408 research outputs found

    Secure Surveillance Framework for IoT Systems Using Probabilistic Image Encryption

    Full text link
    [EN] This paper proposes a secure surveillance framework for Internet of things (IoT) systems by intelligent integration of video summarization and image encryption. First, an efficient video summarization method is used to extract the informative frames using the processing capabilities of visual sensors. When an event is detected from keyframes, an alert is sent to the concerned authority autonomously. As the final decision about an event mainly depends on the extracted keyframes, their modification during transmission by attackers can result in severe losses. To tackle this issue, we propose a fast probabilistic and lightweight algorithm for the encryption of keyframes prior to transmission, considering the memory and processing requirements of constrained devices that increase its suitability for IoT systems. Our experimental results verify the effectiveness of the proposed method in terms of robustness, execution time, and security compared to other image encryption algorithms. Furthermore, our framework can reduce the bandwidth, storage, transmission cost, and the time required for analysts to browse large volumes of surveillance data and make decisions about abnormal events, such as suspicious activity detection and fire detection in surveillance applications.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B4011712). Paper no. TII-17-2066.Muhammad, K.; Hamza, R.; Ahmad, J.; Lloret, J.; Wang, H.; Baik, SW. (2018). Secure Surveillance Framework for IoT Systems Using Probabilistic Image Encryption. IEEE Transactions on Industrial Informatics. 14(8):3679-3689. https://doi.org/10.1109/TII.2018.2791944S3679368914

    Intelligent Embedded Vision for Summarization of Multi-View Videos in IIoT

    Get PDF
    Nowadays, video sensors are used on a large scale for various applications including security monitoring and smart transportation. However, the limited communication bandwidth and storage constraints make it challenging to process such heterogeneous nature of Big Data in real time. Multi-view video summarization (MVS) enables us to suppress redundant data in distributed video sensors settings. The existing MVS approaches process video data in offline manner by transmitting it to the local or cloud server for analysis, which requires extra streaming to conduct summarization, huge bandwidth, and are not applicable for integration with industrial internet of things (IIoT). This paper presents a light-weight CNN and IIoT based computationally intelligent (CI) MVS framework. Our method uses an IIoT network containing smart devices, Raspberry Pi (clients and master) with embedded cameras to capture multi-view video (MVV) data. Each client Raspberry Pi (RPi) detects target in frames via light-weight CNN model, analyzes these targets for traffic and crowd density, and searches for suspicious objects to generate alert in the IIoT network. The frames of each client RPi are encoded and transmitted with approximately 17.02% smaller size of each frame to master RPi for final MVS. Empirical analysis shows that our proposed framework can be used in industrial environments for various applications such as security and smart transportation and can be proved beneficial for saving resources

    Collaborative Monocular Visual SLAM for Multi-Robot

    Get PDF
    Collaborative SLAM is an amazing extension of single robot locations where multiple robots with monocular cameras work together in a dynamic environment to build one global map. The global map is later used by the multiple moving robots to localize themselves on the map. The application of collaborative SLAM can be used in various fields that include collaborative military tasks, search and rescue, agricultural planting, multi-robots working together to improve efficiency, and many others.  Generally, every existing collaborative SLAM method uses an offline technique to process the collected data in the indoor environment. The indoor environment has limited space and lacks GPS connectivity. In this paper, we aim to give a step toward the usage of two drones equipped with monocular cameras and a standard laptop as the server for monitoring indoor workplaces. We worked on Simultaneous localization and mapping standard architecture with building the centralized global SLAM by the micro aerial vehicles such as Tello in our case. We investigated the method and localization of the drone on the global map

    Multimodal video abstraction into a static document using deep learning

    Get PDF
    Abstraction is a strategy that gives the essential points of a document in a short period of time. The video abstraction approach proposed in this research is based on multi-modal video data, which comprises both audio and visual data. Segmenting the input video into scenes and obtaining a textual and visual summary for each scene are the major video abstraction procedures to summarize the video events into a static document. To recognize the shot and scene boundary from a video sequence, a hybrid features method was employed, which improves detection shot performance by selecting strong and flexible features. The most informative keyframes from each scene are then incorporated into the visual summary. A hybrid deep learning model was used for abstractive text summarization. The BBC archive provided the testing videos, which comprised BBC Learning English and BBC News. In addition, a news summary dataset was used to train a deep model. The performance of the proposed approaches was assessed using metrics like Rouge for textual summary, which achieved a 40.49% accuracy rate. While precision, recall, and F-score used for visual summary have achieved (94.9%) accuracy, which performed better than the other methods, according to the findings of the experiments

    Low-Cost Multiple-MAV SLAM Using Open Source Software

    Get PDF
    We demonstrate a multiple micro aerial vehicle (MAV) system capable of supporting autonomous exploration and navigation in unknown environments using only a sensor commonly found in low-cost, commercially available MAVs—a front-facing monocular camera. We adapt a popular open source monocular SLAM library, ORB-SLAM, to support multiple inputs and present a system capable of effective cross-map alignment that can be theoretically generalized for use with other monocular SLAM libraries. Using our system, a single central ground control station is capable of supporting up to five MAVs simultaneously without a loss in mapping quality as compared to single-MAV ORB-SLAM. We conduct testing using both benchmark datasets and real-world trials to demonstrate the capability and real-time effectiveness

    Computing Networks Enabled Semantic Communications

    Full text link
    Semantic communication has shown great potential in boosting the effectiveness and reliability of communications. However, its systems to date are mostly enabled by deep learning, which requires demanding computing resources. This article proposes a framework for the computing networks enabled semantic communication system, aiming to offer sufficient computing resources for semantic processing and transmission. Key techniques including semantic sampling and reconstruction, semantic-channel coding, semantic-aware resource allocation and optimization are introduced based on the cloud-edge-end computing coordination. Two use cases are demonstrated to show advantages of the proposed framework. The article concludes with several future research directions

    Multimodal Data Analysis of Dyadic Interactions for an Automated Feedback System Supporting Parent Implementation of Pivotal Response Treatment

    Get PDF
    abstract: Parents fulfill a pivotal role in early childhood development of social and communication skills. In children with autism, the development of these skills can be delayed. Applied behavioral analysis (ABA) techniques have been created to aid in skill acquisition. Among these, pivotal response treatment (PRT) has been empirically shown to foster improvements. Research into PRT implementation has also shown that parents can be trained to be effective interventionists for their children. The current difficulty in PRT training is how to disseminate training to parents who need it, and how to support and motivate practitioners after training. Evaluation of the parents’ fidelity to implementation is often undertaken using video probes that depict the dyadic interaction occurring between the parent and the child during PRT sessions. These videos are time consuming for clinicians to process, and often result in only minimal feedback for the parents. Current trends in technology could be utilized to alleviate the manual cost of extracting data from the videos, affording greater opportunities for providing clinician created feedback as well as automated assessments. The naturalistic context of the video probes along with the dependence on ubiquitous recording devices creates a difficult scenario for classification tasks. The domain of the PRT video probes can be expected to have high levels of both aleatory and epistemic uncertainty. Addressing these challenges requires examination of the multimodal data along with implementation and evaluation of classification algorithms. This is explored through the use of a new dataset of PRT videos. The relationship between the parent and the clinician is important. The clinician can provide support and help build self-efficacy in addition to providing knowledge and modeling of treatment procedures. Facilitating this relationship along with automated feedback not only provides the opportunity to present expert feedback to the parent, but also allows the clinician to aid in personalizing the classification models. By utilizing a human-in-the-loop framework, clinicians can aid in addressing the uncertainty in the classification models by providing additional labeled samples. This will allow the system to improve classification and provides a person-centered approach to extracting multimodal data from PRT video probes.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    A distributed architecture for unmanned aerial systems based on publish/subscribe messaging and simultaneous localisation and mapping (SLAM) testbed

    Get PDF
    A dissertation submitted in fulfilment for the degree of Master of Science. School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa, November 2017The increased capabilities and lower cost of Micro Aerial Vehicles (MAVs) unveil big opportunities for a rapidly growing number of civilian and commercial applications. Some missions require direct control using a receiver in a point-to-point connection, involving one or very few MAVs. An alternative class of mission is remotely controlled, with the control of the drone automated to a certain extent using mission planning software and autopilot systems. For most emerging missions, there is a need for more autonomous, cooperative control of MAVs, as well as more complex data processing from sensors like cameras and laser scanners. In the last decade, this has given rise to an extensive research from both academia and industry. This research direction applies robotics and computer vision concepts to Unmanned Aerial Systems (UASs). However, UASs are often designed for specific hardware and software, thus providing limited integration, interoperability and re-usability across different missions. In addition, there are numerous open issues related to UAS command, control and communication(C3), and multi-MAVs. We argue and elaborate throughout this dissertation that some of the recent standardbased publish/subscribe communication protocols can solve many of these challenges and meet the non-functional requirements of MAV robotics applications. This dissertation assesses the MQTT, DDS and TCPROS protocols in a distributed architecture of a UAS control system and Ground Control Station software. While TCPROS has been the leading robotics communication transport for ROS applications, MQTT and DDS are lightweight enough to be used for data exchange between distributed systems of aerial robots. Furthermore, MQTT and DDS are based on industry standards to foster communication interoperability of “things”. Both protocols have been extensively presented to address many of today’s needs related to networks based on the internet of things (IoT). For example, MQTT has been used to exchange data with space probes, whereas DDS was employed for aerospace defence and applications of smart cities. We designed and implemented a distributed UAS architecture based on each publish/subscribe protocol TCPROS, MQTT and DDS. The proposed communication systems were tested with a vision-based Simultaneous Localisation and Mapping (SLAM) system involving three Parrot AR Drone2 MAVs. Within the context of this study, MQTT and DDS messaging frameworks serve the purpose of abstracting UAS complexity and heterogeneity. Additionally, these protocols are expected to provide low-latency communication and scale up to meet the requirements of real-time remote sensing applications. The most important contribution of this work is the implementation of a complete distributed communication architecture for multi-MAVs. Furthermore, we assess the viability of this architecture and benchmark the performance of the protocols in relation to an autonomous quadcopter navigation testbed composed of a SLAM algorithm, an extended Kalman filter and a PID controller.XL201
    corecore