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Abstract

Applied network science often involves preprocessing network data before applying a network-

analysis method, and there is typically a theoretical disconnect between these steps. For example, 

it is common to aggregate time-varying network data into windows prior to analysis, and the trade-

offs of this preprocessing are not well understood. Focusing on the problem of detecting small 

communities in multilayer networks, we study the effects of layer aggregation by developing 

random-matrix theory for modularity matrices associated with layer-aggregated networks with N 
nodes and L layers, which are drawn from an ensemble of Erdős–Rényi networks with 

communities planted in subsets of layers. We study phase transitions in which eigenvectors 

localize onto communities (allowing their detection) and which occur for a given community 

provided its size surpasses a detectability limit K*. When layers are aggregated via a summation, 

we obtain , where T is the number of layers across which the community 

persists. Interestingly, if T is allowed to vary with L, then summation-based layer aggregation 

enhances small-community detection even if the community persists across a vanishing fraction of 

layers, provided that T/L decays more slowly than (L−1/2). Moreover, we find that thresholding 

the summation can, in some cases, cause K* to decay exponentially, decreasing by orders of 

magnitude in a phenomenon we call super-resolution community detection. In other words, layer 

aggregation with thresholding is a nonlinear data filter enabling detection of communities that are 

otherwise too small to detect. Importantly, different thresholds generally enhance the detectability 

of communities having different properties, illustrating that community detection can be obscured 

if one analyzes network data using a single threshold.
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I. INTRODUCTION

Network-based modeling provides a powerful framework for analyzing high-dimensional 

data sets and complex systems [1]. Often, a network is best represented by a set of network 

layers that encode different types of interactions, such as categorical social ties [2] or a 

network at different instances in time [3], and an important pursuit involves extending 

network theory to the multilayer setting [4,5]. Sometimes, however, a multilayer framework 

can require too much computational overhead or can represent an over-modeling (e.g., when 

the layers are correlated, either in terms of the edge overlap [6] or other properties [7–9]), 

and it can be beneficial to aggregate layers [9–11]. In particular, aggregation provides a 

crucial step for analyzing temporal network data, which is often binned into time windows 

[12,13] (see Fig. 1). Layer aggregation and other types of network preprocessing (e.g., 

sparsification [14], network inference [15], and denoising [16,17]) can greatly influence the 

resulting network structure, which in turn influences the outcomes of network analyses and 

their many applications. In general, there remains a significant need for improved theoretical 

understanding for how such network preprocessing influences network-analysis 

methodology.

We study the effects of layer aggregation on community detection, one of the widely used 

methods for studying social, biological, and physical networks [18–21]. Communities are 

typically studied as dense subgraphs and can represent, for example, coordinating neurons in 

the brain [13] or a social clique [22] in a social network. (Hereafter, we restrict our usage of 

the term “clique” to the graph-theoretical meaning of a subgraph with all-to-all coupling.) 

Of particular interest is the detection of small-scale communities, which is a paradigmatic 

pursuit for anomaly detection within the fields of signal processing and cybersecurity [23–

28]. In this context, small communities can represent anomalous events such as attacks [23], 

intrusions [24], and fraud [25].

Given these and many other applications, there is great interest in understanding 

fundamental limitations on community detection [11,26–36]. We highlight recent 

detectability results for multilayer [10,11,37] and temporal networks [29]. It is worth noting 

that much of the detectability research has focused on large-scale communities whose sizes 

are (N), where N is the number of nodes in the network [29–35], and the phase transitions 

are typically driven by varying the prevalence (e.g., edge density) of the communities. In 

contrast, detectability phase transitions for small communities can also be onset by varying 

their size K [11,26–28] and are thus a type of resolution limit [36]. We note that the 

literatures on detectability and resolution limits have developed independently, and there is 

need for a better understanding of the relationship between these topics. In particular, a 

planted clique in a single-layer Erdős-Rényi (ER) network is detectable via a spectral 

analysis only if its size K surpasses a detectability limit  [26], in which case, a 

dominant eigenvector (in this case, that corresponding to the second-largest eigenvalue of 

the adjacency matrix) localizes onto the clique. Extending previous research for the 

detectability of a clique planted in single-layer networks [26–28] and a clique that persists 

across all layers of a multilayer network [11], herein we study the detectability of small 

communities (including, but not limit to, cliques) planted in a subset of layers in a multilayer 

network.
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With the application of detecting small communities in mind, we study the effects of layer 

aggregation as a network preprocessing step. We first ask a foundational question: Across 

how many layers must a community persist in order for layer aggregation to benefit 

detection. To this end, we study a multilayer network model in which small communities are 

hidden in network layers generated as ER networks with N nodes and L layers with 

(possibly) heterogeneous edge probabilities. We study detectability phase transitions 

wherein eigenvectors localize onto communities, which we analyze by developing random 

matrix theory for the eigenvectors of modularity matrices associated with an aggregation of 

the layers. When the aggregation is given by summation of the adjacency matrices, the 

detectability phase transition occurs when a community’s size K ≪ N surpasses a critical 

value , where T is the number of layers across which a community persists. 

Note that if T depends on L, then summation-based layer aggregation benefits small-

community detection even if the fraction T/L of layers containing the community vanishes, 

provided that the fraction decays more slowly than (L−1/2).

We additionally study network preprocessing via thresholding—that is, we threshold a 

summation of layers’ adjacency matrices at some value L̃ so that there exists an unweighted 

edge between two nodes in the aggregated network if and only if there exists at least L̃ edges 

between them across the L layers. While it is well known that thresholding can be used to 

simultaneously sparsify and dichotomize a network, here we introduce thresholding as a 

nonlinear data filter [38] for enhancing small-community detection. Specifically, we find 

that thresholding can, in some cases, reduce K* by orders of magnitude, revealing 

communities that are otherwise too small to detect. We call this phenomenon super-

resolution community detection and show, for clique detection in sparse networks, that K* 

decays exponentially with  for threshold L̃ = T. Importantly, we find that different 

thresholds enhance the detection of communities with different properties (e.g., size and 

edge density), illustrating how community structure can be obscured if one uses a single 

threshold, which is an important insight for network preprocessing in general.

The remainder of this paper is organized as follows. In Sec. II, we further specify our model. 

In Sec. III, we study the effects of layer aggregation on detectability phase transitions 

characterized by eigenvector localization. In Sec. IV, we highlight implications of our 

findings with a numerical experiment involving small-community detection in a temporal 

network. We provide a discussion in Sec. V

II. MODEL

A. Multilayer networks with planted small communities

We generate L network layers with N nodes so that each layer l ∈ {1,…, L} is an ER 

random graph with edge probability pl ∈ (0, 1), which is allowed to vary across the layers. 

We plant R communities via the following process. For r ∈ {1…, R}, uniformly at random, 

we select a set r ⊂ {1,…, L} of layers and a set r ⊂  = {1,…, N} of nodes, and we 

define an edge probability ρr. The variable Kr = | r| ≪ N denotes the size of community r, 
and we refer to Tr = |  r| as its persistence across network layers. Then, for each r, we 

construct a dense subgraph between nodes r in layers r by first removing edges between 
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them occurring under the ER model and creating new edges with probability ρr. To ensure 

that the communities are denser than the remaining network, we assume ρr > 〈pl〉, where 〈·〉 
denotes the mean value across all layers. We allow self-edges in both the ER model and the 

planted communities. We note that the layers are not required to have a particular ordering, 

and the community is not restricted only to consecutive layers. Moreover, we restrict our 

study to nonoverlapping communities by assuming that the communities involve different 

nodes so that r ∩ s = 0 for any r ≠ s. We leave open the study of eigenvector localization 

in the case of overlapping communities. Finally, we assume ΣrKr ≪ N so that only a small 

fraction of nodes are involved in communities, making them anomalous structures.

B. Layer-aggregation methods

We find that layer aggregation is a preprocessing step for multilayer networks that can be 

used to reduce data size and/or as a data filter to benefit network-analysis outcomes such as 

community detection. Following the approach in Ref. [10], we study two methods for 

aggregating layers of a multilayer network:

i. The summation network corresponds to the weighted adjacency matrix Ā = 

ΣlA(l), where A(l) denotes the symmetric adjacency matrix encoding each 

network layer l ∈ {1,…, L}.

ii. The family of thresholded networks represented by unweighted adjacency 

matrices {Â(L̃)} are obtained by applying a threshold L̃ ∈ {1,…, L} to the entries 

{Āij} of matrix Ā,

(1)

Note that thresholding dichotomizes the network, and one can vary L̃ to tunably sparsify the 

network.

III. DETECTABILITY OF SMALL COMMUNITIES WITH EIGENVECTOR 

LOCALIZATION

We now develop random matrix theory to analyze how layer aggregation affects small-

community detection. In Sec. III A, we present results for aggregation by summation, 

studying the fraction of layers that must contain a community in order for layer aggregation 

to enhance detection. In Sec. III B, we present results for layer aggregation with 

thresholding, highlighting that certain threshold values can yield super-resolution 

community detection.

A. Layer aggregation via summation

1. Random matrix theory for modularity matrices—We first describe the statistical 

properties of matrix entries {Āij}. For edges (i, j)∈∉r{ r × r}, {Āij} are independent and 

identically distributed (i.i.d.) random variables following a Poisson binomial distribution, 

P(Āij = a) = fPB(a; L, {pl}), where
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(2)

and a denotes the set of different subsets of layers {1,…, L} that have cardinality a 
(i.e., 1 ={{1},{2},…}, 2 = {{1, 2}, {1, 3},…}, and so on). We note that fPB(a; L, {pl}) 

has mean L〈pl〉 and variance L〈pl(1 − pl)〉. When the edge probability is identical across the 

layers (i.e., pl = p), then Eq. (2) simplifies to the binomial distribution,

(3)

with mean Lp and variance Lp(1 − p).

For within-community edges (i, j) ∈ { r × r} associated with community r, the entries 

{Āij} are i.i.d. random variables following , where  for l ∈ r and 

otherwise . It follows that the entries have mean Trρr +Σl∈{1,…, L}\  rpl and variance 

Trρr(1−ρr)+Σl∈{1,…, L}\  rpl(1−pl). Because the layers r are selected uniformly at random, 

the expected mean and variance across all possible choices for r are given by Trρr + (L − 

Tr)〈pl〉 and Trρr(1 − ρr) + (L − Tr)〈pl(1 − pl)〉, respectively.

We now study the spectra of the modularity matrix [39],

(4)

based on an ER null model in which each edge has expected weight L〈pi〉. Importantly, this 

null model does not use knowledge that edges (i, j) between nodes i, j ∈ r have different 

expected edge probability [i.e., Trρ + (L − Tr)〈pi〉 vs L〈pi〉], which respects our assumption 

that it is unknown which nodes are in the hidden community. We note that one could also 

define the ER null model with the observed mean edge probability 

 to account for the slight increase in overall edge 

probability due to the presence of small communities. However, this change does not affect 

the position of the dominant eigenvalues relative to the bulk, which is the relevant issue for 

community detectability, as we will see below. In particular, since  for 

each r, even the shift of the single associated eigenvalue within the bulk is negligible; 

therefore, we focus on the null model with expected edge weight L〈pi〉.

We develop random matrix theory based on the analysis in Refs. [27,40]. To this end, we 

note that B̄ can be written in the form
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(5)

where

(6)

is a rank-R matrix with eigenvalues given by

(7)

and {u(r)} are normalized indicator vectors for the R communities that have entries

(8)

The random matrix X has zero-mean entries Xij with variance Tρr(1−ρr)+(L–Tr)〈pl(1–pl)〉 if 
(i,j)∈ r× r, and L〈pl(1 − pl)〉 otherwise. In the N → ∞ limit, and assuming the sizes {Kr} 

grow more slowly than N, then the  matrix entries corresponding to 

communities become negligible and X limits to a Wigner matrix [41]. This allows us to use 

known results for the limiting dominant eigenvector of low-rank perturbations of Wigner 

matrices with variance 1/N. Specifically, we define  so that the matrix 

γX has entries with variance 1/N in the limit. We similarly define

(9)

so that γB̄ = Σrθ̄ru(r)(u(r))T + γX. It follows that the limiting N → ∞ dominant eigenvectors 

{v(r)} of γB̄ (and of B̄ since scalar multiplication does not affect eigenvectors) satisfy 

[40,42]

(10)
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Note we assume that the dominant eigenvectors have been suitably enumerated so that v(r) 

corresponds to the eigenvector localizing on community r. The value θ̄r = 1 identifies critical 

points at which there is a phase transition in eigenvector localization and detectability for 

community r, and this gives the critical community size

(11)

In other words, a small community can be detected using a dominant vector v(r) of B̄ only 

when . We note that setting L = Tr = 1, ρr = 1, and pl = p in Eq. (11) recovers 

, which describes the detectability transition for a single planted clique in 

a single-layer network [26].

We highlight an important consequence of Eq. (11). First, if the community persists across 

some fixed fraction of the layers, T(L) = cL, then ; therefore, if N, p, and Tr/L 

are held fixed and L increases, then  vanishes with scaling (L−1/2). This square-root 

scaling behavior is similar to that obtained for detection in layer aggregation of large-scale 

communities that persist across all layers [10]. Second, for fixed N and p, a community of 

fixed size Kr and persistence Tr will become impossible to detect as L increases because 

increases with scaling (L1/2). This result highlights the importance of knowing which 

layers potentially contain the community since the aggregation of layers lacking the 

community can severely inhibit its detection.

Digging further, one can let Tr vary with L and then ask how  depends on the scaling 

behavior for Tr. For Tr ∝ Lβ, Eq. (11) implies  so that as L → ∞,

(12)

In other words, Tr, the number of layers containing the community, must increase with L at 

least as (L1/2); otherwise, summation-based layer aggregating will inhibit (rather than 

promote) small-community detection. Note that T ∝ L−1/2 is a critical case in which  is 

independent of L. We highlight that Eq. (12) is somewhat surprising since summation-based 

aggregation benefits detection even if the fraction Tr/L of layers containing the community 

vanishes with L, provided that it decays more slowly than (L−1/2).

2. Numerical validation and scaling behavior—We support Eqs. (10) and (11) in Fig. 

2, using numerical experiments with N = 104 nodes and edge probabilities {pl} drawn from 

a Gaussian distribution with mean p = 0.01 and standard deviation σp = 0.001. We focus on 

the case of clique detection (i.e., ρ = 1), hiding the clique in T = 2 of the L = 16 layers. In 
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Fig. 2(a), we plot the entries { } (symbols) of the dominant eigenvector of the modularity 

matrix for the summation network as well as the entries { } for the indicator vector, 

which are nonzero only for nodes i ∈  involved in the clique. We show results for 

community sizes Kr ∈ {6, 26, 86}, which respectively place the system below, just above, 

and well above the phase transition. The illustration highlights that as K increases, vector v(r) 

aligns with u(r).We quantify this localization phenomenon by plotting in Fig. 2(b) observed 

(symbols) and predicted values of |〈v, u〉|2 given by Eq. (10) (curve). Note that the values of |

〈v(r), u(r)〉|2 depict a phase transition that occurs at a critical subgraph size  given by Eq. 

(11): |〈v(r), u(r)〉|2 > 0 when , whereas |〈v, u〉|2 = 0 when . This phase 

transition in eigenvector localization drives a phase transition for community detection based 

on v(r). Arrows indicate the values of Kr used in panel (a).

In Fig. 3(a), we compare observed (symbols) and predicted values of |〈v, u〉|2 given by Eq. 

(10) (curves) for varying Kr with Tr ∈ {1, 2, 4, 8}. Open symbols indicate the parameters 

used in Fig. 2, whereas filled symbols indicate the mean value of |〈v, u〉|2 for 10 trials in 

which the layers’ edge probabilities {pl} are drawn uniformly from [0, 0.02]. Note that as Tr 

increases, the curves shift to the left, illustrating that as the community persists across more 

layers, the localization phenomenon is stronger and the hidden community is easier to 

detect. In Fig. 3(b), we study the dependence of  on the number of layers, L, and we 

compare the effect of keeping Tr fixed vs allowing Tr to grow with L. Specifically, we set 

either Tr(L) = 20 or Tr(L) = L, and we plot the value of  given by Eq. (11). Note that if 

the community persists across a fraction of the layers—that is, Tr(L) = cL for some constant 

c—then  vanishes with scaling (L−1/2). However, if Tr is held fixed, then  increases 

with scaling (L1/2).

In summary, these experiments illustrate how layer aggregation through summation can 

enhance small-community detection if the community persists across sufficiently many 

layers, but it can obscure detection if the community is present in too few layers. We will see 

in the next section that thresholding the summation can help overcome this problem, 

potentially reducing the detectability limit by orders of magnitude to yield super-resolution 

community detection.

B. Thresholding as a nonlinear data filter

1. Random matrix theory for modularity matrices—We now study layer aggregation 

with thresholding as a filter that enhances small-community detection. We begin by solving 

for effective edge probabilities for the thresholding process [10]. Thresholding the 

summation ΣlA(l) at L̃ yields a binary adjacency matrix Â(L̃) with entries 

indicating whether or not Āij ≥ L̃. For edges (i, j)∈∉r{ r × r}, Āij follows a Poisson 

binomial distribution fPB(a; L, {pl}) given by Eq. (2), and the inequality is satisfied with 

probability
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(13)

where FPB(a, L, {pl}) is the associated cumulative distribution function (CDF). For edges (i, 

j) ∈ { r × r}, Āij follows a Poisson binomial distribution  given by Eq. 

(2), and the inequality is satisfied with probability

(14)

where  for l ∈ r and otherwise . In the case of a clique (i.e., ρr = 1), Eq. (14) 

can be written as

(15)

Given the effective edge probabilities for the network and a community (i.e., p̂(L̃) and , 

respectively), it is straightforward to study the detectability limits of a community for 

thresholded networks using Eqs. (10) and (11). In particular, we substitute L = Tr = 1 to 

obtain

(16)

where v̂(r) is a dominant eigenvector of modularity matrix

(17)

and . Setting θ̂r = 1 gives a detectability limit for each 

community r in terms of the effective edge probabilities p̂(L̃) and ,

(18)
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Equations (16)–(18) illustrate that the detectability limits for thresholded networks depend 

only on the effective edge probabilities; however, these depend sensitively on the choice of 

threshold L̃.

Importantly,  given by Eq. (18) can potentially be orders of magnitude smaller than 

given by Eq. (11), a phenomenon we call super-resolution detection. In addition to 

numerical experiments that will follow below, we further study this phenomenon by 

comparing  and  for network parameters wherein we can obtain deeper insight. We 

consider clique detection (i.e., ρr = 1) in a sparse network (i.e., pl ≪ 1) and focus on the 

threshold value L̃ = Tr to obtain

(19)

Using these assumptions also in Eqs. (13) and (15), we find the effective edge probabilities 

p̂(Tr)=1–FPB(Tr–1, L,{pl}) and . Furthermore, we apply Hoeffding’s inequality [43] 

to obtain p̂(Tr) ≤ e−2L(〈pl〉−Tr/L)2. Noting 0 < 〈pl〉 ≪ Tr/L, we find the 〈pl〉 → 0 limiting 

bound

(20)

illustrating that p̂(Tr) and  decay exponentially with . On the other hand, we use the 

sparsity assumption in Eq. (11) to obtain

(21)

Thus, in this case,  decays as , whereas  decays exponentially (i.e., 

considerably faster) with .

2. Numerical validation and super-resolution detection—We now support Eqs. 

(13)–(18) with numerical experiments and illustrate that certain thresholds lead to super-

resolution community detection. We consider the detection of a dense subgraph that is 

hidden in both (a) a dense network with 〈pl〉 = 0.5 and (b) a sparse network with 〈pl〉 = 0.01. 

Both networks were constructed with N = 104, σp = 0.001, ρr = 1, L = 16, and Tr = 5.

In Fig. 4, we compare observed (symbols) and predicted values (curves) of the effective 

edge probabilities p̂(L̃) given by Eq. (13) and  given by Eq. (14) as a function of the 

threshold L̃. Note in both panels that the effective edge probability p̂ (L̃) of the background 

network always decays with increasing L̃. In contrast, the effective edge probability between 
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nodes in the community depends on whether or not  when L̃ ≤ Tr since ρ = 1, 

whereas  decays with increasing L̃ for L̃ > Tr. Importantly, the rate of decay depends on 

the network’s mean edge density 〈pl〉: ρ̂ (L
̃) slowly decreases for the dense network, whereas 

it abruptly drops for the sparse network.

In Fig. 5, we plot observed (symbols) and predicted values (curves) for |〈v(r), u(r)〉|2 given by 

Eq. (16) vs K for different choices of L̃. The parameters used are identical to those of Fig. 4, 

and panels (a) and (b) again depict results for 〈pl〉 = 0.5 and 〈pl〉 = 0.01, respectively. We 

highlight several important observations. First, note in both panels that L̃ = Tr = 5 yields 

better detectability than L̃ = 1. However, when L̃ > Tr, we find contrasting results for sparse 

and dense networks. For the sparse network shown in Fig. 5(b), the hidden community 

becomes harder to detect when L̃ > Tr (see curve for L̃ = 16), which intuitively occurs 

because  rapidly decays and the thresholded networks will no longer contain a dense 

subgraph. On the other hand, for the dense network depicted in Fig. 5(a), increasing L ̃ can 

improve detectability when L̃ > Tr (see curve for L̃ = 10).

We now present an experiment highlighting the occurrence of super-resolution community 

detection for certain threshold values. In Fig. 6, we study the dependence of the critical 

community size  on the threshold L̃. We plot  given by Eq. (18) as a function of L̃ for p 
∈ {0.01, 0.05, 0.2, 0.5}, N = 104, ρ = 1, σp = 0.001, L = 16, and either (a) Tr = 5 or (b) Tr = 

10. Note that for the sparsest network, i.e., p = 0.01, the minimum value of K* occurs when 

L̃ = Tr (vertical dashed line). Interestingly, as the mean edge density p = 〈pl〉 increases, the 

threshold L̃ at which  attains its minimum value shifts from L̃ = Tr towards L̃ = L. The 

horizontal lines on the right edge of the panels indicate  given by Eq. (11) for the 

summation network.

Importantly, note that for a wide range of parameters,  for the thresholded networks is 

significantly smaller than  for the corresponding summation networks. In particular, one 

can observe for p = 0.1 and L̃/L = Tr/L in Fig. 6(b) that  is many orders of magnitude 

smaller than . In other words, thresholding the summation can 

dramatically improve detectability as compared to summation without thresholding. This 

surprising result contrasts our previous findings for the detectability of large communities 

that persist across all layers [10], where it was found that thresholding always inhibited 

detection (although optimal thresholds were found to minimize inhibition).

IV. SMALL-COMMUNITY DETECTION IN TIME-VARYING NETWORKS

We now present an experiment involving small-community detection in time-varying 

networks to highlight several practical insights following from our theoretical results. Note 

that unlike Sec. III, where there were no restrictions on which layers a community persists, 

we now assume that each community persists across consecutive layers. We conducted 

experiments for a synthetic temporal network with N = 104 nodes and L = 32 time layers, 

each of which is drawn from an ER network with edge probability pl, which we drew from a 

Gaussian distribution with mean p = 0.01 and standard deviation σp = 0.001. We then 
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planted R = 4 communities, each involving Kr = K = 8 nodes, in the following sets of layers: 

1 = {3, 4, 5} for community 1, 2 = {7,…, 15} for community 2, 3 = {18,…, 22} for 

community 3, and 4 = {24,…, 30} for community 4. In Fig. 7(a), we provide a 

representative illustration of the temporal network, where we indicate in which layers the 

communities are present. We also illustrate by the shaded region an example time window, 

or bin, w(t) = {t − (w − 1)/2,…, t + (w − 1)/2} for t ∈ {(w − 1)/2, L − (w − 1)/2}, that 

contains layers to be aggregated.

We first consider aggregation by summation. In Fig. 7(b), we illustrate by color the values |

〈v(r), u(r)〉|2 for the aggregation of layers across bins w(t). In particular, we show Eq. (10) 

under the variable substitutions Tr( w(t)) ↦ T and w ↦ L, where Tr( w(t)) = | w(t) ∩ 

r| is the number of layers in which community r is present in bin w(t). We show results for 

several bin widths w ∈ {1, 3, 5, 7, 9}. The green arrows indicate, for each r, the bin location 

and w value at which |〈v(r), u(r)〉|2 obtains its maximum. As expected, |〈v(r), u(r)〉|2 obtains its 

maximum for each community r when the bin w(t) is exactly the set of layers in which 

community r is present, w(t) =  r (i.e., when Tr = w).

Before studying aggregation by summation and thresholding, we first make several 

important observations using Fig. 7. First, note that for w = 1 in panel (b), no communities 

are detectable. In other words, all communities are undetectable if the layers are studied in 

isolation. However, they can be detected if the layers are binned into time windows. Second, 

because the optimal bin size w is unique to every community (i.e., because they have 

different persistence Tr ∈ [3, 9]), there is no bin size that is best for all communities. In fact, 

detectability requires  given by Eq. (11), which requires that, for each community, w 
is not too large or too small. For example, community 1 is only detectable when w = 3, and 

community 3 is only detectable when w ∈ [3, 7].

One final important observation for Fig. 7(b) is that even when communities are detectable, 

the values |〈v(r), u(r)〉|2 are not very large—specifically, |〈v(r), u(r)〉|2 ≤ 0.7 in all cases. This 

can be problematic since detection error rates increase as |〈v(r), u(r)〉|2 decreases, 

approaching 100% error as |〈v(r), u(r)〉|2 → 0. (See Ref. [27] for an analysis of error rates 

based on a hypothesis-testing framework for clique detection in single-layer networks.) 

Because |〈v(r), u(r)〉|2 remains small for community 1 for all choices of w, it effectively 

remains undetectable by summation-based layer aggregation.

We now illustrate layer aggregation with thresholding as a filter that can allow greatly 

improved small-community detection for the temporal network shown in Fig. 7(a), including 

the accurate recovery of community 1. In Fig. 8, we plot |〈v̂(r), u(r)〉|2 given by Eq. (16) with 

the variable substitutions Tr( w(t)) ↦ T and w ↦ L into Eqs. (13)–(18). Results reflect 

the aggregation of layers into bins w(t) for each of the four communities r ∈ {1, 2, 3, 4} 

and with bin sizes w ∈ {1, 3, 5, 7, 9}. Panels (a)–(c) indicate results for different thresholds, 

L̃ ∈ {w, 0.8w, 0.5w}.

Our first observation for Fig. 8 is that none of the communities can be detected (for any 

threshold) if the layers are analyzed in isolation (see results for window size w = 1). This 

result is similar to that shown in Fig. 7(b) for summation without thresholding (i.e., 
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whenever w = 1, we find |〈v̂(r), u(r)〉|2 = |〈v(r), u(r)〉|2 = 0). In other words, the detectability of 

communities is only made possible through layer aggregation.

Our next observation is that the values |〈v̂(r), u(r)〉|2 are either zero or close to one, which is 

in sharp contrast to the values of |〈v(r), u(r)〉|2 shown in Fig. 7(b), which can be observed to 

obtain many values across the range [0, 0.7]. In other words, in this experiment, the use of 

thresholding as a filter allows small communities to be either strongly detected or not 

detected—there is no middle ground for weak detection (which is the case for layer 

aggregation without thresholding). This is important since error rates for community 

detection vanish as |〈v̂(r), u(r)〉|2 → 1 [27].

Our final observation is that different threshold values enhance the detectability of different 

communities. For example, community 1 is detectable when w = 3 for L̃ ≥ 0.8w but not for 

L ̃ = 0.5w [compare panels (a) and (b) to panel (c)]. Similarly, community 3 is detectable 

when w = 9 for L̃ ≤ 0.8w but not for L̃ = w [compare panels (b) and (c) to panel (a)]. 

Interestingly, in this experiment, we were able to identify a combination of parameters (L̃,w) 

that allows accurate detection of all four communities—that is, |〈v̂(r), u(r)〉|2 ≈ 1 for bin 

w(t) only when community r is present in time layer t [i.e., t ∈ r]; otherwise, |〈v̂(r), u(r)〉|2 ≈ 
0. We highlight these values of ( L̃,w) in panel (b) with a violet box. However, we stress that 

these “best” values for ( L̃, w) arise in this experiment because the communities are 

relatively similar in size (i.e., Kr ∈ [3, 9]) and density (i.e., ρr = 1). In general, one should 

not expect there to exist one choice of parameters ( L̃,w) to work well for all communities 

since the detectability-limit criterion given by Eq. (18) depends on a complex interplay 

between the network and community parameters {pl}, ρL, Tr, Kr, L, and L̃.

V. DISCUSSION

There is considerable need to better understand how network preprocessing affects network-

analysis methodologies. Herein, we studied how different methods for layer aggregation 

affect the detectability of small-scale communities in multilayer networks (including 

multilayer representations of temporal networks). Small-community detection is widely used 

for anomaly detection in network data [23–28]; in cybersecurity, for example, it allows 

detection of harmful events such as attacks [23], intrusions [24], and fraud [25]. 

Understanding limitations on small-community detection provides insight towards the 

detectability of these harmful activities. Despite most networks inherently changing in time, 

previous theory for limitations on small-community detection have been restricted to single-

layer networks [26,27] or summation-based aggregation [11]. We highlight that our model 

and analysis generalizes these previous works in several ways: (i) A community has edge 

probability ρ ∈ (0, 1] and is not necessarily a clique, (ii) a community can persist across a 

subset of layers, (iii) the mean edge probability pl can vary across network layers, and (iv) 

the multilayer or temporal network can simultaneously contain several communities.

Motivated in this way, we developed random matrix theory [27,40] to analyze detectability 

phase transitions in which the dominant eigenvectors of modularity matrices associated with 

layer-aggregated multilayer networks localize onto communities, thereby allowing their 

detection. We developed theory for when a community with Kr ≪ N nodes is hidden (i.e., 

Taylor et al. Page 13

Phys Rev X. Author manuscript; available in PMC 2018 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



planted) in Tr ≤ L layers of a multilayer network with N nodes and L layers. We found a 

detectability phase transition to occur for a given community r when its size Kr surpasses a 

detectability limit. When layers are aggregated by summation, the detectability limit  is 

given by Eq. (11) and has the scaling behavior . Surprisingly, if L is allowed 

to vary, this implies that summation-based aggregation enhances community detection even 

if the community exists in a vanishing fraction Tr/L of layers, provided that Tr/L decays 

more slowly than (L−1/2). This result is surprising since layer aggregation still benefits 

community detection despite the fact that most layers carry no information about the 

community.

We also introduced and studied the utility of layer aggregation with thresholding as a 

nonlinear data filter to enhance small-community detection. Our analysis [particularly, Eq. 

(18)] revealed that in addition to implementing sparsification and dichotomization, 

thresholding can allow super-resolution community detection, whereby the detectability 

limit decreases by several orders of magnitude (see Fig. 6). In particular, we showed in Sec. 

III B that  decays exponentially with  for clique detection in layer-aggregated 

sparse networks filtered by threshold L̃ = Tr.

To illustrate practical implications of our results, in Sec. IV we presented an experiment 

involving the detection of small communities in a time-varying network, highlighting the 

following key insights:

i. Aggregating time layers into appropriate-sized bins can allow the detection of 

small communities that would otherwise be undetectable (that is, if the layers 

were considered in isolation or if all layers were aggregated).

ii. Layer aggregation by summation enhances community detection if the 

community persists across sufficiently many [specifically, (L1/2)] layers; 

otherwise, it can obscure detection.

iii. Layer aggregation with thresholding is a filter that can allow super-resolution 

community detection of small communities that are otherwise too small for 

detection.

iv. The threshold that best enhances the detection of a small community depends on 

many parameters, and the detection of multiple communities should, in general, 

utilize multiple thresholds.

We have thus provided a theoretical framework supporting how small-community detection 

in temporal network data can be improved through network preprocessing in which network 

layers are binned into time windows and are aggregated using summation with thresholding. 

This filtering, however, should not be approached as a “one-size-fits-all” procedure. In 

particular, we find that there exist optimal time window sizes w and layer-aggregation 

strategies that, in general, are unique to each community (i.e., depending on its size, density, 

persistence across the layers, etc.). While it is important to consider a range of window sizes 

and layer-aggregation methods, this leads to an unavoidable trade-off between computational 

cost and sufficient exploration of different parameters.
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Before concluding, we discuss implications of our work regarding the topic of eigenvector 

localization in complex networks, which is an important topic in network science [44,45] for 

the study of centrality [46–48], spatial analysis [49], and core-periphery structure [50,51]. In 

particular, there is growing interest in extending these ideas to time-varying [52] and 

multilayer networks [53]. Recently, Ref. [54] showed that an Anderson-localization-type 

transition occurs for material transport on several real-world networks (e.g., interconnected 

ponds of melting sea ice, porous human bone, and resistor networks) and noted that they did 

not observe the wave interference and scattering effects that typically occur for Anderson 

localization (a widely studied phenomenon in which eigenfunctions localize onto defects in 

disordered materials [55,56]). Reference [54] found the phase transition to coincide with a 

phase transition in network connectivity due to eigenvector localization onto different 

connected components. Our work complements these findings, showing that a similar 

localization phenomenon can be brought on by small communities—that is, localization 

does not necessarily require network fragmentation. (We note in passing that connected 

components can be interpreted as one, and perhaps the strictest, notion of a community.) 

Future research should further explore the connection between community-based and 

connected-component-based eigenvector localization on networks, and their relationship to 

Anderson localization in materials. (See Refs. [57,58] for related research using network-

based models for disordered and composite materials.)

Finally, we highlight other extensions to our work that would be interesting to pursue. 

Motivated by applications for data fusion, recent research [11] considered weighted 

averaging of adjacency matrices, allowing them to optimize the weights for the different 

network layers. It would be interesting to extend our research to weighted averages, which 

should be fairly straightforward by redefining 〈·〉 in Eqs. (9)–(11) with weights. We leave 

open the joint optimization of weighting and thresholding. Finally, it would also be 

interesting to use our method to study the temporal behavior of communities [59], such as a 

set of nodes that form a recurring community in different time windows (i.e., periodically or 

stochastically).
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FIG. 1. 
Preprocessing networks (including multilayer representations of temporal networks) often 

involves aggregating network data into bins (or time windows). We study how many layers 

must contain a community in order for aggregation to enhance its detection and introduce 

layer aggregation with thresholding as a filter enabling super-resolution community 

detection.
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FIG. 2. 

Eigenvector localization yields detectability phase transition. (a) Entries  (symbols) of a 

dominant eigenvector of the modularity matrix for the summation network of a multilayer 

network with a hidden community of size Kr. Parameters include Tr = 2, L = 16, N = 104, ρ 
= 1, and the edge probabilities {pl} of layers are Gaussian distributed with mean 〈pl〉 = 0.01 

and standard deviation σp = 0.001. To allow visualization, we assume nodes i ∈ {1,…, K} 

are in the community, and we only visualize  for nodes i ∈ {1, 100}. As shown by the 

illustration, as Kr increases, v(r) aligns with the indicator vector u(r), which is nonzero only 

for the Kr ≪ N entries  that correspond to nodes in the community, r. (b) Observed 

(symbols) and predicted (curves) values of |〈v(r), u(r)〉|2 given by Eq. (10) quantify this 

localization phenomenon. Arrows indicate the values of K used for panel (a). The critical 

size  such that |〈v(r), u(r)〉|2 = 0 for , whereas |〈v(r), u(r)〉|2 > 0 for  marks 

a phase transition—that is, both in terms of eigenvector localization and detectability of the 

community.
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FIG. 3. 
Influence of community persistence Tr on eigenvector localization for summation-based 

layer aggregation. (a) Observed (symbols) and predicted values of |〈v(r), u(r)〉|2 given by Eq. 

(10) (curves) vs Kr for Tr ∈ {1, 2, 4, 8}. Open symbols indicate the parameters used in Fig. 

2, whereas filled symbols indicate when the layers’ edge probabilities {pl} are drawn 

uniformly from [0, 0.02]; we plot the mean value of |〈v(r), u(r)〉|2 across 10 choices for the 

sets r and  r. (b) Critical size  given by Eq. (11) vs L for fixed Tr (dashed line) and Tr 

= L (solid line). As indicated by Eq. (12), layer aggregation by summation can enhance or 

inhibit detection depending on whether or not the scaling for Tr(L) exceeds (L1/2).
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FIG. 4. 
Effective edge probabilities for threshold-based layer aggregation. Observed (symbols) and 

predicted values given by Eqs. (13) and (15) (curves) for the effective edge probability of the 

background network, p(̂L̃), and for a community, , as a function of L̃. Network 

parameters include N = 104, L = 16, T = 5, and σp = 0.001 and either (a) 〈pl〉 = 0.5 or (b) 

〈pl〉 = 0.01. Note that for the sparse network in panel (b), ρ̂ (L̃) undergoes an abrupt drop 

when L̃ surpasses Tr = 5.
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FIG. 5. 
Detectability phase transitions for threshold-based layer aggregation. We plot |〈v(r), u(r)〉|2 vs 

community size Kr with identical parameters to those used to produce Fig. 4 except with 

selected choices for the threshold L̃.
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FIG. 6. 

Super-resolution community detection for threshold-based layer aggregation. We plot 

given by Eq. (18) as a function of L̃ for p ∈ {0.01, 0.05, 0.2, 0.5}, N = 104, ρ = 1, σp = 

0.001, L = 16, and either (a) Tr = 5 or (b) Tr = 10. Note that the L̃ value yielding the 

minimum  occurs at L̃ = Tr (vertical dotted lines) for sparse networks, whereas it 

increases with increasing p [e.g., compare p = 0.01 and p = 0.5 in panel (b)]. The horizontal 

lines on the right edge of the panels indicate  given by Eq. (11) for summation networks. 

Importantly, thresholding can potentially decrease  by many orders of magnitude as 

compared to .
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FIG. 7. 
Detectability of small communities in temporal networks with summation-based binning 

into time windows. (a) Illustration of a temporal network with L = 32 time layers and hidden 

communities that persist across different time layers. The shaded region indicates a bin, or 

time window, of size w ≤ L at time t for which the layers will be aggregated, which is a 

process that can be used to discretize and/or smooth the network data. The bin contains 

layers w(t) = {t − (w − 1)/2,…, t + (w − 1)/2}. (b) We illustrate by color the values |〈v(r), 

u(r)〉|2 for the aggregation of layers across bins w(t) for each of the four communities r ∈ 
{1, 2, 3, 4}. In particular, we show Eq. (10) under the variable substitutions Tr( w(t)) ↦ T 
and w ↦ L, where Tr( w(t)) is the number of layers in which community r is present in bin 

w(t). Layer aggregation across each bin was implemented by summation. We study a 

temporal network with N = 104, L = 32, p = 0.01, σp = 0.001, and we show results for 

several bin widths w ∈ {1, 3, 5, 7, 9}. The hidden communities all contain Kr = 8 nodes and 

have different persistent lengths Tr as depicted in panel (a). The green arrows indicate, for 

each r, the bin location and w value at which |〈v(r), u(r)〉|2 obtains its maximum.
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FIG. 8. 
Detectability of small communities in temporal networks with time-window binning by 

summation and thresholding. We illustrate by color the values |〈v̂(r), u(r)〉|2 given by Eq. (16) 

for each of the four communities r ∈ {1, 2, 3, 4} with the variable substitutions Tr( w(t)) 
↦ T and w ↦ L into Eqs. (13)–(18). Results are shown for bins of width w ∈ {1, 3, 5, 7, 

9} for a temporal network with N = 104 nodes, L = 32 time layers, and hidden communities 

as depicted in Fig. 7(a). The communities each contain Kr = K = 8 nodes and have different 

persistence lengths Tr. Layer aggregation across each bin was implemented by summation 

and thresholding at L̃. Panels (a)–(c) respectively indicate the choices L̃ = w, L̃ = 0.8w, and 

L̃ = 0.5w. The violet box in panel (b) indicates combinations of thresholds and bin sizes that 

yield accurate detection of all four communities. We stress, however, that since the 

detectability-limit criterion given by Eq. (18) depends on a complex interplay between the 

community and network characteristics, one should not, in general, expect there to exist a 

single best combination for all communities.
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