures have been selected 
from Section 3 (see Table 3). The selection criterion for these measures is closely related to the number of times they have 
been cited in the literature, particularly through studies with similar characteristics (see Section 4). This fact reinforces the 
importance of using them. So, for achieving real and significant values in the loss of quality estimation, the use of widely 
referenced methods in the literature was absolutely necessary. 

As regards the inclusion of recently developed measures, such as Q_Y and NIEQ_AL0CAL, they are considered as an interesting 
source of analysis. They provide a fresh approach, and have also demonstrated some desirable properties which the oldest 
ones lack. 

The codification of the Ss, Q_M,MT,MC and Q_k measures were implemented by us. The PM and PMc methods were imple­
mented thanks to the code kindly provided by the original authors (Goldberg and Ritov). The Co-ranking matrix code belongs 
to Lee and Verleysen. The Q_Y measure was implemented thanks to the code provided by the authors (Meng et al). Finally, to 
implement the NIEQA measure, the original code (Zhang et al.) was used. 

Note that, all the quality values produced by a measure have been represented in the same range [0,1], where 0 is the 
worst value and 1 is the best possible result (perfect preservation of geometry). In the case of SS,Q,M,PM,PMC and 
NIEQAL0CAL measures, these values were modified from the original measure (1 - measurement). 

Our methodology computes a set of QLQC as the result of evaluating the loss of quality by using the 11 quality measures in 
all the range of dimensions from JV' to n' (Fig. 7). The quality values provided by each measure can be considered as a single 
QLQ curve in which the X axis represents the range for dimensionalities where the data will be embedded, and Y axis the 
quality value of the measurement. 

It is worth noting that, local measures such as Q_NX,RNX, Qk,Mc,MT and QM are usually evaluated on increasing k values. 
Therefore each measure yields a curve formed by the quality values obtained using different values of k. The methodology 
described here is not intended to carry out a study of the neighborhood, this is out of the scope of this paper. As a first ap­
proach, we were interested in studying the loss of quality over a wide interval of dimensions, by using a prefixed k value. 
Specifically, in the experiments we used k = 7. 

The rationale for selecting this value is related to k parameter in some of the DR algorithms we have used. Isomap, LE, LLE 
and MVU also use a k local (also k = 7) parameter for evaluating the neighborhood before reducing the data dimensionality. 
Thus, we were looking for a high uniformity between different methods, in terms of parameter settings. 

5.3. Increasing/decreasing stability function 

One of the main challenges is related to selecting those curves of the plot that could be useful and provide valid informa­
tion when quantifying results and drawing conclusions. That is, we select those curves in which the quality values are 
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Fig. 7. Example of QLQC plot for a particular dataset, by using a DR algorithm (MVU). 

gradual, stable and decrease (analogously, the loss of quality increases) during the DR process, just as we start from a JV' 
dimensionality and progressively reduce it until n'. In other words, a DR algorithm is used on JV'-dimensional data, first to 
yield an JV'-l-dimensional embedding, then a second time to yield JV'-2-dimensional data, and so on until the n'-dimension. 
The input data for the DR algorithm are always the original data. Thus, what we reduce is the target dimensionality in which 
the data will be embedded (from N'-l to n'). 

The increasing/decreasing stability function (S¡/D) arises, firstly, in order to select those curves we consider suitable in or­
der to study the loss of quality. After obtaining the QLQC, some of the curves showed a strange, unstable and erratic behavior. 
This behavior largely depends on the DR algorithm used. This irregular behavior makes the analysis of the loss of quality over 
a dimensionality interval difficult. By observing experimentally the behavior of many of these curves, we realized that a large 
proportion of them tended to decrease as the dimension decreased from JV' to n'. 

This fact should be considered a natural and intuitive concept, since for dimensionalities close to n' the quality values 
should be considerably smaller than for dimensionalities close to JV'. Therefore, we decided that we should select those 
curves that showed this trend, since selecting other curves would make the process of extracting patterns or carrying out 
a clustering difficult, due to their unexpected and irregular behavior (see Fig. 8). 

After this, we considered how to select those curves that meet this natural and intuitive constraint of progresive loss of 
quality. We wanted to use a statistical method or technique that exists in the literature. However, nowadays there is no sta­
tistical method in the literature that considers the concepts of the stability or growth of a curve. For this reason, it has been 
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Fig. 8. QLQC containing curves that violate the increasing/decreasing stability criterion. The red and green dashed lines (that is, the quality curves 
generated by the Qy and Ss measures) and black line (PM) violate the increasing/decreasing stability criterion. These curves do not reach the minimum 
threshold to be considered suitable to analyze. The blue and light blue lines (Qt and Rm measures) present low values of increasing/decreasing stability, and 
the rest present high values of increasing/decreasing stability since they are smooth and have a decreasing behavior. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Increasing/decreasing stability function. 

designed and developed in order to carry out an analysis of the increasing/decreasing stability of a curve. This technique 
should be able to model the curve, that is, to provide us a value detailing the stability of the curve (without peaks). It should 
also provide information on its increasing/decreasing behavior. We have considered the selection of other techniques in the 
literature, statistical or otherwise, but as we did not find any method that achieves either of our aims or both of them, we 
decided to implement it. 

So, the increasing/decreasing stability function (S¡/D) carries out an analysis of the behavior of the curve in terms of po­
sitive or negative growth in a stable way. Thus, S¡/D represents how and to what extent a curve shows an increasing/decreas­
ing behavior and, at the same time, how is the stability of the curve during the process. A curve can be considered stable by a 
full analysis of the oscillatory and fluctuating motion or, for that matter, by checking the existence of peaks in opposite direc­
tions. The bigger the oscillations, the smaller the S¡/D final value. 

Fig. 9 illustrates the behavior of the function. Let Ax'¡ =x'M -x\ and Ayj =y¡+ 1 —y'¡ be the increments in X and Y axes, 
respectively. The mean slope Mm is computed as in (29) and represents the mean of the slopes in the different sections of 
the curve. As Mm is not normalized, we do it in order to make future computations easier, through the following Eq. 24 

Mm = 
1 

N- TS Ax; 
(29) 

M„ 
2 arctan(Mm) 

(30) 

where the interval of Mmn e [—1,1], 1 represents a positive mean slope of 90°, 0 is a 0° mean slope, and - 1 represents a neg­
ative mean slope of -90° in respect to the X axis line. As we saw above, this value penalizes the 0 value slope sections of the 
curve. Finally, S¡/D is computed as 

->l/D : 

EtA/Ayp + Ax? 
(31) 

where the denominator calculates the total length of the curve, and the numerator calculates the partial contributions (Cp) in 
each section of the curve. Thus, Cp is computed by the following conditions 

(32) 

SI/D e [-1,1]. where 1 represents a perfect increasing stability, 0 absence of increasing/decreasing stability, and - 1 perfect 
decreasing stability. Basically, S¡/D computes the total length of the curve and carries out an analysis of the contribution 
of each section of the curve to the total length, according to its positive, null or negative growth. In the case of 0 slope sec­
tions, the total mean slope is analyzed to penalize the value of S¡/D in a way proportional to the curve, that is, according to the 
general trend of the curve. 

cP = -

y/Ayp+Axp, 

- ^ A y p + Axp, 

0, 

JVU^Ayp+Ax?, 

if Ayi > 0, 

if Ay; < 0, 

if AyJ = 0 and Mmn = 0 

if AyJ = 0 and Mmn ^ 0 



It is important to discard those curves from the plot that show a high instability (S//D values close to 0), or excessively low 
quality values. For selecting a proper threshold for S¡/D values, the approach analyzes the boxplot of the absolute values of S¡/D 

obtained for all the curves, and selects a particular minimum threshold. Thus, those curves in which the S¡/D value is less than 
this threshold will be automatically discarded (see Section 6.1 to see the rationale for the selection of these values). 

5.4. Quantification analysis of loss of quality 

Once the stabilized curves have been selected, the methodology proposes a quantification analysis of them. These anal­
yses could be from a simple analysis of the loss of quality in a certain interesting dimensionality to a more complex data 
analysis. In this way, three different kinds of analysis are proposed as a starting point: 

Clustering of methods according to the loss of quality throughout the entire DR process. In order to detect similar behav­
iors when reducing the dimensionality of the data, in terms of loss of quality, a clustering process of the DR algorithms 
has been carried out. 
Relationship between different preservation of geometry measures. The Pearson correlation indicates whether two dif­
ferent curves are linearly correlated or not. Nevertheless, it cannot detect differences in correlation when curves having 
the same proportion but different magnitudes. In this sense, for analyzing the similarity we should take into account both 
proportions and magnitudes (loss of quality values). Therefore, a new modified version of the Pearson correlation of two 
different curves i and j is proposed. 

Corr, = | P „ | - ( l - ^ ) (33) 

where Py is the Pearson correlation between the curves i and j , and cv¡ and cv¡ are the variation coefficients (cv = standard 
deviation/mean) of curves i and j , respectively. Taking into account that the variation coefficient determines the possible 
variability in relation to the mean of the population [39], in this case this determines the possible stability of a curve in 
relation to the mean of its values. 
Note that cv¡ > cv¡ for all cases, so the denominator must always be the greatest of the two values. The equation part 
{cvi/cvj) e [0,1] represents how similar both curves are in terms of variability, 0 being the representation of different 
curves and 1 when the variability of both curves is the same. Thus, in this way, (1 - CV¡/CVJ) penalizes the Pearson cor­
relation when the proportions and magnitudes of the variabilities of both curves are different, even if these are correlated. 
The interval of Corry e [—1,1], where 1 represents a perfect correlation and - 1 indicates the absence of it. This equation 
evaluates the correlation between two distributions of data, considering the coefficient of variance of both distributions. 
Loss of quality trend analysis from M into B dimension. Here the methodology represents the differences in loss of qual­
ity trend when the data is reduced from JV' into M and from JV' into B dimensions, B being lower than M. With this analysis 
we can conclude that any DR algorithm is stable or not (its trend is always the same) in the different dimensionality 
reductions in terms of loss of quality. 

6. Experiments 

In this paper, as an example of the use of the proposed methodology with real data, several experiments have been pro­
posed. The implementation has been completely carried out in Matlab software. The environmental setting is made up of: 

12 DR algorithms (2 linear, 9 nonlinear) (Table 2), also presented in Section 2. Four main packages have been used for 
encoding the different algorithms: The Matlab Toolbox for Dimensionality Reduction [71], Matlab package for Isomap 
(MIT) [102], Matlab package for MVU [115] and SOM Toolbox 2.0 [109]. As regards the input parameter settings of the 
methods, in most of the cases the default values (proposed by the authors) have been used. Generally, these default val­
ues have been previously verified empirically to be suitable for the different experiments (see Table 4). 
In this methodology, we decided to use a parameter selection criterion based on default settings, as experimentally rec­
ommended by most of the authors of the DR algorithms. We only changed the k value of the DR algorithms, in order to 
make them coincide with the number of nearest neighbors in the quality measures. The rest, such as perplexity (in t-SNE); 
epochs (in CCA); t and a (in DM); and some kernel parameters were set as default. 
We must clarify that, in this first approach, the aim of the methodology is not to experiment with these parameters, but to 
provide a methodology able to produce reliable results. We were interested in analyzing the results derived from a 
default configuration of the DR algorithms. However, we must leave open the possibility of experimenting with different 
initial configurations. 
12 real-world datasets, where eight of them have been selected from the UCI Machine Learning Repository (Table 5). As 
regards their nature, 3 of the selected datasets are exclusively of DNA microarray origin (Leukemia, DLBCL and SRBCT's), 5 
of them belong to other medical nature (Breast Cancer Wisconsin, SPECTF Heart, Prostate, Parkinsons and neurons), and 
other fields (Connectionist Bench, Glass Identification and Libras Movement). 



Table 4 
DR algorithms and parameter settings for the experiments. 

Method Package Parameter settings Reference 

PCA 
LDA 
Isomap 

A r L / l g a u s s j a n 

ArL/ lp 0 ¡y n o m i a ¡ 

LE 
LLE 
DM 
t-SNE 
SM 
MVU 
CCA 

The Matlab Toolbox for Dimensionality Reduction (2012) 
The Matlab Toolbox for Dimensionality Reduction 
Matlab package for Isomap (MIT, 2000) 
The Matlab Toolbox for Dimensionality Reduction 

The Matlab Toolbox for Dimensionality Reduction 
The Matlab Toolbox for Dimensionality Reduction 
The Matlab Toolbox for Dimensionality Reduction 
The Matlab Toolbox for Dimensionality Reduction 
The Matlab Toolbox for Dimensionality Reduction 
The Matlab Toolbox for Dimensionality Reduction 
Matlab package for MVU (2012) 
SOM Toolbox 2.0 (2005) 

None (default) 
None (default) 

-Ml 
K(Xi,x¡) = e -2 

K(Xi,Xj) = (Xi-Xj)2 

K= 7,c- = 1.0 (default) 
K=7 
t = 1.0 (default), a = 1.0 (default) 
perplexity = 30 (default) 
None (default) 
K=7 
epochs = 10 (default) 

[71] 
[71] 
[102 
[711 

[71] 

[71] 
[71] 
[71] 
[71] 
[71] 
[115 
[109 

Table 5 
Real-world datasets used in the experiments. 

Dataset Instances Features Reference Intrinsic dimensionality (d) 

Breast Cancer Wisconsin (Diagnostic, 1995) 
Connectionist Bench (Sonar, Mines versus Rocks, 1988) 
SPECTF Heart (2001) 
Breast Cancer Wisconsin (Prognostic, 1995) 
Prostate (2008) 
Glass Identification (1988) 
Parkinsons (2007) 
Leukemia (1999) 
Diffuse large B-cell lymphomas (DLBCL, 2002) 
Gardener Classificator (neurons, 2013) 
Small Round Blue Cell Tumors (SRBCT's, 2001) 
Libras Movement (2009) 

569 
208 
267 
198 
380 
107 
195 
72 
77 

241 
83 

330 

30 
60 
44 
33 
9 
9 

22 
5147 
7070 
368 

2308 
90 

[75] 
[35] 
[54[ 
[99,75,118] 
[92[ 
[261 
[70,69] 
[331 
[95] 
[19] 
[47] 
[21] 

6 
9 

11 
5 
6 
5 
3 

18 
15 
12 
10 
6 

Note that, in order to obtain the intrinsic dimensionality for each dataset, Maximum likelihood (MLE) and Eigenvalue-based 
estimators [73] were used, by calculating the integer mean value of both estimators. 

6.1. Applying the methodology 

The first step in the methodology is the dimensional thresholding calculation. The minor threshold n' of all the experi­
ments has been fixed at 2, that is the lowest dimensionality possible. On the other hand, the major thresholds N' have been 
calculated depending on the original number of dimensions and instances of the data considered (as stated in Section 5.1). 
So, the major thresholds N' are: 30 in the Breast Cancer Wisconsin Diagnostic, 60 in the Connectionist Bench, 44 in SPECTF 
Heart, 33 in the Breast Cancer Wisconsin Prognostic, 9 in Prostate, 9 in Glass Identification, 22 in Parkinsons, 72 in Leukemia, 
77 in DLBCL, 100 in neurons, 83 in SRBCTs and 90 in Libras. Note that, for DNA microarray data (Leukemia, DLBCL and 
SRBCTs), N' is constrained to the number of individuals of each dataset due to the technical limitations of the DR algorithms. 
In the neurons dataset, N' is set to 100 since it has been observed that greater values do not give rise to loss of qualities, thus 
these cases are of no interest to the study. For the rest of the datasets, the N' value is the original dimensionality of the data. 

In order to obtain the QLQC plots, all the curves must be calculated. Based on the 12 DR algorithms and the 12 datasets, 
the method calculates 1 Insures x 12dgorithms x ^¿atasets = 1,584 curves for studying the loss of quality resulting from a DR 
process. 

For each curve, the S¡/D value is calculated. In order to select the sufficiently stable curves, a minimum threshold is nec­
essary. To select this threshold, a boxplot of the absolute values of S¡/D obtained throughout the 1,584 curves was carried out. 
When analyzing the distribution of the boxplot, it could make sense to discard those curves whose stability value is less than 
the second quartil of the boxplot, that is 0.3005. 

Rationale for the Si/D minimum threshold The main values obtained when representing by using the boxplot technique 
were: quartile 1 (0.08, Ql), quartile 2 (0.3005, median or Q2) and quartile 3 (0.8, Q3). At first glance, selecting a threshold 
value from which a curve meets the decreasing stability constraints was not easy, thus an empirical study of the behavior 
of the curves using Q1,Q2 and Q3 was carried out. To this end, we selected the curves with S¡/D values equal to or greater 
than the selected quartile, and they were plotted using the 2D scatterplot technique. When using Ql (0.08) as the threshold, 
we realized that almost all the selected curves behaved in a highly unstable and erratic manner and they did not meet the 
decreasing stability constraint. Therefore, Ql was discounted and Q2 was studied. When Q2 (0.3005) was used as a candi­
date threshold, almost the 100% of the curves exceeding this threshold showed a strong decreasing stability behavior. Finally, 



Q2 was selected as the threshold for S¡/D values, and roughly one third (474) of the total curves (1584) were selected for fur­
ther analysis. It is important to note that: firstly, when testing Q3 as the threshold value, many fewer curves were selected, 
so we decided to work with Q2. Secondly, we decided to select for the S¡/D threshold, the first value (and it should be sta­
tistically justified) that allowed us to achieve curves that meet the decreasing stability constraints, and that is why we 
did not select an intermediate value between quartiles. 

Moreover, the curves whose quality values obtained in 2, 3 and intrinsic dimension were outside a specific interval were 
also discounted. 

Rationale for the selection of the quality value interval Solely based on normalization criteria, we were interested in select­
ing those curves whose quality values in 2, 3 and intrinsic dimensions were in the interval [0,1], and discarding the rest. By 
definition, all the quality measures, except Ss sometimes, provide quality values within that range. In its original definition 
[86], Ss e [0,oo). However, as we normalized all the measures so that 1 is the best quality value (see Section 5.2), the new 
range for this measure was Ss e [1, —oo) (where — oo is the worst value) and therefore there were still a few curves with qual­
ity values of less than 0 (even after filtering by the Si/D threshold). As has already been said, we wanted to study quality val­
ues in the interval [0,1], therefore this constraint discounted the rest of the curves that did not meet this condition. After 
discounting the curves outside the [0,1] interval, we also realized that all the curves, in fact, curiously presented quality val­
ues greater than 0.198. 

Thus, using two ways of filtering the curves, we ensured that we were selecting decreasing and stable curves (as the tar­
get dimensionality is reduced fromN' ton'), as well as quality values in the [0,1] interval (see Fig. 10). The aim is to be able to 
quantify the loss of quality in a DR process. 

It is worth mentioning that, after applying the two constraints (quality and stability) imposed on the selected curves, no 
DR algorithm fails uniformly. That is, to a greater or lesser degree, all the DR algorithms yield QTQC enough to accurately 
quantify the loss of quality through these curves. Specifically, the distribution of the selected curves for each of the DR algo­
rithms is as follows: PCA(67 curves), MVU (66), KPCApdy (57), Isomap (57), LE (47), KPCAgauss (42), SM (37), LDA(26), DM (21), 
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Fig. 10. Selected experiments (top) versus discarded experiments (bottom). 



t-SNE(21), CCA (18) and LLE(15). From this distribution we conclude that, from a point of view based on stability and quality 
criteria, the DR algorithms that produce more suitable curves for studying the loss of quality are PCA, MVU, KPCApoly and Iso-
map, whilst LLE and CCA performed the worst. 

6.1.1. The relationship between different preservation of geometry measures 
One of the quantification analyses made using this methodology is the relationship between the quality criteria during 

the DR process, when using the different DR algorithms. 
So, firstly the proposed correlation (Section 5.4, Eq. 33) for each pair of measures in the different datasets was calculated. 

After analyzing all the values through a boxplot, it was decided to analyze only those pairs of measures whose correlation 
was greater than the third quartile (0.612), in order to see the possible real relationships between the measures. 

Fig. 11A represents those relationships between pairs of measures that are greater than 0.612 as opposed to the total 
number of relationships in all the datasets (as a percentage). So, for example, PMc versus NIEQ_A¡om¡ has a correlation greater 
than 0.612 in 14.2% of cases in all the datasets, while PMc versus Ss only has a correlation greater than the threshold in 2.059% 
of the cases. 

After that, it is also interesting to analyze the correlation values of these pairs of measures when they are greater than 
0.612. So, Fig. 11B presents the statistic values (mean, median and standard deviation) calculated from the correlations. 
For example, the PMc versus NIEQ_A¡om¡ correlation mean is 0.821 with a median of 0.829 and a std. deviation of 0.107. 

Several conclusions can be extracted from the previous figure. Firstly, the pairs of measures which are correlated the 
greatest number of times (presented on the left-hand side of the figure) are those that have the highest values in correlation 
(mean values greater than 0.78). However, when the pairs are correlated fewer times (right-hand side of the figure), the 
mean values decrease. This makes sense because if a pair of measures are really correlated, this event will be repeated sev­
eral times with a high value, although the nature of the data has changed. 

It is worth highlighting the strong correlation between measures with a similar nature, such as Q,NX,RNX and Qfe, since all 
of them are based on the ranking of the nearest neighboring concepts. Furthermore, PM,PMC, and NIEQAL0CAL are closely cor­
related to each other because they work using the procrustes analysis methods. It is also observed that there is a high cor­
relation between these two groups. Although they work in different ways, both were originally devised to assess the local TP 
after a DR process. 

There is also another group of measures that present a high correlation between themselves but only in a few of cases 
(presented in Table 6). Within this group is, for example, Ss and NIEQAL0CAL, where the first one evaluates the global preser­
vation, whilst the other one calculates the local preservation. The same happens with Ss and PMc-

A 3 Correlation between the quality criteria for the 12 datasets 

Pairs of quality criteria 

Correlation Values 

Pairs of quality criteria 

Fig. 11. (A) Correlations between pairs of quality measures in all datasets greater than 0.612. (B) Statistical values of correlation for each pair of measures. 



Table 6 
High correlated pairs of measures for all datasets. 

Pair of measures Times correlated (%) Mean Median Mean + desv Mean-desv 

0.892 0.691 
0.898 0.688 
0.892 0.684 
0.857 0.654 
0.900 0.701 
0.863 0.680 
0.919 0.702 

Finally, the Qk - Mc and RNX - Mc correlations have the same value and both without deviation. This is because the three 
measures come from the same idea of preservation of geometry and there is only one case of study that has the correlation 
greater than 0.612. 

At this point, it could be interesting to analyze the correlation between the measures for each dataset. This may help con­
trast the previous results and also give details of relationship between measures depending on the nature of the data. 

To do this, firstly 22 figures (two per dataset), included in Supplementary Material, were obtained. Only in one of the 
dataset were there no figures, as there were no stable curves with correlations outperforming the threshold. Like the previ­
ous results (the averaged way with all the datasets), there is a very strong correlation between the following groups of mea­
sures: the first group consists of 3 measures, Q,NX,RNX, and Qk. It is noted that, for absolutely all the datasets, the same pattern 
is repeated and these 3 measures are highly correlated. Furthermore, the second group showing a very high degree of cor­
relation is made up of PM,PMC and NIEQ_AL0CAL. This is, by far, the most correlated group of all datasets, and it is also strongly 
correlated with the first group. For each one of the datasets, there is always a large number of correlation cases between the 
members of the first group, the members of the second group, and between these two groups. This coincides entirely with 
the conclusions drawn in the previous section for all the datasets. 

High correlations are often reported between Ss and PMc and NIEQAWCAL measures. Furthermore, MT, Mc and Q_M also pres­
ent a large number of correlation cases between themselves. However, the Q_Y criterion lacks any direct correlation with 
other criteria (it does not appear in the figures, or with a low degree) because, as we pointed out earlier, of its peculiar nature. 

The strong correlation between these measures is confirmed when their mean correlation values are observed (see the 
Supplementary Material). Note that, correlation values in the [0.75,1.0] range can be considered as very high, since the ori­
ginal Pearson correlation function was modified in order to be stricter. 

To sum up, the conclusions presented by separating per dataset confirm the high degree of correlation between the dif­
ferent groups of quality measures. 

6.1.2. Comparative study and clustering of DR methods 
The analysis of the loss of quality during the DR process from N'D to 2D obtained by each DR algorithm are presented 

here. The aim is to compare these results, in order to highlight the 'quality preservation' skills of the DR algorithms. Then, 
we show which type of DR algorithms usually carry out DR tasks while producing minimum losses of quality. To achieve this, 
the quality values obtained by the different DR algorithms are compared in a set of key dimensions, as 2D, 3D, ID (intrinsic 
dimensionality, d) and N'D. 

The Mann-Whitney Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when comparing two 
samples. This can matematically demonstrate whether two samples came from the same population, or if the distribution of 
one sample is stochastically greater than the other. 

In this study, the Wilcox test was used to compare each pair of DR algorithms (if one algorithm is better than other, in 
terms of loss of quality), based on its mean loss of quality values for each DR algorithm. A p-value (probability) less than 
or equal than 0.05 affirms the asumption of improvement from one over the other algorithm. Fig. 12 shows the mean loss 
of quality values achieved by the different algorithms. 

First of all, note that, in fact, the real input data for the statistical test consist of all the values that produce these mean 
values. It can be clearly seen that, for dimensionalities close to N, the loss of quality produced by the DR algorithms is sig­
nificantly less than for dimensionalities close to 2. The Wilcox statistical test provides us information as to which DR algo­
rithm produces a lower loss of quality, as regards other algorithms. Thus, the Wilcox test is carried out on all the different 
possible pairs of algorithms. Fig. 13 shows the p - values for each pair. 

If the number of times a DR algorithm presents lower loss of quality values than the rest is counted, a preliminary clas­
sification of the DR algorithms is obtained, as regards the loss of quality produced (Fig. 13). 

A greater number means that a DR algorithm produces fewer loss of quality values than other DR algorithms more often. 
This is always positive. The worst results are obtained by KPCAgauss and LDA (0), that is, they generate the greatest loss of 
quality values, so they never outperform the remaining algorithms. In the case of LDA, this fact can be explained as follows: 
LDA is characterized by reducing the data dimensionality for improving the classification accuracy, therefore this impacts 
negatively on the loss of quality, i.e. an improvement in classification tasks affects the efficiency when preserving the original 
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Fig. 12. Mean values of loss of quality from N'D to 2D, for each DR algorithm. A set of key dimensions, as 2D, 3D, ID and N'D have been selected for the 
study. 
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Fig. 13. Results of the Wilcox statistical test, comparing each pair of DR algorithms. The p-values are shown. Green means that, a particular DR algorithm 
produces a lower loss of quality than another algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

geometry of the data. In addition, LDA is known to have a linear nature and behavior, thus confirming the difficulty in pre­
serving the quality when using linear approaches. LLE and CCA also indicate high loss of quality values (see [32] for LLE), 
compared to the rest of the algorithms (in addition to being very unstable, as mentioned at the end of Section 6.1). 

However, the best results are achieved by t-SNE, MVU and ISOMAP. These sophisticated algorithms base their nature on 
data embedding by: computation of the conditional probability distributions that represent similarities in both dimensional 
spaces (t-SNE), preservation of the distances between the k-nearest neighbors by means of a neighborhood graph G (ISOMAP 
and MVU, the former uses geodesic distances and the latter euclidean distances). 

Finally, a density-based clustering algorithm is performed, the Farthest First algorithm [40]. The aim is to detect different 
groups of curves in Fig. 12 in order to highlight common behaviors for the DR algorithms, during a DR process. By studying 
the results of the mean loss of quality values for each DR algorithm, the behavior of the curves can be described, as can the 
clusters. The results of the clustering algorithm are shown in Fig. 14. 

Three different clusters and one outlier is observed. The detected outlier is the t-SNE algorithm (in orange). This clearly 
coincides with the results of the Wilcox test (ranked as the best algorithm) as, in addition to obtaining the lowest loss of 
quality values, the shape of the curve during the DR process is quite different from the remaining algorithms. The greatest 
leap in loss of quality is produced in 2D in respect to that produced in 3D, since from 3D to N'D the loss is lower. However, it 
is quickly realized that, in the 3 clusters, there is a strong similarity between the curves inside a particular cluster. Curves 
grouped in the same cluster show very similar transitions during the loss of quality process (from N'D to 2D). 

The first cluster, which groups DR algorithms that give rise to the lowest loss of quality, is made up of by PCA, SM and 
MVU algorithms. All of them show moderate loss of qualities from N'D to ID. However, from there to 2D there is a huge leap 
in loss of quality. The results obtained by SM and MVU coincide with the Wilcox test, since both algorithms give rise to mild 
loss of qualities with respect to the rest and occupy a front-ranked position. 
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Fig. 14. Farthest First clustering algorithm. Green, blue and red represent the three clusters, while the orange indicates the outlier. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

The second cluster groups most of the algorithms together, it is made up of LLE, LE, CCA and KPCApoly. The behavior of this 
group is slightly different as, unlike other clusters, there is a clear linearity in the loss of quality. 

The last cluster groups the LDA, KPCAgauss and ISOMAP algorithms together. This is the group that presents higher loss of 
qualities. The following observations can be made: the first is that the results of LDA and KPCAgauss coincide with the Wilcox 
test, since they appear in the lowest positions in the ranking. The second one is that the bad results of Isomap in the clus­
tering algorithm, does not coincide at all with the Wilcox test. This can be explained by the fact that the input data for the 
Wilcox test and the clustering algorithm are different, in value and quantity. Thereby, the results are different because of 
variability in the data. The clusters have been defined according to the average of the data. Thus, any curve varying in [—3*~ 
standard.dev, 3*standard.dev] range could be grouped into different clusters. 

6.1.3. Loss of quality trend analysis from 3 into 2 dimensions 
Like the first analysis made using this methodology, a comparative study based on the loss of quality produced when 

reducing multivariate data to two and three dimensions was proposed. This particular case has been separated from the 
present paper, since a more detailed study was necessary. 

This study demonstrates that, only when switching from 3D to 2D, does it reach maximum values of 48.62% and mean 
values of 30.483% of the total loss of quality for many case studies with the presented datasets. These values can be consid­
ered noticeably high and suggest the suitability of the third dimension for reducing and visualizing data. Furthermore, the 
theoretical results have been reinforced by a set of visual tests carried out by a group of 40 individuals. The aim of these tests 
was to test whether, by using the visualization, the theoretical results obtained by the methodology coincide with the exper­
tise and perception of the users when they work with 2D and 3D spaces. 

6.2. Computation times 

Table 7 describes the computation times per dataset (in hours), as well as the % of the CPU time used by each quality mea­
sure, as regards the total CPU time (in hours). 

A single column has been used for each of the most computationally high measures, while the rest of the measures have 
been grouped together in the Rest of measures column due to their insignificant computation time as regards the total time. 

The quality measures that have required the longest computing times have been M£QAL0OiL, and Q_Y. This makes sense, as 
NIEQ_AL0CAL carries out a Procrustes analysis, and this is computationally very demanding. The motivation behind NIEQAL0CAL is 
geometric matching, that is, assessing how similar two sets of observations are under rigid motion and coordinate scaling (by 
using operations with matrices). If they match each other well, then NIEQAL0CAL converges quickly. However, if they do not 
match, the convergence would be slow, since the iteration process gets stuck in finding an optimal transformation which will 
never match them well. For Q.Y, the bottlecneck is in the shortest path tree constructed from the k neighborhood graph. 



Table 7 
Computation times (in hours) per dataset. Columns Pit,Ptic,NIEQALoaL,Q.Y, Rest of measures and DR methods show the % of the CPU time used, as regards the 
Total CPU time (hours). The largest values are printed in bold. 

Dataset Instances Features %of the total CPU time (by quality measures and DR methods) Total CPU time (h) 

569 
208 
267 
198 
380 
107 
195 

72 
77 

241 
83 

330 

30 
60 
44 
33 

9 
9 

22 
5147 
7070 

368 
2308 

90 

PM 

0.1 
0.124 
0.15 
0.17 
0.36 
0.83 
0.32 
0.19 
0.15 
0.2 
0.17 
0.15 

PMC 

0.09 
0.124 
0.14 
0.18 
0.36 
0.83 
0.34 
0.21 
0.17 
0.19 
0.17 
0.15 

NIEQALOCAL 

55.82 
96.96 
91.48 
91.23 
16.39 
65.21 
84.22 
74.25 
82.98 
75.44 
89.08 
84.98 

ClY 

43.94 
2.78 
8.13 
8.4 

82.75 
33.11 
15.04 
25.32 
16.68 
24.14 
10.57 
14.7 

Rest of measures 

0.03 
0.01 
0.08 
0.01 
0.13 
0.002 
0.05 
0.02 
0.01 
0.025 
0.007 
0.015 

DR methods 

0.02 
0.002 
0.02 
0.01 
0.01 
0.018 
0.03 
0.01 
0.01 
0.005 
0.003 
0.005 

41.3 
79.79 
43.06 
10.52 
1.66 
0.10 
3.84 
85.03 
102.22 
123.01 
95.26 
107.61 
Total = 693.41 

Table 8 
Computation times (in seconds) per dataset and DR method. The largest values are printed in bold. 

Dataset Total CPU time (by DR methods) Total CPU time 
(s) 

1. Breast Cancer 
(Diagnostic) 

2. Connectionist Bench 
3. SPECTF 
4. Breast Cancer 

(Prognostic) 
5. Prostate 
6. Glass Identification 
7. Parkinsons 
8. Leukemia 
9. DLBCL 
10. Neurons 
ll.SRBCT's 
12. Libras Movement 
Total CPU time (s) 

PCA 

0.02 

0.004 
0.03 
0.004 

0 
3.85E-
0.004 
0.03 
0.03 
0.02 
0.01 
0.02 
0.17 

LDA 

0.16 

0.03 
0.17 
0.02 

0.003 
-05 0 

0.023 
0.17 
0.2 
0.12 
0.02 
0.11 
1.02 

Isomap 

71.36 

11.96 
74.59 
10.07 

1.35 
0.08 
9.93 

72.44 
87.3 
53.23 
24.32 
46.41 

463.04 

KPCAmuss 

3.74 

0.58 
4.9 
0.47 

0.07 
0.003 
0.52 
3.75 
4.63 
2.78 
1.29 
2.44 

25.17 

KPCApoiy 

19.44 

3.53 
20.27 

2.37 

0.37 
0.02 
2.7 

20.01 
24.06 
14.67 

6.71 
12.36 

126.51 

LE 

2.78 

0.46 
2.3 
0.34 

0.04 
0.003 
0.37 
2.76 
3.32 
2 
0.97 
1.75 

LLE 

6.42 

1.16 
6.69 
0.81 

0.12 
0.006 
0.89 
6.3 
7.94 
4.78 
2.21 
4.08 

DM 

6.27 

1.03 
6.54 
0.89 

0.12 
0.007 
0.87 
6.45 
7.76 
4.67 
2.06 
4.08 

17.093 41.406 40.74 

t-SNE 

681.95 

123.66 
719.8 
86.56 

13.19 
0.82 
94.8 
701.74 
842.53 
502 
234.95 
444.52 
4446.52 

SM 

903.97 

164.06 
942.27 
114.91 

16.51 
1.19 
125.85 
933.24 
1118.47 
673 
312.9 
584.78 
5891.15 

MVU 

1225.12 

222.48 
1271 
165.63 

23.73 
1.48 
170.56 
1260.72 
1515.83 
912.11 
422.71 
797.96 
7989.33 

CCA 

49.55 2970.78 

9.18 538.134 
54.7 3103.26 

6.42 388.494 

0.77 56.273 
0.26 3.869 
7.03 413.547 

51.02 3058.63 
62.54 3674.61 
37.61 2206.99 
17.24 1025.39 
32.72 1931.23 

329.04 Total = 19371.2 

The estimated total time to complete all the experiments has been approximately 693 h, equivalent to 28.8 days of 
sequential running. For the experiments, 5 desktop computers were used. Therefore, each computer took roughly 5.76 days 
to complete its tasks. The features of each computer were as follows: Intel i5 2.8 Ghz, 8 GB RAM. 

Table 8 also shows the computation time of the DR process for each of the DR algorithms. Although the computation 
times for the DR methods are very small compared to the total CPU time for the experiments, two different facts can be high­
lighted: PCA, LDA, LE and KPCAgaussian methods are computationally very light; on the other hand, SM, t-SNE and MVU meth­
ods are, by far, computationally very demanding. 

Finally, Fig. 15 shows a relationship between the number of features for each dataset versus the CPU time taken to com­
plete the experiments. 

As can be seen in the figure, the computation time for each dataset behaves approximately linearly with respect to the 
number of attributes that have been considered for each dataset. This clearly indicates that the bottleneck for quality mea­
sures could be strongly related to the number of attributes, as well as the number of instances to be evaluated. 

7. Discussion 

This paper proposes a new methodology that allows the analysis and comparison of different DR methods as regards the 
loss of quality they give rise to when carrying out a DR process. As a step prior to the presentation of the methodology, an 
exhaustive, chronological and comparative review of the quality assessment criteria in DR for measuring the loss of quality is 
also provided. By using this methodology, it is possible to analyse the curve generated by the loss of quality produced when 

1. Breast Cancer (Diagnostic) 
2. Connectionist Bench 
3. SPECTF 

4. Breast Cancer (Prognostic) 
5. Prostate 
6. Glass Identification 
7. Parkinsons 
8. Leukemia 
9. DLBCL 

10. Neurons 
ll.SRBCT's 
12. Libras Movement 
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Fig. 15. Number of features versus CPU time. 

reducing the dimensionality of a dataset from its original space, to a lower space. This also gives rise a study focusing on 
interesting dimensionalities, such as 2, 3, or intrinsic dimensionality. Particularly, for scatterplot visualization techniques 
(usually using 2 and 3 dimensions), it could be very useful to know the behavior, in terms of loss of quality, of a DR algorithm 
on a dataset. High loss of quality values could indicate the suitability of using another DR algorithm or dimensionality space 
for embedding the data. Other studies in the literature quantify, in a very superficial way, some loss of quality values for a 
particular case. However, the lack of a methodology for analyzing the entire loss of quality process in DR tasks has brought 
about this study. 

It is also worth highlighting that all the selected DR algorithms for our study are unsupervised except LDA (supervised). 
The reason for including both supervised and unsupervised DR algorithms is simple. On the one hand, the aim was to study a 
wide range of quality assessment measures after a DR process. This included the large majority that are unsupervised, but we 
also considered it necessary to mention Ce, that is a supervised quality indicator. On the other hand, the rationale for includ­
ing a supervised DR algorithm such as LDA in our methodology is as follows: to be able to demonstrate by using quality indi­
cators that LDA was originally devised to reduce the dimensionality of the data in order to improve the classification 
accuracy. This fact, indeed, impoverished the results in terms of quality preservation (as confirmed in Section 6.1.2). 

In order to test our methodology, three different kinds of analysis are proposed. The first one is a new way of classifying 
the current DR algorithms, according to their natural preservation of geometry skills on real-world datasets. t-SNE, MVU and 
Isomap algorithms have been demonstrated in these cases to preserve the original quality contained in the data, in a more 
effective way than the remaining algorithms. However, KPCAgauss and LDA performed worst in the experiments. To select the 
experiments for studying properly the loss of quality, the increasing/decreasing stability function (Sj/D) is also proposed. 

For detecting similar behaviors when reducing the dimensionality of the data, in terms of loss of quality, a clustering pro­
cess of the DR algorithms has been carried out. This second analysis reports results that indicate 4 different groups of algo­
rithms. t-SNE indicated a differentiated behavior of the remaining algorithms when performing DR tasks, and thus achieved 
the best results. PCA, SM and MVU algorithms reduced the dimensionality of the data in a very similar way. Conversely, LDA, 
KPCAgauss and ISOMAP algorithms also showed common features when reducing the dimensionality of the data. 

A final analysis is also presented, as regards the correlation between the different quality criteria when assessing the DR 
process. There is a very strong correlation between several criteria. For a more accurate measurement of the correlations, a 
modification of the original Pearson correlation coefficient is presented. Therefore, PM,PMC and NIEQAL0CAL proved to be 
strongly correlated. QNX,RNX, and Qk showed high correlation values. All these criteria and many other have shown strong 
correlations, independently of the nature of the dataset. However, the Q_Y criterion lacks direct correlation with other criteria 
because of its peculiar nature. 

The study presented here opens up a wide range of possibilities for carrying out a deeper comparative study of the DR 
algorithms according their geometry preservation skills, as well as the inclusion of other metrics or quality criteria for 
enriching the loss of quality evaluation. Furthermore, the results obtained through this methodology could be extended 
through the implementation of a more complex kind of data analysis for studying the behavior of the loss of quality in 
DR tasks. Finally, in the near future, this methodology will be included as a part of a tool, that carries out a Feature Subset 
Selection (FSS) on DNA microarray data. Its aim is to identify biomarkers for subsequent 2D and 3D linear scatterplot visu­
alization techniques, as well as supervised learning tasks for new samples. Part of this process involves the use of our meth­
odology for reporting on the amount of loss of quality produced during the entire process. 
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