1,307 research outputs found

    Community detection in networks via nonlinear modularity eigenvectors

    Get PDF
    Revealing a community structure in a network or dataset is a central problem arising in many scientific areas. The modularity function QQ is an established measure quantifying the quality of a community, being identified as a set of nodes having high modularity. In our terminology, a set of nodes with positive modularity is called a \textit{module} and a set that maximizes QQ is thus called \textit{leading module}. Finding a leading module in a network is an important task, however the dimension of real-world problems makes the maximization of QQ unfeasible. This poses the need of approximation techniques which are typically based on a linear relaxation of QQ, induced by the spectrum of the modularity matrix MM. In this work we propose a nonlinear relaxation which is instead based on the spectrum of a nonlinear modularity operator M\mathcal M. We show that extremal eigenvalues of M\mathcal M provide an exact relaxation of the modularity measure QQ, however at the price of being more challenging to be computed than those of MM. Thus we extend the work made on nonlinear Laplacians, by proposing a computational scheme, named \textit{generalized RatioDCA}, to address such extremal eigenvalues. We show monotonic ascent and convergence of the method. We finally apply the new method to several synthetic and real-world data sets, showing both effectiveness of the model and performance of the method

    Super-resolution community detection for layer-aggregated multilayer networks

    Get PDF
    Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the tradeoffs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with NN nodes and LL layers, which are drawn from an ensemble of Erd\H{o}s-R\'enyi networks. We study phase transitions in which eigenvectors localize onto communities (allowing their detection) and which occur for a given community provided its size surpasses a detectability limit Kβˆ—K^*. When layers are aggregated via a summation, we obtain Kβˆ—βˆO(NL/T)K^*\varpropto \mathcal{O}(\sqrt{NL}/T), where TT is the number of layers across which the community persists. Interestingly, if TT is allowed to vary with LL then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/LT/L decays more slowly than O(Lβˆ’1/2) \mathcal{O}(L^{-1/2}). Moreover, we find that thresholding the summation can in some cases cause Kβˆ—K^* to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. That is, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold.Comment: 11 pages, 8 figure

    Simplified Energy Landscape for Modularity Using Total Variation

    Get PDF
    Networks capture pairwise interactions between entities and are frequently used in applications such as social networks, food networks, and protein interaction networks, to name a few. Communities, cohesive groups of nodes, often form in these applications, and identifying them gives insight into the overall organization of the network. One common quality function used to identify community structure is modularity. In Hu et al. [SIAM J. App. Math., 73(6), 2013], it was shown that modularity optimization is equivalent to minimizing a particular nonconvex total variation (TV) based functional over a discrete domain. They solve this problem, assuming the number of communities is known, using a Merriman, Bence, Osher (MBO) scheme. We show that modularity optimization is equivalent to minimizing a convex TV-based functional over a discrete domain, again, assuming the number of communities is known. Furthermore, we show that modularity has no convex relaxation satisfying certain natural conditions. We therefore, find a manageable non-convex approximation using a Ginzburg Landau functional, which provably converges to the correct energy in the limit of a certain parameter. We then derive an MBO algorithm with fewer hand-tuned parameters than in Hu et al. and which is 7 times faster at solving the associated diffusion equation due to the fact that the underlying discretization is unconditionally stable. Our numerical tests include a hyperspectral video whose associated graph has 2.9x10^7 edges, which is roughly 37 times larger than was handled in the paper of Hu et al.Comment: 25 pages, 3 figures, 3 tables, submitted to SIAM J. App. Mat

    On Spectral Graph Embedding: A Non-Backtracking Perspective and Graph Approximation

    Full text link
    Graph embedding has been proven to be efficient and effective in facilitating graph analysis. In this paper, we present a novel spectral framework called NOn-Backtracking Embedding (NOBE), which offers a new perspective that organizes graph data at a deep level by tracking the flow traversing on the edges with backtracking prohibited. Further, by analyzing the non-backtracking process, a technique called graph approximation is devised, which provides a channel to transform the spectral decomposition on an edge-to-edge matrix to that on a node-to-node matrix. Theoretical guarantees are provided by bounding the difference between the corresponding eigenvalues of the original graph and its graph approximation. Extensive experiments conducted on various real-world networks demonstrate the efficacy of our methods on both macroscopic and microscopic levels, including clustering and structural hole spanner detection.Comment: SDM 2018 (Full version including all proofs
    • …
    corecore