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ABSTRACT

Parents fulfill a pivotal role in early childhood development of social and communication

skills. In children with autism, the development of these skills can be delayed. Applied

behavioral analysis (ABA) techniques have been created to aid in skill acquisition.

Among these, pivotal response treatment (PRT) has been empirically shown to foster

improvements. Research into PRT implementation has also shown that parents can be

trained to be effective interventionists for their children. The current difficulty in PRT

training is how to disseminate training to parents who need it, and how to support and

motivate practitioners after training.

Evaluation of the parents’ fidelity to implementation is often undertaken using video

probes that depict the dyadic interaction occurring between the parent and the child during

PRT sessions. These videos are time consuming for clinicians to process, and often result

in only minimal feedback for the parents. Current trends in technology could be utilized to

alleviate the manual cost of extracting data from the videos, affording greater

opportunities for providing clinician created feedback as well as automated assessments.

The naturalistic context of the video probes along with the dependence on ubiquitous

recording devices creates a difficult scenario for classification tasks. The domain of the

PRT video probes can be expected to have high levels of both aleatory and epistemic

uncertainty. Addressing these challenges requires examination of the multimodal data

along with implementation and evaluation of classification algorithms. This is explored

through the use of a new dataset of PRT videos.

The relationship between the parent and the clinician is important. The clinician can

provide support and help build self-efficacy in addition to providing knowledge and

modeling of treatment procedures. Facilitating this relationship along with automated

feedback not only provides the opportunity to present expert feedback to the parent, but

i



also allows the clinician to aid in personalizing the classification models. By utilizing a

human-in-the-loop framework, clinicians can aid in addressing the uncertainty in the

classification models by providing additional labeled samples. This will allow the system

to improve classification and provides a person-centered approach to extracting

multimodal data from PRT video probes.
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Chapter 1

INTRODUCTION

In early childhood development, the people with the most regular interactions with a child

have the most profound effects. Children learn the essential skills for life from their

parents, relatives, and other individuals they interact with on a daily basis. Typically these

educational activities are intrinsically grounded in social interactions, observations, and

consistent routines. Children with developmental disabilities, such as Autism Spectrum

Disorder (ASD), may have difficulty grasping the pivotal concepts from these social

interactions. Applied Behavior Analysis (ABA) techniques have been developed to

provide training for children with developmental disabilities.

Much of the research into training caregivers, teachers, peers, and paraprofessionals

in ABA has focused on naturalistic methods such as Pivotal Response Treatment (PRT)

and Early Start Denver Model (ESDM). These studies have shown that implementation of

naturalistic ABA methods not only help children improve social and communication

skills, they also help promote positive affect for both the child receiving the treatment and

the adult providing it. Because of this, it is important to create systems that train and

support individuals involved in the lives of children with ASD in naturalistic ABA

treatments. The costs associated with training make it difficult to provide to all the

individuals that need it. This will likely be exacerbated as diagnoses of ASD continue to

increase.

Parents and caregivers are able to quickly learn to implement ABA techniques

effectively; however, fidelity to the methodologies tends to drop shortly after the training

period. This could be due to a number of factors, including a lack of practice, failure to

adapt the procedure, or the parent having insufficient confidence in his or her ability to

produce the desired result. Ideally, this would be addressed by continual support from the
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clinician, but maintaining this connection is subject to logistical constraints. The most

common constraints are the time-cost from the clinician to provide evaluation and

feedback, and the limited resources available, particularly in rural communities. In

particular, evaluating implementation fidelity relies on manually extracting performance

metrics from video probes of the caregiver and child. To scale the system to support more

individuals, and make maintaining relationships through remote connections easier, it is

important to look at the ways technology can be incorporated into the system to ensure

people have access to training materials and implementation feedback.

Preserving the relationship between the parent and the clinician is an important part

of the process. This relationship capitalizes on the expertise of the clinician and the

human connection to add social pressure to continue utilizing treatments. Using a

human-in-the-loop design paradigm affords the opportunity of using technology to reduce

the human costs of evaluating and supporting individuals learning ABA methodologies

while also facilitating a meaningful connection with the clinical experts.

This dissertation explores creating a human-in-the-loop feedback system for

supporting caregivers. This work focuses on the clinician perspective of the project by

examining the metrics and tools that can be utilized to reduce the manual cost of providing

feedback. In addition to reducing the human cost of evaluation, using automated

techniques allows additional performance data to be recorded that could provide new

insights into the interactions. These metrics could be used in aiding the clinician in

analysis and automatically tracking the progress of the child’s communications skills as he

or she improves. This information would be important for determining when learning

plateaus are reached, requiring a change in the skills being targeted.

To approach this system, the following overarching research questions were

proposed:
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• What technologies and approaches are currently used to train caregivers in ABA

methodologies?

• How can current evaluation metrics for PRT fidelity be collected automatically

using current trends in artificial intelligence research?

• What additional metrics could be extracted from the videos that would aid the

clinician in providing feedback?

• How can a human-in-the-loop system be designed to facilitate the connection

between the clinician and caregivers?

• What affordances does the continuous involvement of the clinician with the

automated system provide in terms of personalizing classification?

In exploring these questions, it became apparent that the PRT video probes presented

challenges that were not being adequately addressed in the current literature. The video

data presented adverse recording conditions, requiring video processing and vision-related

classification techniques to be robust to camera movement, occlusion, and a diverse set of

activities. Similarly, audio tracks could be subject to variable recording conditions, often

making it difficult to discern child vocalizations. In addition to this, PRT sessions depict

speaking patterns not common in conversational speech. Caregivers often use

child-directed speech, or baby talk, to engage the child. It is also important to detect not

only when a child speaks a full word, but any attempts at vocalization. Before undertaking

work on a feedback system, these classification tasks needed to be addressed.

The research presented focuses on one common performance metric utilized in

fidelity evaluations in research studies and training courses - creating an ‘opportunity to

respond.’ Determining if the caregiver has correctly demonstrated creating an
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‘opportunity to respond’ requires detecting the attention state of the child and analyzing

the caregiver’s instruction.

1.1 Contributions

Pursuing this work has resulted in nine primary contributions to computer science. First, a

comprehensive review of the literature, including technologies for ABA training, computer

vision techniques for detecting dyadic interactions and joint attention, the application of

computer vision techniques to videos depicting children with autism, and audio processing

techniques for voice activity detection, speaker separation, and child speech recognition.

Second, a new dataset consisting of video probes from PRT sessions between parents

and their children was created. These videos represent an ‘in-the-wild’ scenario for

classification and recognition tasks. The dataset was labeled for the child’s attention state

based on the visual data. The audio was transcribed and annotated based on the speaker.

This transcription included nonspeech vocalizations made by the child.

Third, the visual frames from the video were analyzed to determine a method for

detecting the child’s attention state during his interaction with his parent. This was used to

evaluate classifying attention in video data using spatial and contrived features as input for

machine learning algorithms.This process provides a baseline for evaluating approaches to

detecting attention in ABA interactions, and could be applied to similar domains.

Fourth, a novel voice activity detection and speaker separation scenario was

explored. The audio from the PRT probes exhibits atypical speech patterns that are not

considered in research focusing on automated speech recognition, including child-directed

speech patterns and non-speech vocalizations.

Fifth, the use of multimodal data for detecting attention and inferring when an

‘opportunity to respond’ has occurred was explored. The contributions of this aspect of
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the project examined feature fusion techniques and the use of confidence estimates of

class predictions for classification tasks involving audio and video data.

Sixth, evaluation of automatically gathered metrics and a user interface for clinicians

to provide feedback was developed in collaboration with behavior analysts. This provided

insight into how the system could be effectively used. No similar research projects have

been encountered in the literature.

Seventh, the continuous interaction of both the clinician and the parent in the

proposed feedback system provides the opportunity to use the expertise of the clinician to

personalize classification models for the parent. This is a novel aspect of the system and

has been explored for its efficiency and feasibility.

Eighth, abbreviating the videos is important for reducing the processing time for

clinicians. An approach is introduced that uses a graph-based representation of the

individuals to identify keyframes. This is compared to color histogram approaches to

examine robustness to camera instability and occlusion. This is a novel application that

could be beneficial to other applied domains.

Ninth, the conclusion of this work provides a discussion of other approaches for

classification, congruent applications, and additional ways to incorporate technology into

PRT.

1.2 Dissertation Overview

Chapter 2 provides an overview of relevant literature for the project and how technology

could be applied to automate data collection of performance metrics that are currently

being extracted manually. This chapter discusses both contrived and naturalistic ABA

methodologies and presents the current literature regarding the use of technology for ABA

training. Using video probes is an important method for discerning fidelity to ABA

techniques. The data collection methodologies and performance evaluation criteria are
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presented. The chapter concludes by introducing concepts from computer science

research that could be utilized to automate data collection on each critium.

Chapter 3 explores the application of computer vision and video data processing to the

PRT videos. This chapter includes relevant research on image and video processing and

classification that could be utilized in an automated feedback system for PRT. Of primary

interest to the project are techniques for classifying dyadic actions and detecting joint

attention. The PRT video dataset is described and analyzed based on extracted features

from the individuals depicted in each frame. A comparison of techniques for classifying

child attention are presented and evaluated.

Chapter 4 examines the application of machine learning techniques for voice activity

detection and speaker separation. A review of relevant literature is presented regarding

automated speech recognition techniques that could be utilized to evaluate caregiver

instructions and child responses. Multiple techniques for extracting the adult and child

vocalizations are evaluated to determine an effective method for processing the PRT audio

data.

Chapter 5 presents research regarding multimodal fusion techniques and evaluating

prediction confidence estimates. Determining if an opportunity to respond has occurred is

a multimodal task, depending on both the audio and video data. This also provides the

opportunity to explore how the audio data could be used to improve attention

classification. Different feature selection techniques, fusion methods, and sample sizes are

examined and compared to determine the most effective method for multimodal

classification tasks.

Chapter 6 extends the research regarding the role of the clinician in the

human-in-the-loop system. The main research objective is to examine methods for

personalizing classification to the parent-child dyad. It was surmised that the clinician, as

an expert on the interactions, can provide additional information to the system to improve
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the performance on attention detection. This chapter explores the feasibility of different

approaches in order to balance the effort of the clinician with the benefits to classification.

Chapter 7 introduces a prototype user interface (UI) for the clinicians to examine the

initial steps toward automated assessment of the video probes. The UI prototype was

designed using agile methodologies and incorporated feedback from the clinicians

through the development process in conjunction with participatory design. The goal was

to use the development of the prototype to facilitate discovering the clinician’s wants and

needs for the system, as well as the benefits of the automatically collected data. This

helped identify meaningful data visuals and video segment sizes. The clinicians expressed

enthusiasm toward the system.

Chapter 8, as the final chapter, presents additional ideas that were outside of the scope of

the dissertation but important to the problem. This consists of presenting how the system

could be expanded, different approaches to classification, and parallels to other domains.

This chapter also discusses how the work presented in this dissertation fits into a feedback

system designed to facilitate self-regulatory learning.

1.3 Previously Published Work

The contents of this dissertation have been partially published in conferences and journal

publications. Information presented in Chapter 2, along with background research for

Chapters 3 and 4, was published in “Improving Communication Skills of Children With

Autism through Support of Applied Behavior Analysis Treatments using Multimedia

Computing: A Survey” (Heath et al., 2019b). The experiments and results from Chapter 3

were published in “Detecting Attention in Pivotal Response Treatment Video Probes”

(Heath et al., 2018). Chapter 4 was published in “Parent and Child Voice Activity

Detection in Pivotal Response Treatment Video Probes” (Heath et al., 2019c).

Experiments regarding detecting opportunities to respond in Chapter 5 were published in
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“Using Multimodal Data for Automated Fidelity Evaluation in Pivotal Response

Treatment Videos” (Heath et al., 2019d). The user interface design and evaluation

presented in Chapter 6 were published in “Using Participatory Design to Create a User

Interface for Analyzing Pivotal Response Treatment Video Probes” (Heath et al., 2019a).

Discussion of low power computing applications in PRT videos from Chapter 8 were

published in “Are You Paying Attention? Classifying Attention in Pivotal Response

Treatment Videos” (Heath et al., 2019e).
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Chapter 2

TECHNOLOGIES FOR APPLIED BEHAVIOR ANALYSIS TRAINING AND

IMPLEMENTATION

Applied Behavior Analysis (ABA) is an approach to creating and implementing

procedures to promote beneficial behaviors and diminish disadvantageous behaviors.

ABA focuses on applying a scientific methodology to behavior treatments, emphasizing

replicable techniques, and the collection and analysis of data. Despite the emphasis on

empirical approaches, ABA remains focused on the individual subject of the treatment,

not on a research agenda. Implementation of ABA requires the interventionist to analyze

and adapt the program to ensure that the individual subject achieves the greatest benefit.

This adaptability helps facilitate one of the important aspects of ABA treatments, which is

its ability to be generalized to target different behaviors under differing circumstances

(Baer et al., 1968).

There are two general approaches to designing ABA treatments - contrived and

naturalistic (Kane et al., 2010). Contrived techniques, such as Discrete Trial Teaching

(DTT), involve controlled, structured learning activities selected by the individual

administering the training. Naturalistic techniques rely on following the recipient’s

interests and incorporating learning objectives into the activity.

The intent of this chapter is to examine naturalistic ABA interventions and training

strategies to identify areas that could be supported by current technology. In particular, the

focus is on technologies that help evaluate communication opportunities provided by

interventionists. To accomplish this, the following research questions were explored:

• What are the current approaches to training non-clinicians in naturalistic ABA

methodologies?
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• What are the current evaluation strategies for assessing fidelity to implementation

for individuals learning naturalistic ABA methodologies?

• What are the potential barriers potential trainees encounter that prevent access to

training and support resources?

• What are the costs for clinicians that restrict the amount of training and support they

can provide?

• What are the current advances in computer science that could alleviate costs and

barriers restricting training and support resources?

• How can these technologies be applied to create an automated data analysis and

feedback system for non-clinician implemented naturalistic ABA?

The following section will present the important components of naturalistic ABA

techniques and supporting research, with much of the research focusing on PRT

implementation for improving social and communication skills. Additionally, a

comparison with DTT will be presented. Following the discussion on implementation,

research regarding training non-clinicians, caregivers, teachers, peers, and

paraprofessionals will be examined, including studies incorporating technology. The

research presented forms a foundation for how technology could be utilized in PRT

training and implementation.

2.1 Naturalistic Applied Behavior Analysis Implementation

Often described as a way of life rather than a teaching methodology (McClelland et al.,

2016), naturalistic ABA is intended to be integrated with daily activities. These methods

focus on keeping the recipient of the treatment active and making the learning activities

relevant (Schreibman et al., 2015). The interactions in naturalistic ABA are undertaken

10



between an interventionist and a recipient. The interventionist engages with the recipient

in an activity of the recipient’s choice. Allowing the recipient to choose the activity makes

it so that the technique capitalizes on the recipient’s natural motivation to continue with

that activity. By following the lead of the recipient, the interventionist presents learning

opportunities based on the skills being targeted.

Implementation is based on a generalized three-part sequence of antecedent,

behavior, and consequence. The antecedent focuses on the actions the treatment

interventionist takes to prompt the recipient with a learning activity. First, this means

gaining the recipient’s attention, which generally involves seizing control of the object or

activity the recipient is currently participating in. After gaining the recipient’s attention,

the interventionist can then give an instruction. Verbal instructions can include modeling

the word or phrase the recipient is expected to say, saying the beginning of a sequence,

such as counting, and expecting the child to say the final word, or providing a choice. A

time-delayed prompt can also be used where the interventionist seizes the motivator and

waits for a response that has been previously modeled (Koegel, 1988; Koegel et al., 1988).

Verbal instructions should be limited to the speaking level of the child.

The behavior is the recipient’s reaction to the antecedent. Ideally the recipient will

respond by making an attempt at speaking the intended word or phrase. All genuine

attempts are treated as correct. How complete the response should be is dependent on the

recipient’s current skill level. If the recipient is mostly non-verbal, a correct response

could be an attempt at speech or vocalizing the phoneme of the expected word. If the

recipient has previously demonstrated they can speak the word or phrase being prompted,

the response should be at that level.

Consequence is the reward for complying with the instruction. Generally, this reward

is the continuation of the activity the recipient was engaged in prior to the instruction. The

interventionist should provide the reward as quickly as possible following an acceptable
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attempt at the learning objective to prompt compliance. The interventionist should also be

contingent on the recipient completing an adequate attempt for his or her current skill

level.

Outside of the antecedent, behavior, and consequence sequence, recipients should

also be rewarded for initiating social interactions, asking questions, and spontaneous

speech (Koegel et al., 2014b; Schreibman et al., 2015). Children with ASD can exhibit a

deficit in initiating social interaction, so part of the naturalistic intervention should include

creating situations that necessitate the recipient taking the initiative. This can include

placing a favorite object, such as a toy, in a visible but unreachable location to encourage

him or her to ask for it.

Learning objectives can be sorted into two types - target skills and maintenance

skills. Target skills are new objectives the interventionist is presenting to the recipient in

order to increase his or her ability. Skills that have been achieved by the recipient can

become maintenance skills. Maintenance skills are intermixed with target skills during

treatment sessions to ensure that the recipient continues to practice and to keep the

recipient motivated by giving them a challenge they can overcome.

There are nearly 30 years of published research on naturalistic ABA, primarily PRT,

mostly focusing on children with autism between the ages of 6 - 11 (Wong et al., 2015).

These studies have shown that by implementing PRT, children with autism demonstrate

improvement in vocal communication and spontaneous speech that was generalized to

scenarios outside of the training context. In addition to language outcomes, studies

examined how PRT affects the stress, motivation, and happiness of both parents and

children.

Outcomes of studies examining language, social, and play skills honed in children

through naturalistic ABA have been favorable. Improvement based on language

assessments and social interactions was shown after PRT interventions in numerous
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publications (Koegel et al., 1997, 2003, 2010, 1999a,b, 2014b, 2009; Sherer and

Schreibman, 2005; Ventola et al., 2014). Improvement in joint attention after naturalistic

ABA intervention was reported by Vismara and Lyons (2007). Increases in social and

symbolic play were published by Thorp et al. (1995) and Stahmer (1995); Stahmer et al.

(2006). Studies examining the affective state of children also showed positive results

following treatments. PRT was correlated with a reduction of anxiety in children by

Lecavalier et al. (2017), resulting in less disruptive behaviors.

Studies conducted by Koegel et al. (1998, 1987) and Mohammadzaheri et al. (2014)

compared PRT to DTT or a similar contrived ABA implementation to evaluate children’s

post-intervention communication skills. Looking at the mean number of spontaneous

utterances, intelligibility, and mean length of vocal utterance, respectively, each study

concluded that children who received PRT showed greater improvement than children

who received a contrived ABA implementation. Similar conclusions were drawn

regarding reduction of disruptive behaviors by Koegel et al. (1992) and Mohammadzaheri

et al. (2015) with children in the PRT treatment group showing a greater reduction over

adult-led interventions. In addition to language and behavior, affect was examined in two

studies (Koegel et al., 1996; Schreibman et al., 1991) that concluded PRT was related to

greater increases in happiness and reduction of stress of both parents and children

compared to DTT interventions.

2.2 Comparison of Naturalistic and Contrived Techniques

Naturalistic and contrived techniques follow a similar structure. Looking at DTT as an

example of a contrived technique, the overall methodology followers similar steps to PRT.

DTT consists of an antecedent delivered by the interventionist that consists of two parts.

The first part of the antecedent is the cue, or instruction. This is the action from the

interventionist that is meant to elicit the desired behavior from the recipient. The
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instruction needs to be clearly articulated and delivered when the recipient is attending the

interventionist. The second component of the antecedent is a model prompt. This is

delivered in a more structured manner in DTT than in PRT. In DTT, the prompt follows

the instruction after new tasks are introduced, then gradually the prompt is faded in

preceding intervals until the recipient is demonstrating the desired behavior on his or her

own (Smith, 2001).

As in naturalistic methodologies, the antecedent is followed by the behavior,

consisting of either a sufficient attempt at the desired skill or an incorrect response. After

the response, the interventionist is expected to provide a consequence for the behavior.

This should be delivered within three to five seconds (Sarokoff and Sturmey, 2004). The

type of acceptable reward for correctly demonstrated behaviors can be anything the

recipient finds pleasing or motivating, such as verbal praise, food rewards, or play time

with preferred objects or toys. This is a fundamental difference with naturalistic

techniques, where the recipient identifies and engages in a motivating activity on his or her

own while the interventionist incorporates learning opportunities. Although broadening

the types of rewards that can be implemented gives interventionists more freedom, it does

require additional effort to discover rewards that will provide adequate motivation for the

recipient (Leaf et al., 2015).

An additional formal component of DTT that is less defined in naturalistic

methodologies is the iteration interval. DTT is drill-based. The interventionist reiterates

exercises in succession in order to facilitate learning by repetition. The exercises, or trials,

are intended to be short to allow for maximum repetition. A short rest period of one to five

seconds is recommended between iterations (Smith, 2001).

The design of DTT is meant to provide individualized and simplified instruction

presented in a one-on-one environment (Smith, 2001). The structured implementation

provides three advantages compared to naturalistic methodologies. First, the intervention
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session, along with the trials themselves, have a clear start and stop time. This helps

motivate recipients by reinforcing that the tasks will be limited in duration. Second,

following a formal procedure makes data collection easier (McClelland et al., 2016).

Having the distinct trials allows for more structure in collecting metrics based on the

recipient’s performance on the given tasks. With a clear start and stop point, individuals

evaluating interventionist fidelity can also clearly discern when actions are taking place.

Third, the interventionist selects the activities for the intervention, allowing him or her to

create lesson plans and objectives. Conversely, PRT is based on activities selected by the

child, requiring the interventionist to improvise learning opportunities when engaging in

new tasks.

The primary drawback of contrived techniques is that it removes learning from its

context. By creating drill-based learning regimes, the recipient may be able to perform

exceptionally in the learning context but be unable to generalize the concepts and transfer

the learning to related tasks (Smith, 2001).

Studies have shown that DTT is effective at training recipients, particularly

school-aged children, in a variety of tasks. These include social and play skills (Lovaas

and Smith, 2003; Smith, 2010), receptive discrimination and academic skills (Gutierrez Jr

et al., 2009; Sarokoff and Sturmey, 2008; Skokut et al., 2008; Sturmey and Fitzer, 2007),

vocal response (Young et al., 1994), play activities (Coe et al., 1990; Lovaas and Smith,

2003; Smith, 2010), and reduction of self-harming behavior (Matson and LoVullo, 2008).

This differs from much of the naturalistic literature which is dominated by research into

improving communication and social skills.

Neither contrived nor naturalistic methodologies are inclusive, and it is often useful

to employ multiple strategies to cover various skills and contexts. In particular, DTT is

useful for teaching the recipient to sit still and listen to the instructor (McClelland et al.,

2016). These skills would be more difficult to teach under a naturalistic setting. PRT has
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been favored for caregiver implementation because of the emphasis on child motivation

and the opportunity caregivers have to imbed learning opportunities in play activities. All

intervention techniques require a significant amount of time per week to be effective.

Making the activity more enjoyable will aid in more frequent implementation.

2.3 Implementation of Interventions by Non-Clinicians

If left only to clinicians to implement, the impact for treatments would be reliant on the

amount of time the clinician could spend with the subject. To make naturalistic ABA more

impactful, it is important to train caregivers, teachers, peers, and paraprofessionals that

interact with the subjects more frequently in intervention methodologies. Research

revealed that not only can non-clinical professionals learn to implement naturalistic

treatments that improve child outcomes, but that participating in these outcomes leads to

improved affect for both the interventionist and the child.

Studies focusing on training parents of children with ASD to implement

interventions for improving the child’s communication skills illustrated that parents could

effectively learn the techniques and display a high degree of implementation fidelity. The

child’s improvement on language assessment was often correlated with the

implementation fidelity of the parent. (Baker-Ericzén et al., 2007; Coolican et al., 2010;

Gillett and LeBlanc, 2007; Hardan et al., 2015; Laski et al., 1988; Smith et al., 2015). The

improvements associated with PRT training for parents was concluded to be independent

of age, gender, or ethnicity (Baker-Ericzén et al., 2007). Attempts to start interventions

early in the child’s development has also fueled research into training parents to

implement interventions. Positive effects for infants after parents received naturalistic

ABA training were reported by Steiner et al. (2013) and Koegel et al. (2014a).

In addition to communication skills, caregiver-implemented interventions have been

studied for improving joint attention and have been the focus of research publications.
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Joint Attention, Symbolic Play, Engagement and Regulation (JASPER) is an intervention

technique that seeks to utilize a child’s interest in a toy or activity to practice socialization,

verbal and gesture communication, and play behaviors. Parent-implemented JASPER

interventions have been shown to improve joint attention skills in preschool-aged children

with ASD (Jones and Feeley, 2009; Kasari et al., 2015). Teacher implementation of

JASPER with preschool-aged children with ASD also showed positive effects on joint

attention, with noteworthy effects on child-initiated joint attention (Lawton and Kasari,

2012).

Beneficial effects on parents were concluded from the studies in addition to

improvements in the children’s language and social interaction skills. A reduction of

stress levels and an increase in satisfaction was noted after training in PRT (Steiner et al.,

2013) and ESDM (Estes et al., 2014). This is particularly important since parents of

children with ASD report high levels of stress (Johnson et al., 2011; Kasari et al., 2015;

Nefdt et al., 2010). This high level of stress can also affect the behavior of the child in

addition to the caregiver’s well-being. Adding stress management has been shown to aid

child outcomes and improve participation in treatments (Kasari et al., 2015).

Peer implementation of PRT for elementary school students has also been explored

(Harper et al., 2008; Pierce and Schreibman, 1995, 1997). Research studies indicate that

peer interventions had a positive effect on social interaction and key behaviors that lead to

making friends. It is also suggested that providing multiple peer interventionists could be

beneficial for helping the recipient generalize social skills (Pierce and Schreibman, 1997).

Additionally, having multiple students working together to support their peer with ASD

likely encourages students to become peer mentors and creates an enjoyable environment

for the interactions (Harper et al., 2008).
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2.4 Training Non-Clinicians in ABA

Parsing out training procedures and time spent on training from the presented research is

difficult due to non-standardized reporting techniques, different baseline knowledge from

the parents, utilization of different materials and methods, and individualized training

durations for participants in the same study. Additionally, it is presumed in most cases that

the interventionist-in-training was provided feedback after sessions recorded for data

collection. Table 2.1 shows the training and intervention duration from 20 studies;

however, these times do not include self-study times when the trainee was provided

written materials. The average duration was 7.6 hours, with the most common duration

being 12 hours. The study from Jones and Feeley (2009) was not included in these

calculations. The participants in the study received one hour of training prior to providing

interventions; however, the participants are noted as receiving extensive training from

their child’s preschool prior to the study. Participants conducted a substantial number of

intervention sessions, ranging from 54 to 290 sessions. The duration of these sessions was

not reported.

Table 2.1
Publications on training non-clinicians in ABA implementation

Publication Training Method Participants Training
Duration
(hours)

Laski et al. (1988) In-person Clinician
Instruction

Parents 3.75a

Pierce and Schreibman
(1995)

In-person Clinician
Instruction

Peers 2

Pierce and Schreibman
(1997)

In-person Clinician
Instruction

Peers 2

a: Maximum interventions were nine 25 min. sessions
b: Parents had prior PRT training
c: Based on an average of 60 to 90 min. sessions
d: Average based on three participants that had four, six, and 12 hours of training respectively
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Table 2.1 Coninuted: Publications on training non-clinicians in ABA implementation

Publication Training Method Participants Training
Duration
(hours)

Koegel et al. (2002) In-person Clinician
Instruction

Parents 25

Symon (2005) In-person Peer
Instruction

Parents 25

Baker-Ericzén et al. (2007) In-person Clinician
Instruction

Parents 12

Gillett and LeBlanc (2007) In-person Clinician
Instruction

Parents 3

Harper et al. (2008) In-person Clinician
Instruction

Peers 1

Jones and Feeley (2009) In-person Clinician
Instruction

Parents 1b

Vismara et al. (2009) Tele-conference /
Video Instruction

Therapists 17

Coolican et al. (2010) In-person Clinician
Instruction

Parents 6

Machalicek et al. (2010) Tele-conference Teachers 1.25c

Nefdt et al. (2010) Video Instruction Parents 1.6
Lawton and Kasari (2012) In-person Clinician

Instruction
Teachers 6

Vismara et al. (2012) Tele-conference Parents 12
Vismara et al. (2013) Tele-conference /

Video Instruction
Parents 12

Steiner et al. (2013) In-person Clinician
Instruction

Parents 10

Estes et al. (2014) In-person Clinician
Instruction

Parents 12

Koegel et al. (2014a) In-person Clinician
Instruction

Parents 7.33d

Kasari et al. (2015) In-person Clinician
Instruction

Parents 10

Gengoux et al. (2015);
Hardan et al. (2015)

In-person Clinician
Instruction

Parents 16

a: Maximum interventions were nine 25 min. sessions
b: Parents had prior PRT training
c: Based on an average of 60 to 90 min. sessions
d: Average based on three participants that had four, six, and 12 hours of training respectively
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Table 2.1 Coninuted: Publications on training non-clinicians in ABA implementation

Publication Training Method Participants Training
Duration
(hours)

Smith et al. (2015) In-person Clinician
Instruction

Parents 8

Suhrheinrich and Chan
(2017)

In-person Clinician
Instruction / Video
Instruction

Teachers / Para-
professionals

18

a: Maximum interventions were nine 25 min. sessions
b: Parents had prior PRT training
c: Based on an average of 60 to 90 min. sessions
d: Average based on three participants that had four, six, and 12 hours of training respectively

The duration metrics from Table 2.1 illustrate the majority of the research studies

require a significant commitment from both the participating trainees and the trainers. This

time does not reflect the time that would be needed to analyze performance metrics that

would be required to give pointed feedback. The training time recorded in these studies is

lower than courses offered at community resource centers. A brief search of caregiver

training programs from autism resource centers in the United States shows training

options are typically centered around group workshops or one-on-one support sessions.

For example, an eight hour group course teaching ABA is offered by the University of

Washington Autism Center1 in Seattle. Twenty hour group courses are offered by The

Help Group2 in Sherman Oaks, California and the Southwest Autism Resource and

Research Center (SARRC)3 in Phoenix, Arizona on skills for parenting children with

developmental disabilities and PRT implementation, respectively. The Children’s Hospital

at Sacred-Heart4 offers a 12 hour ABA implementation course in Pensacola, Florida.

1https://depts.washington.edu/uwautism/training/uwac-workshops/parentfamily/
2http://www.thehelpgroup.org/parent/parenting-classes/
3https://autismcenter.org/parents-and-caregivers
4https://sacred-heart.org/childrenshospital/main/services/
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One-on-one training courses were advertised by SARRC and the Choice Autism

Center1 in Traverse City, Michigan. The SARRC website listed an individualized 12

session, one hour per week course on ABA implementation along with an intensive one

week course. The Choice Autism Center lists two individualized training programs based

on the age of the child. For a child aged 18 months to five years, a 20 to 40 hour per week

program is listed. A six to 20 hour per week program is available for children ages six to

12. Many other autism centers offered individualized in-clinic or in-home programs, but

did not list specific durations.

Both the research studies and the available community programs indicate that a time

commitment is expected when learning and performing ABA interventions. This could be

problematic and may restrict accessibility for many people who need to learn the

procedures. Many of the programs that were presented in community centers were

intensive, requiring several hours per day. For working parents, this would mean taking

time from work along with finding childcare.

The courses can be problematic for behavioral analyst instructors as well as trainees.

In group settings, the instructor may not have the opportunity to provide sufficient

feedback to each individual participant, either due to time constraints or privacy.

One-on-one courses require the analyst to focus on one parent-child dyad for an extended

period of time. While this is beneficial to the participants in the course, it is a difficult

model to maintain due to the rising number of individuals needing training and assistance.

Additionally, analysts often need to compile reports and feedback to provide to

participants, adding additional time requirements on top of providing instruction.

The location of autism resource centers could also potentially limit participation.

Many of the centers are associated with medical centers, universities, or research

institutions, often located in larger metropolitan areas. Individuals in rural or remote

1https://choiceautismcenter.com/our-programs/
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locations may not have a resource center in the immediate area and may not be able to

travel to receive training.

2.5 Alternatives to In-Person Training

Research publications have sought ways to mitigate the limitations of in-person training

by examining alternative means to training. A study conducted by Symon (2005) explored

having caregivers who received PRT training teach their immediate co-caregivers

intervention techniques. They found that the trainees were able to adequately learn and

successfully implement PRT. While this is an interesting study on disseminating

information, most of the research involving alternatives looked into the application of

technology to facilitate distance learning. This was accomplished by the creation of digital

self-directed learning platforms and live telecommunication broadcasting.

Vismara et al. (2009) examined technology for remote instructions for training

therapists to teach parents to implement ESDM (Vismara et al., 2009). Their study

organized the participating therapists into two groups, with one group receiving live

in-person training and the other group receiving training via remote video-conference

sessions. They found that both groups performed equally well at instructing parents.

Vismara et al. (2012) applied this telecast training model to teach parents ESDM

methodology directly. The training consisted of live broadcast training sessions between

clinicians and parents using video conferencing software. They found that parents were

able to learn the techniques through the video conferences. They also showed that

improvements in the child’s engagement scores correlated with improvements in the

parent’s fidelity to implementation. Vismara et al. (Vismara et al., 2013) combined the use

of video conference training with self-directed online resources. They found that online

resources directly related to learning more about ESDM were utilized more than other

features, such as media sharing or calendar functions.
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Video-conference systems for providing real-time feedback for teachers

implementing ABA-based treatments in a classroom environment were explored by

Machalicek et al. (2010). The teachers would set up the video equipment to broadcast a

feed of the classroom to a remote expert who would provide instructional feedback during

the session. They found that difficulties with setting up the required equipment impacted

the success of the study. The technology was also distracting to the students in the

classroom and, at times, student behavior obstructed the communication between the

teacher and the clinician. They concluded that the utility of this approach was largely

dependent on the teacher’s ability to setup and troubleshoot the equipment. They did not

address issues with technology being distracting, initial reductions in fidelity after the

baseline, and possible limitations to real-time feedback.

Video modeling of behavioral treatments in various scenarios was evaluated for

training parents to implement DDT procedures (Bagaiolo et al., 2017). These videos were

designed to train the parents to implement DDT procedures with their children. The

researchers’ primary focus was on whether or not parents would comply with a training

schedule consisting of video modeling. They concluded that 70.6% of the participants

attended between 50%-100% of the video sessions; however, no results are stated

regarding how effective the video training was for improving target skills for parents or

their children.

Also using a self-directed video platform, Nefdt et al. (2010) explored training

parents to implement PRT. Their results showed that the majority of participants

completed the training and were able to demonstrate sufficient fidelity in implementing

PRT in post-training evaluations. This result corresponded with an increase in child

vocalizations. Additionally, the researchers reported that the caregivers showed greater

confidence during the post-training intervention session.
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Programmable robots were implemented in a study to explore their use as a means of

fostering engagement in behavior treatment sessions for children with autism (Gillesen

et al., 2011). The robot was programmed with scenarios that were based on ABA

implementation. The clinician could then select the pre-programmed scenarios the robot

enacted based on the child’s needs or preferences. The researchers concluded that the

robot would need to be easily customizable and expandable in order to be a functional tool

for implementing PRT training. The need for continuous adaptation and the concept of

in-context learning made covering all the scenarios difficult. This underlines the difficulty

of a fully-autonomous system for conducting behavioral training.

2.6 Data Measurements and Fidelity to Implementation

Regardless of whether the training is occurring in person or at a distance, the most

common method of scoring fidelity of intervention implementation and providing

feedback is the use of video probes. Typically these video probes consist of 10 to 15

minute videos of the interventionist working with the child receiving the treatment. The

overall time period is then broken into one to two minute increments to be scored on

fidelity. An intervention is considered to be performing aptly if they score over 80%

(Koegel et al., 2002). The expectation is that interventionists are providing approximately

two learning opportunities per minute.

Assessments of implementation fidelity are based on the three-part sequence of

antecedent, response, and consequence. Although these categories are often adapted to fit

the intervention methodology and the child skill being targeted, they typically consist of

the following: delivery of a clear instruction, diversity of tasks, following the recipient,

identifying natural motivators, contingency, and reinforcing attempts (Koegel et al., 2002;

Nefdt et al., 2010).
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Delivering a clear instruction requires two key features. First, the interventionist

must have the recipient’s attention. Generally, this means that the recipient is not engaging

in a solitary activity and is not exhibiting disruptive or self-stimulating behavior. Signs

that the recipient is paying attention to the interventionist include looking at or in the

direction of the interventionist, looking at an object being used for a shared activity, or

reaching for an object in the interventionist’s control (Koegel, 1988; Leaf et al., 2016;

Suhrheinrich et al., 2011). Methods for gaining the recipient’s attention should be focused

on the interventionist incorporating himself or herself into the activity the recipient is

engaged in. This allows the interventionist to have shared control of the activity to

integrate learning opportunities. Calling the recipient’s name or using physical contact to

gain his or her attention should be kept to a minimum.

The second feature of delivering a clear instruction is the instruction itself. This can

take the form of either a verbal instruction or a gestural prompt, depending on the target

skill and the abilities of the recipient. For communication skills, typical instructions are

categorized as being a model prompt, a choice, a question, a lead-in statement, or a

time-delay. For model prompts, the interventionist speaks the word the recipient should

attempt. Choice instructions include giving the recipient two or more options based on the

motivator with the intention that he or she makes a vocal attempt at one of them. Question

instructions prompt the recipient to formulate a response based on the context. Lead-in

statements present a known sequence, such as “ready, set, go,” with the final word, in this

case, “go,” being omitted by the interventionist with the intention of the recipient speaking

it. Time-delays represent a non-verbal instruction where the interventionist pauses an

activity and waits for the recipient to respond. If the recipient does not respond after a few

seconds, the interventionist models the expected response. Verbal instructions are

expected to be presented at, or just above, the recipient’s current communication level. For
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recipients that are non-verbal, this means instructions should be limited to one or two

words.

For diversity of tasks, the interventionist is assessed based on how they vary

instructions. This includes using different types of instructions to reinforce the same skill,

or target speech, as well as interspersing mastered skills with target skills. Including skills

the recipient has mastered, often called a maintenance skill, helps reinforce that skill to

keep it from falling into disuse. It also helps keep the recipient motivated by a relatively

easy activity in the midst of more difficult ones. This helps prevent frustration if the

recipient is struggling with the target skills by providing an opportunity for success,

access to the reinforcement, and praise from the interventionist.

Following the recipient’s lead and identifying the natural reinforcer are related

concepts. Part of naturalistic ABA methods is presenting learning opportunities in the

context of an activity the recipient is interested in. For assessment, the interventionist

should be observing the recipient in order to determine what activity they wish to engage

in. After an activity is selected, the interventionist is expected to get involved in the

activity to allow them to capture the recipient’s attention and deliver an instruction.

Capturing the recipient’s attention involves identifying and controlling a natural reinforcer,

often a toy or object involved in the activity, to hold or draw the recipient’s focus.

Contingency is part of the consequence after the recipient has made a response. This

has both a positive and a negative aspect depending on the response. In a positive

scenario, the recipient has made an attempt at the target skill and the interventionist should

deliver the reward immediately following the response to reinforce the behavior. In a

negative scenario, the recipient has not made a responsible attempt and the interventionist

is expected to withhold the reward, especially if the recipient begins engaging in

disruptive behaviors.
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Related to contingency as part of the consequence is the concept of rewarding

attempts. To encourage the recipient and promote skill acquisition, the recipient should be

rewarded for every reasonable attempt. A reasonable attempt is highly individualized and

dependent on the recipient’s current abilities. For instance, a recipient who is non-verbal

may be rewarded for a communication skill attempt by gesturing or speaking a phoneme,

whereas a recipient with more verbal skills would need to speak the full word or phrase

for it to be considered a reasonable attempt.

These categories are scored using a binary scale with the interventionist receiving a

positive mark if they correctly demonstrated the technique. This limits the amount of

feedback the interventionist receives on his or her performance in the video. Increasing

the detail of the feedback would require significantly more time from the behavioral

analyst scoring the probe. In research studies it is common to have two analysts score

each probe to mitigate misclassification. In practice, it is likely that only an analyst will

review and provide feedback on the probes. Scoring the probes also means that there is a

delay between when the interventionist records the video and when he or she receives

feedback on implementation. This delay can prevent the interventionists from receiving

the full benefit of the feedback. Studies have shown that immediately reviewing video of

one’s self implementing the interventions, along with feedback, helps the interventionists

learn and feel more confident in their abilities (Suhrheinrich and Chan, 2017).

An additional metric that is often recorded from the video probes when targeting

communication skills is the verbal utterances of the recipient. This is often recorded in 10

to 15 second increments and may be categorized based on the instruction type the

interventionist used to prompt the vocal attempt, or if it was a spontaneous vocalization.

This metric usually focuses on in-context vocalization, not counting echolalic speech or

disruptive behaviors.

27



2.7 New Directions for Incorporating Technology

The research presented above illustrates some of the challenges faced by behavior analysts

providing adequate training, and by non-clinical interventionists trying to learn and

implement ABA treatments. Learning the treatment techniques requires access to

education materials and training professionals. Although a large focus on in-person

training can be seen in both the academic and the professional spheres, the logistical

concerns of supporting individuals that are unable to attend intensive training courses has

been scrutinized. To address location constraints, researchers have designed condensed

courses (Koegel et al., 2002), and implemented live teleconferencing (Vismara et al.,

2012). These approaches do not address long-term support. Self-directed learning

education modules provide training and reference materials but lack the interaction with

trained professionals and access to feedback. Similar drawbacks exist with online

educational platforms; however, there is the opportunity to create community features and

keep information relevant that may help retain users for longer. What all of these

approaches lack is long-term feedback. The duration of training programs often last only

weeks or months. During this time it may be easy for the interventionist to gain fidelity in

implementing the treatment on a specific set of goals; however, they may be unable to

determine new target skills or generalize the approach as the recipient improves. This

could require the interventionist to have to seek out additional training sessions in order to

continue to adapt the treatments.

In addition to addressing training challenges, technological designs need to

emphasize the key benefits of the treatments. The research above illustrates the benefits

that can be obtained when individuals utilize naturalistic ABA treatments with the child

they interact with frequently. For the child, the studies show a greater improvement on

social and communication assessments as well as improved affect. Likewise, the
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interventionists often report improved affect, reduced stress, and greater confidence in

their interactions with the child receiving the treatment. These benefits are what makes

naturalistic methods effective. Technology brought in to enhance or support ABA training

needs to be designed in regards to each benefit to ensure it is beneficial and utilized as a

long-term solution.

Access to online educational materials for self-directed learning as discussed by

(Vismara et al., 2013) is an important step toward remote training of ABA methodologies

and long-term support for practitioners. While this provides the information required to

learn the approaches, it does not provide directed feedback that can be used to aid

interventionists in personalizing the materials or build self-efficacy in implementation.

Since assessment by a clinician is costly and may be impractical, technologies for

multimedia processing can be utilized to reduce the cost of expert feedback though

automated data collection processes.

The video probes currently used in naturalistic ABA treatment training provide the

opportunity to use current multimedia processing research to gain insight into the

interactions depicted along with reducing the time required by analysts to adequately

score fidelity and provide feedback. Table 2.2 provides a brief overview of the areas of

multimedia processing that could be utilized to extract information from video probes in

regards to the current human evaluation-based scoring methodologies. These scoring

methodologies are multimodal and depend on both visual and auditory signals for proper

assessment. Providing automated assessment requires examining techniques in video data

and audio data processing. In-video data processing research, object tracking, activity

detection, and attention classification are relevant areas of study to this subject. Regarding

audio data, voice activity detection, speaker separation, and automatic speech recognition

(ASR) are applicable in order to extract verbal communication as well as vocalization

attempts to evaluate the adult’s instructions and the child’s responses.
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Table 2.2
Naturalistic ABA evaluation criteria and relevant areas of technology that could be applied
for automated analysis.

Evaluation
Category

Category Relevant Areas of
Technology

How It Could Be
Implemented

Feasibility
(High,Medium,Low)

Opportunity
to Respond

Gaining
Attention

Attention
Classification

Identify dyadic poses that
indicate attentive states.

Medium

Clear
Instruction

ASR, VAD, Speaker
Separation,
Attention
Classification

Recognize and evaluate
interventionist’s
instructions.

High

Task
Variation

Instruction
Variation

ASR, VAD, Speaker
Separation

Evaluate frequency and rate
of alternation between
forms of instructions.

High

Maintenance
vs. Target
Skill

ASR, VAD, Speaker
Separation

Analyze child’s
communication skills to
determine target and
maintenance tasks. Evaluate
the parent’s implementation
to ensure proper balance.

High

Contingency
Immediate
Reinforce-
ment

VAD, Speaker
Separation, Object
Tracking, Action
Detection

Identify recipient’s vocal
abilities and track
reinforcement object
passing to recipient.

Medium/Low

Reinforcing
Earnest
Attempts

VAD, Speaker
Separation, Object
Tracking, Action
Detection

Compare recipient’s
response to past responses
to determine effort.

Medium/Low

Reinforcement
Following
Child’s Lead

Object Tracking,
Activity Detection

Analyze attention patterns
and activity based on
participant’s poses.

Medium/Low

Identifying
Natural
Reinforcer

Object Tracking,
Activity Detection

Identify important objects
based on proximity to
recipient and rate of
interaction.

Medium/Low

Communication
Skills

Child
Responses

ASR, VAD, Speaker
Separation

Identify and coordinate
interventionist and recipient
vocalizations to determine
instructions, responses and
spontaneous speech.

Medium
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2.8 Current Feasibility of Automating Evaluation Assessments

The evaluation criteria presented in Table 2.2 often require multimodal analysis for

adequate evaluation. Given the current state of technology, the feasibility of successfully

automated detection for the criteria varies depending on the modalities involved and level

of subjectivity. The most likely criteria to be successfully automated are clear instruction,

instruction variation, and maintenance versus target skills. These categories are based on

analysis of the interventionist’s speech. Although child-directed speech patterns make

recognition more difficult, instructions in PRT are expected to be direct and reflect the

language level of the recipient. Current ASR systems could likely extract the adult speech

and could be refined using labeled child-directed speech to become more robust. The

instructions should not be complicated sentences, which makes modern NLP techniques

adequate for parsing instructions. Reducing the instruction to a particular phrase form

would allow the system to determine if there is sufficient variation in the instructions.

Evaluating if the instructions are at the recipient’s speaking level would require supplying

a priori information to the system, or allowing it to assess the recipient’s ability over time.

Evaluation criteria involving the recipient’s vocalizations will be more challenging to

assess than the interventionist’s. This is largely due to concerns involving the detection of

non-speech vocalizations, intelligibility, and the general challenges with detecting child

speech.

Evaluating immediate reinforcement and reinforcing earnest attempts would require

object tracking, human activity classification, and speech analysis to be successfully

assessed. Under certain scenarios this could be relatively straightforward. If the

interventionist has control over an object the recipient is motivated by, evaluating

reinforcement could be based on tracking the object passing from the interventionist to the

recipient. This interaction could be assessed based on whether or not it occurred in a
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timely manner after a response, and if that response was considered adequate based on

information regarding the recipient’s ability. This will be more complicated to assess if the

reinforcement is the continuation of an activity, or if the dyad are engaged in a shared

activity. These instances will rely on human activity detection. Basing the assessment on

detecting phrases praising the recipient’s performance may be an alternative approach that

could make classification more robust.

Following the child’s lead and identifying the natural reinforcer are also based

primarily on object tracking and dyadic activity recognition. Correct assessment of these

categories involves the interventionist recognizing the object or activity the recipient is

motivated by and then integrating himself or herself into it. Evaluation would be based on

how the individuals interact between each other and the motivational object. Inference

would likely rely on proximity between the individuals. This could be problematic in

two-dimensional space when addressing camera perspective. If the interventionist is

standing behind an object the child is interacting with, but not involving himself or herself

in the interactions, this could be classified as a false positive.

Unlike the other categories that assess activity, this criteria examines human

behavior. This could be problematic as it is dependent on visual cues of attention.

Different individuals, particularly a child with autism, may not exhibit outward signs of

attention, making classification more difficult. Additionally, classification of attention is

more subjective than identifying specific activities. Unlike activities that rely on a

structured series of events, attention can be surmised based on a limited number of visual

cues. This could allow attention classification to be more generalized. As with the

previous categories, in simple scenarios where the interventionist gains control of an

object, and the recipient is motivated to engage with it, the interaction may not be difficult

to classify. In this instance, attention can be inferred by determining if the child is looking

at the interventionist or the object in his or her control, and the recipient is not engaged in
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a separate activity. Periods of shared attention will be more difficult to classify depending

on the activity.

2.9 Current Work

The objective of the dissertation is to detect when an ‘opportunity to respond’ has

occurred. To accomplish this, the video and audio data needs to be analyzed, and

classification models need to be trained. The most pertinent tasks are to detect the child’s

attention to the parent and extract the parent’s instructions from the audio track. Chapter 3

will discuss analyzing the video data to classify the child’s attention state. Chapter 4 will

examine the audio data to perform voice activity detection and speaker separation.

Chapter 5 will present how both video and audio data channels can be utilized to improve

attention classification and make an inference on when the parent has provided a proper

‘opportunity to respond.’
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Chapter 3

DETECTING CHILD ATTENTION IN PRT VIDEO PROBES

Video probes present a challenge for automated analysis. Ideally, the videos should show

the interventionist (the caregiver), and the recipient (the child), completely in frame,

unobscured, and facing the camera. This is not always the case. These videos are often

filmed using handheld digital cameras or mobile phone cameras. The resulting videos are

often low resolution, unstable, and occasionally have the interventionist or the recipient

out of the frame. The video probes are often recorded at home in an unstructured

environment with inconsistent backgrounds, which could provide a challenge for

computer vision-based algorithms (Brutzer et al., 2011). Additionally, because PRT is

based on integrating learning opportunities within activities selected by the treatment

recipient, there are no standardized actions or activities reflected in the videos.

This chapter explores how PRT performance data can be extracted from the video

probes automatically to reduce the processing time for clinicians and provide feedback to

PRT interventionists. The research presented focuses on one evaluation metric utilized for

feedback - gaining the recipient’s attention. This is an important step in training the

interventionist to provide proper instruction.

For the analysis, a new labeled dataset consisting of body pose data from PRT video

probes was created. Strategies were examined for preparing data and approximating data

gaps in natural, untrimmed videos, along with methods for building spatio-temporal (ST)

graphs for dyadic interactions. Additionally, the implementation of a machine learning

model for detecting attention is explored, through the comparison of Support Vector

Machine (SVM) implementations using Euclidean-based data and a pretrained

convolutional neural network (CNN) model with AlexNet weights fine-tuned with pixel

data from video probe still frames. This implementation is based on research video
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processes and computer vision. The models utilized in the presented approach are

intended to serve as a baseline for future innovation. Ultimately, I present how automated

detection of attention can be used to aid clinicians and caregivers reviewing PRT video

probes.

3.1 Research in Video Processing

There are several opportunities to incorporate video processing techniques into the

analysis of PRT videos. Relevant research regarding object tracking, human pose

estimation, activity detection, and attention classification will be presented in the

subsequent section. This research provides the background for analyzing the dataset and

presenting preliminary classification models for assessing child attention in the video

probes.

3.1.1 Object Tracking

Recognizing the activities depicted in the video probes requires identifying and tracking

objects in the video. Tracking objects in images and videos involves discerning important

areas of the frame from the background. For the PRT videos, there are two fundamental

types of objects that need to be tracked - human participants and toys/other objects

involved in motivational activities. Tracking the participants and the objects needs to be

handled differently. For the human participants, we need to be able to infer individual

actions along with the interactions between each person. Object identification is relevant

primarily in regard to its relationship to the child.

Tracking human figures in video frames can be accomplished using supervised

learning methods (Cao et al., 2017). Supervised learning techniques involve using known

data to create models that can be used to infer knowledge about future data. In the case of

PRT videos, it is assumed that the video has two human figures in each frame. The people
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in the video can then be tracked by using models that have been trained to detect human

figures in images to identify where each individual is in the frame. This will allow the

parent’s and child’s actions and interactions to be assessed throughout the video. Contrary

to this, the objects in the video are dependent on the child and cannot be predicted.

Identifying these objects requires using unsupervised learning techniques.

Unsupervised learning techniques rely on comparing unknown data in order to

discover similarities and contrasts. For object detection in images, the task is to separate

objects from the image background. This involves making inferences about saliency, often

by looking at image contrast (Itti et al., 1998). In video, changes between frames adds an

additional dimension to identifying objects. The color values of the pixels of neighboring

frames are compared in order to determine areas of the video that are changing, indicating

movement (Koh and Kim, 2017). It is then presumed that moving objects of the video are

important and garner the viewer’s attention (Tamura et al., 2016, 2014).

PRT videos are a challenging medium for applying object tracking. Comparing the

pixel transformation between frames is a key means for distinguishing important objects

and identifying the same object in different frames. The algorithms often underperform in

situations where there is a large amount of camera movement, or the objects being tracked

in the video move too quickly or do not move at all. Both of these issues could be

prevalent in PRT videos. Play activities may involve quick movements of the parent and

child, or the individuals may rapidly move a toy. Additionally, as the videos are often

recorded using a handheld device, the videos will exhibit some movement. Occlusion, or

when the object is being obstructed from the camera by another object, is also a potential

issue. This could be problematic in PRT videos as parents or children become obscured by

objects, a book for example, or their bodies are not completely in frame. Likewise,

important play objects, such as toys, may become obscured during play activities. Similar

to occlusion, object deformation can be an issue for tracking algorithms. Although the
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algorithm may detect an object in one frame, it may fail to recognize the same object in a

succeeding frame due to a different angle of the object being presented to the camera.

Cluttered frames could also pose a problem for the segmentation tasks in object tracking.

This is particularly challenging for models that use color contrast to differentiate

foreground objects from the background of the image.

Tracking inanimate objects in the videos is mostly associated with PRT evaluation

criteria regarding the reinforcer. Detecting the object the child is attending could be a

method in automatically determining what the natural reinforcer is in the situation. This

can then be utilized along with information regarding the parent’s activity in the same

frame to determine if the parent is following the child’s lead or providing the child the

reinforcer as part of the consequent step of PRT.

Tracking the participants in the videos is important for the majority of the evaluation

categories for assessing parent implementation fidelity. In particular, inferring the

activities of the human participants is essential to determining the child’s state of

attention, if the parent is following the child’s lead and has identified the natural

reinforcer, if the parent is providing appropriate reinforcement, and if the parent is

providing a non-verbal instruction. To accomplish this, additional classification tasks need

to be performed to extract information on attention, activities being performed, and the

dyadic interaction between the parent and child.

3.1.2 Human Pose Estimation

Pose estimation tasks focus on detecting the articulation of human figures in an image.

The most commonly used approach identifies the human in the image, then uses the

pictorial structure to create a graph representing key body points (Andriluka et al., 2009,

2010; Felzenszwalb and Huttenlocher, 2005; Pishchulin et al., 2013). In the approach, the

body is divided into a set of regions representing individual parts, such as the arms and
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legs. Detecting the parts is based on the assumption that the figures depicted will follow a

general model of the human body. This allows for the discriminators to use inference to

select body parts based on their proximity to other parts. This approach works best when

an individual’s full body is visible in the frame (Wei et al., 2016).

Learning the individual body parts separate from the full body pose can improve on

pictorial models. This builds on the previous idea of creating a model for the human form

by organizing the model based on the recognition difficulty. This allows the pose

estimation algorithms to utilize the classification of larger body parts to find more obscure

parts. This particularly attempts to address misclassifying the image background as body

features (Sun and Savarese, 2011; Tian et al., 2012).

Deep learning methods have focused on using convolutional networks for identifying

keypoint location, usually articulation points, in the images (Toshev and Szegedy, 2014;

Wei et al., 2016). These approaches follow a sequential process for detecting the pose,

often identifying a key articulation point and expanding outward. This was accomplished

in (Toshev and Szegedy, 2014) by expanding the subsample size for subsequent

convolutional layers for areas around a potential articulation point. Similar to this, Einfalt

et al. (2018) used heat maps identified around key body points across multiple frames to

infer point locations in videos of swimmers. The heatmaps allowed for the construction of

pose graph candidates that could then be selected based on the algorithm’s confidence

levels.

Pose extraction for this project was undertaken using OpenPose. OpenPose uses a

convolutional approach to pose estimation (Cao et al., 2017; Wei et al., 2016). The

algorithm creates a map of the probability of a key body point being represented at a

particular pixel location. After identifying these points, their association with adjacent

detected points is inferred based on creating a vector extending in the likely direction of
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the next distal anatomical feature. Multiple individuals in the frame are detected based on

the detection of multiple instances of the same body points.

3.1.3 Human Activity Detection

Building on the concepts of object tracking and human pose estimation, activity detection

and classification in video data relies on analyzing both spatial information about the

configuration of people and objects in an individual frame. Temporal information is

relayed based on how those objects are transfigured in a sequence over time. This

information is then used to infer the action or activity that is depicted in the video

sequence. Numerous methodologies and technologies have been applied to the detection

and classification of human activities in videos. These methods include identifying key

frames in a sequence (Raptis and Sigal, 2013), organizing frames into a graph for analysis

(Chen and Grauman, 2017), examining sequences of identified images (Ma et al., 2016;

Tripathi et al., 2016), observing object flow (Voulodimos et al., 2016), and exploring

spatio-temporal representations of the individuals in a frame (Fragkiadaki et al., 2015;

Jain et al., 2016). Research on applying activity classification to individuals with autism

has focused on single person activities, primarily detecting self-stimulating or repetitive

behaviors (Coronato et al., 2014; Jazouli et al., 2016; Khan et al., 2017).

Typically, research publications identify specific actions to classify from a given

dataset, allowing for the use of supervised learning methods. In PRT implementation, the

activities that the child and parent will engage in are likely not known prior to the session,

and the specific activities are not important for evaluation. More generalized actions, such

as whether or not the child is paying attention to the parent or if the parent has provided

the reinforcer after the child makes a reasonable effort, are more important for evaluating

fidelity. This simplifies the problem by allowing the system to be trained to recognize

general poses or actions in the video, instead of classifying each activity that is depicted.
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3.1.4 Dyadic Activity Detection

Activity classification for two or more people can take two common approaches. The

activities of each individual can be classified separately then used to deduce a label about

the entire scene, or the individuals can be analyzed as a single unit. In the first approach,

the individuals in the frame are identified separately and their actions, position, and

orientation in relation to other individuals is used to infer or describe the interactions

(Bazzani et al., 2013; Deng et al., 2016, 2015; Hoai and Zisserman, 2014).

An additional method for analyzing dyadic interactions is to create a single

spatio-temporal graph of the major articulation points of each individual in the frame to

use as data for training a classification model (Van Gemeren et al., 2016; Zhang et al.,

2012).

3.1.5 Attention and Engagement Classification

Detecting engagement and attention in the videos relies on poses or sequences that infer

the individual state of focus. Methodologies for detecting attention rely on analyzing

human head and body position, and orientation. This has been used to estimate visual

attention (Baxter et al., 2015; Duffner and Garcia, 2016; Wei et al., 2017) and surmise

social engagement (Bazzani et al., 2013; Sener and Ikizler-Cinbis, 2015). These studies

used an exocentric perspective, with the camera not likely to be the object of attention.

This means calculations of attention were independent of the camera location. Egocentric

camera perspectives have also been used to infer attention. One example provides the

caregiver with a wearable camera in order to capture periods of child engagement (Pusiol

et al., 2014). The child’s attention to the caregiver can be inferred by periods when he or

she is facing the camera. Attention and engagement are also important concepts in social

robotics (Foster et al., 2013; Li et al., 2012; Sanghvi et al., 2011) and follow a similar
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methodology to classification techniques for human interactions. Sanghvi et al. (2011)

examined the visual cues of a child’s state of engagement with a robot (Table 3.1).

Table 3.1
Visual signs that a child was engaged with the robot in Sanghvi et al. (2011).

Engaged Visual Cue

Yes

Anything except leaning forward
Little or no body motion
Rocking with mean body angle upright or backward
Little or no movement
Upward, forward, or backward movement
Upright posture
Leaning back or upright with hands in lap

No

Leaning forward (focus on game board)
Continuous periods of body motion
Leaning forward, rocking with mean angle leaning forward
Hand movement, or hands up, away from lap
External distractions, interactions with other people

Joint attention is an important concept for implementing PRT. Maintaining joint

attention on a task will allow the parent to provide learning opportunities in a manner that

is not disruptive to the child. To detect this in video data, the attention state of both

individuals needs to be engaged with one another in a shared activity. From an exocentric

perspective, this involves determining that the individuals in the video are attentive to one

another or a shared object or task. As with activity and visual attention detection, current

research into joint attention has focused on interpreting body, head, and facial orientation

(Presti et al., 2013; Tsatsoulis et al., 2016). In addition to this, rate of movement has also

been determined to be diagnostic of attention (Rajagopalan et al., 2016, 2015). Intuitively,

an individual attending to another individual would likely not be changing position or

orientation rapidly.

Examining the research surrounding activity detection and classification is useful in

automating evaluation of criteria based on the actions of the parent. These include
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following the child’s lead, gaining the child’s attention, and providing immediate

reinforcement. The challenges of implementing activity classification in the PRT video

probes is similar to object tracking problems. Successfully identifying the activity the

individual is engaged in requires a clear depiction of the individual over successive

frames. Partial or full occlusion, motion blur, or distortions in the depiction of the

individual in the frame could lead to misclassifications of the activity or a classification

not being possible. These issues could be addressed outside of the system by providing

instructions on how to record the video probes. Within the system, predictive algorithms

could be used to infer object locations within a frame based on its position in neighboring

frames (Heath et al., 2018). This is possible by leveraging the domain knowledge that the

frame should depict two individuals.

3.2 Proposed Approach

This chapter primarily examines a PRT video dataset and explores how a machine learning

model could be developed to detect the recipient’s attention. A new dataset was created

based on existing videos of parents employing PRT with their child. Currently, no other

datasets are equivalent to this task. The multimodal dyadic behavior (MMDB) dataset

(Rehg et al., 2014) is the most similar to the conditions being examined in this project.

The MMDB dataset depicts a child with ASD, sitting with his or her parent, interacting

with a clinical professional in a limited set of activities. The dataset is labeled based on

the child’s visual display of engagement. The dataset exhibits a controlled environment

with the data collection occurring under laboratory conditions. The interactions between

the child and the clinician were filmed using multiple stationary cameras and an

egocentric camera worn by the clinician. The participants were seated throughout the

interactions. This dataset was used in several of the aforementioned research on

engagement and joint attention (Rajagopalan et al., 2016, 2015; Tsatsoulis et al., 2016).
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PRT sessions are expected to occur under ‘in-the-wild’ conditions. This means that

the activities cannot be determined prior to the session, and the recording quality cannot

be guaranteed. This differs from the MMDB conditions which controlled for activities and

recording quality. In order to better represent the problem of classifying attention in PRT

videos, a dataset consisting of labeled video segments of PRT sessions was created and a

feature set of body and facial landmark points was extracted for each individual in the

videos. This feature set was then examined for completeness and a post-processing

procedure was run to approximate missing information. The augmented feature set was

then used to train a nu-SVM model to classify video sequences based on the attention of

the recipient. The SVM model was evaluated using a leave-one-out strategy where two

videos were reserved as a validation set for each training iteration. The remaining sections

describe the dataset and evaluations methodologies that were employed.

3.2.1 Dataset

Fourteen videos were selected at random from a PRT study (Signh, 2014) to create a

dataset for detecting a child’s attention to their caregiver. Each of the seven

caregiver-child dyads were in two videos - a baseline video recorded before the caregiver

received instruction in PRT and a post-study video recorded at the end of the training. In

order to represent the types of videos that could be expected, no regard was paid to quality

or levels of occlusion. The videos depict the child and caregiver engaged in various

activities including playing with assorted toys and games, spinning in a chair, moving

about the room, and watching videos on a cell phone. Each video was recorded by a

clinician in a room at an ASD resource center.

The videos were divided into 30 frame increments for labeling. Labels were assigned

according to the attentive state of the child in accordance with PRT literature (Koegel,

1988; Suhrheinrich et al., 2011). The segments were labeled as ‘attentive’ if the caregiver
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controlled the motivator, and the child was not engaged in an activity, was looking at the

parent, or was reaching toward the caregiver at any time during the video clip. For

example, this is demonstrated in Figure 3.1 when the interventionist, the woman on the

left, presents a motivating object to the recipient, the woman on the right. The segment

was labeled ‘inattentive’ if the child controlled the motivator, was moving about the room,

or was engaged in a solitary activity such that if the caregiver seized control of the

motivator it would disrupt the activity. Figure 3.2 exemplifies inattention, showing the

recipient has control over the motivational object, the puppet. Segments were labeled as

‘shared attention’ if the caregiver and child were engaged in a joint activity, or if the

caregiver had control of a motivator in a way that seizing control was not disruptive to the

activity. Shared attention is shown in Figure 3.3 when both the recipient and the

interventionist have their own puppets and are participating in a mutual play activity. This

allows the interventionist to present learning opportunities in the context of the play

activity, with minimal disruption. Segments were ignored if either the child or caregiver

were not visible.

The videos were processed using OpenPose (Cao et al., 2017) to extract spatial

information to use for classification. OpenPose provides Cartesian data points for body

and face landmarks for each individual identified in the frame. For the individual’s body,

18 points are detected including the eyes, nose, neck, and major limb joints. Seventy

additional points from detected facial landmarks are also recorded. The image on the left

of Figure 3.4 depicts a frame from a PRT implementation video (Considine, 2011) where

the individuals have the OpenPose feature graph overlaid.

To overtly capture the interaction between the two individuals in each frame, the

Euclidean distance between the individuals’ hands was calculated and provided as an

additional feature for classification. The goal was to capture common motions that could
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Figure 3.1: Screenshot from a PRT training video. The recipient (right) is in an attentive
state, as indicated by her looking directly at the interventionist (left). Image from (Virgir05,
2015)

be indicative of attention, such as the child reaching toward an object in the caregiver’s

hand or the child playing with an object on his or her own.

Visual attention is an important feature for determining an individual’s focus. An

individual’s gaze was estimated by calculating the Euler angles of the face using 15 of the

facial features identified by OpenPose and an approximated camera perspective based on

frame dimensions. The pitch and yaw angles were used to create a point projected away

from the individual’s face, creating a vector approximating gaze. Using Euclidean

distance, the proximate of the vector to key points was used to determine a likely target for

the individual’s gaze, such as the other person’s face or hands. If a specific target was not

identified, the gaze would be approximated as looking toward or away from the opposing

individual. The image on the right of Figure 3.4 shows the still-frame from the left with

lines drawn using the OpenPose points. The two individuals are connected by their left
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Figure 3.2: Screenshot from a PRT training video. The recipient (right) is engaged with the
puppet and would be less receptive to instructions from the interventionist (left), indicating
an inattentive state. Image from (Virgir05, 2015)

and right hands. An additional vector is depicted extending from the individual’s faces to

estimate their gaze. The expected gaze target is displayed above each individual. This

figure also shows that body points can be overlooked by OpenPose due to occlusion. The

individual on the left is missing the points on her left arm and lower body. Her face was

also not recognized in enough detail to adequately plot, resulting in a relative scatter of

individual points, include two points between the two figures. The right arm of the

individual on the right was not detected; however, OpenPose was able to correctly discern

the individual’s face, as shown by more accurate plotting of points around the head.

Missing body part locations were estimated by looking forward a set number of

frames for a value, then back propagating an average value. If a value is not found in the

set number of frames, the last known value is used for each remaining frame in the

segment. If facial features were not detected, a gaze approximation is calculated using the
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Figure 3.3: Screenshot from a PRT training video. The interventionist (left) and recipient
(right) are engaged in a joint activity, playing with puppets. This is a demonstration of a
shared attentive state. Image from (Virgir05, 2015)

eye, nose, and neck values from the body point set. If those points were also not detected,

the gaze target value was set to ‘unknown’.

3.2.2 Evaluation

Two evaluations were undertaken to assess the PRT video data and evaluate an approach

for detecting attention. The first experiment examined the PRT video data and the use of

OpenPose for extracting data from the individuals in the video. The second experiment

involved building and training SVM models using the OpenPose data.

Analysis of the videos and the application of OpenPose was conducted prior to

exploring the problem of identifying child attention in PRT videos. The basic video

attributes are presented in Table 3.2, showing the number of 30 frame segments given each

label. The figures regarding the labels indicates that from a human perspective, the
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Figure 3.4: The frame on the left is a screenshot from Considine (2011) with an overlay of
the face and body points detected by OpenPose. The OpenPose points along with the gaze
estimation and hand coordination vectors are shown on the left.

majority of the video segments can be classified. This means that the caregiver and child

are visible in the frame, and their interaction is discernible, otherwise the segment would

be labeled as ‘ignored’. The majority of segments were labeled, indicating that the child

and caregiver were generally stationary and easily filmed during their interaction. The

ignored segments were not used in the remaining analysis or to train the machine learning

models.

Table 3.3 represents the attributes each of the video probes and statistics from using

OpenPose. The data shows the ability of OpenPose to extract body and facial features

from the videos. These statistics are based both on the obscurity of the individuals in the

videos as well as the performance of OpenPose. As expected, OpenPose data displays

marginal results. On average only 66% of the body points are identified with an average

confidence of 56%. Much of this could be attributed to only the top portion of individuals

being in the shot, along with the tendency of caretakers to be on the margins of the video

frame. More concerning is the lack of confidence in facial features at an average of 23%

recognition confidence. This means that much of the gaze estimation will be undertaken

using the less precise locations of the eyes and ears presented in the body point results

from OpenPose.
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Table 3.2
The attention class label counts for each video probe.

Video Probe Attentive Shared Inattentive Ignored

Dyad 1 Base 182 43 371 5
Dyad 1 Post 170 23 266 156
Dyad 2 Base 178 4 254 170
Dyad 2 Post 11 585 14 0
Dyad 3 Base 146 258 190 10
Dyad 3 Post 203 101 133 167
Dyad 4 Base 80 0 278 260
Dyad 4 Post 261 22 285 33
Dyad 5 Base 35 144 415 17
Dyad 5 Post 144 66 372 29
Dyad 6 Base 95 180 215 125
Dyad 6 Post 135 26 317 127
Dyad 7 Base 94 110 167 236
Dyad 7 Post 119 246 221 24

Table 3.3
The proportions and confidence levels for body and facial point detection from OpenPose
for each video probe.

Video Probe Body Det. Body Conf. Face Det. Face Conf.

Dyad 1 Base 0.72 0.58 0.76 0.13
Dyad 1 Post 0.62 0.55 0.6 0.08
Dyad 2 Base 0.62 0.56 0.87 0.36
Dyad 2 Post 0.69 0.59 0.8 0.35
Dyad 3 Base 0.63 0.5 0.85 0.26
Dyad 3 Post 0.53 0.56 0.79 0.33
Dyad 4 Base 0.74 0.57 0.79 0.23
Dyad 4 Post 0.74 0.56 0.83 0.23
Dyad 5 Base 0.72 0.57 0.95 0.34
Dyad 5 Post 0.72 0.53 0.78 0.17
Dyad 6 Base 0.55 0.54 0.63 0.1
Dyad 6 Post 0.59 0.52 0.63 0.13
Dyad 7 Base 0.62 0.55 0.82 0.24
Dyad 7 Post 0.68 0.59 0.91 0.32
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Figure 3.5: A) The bar graph shows the number of people detected by OpenPose in each
video. The bars illustrate the percent of frames by the number of people detected. B) Shows
the percentages after processing.

Figure 3.5 shows the percentage of frames in each probe by the number of individual

people OpenPose identified. The data in the left bar graph illustrates that OpenPose

overwhelming recognized only one individual in the frame despite human vetting

removing segments where only the child or the caregiver were present. This is likely due

to partial occlusion of one of the individuals. In addition to failing to find two people in

the frames, there are a significant number of frames where three or more individuals were

recognized. This could be due to additional individuals in the background, or to objects

being incorrectly recognized as human features.

These statistics were improved by implementing the post-processing procedure for

estimating missing data detailed in the methodology section of this paper. The right bar

graph of Figure 3.5 shows that this process was able to reconstruct the data to favor having

two individuals in the frame. This means that periods of occlusion resulting in the failure

50



to detect an individual were relatively sparse and the data was able to be approximated

within set parameters. This process also caused the completeness of the body points to

rise on average across the videos to 74%.

Due to the variety of activities the caregiver and child could participate in,

identifying action poses was not feasible and the feature set needed to be generalized.

Based on observation and current literature (Koegel, 1988; Suhrheinrich et al., 2011) it

was determined that the coordination of the individual’s hands and gaze would be the most

diagnostic features for detecting attention. Rate of movement was also a consideration, as

the child would need to be relatively still in order to be attentive. To emphasize this, the

amount of change in the position of body landmarks was included in samples instead of

the spatial value. Prior to calculating features, each of the spatial points was rescaled by

the frame dimensions of the video and normalized to the neck point of the individual. The

position of the child in the frame relative to the caregiver was known prior to processing.

This information was used to organize the data so that the caregiver always represents the

first person in the feature set.

The feature set used for training the SVM models consisted of a movement score for

each individual, the euclidean distance between the hands of the individuals, a gaze target,

and a flag indicating reaching behavior. The 30-frame video segments that were labeled

were subdivided into six samples. The five frames in each sample where then condensed

to provide a summary of the activity depicted over the frames. Each of the six samples

were given the same label as the 30 frame segment they were extracted from.

The movement scores were calculated by taking the average magnitude between

points in adjoining frames. Unrecognized points were not included in the average. The

averages from the frame differences were summed to provide a score for the sample. It is

expected that movement scores will be higher when the child is inattentive.
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Distances were calculated between the individual’s own hands and the hands of the

other individual in the frame, resulting in six features. It is hypothesized that when the

child’s hands are close to one another and far from the caregiver’s hands that the child is

engaged in an individual activity and is inattentive. If the caregiver’s hands and the child’s

hands are in close proximity, they are likely engaged in a shared activity.

Gaze target estimates are presented as a set of binary features for each frame. This

accounts for 10 of the features in the feature set, with five possible targets for each

individual. Two target values were based on an individual’s gaze intersecting with the

other person. One value signified if the individual was looking at the other person’s hands

or face. A separate value was determined if the individual was looking at the other

person’s body, but not discernibly at the hands or face. Looking in the direction of the

person but not directly at them is the 3rd category, while the 4th category is looking in the

opposite direction. The final category is ‘unknown’ and indicates that the individual’s

gaze could not be calculated due to missing data points. For the amalgamated feature, the

gaze binary values were averaged over the frames in the sample.

The final feature is a flag indicating if the child is reaching. This was determined

using the angles between the child’s shoulder, elbow, and wrist. In order for the flag to be

true in the sample, each of the frames must indicate the child was reaching.

A nu-SVM (Pedregosa et al., 2011) was used to evaluate classification tasks using the

dataset. The base and post videos for each dyad used a validation set, while the remaining

data was used for training, resulting in seven individual model tests.

Two additional feature sets were used as a baseline to compare the results. The Red

Green Blue (RGB) pixel values from individual video frames were used to finetune an

AlexNet CNN (Kratzert, 2017) with pretrained weights. Six frames (with every fifth

frame starting with the first) from each label segment were selected and ascribed the same
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label as the segment they were taken from. The frames were organized in the same

training and validation sets are previously mentioned.

The second baseline feature set consisted of the raw spatial values extracted from

OpenPose. The data was processed to approximate missing body points and remove

additional individuals as mentioned above. Like with the RGB data, this dataset was

created using every fifth frame from each labeled 30 frame segment and organized into the

same training and validation sets.

3.3 Results and Discussion

The results of the model evaluations reveal the complexity of the problem space. Overall

accuracy for each approach is low and varies substantially between validation sets as

depicted in Table 3.4. In the table, the accuracy metric shows the proportion of correct to

incorrect predictions on the validation dataset. The segment accuracy is classification of

the 30 frame segments that were originally labeled. This score is determined by taking the

majority of the predicted class for the six samples that were classified for each segment.

Table 3.4
Proportion of correct label predictions for RGB, Spatial, and Expanded data for each vali-
dation set.

Evaluation Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5 Dyad 6 Dyad 7

AlexNet RGB Accuracy 0.46 0.39 0.37 0.55 0.55 0.40 0.33
AlexNet RGB Segment Acc. 0.49 0.37 0.37 0.59 0.59 0.52 0.57
SVM Spatial Accuracy 0.32 0.31 0.32 0.43 0.4 0.34 0.34
SVM Spatial Segment Acc. 0.41 0.53 0.60 0.51 0.47 0.50 0.62
SVM Expanded Accuracy 0.43 0.37 0.42 0.51 0.50 0.49 0.41
SVM Expanded Segment Acc. 0.52 0.51 0.54 0.6 0.63 0.57 0.56

The low average accuracies show that there is a significant variation in the data,

making generalization of patterns for classification needed for successful predictions

difficult. The dataset is strongly imbalanced, favoring inattentive behavior. This was
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addressed by undersampling the larger classes to be equal size with the smallest. This

resulted in a reduction of the samples that could be used to train the models. Additionally,

samples only needed to display attention for part of the segment to be classified as

attentive. This could lead to subsamples of the attentive segments being similar in

composition to inattentive or shared attention samples.

Related to the data imbalance in the dataset, the video probes do not have equivalent

class compositions, making training a model that performs adequately on each set

difficult. This is particularly apparent in Dyad 2 and Dyad 7, which have large quantities

of shared attention samples. The shared activity largely depicted in the Dyad 2 post video

is the child sitting in the caretaker’s lap watching a movie on a cellphone. This is

distinctly different from other shared activities that often had the child and caregiver

facing each other, with the motivator, a toy or game, in between them. Similarly, in the

Dyad 7 post video the child and caregiver are sitting across the table from one another

playing a game. The distance in between them is much greater and there are longer

periods of inaction than in other examples of shared activities.

The worst performance was exhibited by the spatial feature set at 35% average

accuracy, which is not significantly different from what would be expected with random

label assignments. As this data only contained the coordinate location of the individuals,

there was little for the algorithm to generalize to form an effective classifier. The inclusion

of this feature set was to provide a baseline to compare the results from the CNN model

and processed feature set.

The AlexNet CNN performed better than the spatial feature set at an average of 43%

accuracy across the validation sets. This illustrates that the pretrained network was able to

extract features from the still frames to improve classification above random; however, the

data still exhibited significant variation to prevent strong predictions. The image

background alone does not likely account for the variation. Each video was filmed in

54



rooms, often the same room, at the same ASD resource facility. As such, the children in

the videos often had access to the same toys. Since the toys would be associated with

different states of attention, this could have aided the classification.

The intention of the processed dataset was to generalize the features of each state of

attention to provide a classification regardless of the activity. At an average of 46%

accuracy, this was not sufficiently achieved. As mentioned above, the variability among

activities caused some scenarios to be in the validation set that did not have an adequate

equivalent in the training set. More data may be needed to ensure that a wider range of

activities is encompassed in both sets.

The precision of OpenPose could also be potentially problematic. Although it has

been demonstrated that OpenPose adequately detected the individuals in the frames, the

data presented in Table 3.3 illustrates that prediction confidence levels are low,

particularly regarding facial features. Since the processed feature set is reliant on

extracting information from these points, it is important that recognition be uniform for

each sample. The detected position of body parts could vary between videos based on the

quality of the video, the proximity of the individual to the camera, whether the person has

his or her back to the camera, or other external factors such as clothing. As each of the

videos are taken by a handheld device, these issues will be compounded by the movement

of the camera. Each of the 30 frame increments in the video were processed through

OpenPose independently. It is likely that processing the video as a whole would improve

the precision of detection through OpenPose’s tracking algorithms.

The two-dimensionality of the data was problematic for detecting the target of the

individual’s gaze. One problematic scenario that arose in several instances occurred when

the child was playing with a toy, a ramp set for cars, while the parent stood behind the

child and watched. The child gaze is on the toy; however, because of the parent in the

background the child’s gaze would be incorrectly attributed to looking at the parent.
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Similar issues regarding incorrect gaze targets can also be attributed to a lack of the ability

to infer eye direction. For instance, a child facing the camera, but looking down at the

cellphone in his caregiver’s hand, is in a shared state of attention, whereas a child looking

directly at the camera, or interacting with the person filming the scene, is not attending the

parent. The difference in head position is not discernible from the OpenPose data causing

misidentification of gaze. This inadequacy may be addressed by incorporating RBG data

of the individuals’ heads as a substitute for attempting to determine a gaze target.

The ultimate goal of this research is to maximize the feedback that can be provided to

the PRT practitioner while reducing the amount of time necessary for expert review of the

video probes. Determining the child’s attentive state is an important part of PRT. Even

with the low classification accuracy, this system could provide benefit to a clinician

reviewing the videos. The segment accuracy score presented in Table 3.4 represents when

the system correctly detected the child’s attention to the caregiver in regards to when the

caregiver can provide a prompt or instruction. As such, shared and attentive states have

been combined. Table 3.5 contains a description of two minutes from the Dyad 5 post

video probe along with the attention classifications. Each second of the video is classified.

The predictions are correlated with the activities in the video, and show that the child was

largely engaged in solo play with intermittent periods of attention toward the caregiver.

By providing this information to the clinician he or she could gauge the relative attention

of the child throughout the video along with finding moments where the caregiver should

be providing instruction. This also provides a metric that can be viewed across multiple

videos to gain an understanding of whether the caregiver is improving at seizing the

child’s attention.

This example also illustrates that in the scheme of attention, accuracy to a one second

precision is unnecessary. This research presented above examined detecting attention in

independent one second segments. A more robust approach will likely need to account for
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greater lengths of time and encompass a broader understanding of the temporal features

for detecting attention. This is particularly important for shared attention states as they are

generally sustained for a long period of time compared to attentive states.

Table 3.5
Illustration of how attention classification aligns with behavior in the video probes. The
first two minutes of Dyad 5 post video probe has been broken into 30 second increments
with each second classified as attentive (attn) or inattentive (inattn).

Time (secs) Description Attn Inattn Acc.
(%)

1 – 30 The child looks about the room while the
caregiver offers a choice of toys. The
caregiver offers a different choice of toys
and the child responds

13 17 63

31 - 60 The child plays with the toy. The care-
giver offers a choice of accessories. The
child chooses and continues solo play.

8 22 70

61 – 90 The caregiver offers a new choice of ac-
cessories. The child chooses, but then
asks for a different piece. After receiving
the piece, he continues playing.

8 22 83

91 - 120 The child continues solo play. Then
watches the caregiver rummage through
accessories. The child is offered a choice
but does not respond correctly and the
caregiver holds the toy until a new re-
sponse is given.

12 18 93

3.4 Conclusion

Video probes are an integral part of evaluating people learning PRT. The current manual

process is limited by the costs of having behavior analysts extract relevant data. These

videos provide an opportunity for both for improving the training process for learning
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PRT as well as expanding the field of dyadic human activity detection and classification.

PRT video probes provide a complex problem for computer vision due to the

unpredictability of the camera stability, the mobility and occlusion of the individuals in

the video, and the range of activities that could be performed. The research examined

three data representations using two different machine learning algorithms to detect

dyadic attention in untrimmed videos to serve as a baseline for future research. Greater

exploration into extracting important diagnostic and temporal features is needed to

improve classification predictions.
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Chapter 4

VOICE ACTIVITY DETECTION AND PARENT-CHILD SPEAKER SEPARATION

Detecting vocal activity in PRT video probes is difficult. Often, the audio tracks contain

background noise from the environment along with sounds from the activity the child and

parent are participating in. This could include sounds from play activities, toys that emit

songs, chimes, or speech recordings, and dialog from electronic media. These noises can

obscure the parent or child vocalizations or create opportunities for misidentifying a

speech event. The recording quality of the child and parent can also be problematic, as the

videos are often recorded using handheld phones or cameras with built-in microphones.

The quality is therefore dependent on proximity to the camera’s microphone. This is

particularly limiting for children with low energy vocalizations.

An additional challenge, and what distinguishes this research from other works on

voice activity detection (VAD), is that the parent and child exhibit atypical speech patterns.

To engage the child, the parent often utilizes child-directed speech patterns, or baby-talk,

which involves drawing out syllables and using a higher pitched voice in a way that is not

common in adult speech. Child speech is already a difficult problem for automatic speech

detection (Lee et al., 1999), as children speak more slowly than adults and make more

phonetic or grammatical errors. This could be more prevalent in children with ASD who

have limited communication skills. Additionally, in PRT, a valid vocalization from a child

is determined by his or her communication ability. This means that a child who is

non-verbal or whose speech is limited to single words may only be able to respond with a

phoneme in response to a learning objective. Because of this, it is important to detect all

the child’s vocalizations, not just articulated speech. The research presented below

evaluates methods for detecting parent and child vocalizations in PRT video probes.
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Processing audio for speech-related tasks is a well-studied area of computer science.

Approaches vary extensively throughout the literature, differing in the ultimate tasks being

undertaken, the models that are employed, and the feature sets that are used for detecting

and classifying speech signals. For the PRT project, it is relevant to discuss feature

extraction, VAD, speaker separation, automated speech recognition (ASR) systems, and

nonspeech vocalizations. Additionally, the application of these approaches to children,

particularly children with ASD, is important. After a discussion of the relevant literature,

the audio data corpus created from the videos are analyzed and research into applying

audio processing and classification methodology for PRT video probes is discussed.

To evaluate the audio signals from the PRT video probes, several detection methods

were examined, including filter-based implementation, clustering algorithms, and machine

learning approaches. These results are compared to the open source VAD system,

WebRTC VAD1.

4.1 Research in Audio Processing

Several facets of audio processing are applicable to this project. The most important

concepts for the current implementation are VAD and speaker separation. An examination

of acoustic features is also important for understanding what aspects of the audio signal

are going to be diagnostic and robust when addressing the problems inherent to PRT video

probes. Additionally, detecting non-speech vocalizations and unvoiced speech has a

correlation to detecting child utterances. Automated speech recognition (ASR) and how

noise is handled in ASR models is relevant; however, as language recognition is not

currently addressed in the project, these subjects only warrant an introduction in this

chapter.

1https://webrtc.org/
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4.1.1 Acoustic Feature Extraction

Audio signal processing is based on three primary types of data features: spectral,

cepstral, or prosodic. Spectral features represent the times series of audio wave

frequencies in accordance with a central tendency, spectral centroid, and the periodicity of

change, spectral flux. Cepstral features are created by transforming spectral features.

Common transformations used in speech analysis include Mel Frequency Cepstral

Coefficients (MFCC), Linear Predictive Codes (LPC), and Perceptual Linear Prediction

(PLP) (Dave, 2013). A formant is a spectral or cepstral pattern associated with a sound

such as a musical note or a phoneme. Prosodic features are not associated with formants

and include rhythm, intonation, and stress. Prosodic features are often used in

transcription tasks to signify punctuation or meaningful boundaries in natural speech

(Moore et al., 2016) and in emotion detection. Common feature extraction tools in

research publications include PRAAT (Boersma and Weenink, 2018), GeMAPS, OpenEar

(Eyben et al., 2009), OpenSMILE (audeering, 2018), and WaveSurfer (2018).

Developed to emulate anatomic hearing, PLP features focus on the spectral

configuration of the audio signal (Hermansky, 1990). This analysis is based on selecting a

temporal window size for segmenting the signal, then transforming the raw data using a

fast Fourier transformation (FFT). This translates the wave information into a frequency

measurement.

Although seen as effective features for speech recognition (Hönig et al., 2005), PLP

could be susceptible to interference based on recording quality or background noise

(Hermansky, 1990). In relation to this, PLP features were seen to be important for

detecting speech intelligibility based on regression models (Salehi and Parsa, 2016).

LPC is a methodology for compressing audio by approximating the signal using a

linear prediction model (Dave, 2013). The signal representation can be effectively used in
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speech activity detection and recognition tasks. This reduces the feature space of the

signal, aiding in more robust classifications (O’Shaughnessy, 1988).

Like PLP, MFCC was designed to replicate features of anatomical hearing. This

feature extraction approach focuses on using the Mel scale, which is based on the

frequency range of human hearing (Dave, 2013). Creating MFCC features is based on

selecting an arbitrary segment size and performing FFT to translate the time-series

dependent wave into a frequency-based feature. As MFCC, like PLP, is based on the

spectral signal, speech recognition models using the features will be sensitive to noise

(Shrawankar and Thakare, 2013).

Zero crossing rate and energy are often used in discerning speech from non-speech in

audio signals (Bachu et al., 2008, 2010; Shete et al., 2014). ZCR is a useful feature for

speech identification tasks because it is largely independent of speaker energy (Ito and

Donaldson, 1971). The ZCR of the signal represents how frequently the signal values

change from positive to negative, or vice-versa. The pattern in the crossing frequency can

be indicative of specific phonemes in natural speech patterns. Calculating ZCR is a

straightforward count of transitions over the zero-center point in a specific interval of the

signal pertaining to an amount of time. The expectation is that the ZCR will be low of

audio segments containing speech compared to non-speech segments (Shete et al., 2014).

In addition to ZCR, cepstral peak can be a diagnostic feature for discerning unvoiced

speech (speech sounds that do not use vocal cords) (Graf et al., 2015).

The energy of the signal is related to the amplitude and modulation. Energy has been

seen as an important acoustic feature for discriminating voice signals from other audio.

This is based on peak amplitude patterns in speech signals differing from unvoiced

signals. The expectation is that energy amplitude in records will be higher for audio

segments containing speech compared to segments with no speech (Shete et al., 2014).
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4.1.2 Voice Activity Detection

Voice activity detection (VAD) encompasses the preprocessing techniques for

discriminating speech signals from other noises in an audio file. Generally, approaches to

classifying speech versus non-speech signals involves using discriminatory feature sets,

statistical approaches, or machine learning techniques (Zhang and Wang, 2016). A

common feature-based technique is the use of frequency ranges as a filter for selecting

speech signals (Aneeja and Yegnanarayana, 2015; McLoughlin, 2014). Statistical

approaches focus on modeling the noise spectra using a defined distribution in order to

extract impertinent signals.

Both unsupervised and supervised machine learning methods have been explored for

VAD. In unsupervised methods, k-means (Górriz et al., 2006) and Gaussian mixture

models (GMM) (Sadjadi and Hansen, 2013) have been explored. Unsupervised methods

benefit from the ability to use large amounts of data; however, the algorithms falter in

difficult separation tasks, such as when a noise signal has a steady repetition (Zhang and

Wang, 2016).

Support vector machines (SVM) have been a commonly utilized algorithm for VAD

(Enqing et al., 2002; Jo et al., 2009; Shin et al., 2010). These approaches focus on

utilizing the SVM for a binary classification problem, requiring a labeled corpora of noise

and speech data. The requirement for label data is the primary drawback for these

approaches, particularly due to the variety in noise and speech signals. This means that the

model may not be able to generalize to compensate for different types of noise.

Deep learning approaches for VAD seek to address generalization by utilizing the

network layers to capture more information about the data’s feature set. The use of a

feedforward recurrent neural network (RNN) model for VAD was explored by Hughes and

Mierle (2013). A single hidden layer neural network was implemented by Drugman et al.

(2016) and was applied to test VAD application in real world environments. Also
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exploring application to real world scenarios, Kim and Hahn (2018) utilized multiple

layers of encoder and decoder to networks to create a classification model.

4.1.3 Speaker Separation

The “cocktail party problem” (Cherry, 1953) examines the task of separating voices from

a single audio track. This is based on the human ability to focus on individual voices in a

cacophony. Often, research addressing the cocktail party problem involves identifying

individuals speaking simultaneously. Approaches for speaker separation have focused on

the use of similarity metrics.

Morgan et al. (1997) utilized an approach based on identifying signatures near the

start of the signal, then inferring similarity using likelihood metrics in subsequent

segments. They examined the frequency strength of the signal to determine a strong and

weak signal. Based on these two channels, subsequent signal segments are analyzed to

determine which classification they belong to. Differentiating modulation was also

examined for speaker separation by Schimmel et al. (2007). Similarly, Yu et al. (2017)

researched identifying optimal output assignments using a CNN. Their network models

would perform the separation based on training the network to minimize the error when

comparing sample magnitudes.

Clustering and masking algorithms examine signal features in order to assign

classification based on similarities in comparison. Masking approaches focus on

discovering identifying features of the dominant speaker, then setting other components of

the signal to an insignificant value (Reddy and Raj, 2007). These features are identified

using grouping methods. Similarly, clustering approaches (Chen et al., 2017b; Isik et al.,

2016) examine temporal segments of the signal and utilize a comparison algorithm to

separate the segments into distinct classes. Clustering approaches benefit from being

unsupervised, and do not require additional data for training. However, some approaches
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use training data for implementing neural network models that can be used to reduce the

feature space as in the case of deep clustering (Isik et al., 2016).

4.1.4 Automated Speech Recognition

Automatic speech recognition (ASR) systems have become a ubiquitous feature of many

modern applications. For the most part, these systems function adequately for the majority

of users. Analyzing speech involves receiving the soundwave as a time-series signal,

either transforming the signal to isolate discriminative features for classification (Dave,

2013) or processing the raw signal through a trained classification model. Identifying

words in the signal can be accomplished by isolating and classifying phonemes, then

using a lexicon to construct words (Abdel-Hamid et al., 2014; Abushariah et al., 2010;

Graves et al., 2013; Hinton et al., 2012; Jaitly et al., 2012; Rabiner, 1989; Sak et al., 2014;

Wilpon et al., 1990). These implementations utilize a hybrid approach implementing a

classification model for identifying formant or signal segments, then using an additional

model such as a hidden Markov model (HMM)-Gaussian mixture model (GMM)

combination to infer temporal relationships.

End-to-end speech recognition refers to architectures that do not use this hybrid

model, and simultaneously perform feature and temporal classification tasks with a single

model, often a DNN-based model, a CNN (Sainath et al., 2015; Zhang et al., 2017a), or

RNN (Chan et al., 2016; Chen et al., 2016b; Miao et al., 2015; Sainath et al., 2015).

Similar end-to-end implementations have used a deep belief network (DBN) model based

on restricted Boltzmann machines (RBM) (Dahl et al., 2012; Sarikaya et al., 2014).

ASR implementations using raw data, colloquially called end-to-end speech

recognition, use the raw wave data from the audio signal instead of transforming the

signal into frequency space, as in PLP or MFCC space, or extracting other features. These

approaches have focused on identifying phonemes using a DNN or CNN implementation
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(Golik et al., 2015; Hoshen et al., 2015; Palaz et al., 2013, 2015a,b; Passricha and

Aggarwal, 2018; Tuske et al., 2014).

4.1.5 Addressing Noise in Speech Recognition

Depending on the environment, different degrees of noise can be expected for ASR

applications, making noise-robust approaches an important part of ASR research. There

are several options for creating a more robust ASR system that are involved at both the

feature and the model level. Feature-based methods for addressing noise focus on utilizing

extracted features that are inherently robust or implementing preprocessing procedures to

add robusticity. PLP features typically are naturally robust to noise. Preprocessing

procedures predominantly use normalization (Li et al., 2014). Model-based approaches

incorporate adaptation and compensation for specific noises.

Having prior knowledge of the audio track recording environments allows for

compensation of specific noise patterns. The expectation is that certain noises will be

prevalent in the environment and can be compensated for during feature selection and

model training(Kim and Hahn, 2018).

Training models on deliberately distorted speech can help generalize classification

tasks. During training, distortion is added to clean samples in order for the model to gain

flexibility. Typically, this is undertaken using statistical or sample-based methods for

determining the distortion effect. A probability-based example was presented by Bu et al.

(2018). Their approach involved augmenting the spectral features using their temporal

context.

Uncertainty-based approaches examine the likelihood the model is correct, and its

confidence in its predictions. This can occur at both the model or feature level. This can

be approached by implementing error correction in a long-term training context using

DNN implementations (Shivakumar et al., 2018).
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Joint training methods incorporate data with noise into training the classification

models. This approach was used by Narayanan and Wang (2014). They trained a DNN

model on speaker separation tasks as well as speech recognition. Their intuition was that

this would make the model more powerful at discerning feature discrepancies and increase

generalization.

4.1.6 Child Speech Recognition

Performing speech recognition on children presents additional challenges to automated

speech processing. At an auditory level, children’s voices tend to be higher frequency and

display more rational and spectral variability (Lee et al., 1999). Regarding language

modeling, children are more prone to mispronouncing words than adults, have a restricted

vocabulary, and tend to speak at a lower rate (Potamianos and Narayanan, 1998). These

challenges are more apparent the younger the child is. Research into child speech

classification has been undertaken using SVM models (Boril et al., 2014), DNN models

(Dubagunta et al., 2019; Liao et al., 2015; Ward et al., 2016), and hybrid DNN – hidden

Markov model (HMM) classifiers (Smith et al., 2017). Discerning adult from child speech

was explored in (Aggarwal and Singh, 2015). Adding adult speech samples when training

child speech recognition models has been shown to improve classification accuracy

(Smith et al., 2017; Ward et al., 2016).

In dyadic speech classification, domain adaptation and the utilization of contextual

information implemented were used to increase recognition accuracy by Kumar et al.

(2017). Their system examined speech from child-adult interactions in child mistreatment

interviews using separate networks for the adult and child speech recognition. Domain

adaptation on the children’s speech network consisted of incorporating transcripts in

training to aid in structuring the data. Additionally, the researchers sought to use the

recognized adult speech as context to infer more accurate transcription of the speech from
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the child in the interaction. Using this approach, they showed that substantial

improvements in word recognition accuracies were made in comparison to a baseline

measurement.

4.1.7 Phoneme and Vocal Event Recognition

In addition to speech detection, non-speech vocalization is also important to detect.

Detecting laughter and filler utterances, such as ‘um’, ‘er,’ or ‘eh’ vocalizations, was the

focus of work conducted by Gosztolya (2016). To accomplish this, the researchers

investigated DNN and AdaBoost models utilizing smoothing algorithms for aggregating

probabilities along the audio time series. Their classifier was based on three classes:

laughter, filler, and other, with the other category encompassing silence and fully

articulated speech. They found that applying smoothing algorithms improved the

performance for discerning each class.

Examining detection of native language and deception, Gosztolya et al. (2016a)

compared the results between SVM, DNN, and AdaBoost classifiers. The classification

tasks were conducted on phoneme features extracted from the speech data. Their results

showed that using a combined architecture of a DNN and AdaBoost produced the best

performance in terms of accuracy and recall on native language detection. On detecting

deception, their approaches did not surpass the baseline SVM implementation (Schuller

et al., 2016) in accuracy; however, the DNN model achieved better recall.

SVM models were used in a study examining automatically created feature sets for

detecting if a speaker in audio data has a mild cognitive impairment (Gosztolya et al.,

2016b). Their work provides insight into the most diagnostic features for detecting

cognitive impairment. Their results show that demographic information was not a

significant factor in detection. Speech and articulation rates, and utterance length, were

also not significantly present in the feature sets with the highest performance metrics.
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Non-speech related phonemes were a major inclusion in the successful feature sets. These

are important because they can represent hesitation in speech. The authors state that

despite this importance, these features are often overlooked in cognitive impairment

classification.

Research into child pronunciation was conducted by Dudy et al. (2017). In their

publication, the authors’ goal is to create a system that can be utilized to detect

mispronunciations for children that have speech disorders in order to create a system that

can be used as an aid for improvement. Two models were used to classify pronunciation -

one based on an SVM architecture and the other utilizing a GMM-HMM. They concluded

that both methods had similar performance, with the GMM-HMM implementation having

a slightly better accuracy.

Sentence detection is an important part of automated transcription and conversation

analysis tasks. Delimiting speech is a difficult problem in spoken language as people often

restart sentences, pause at random, leave sentences unfinished, or get interrupted (Moore

et al., 2016). In order to break points in speech, Moore et al. (2016) trained an SVM on

prosodic and lexical features. The output of the SVM was used to create a probability that

the classified speech unit was a breakpoint. They concluded that the model predominantly

utilized the prosodic features. Removing the lexical data from the feature set caused little

change in the classification accuracy of the model.

4.1.8 Application to Autism Research

Much of the research regarding the implementation of ASR systems for individuals with

autism has focused on diagnosis and emotion detection. Exploration of the application of

ASRs for emotion detection in children with autism was undertaken by Marchi et al.

(2015). The dataset consisted of both children with autism and children without who were

acting out emotions based on story prompts. Classification of emotion class was
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undertaken using an SVM. Their findings indicate that larger feature sets equated to better

performance. They found that system had a higher detection recall rate for the children

without an ASD diagnosis.

Researching Autism detection, Xu et al. (2009) used the Language Environment

Analysis (LENA) audio recording system to record children with autism in a home

environment. Their goal was to alleviate the human processing time for evaluating

language skills for people with autism. After recording the audio, the system sought to

classify the vocal data into classes, including the target child, adults, other children, and

voices from electronic media using a GMM-HMM model with a high dimensional set of

features (Xu et al., 2008). They concluded that their work illustrates a high degree of

difference in speech between children with autism and children without a diagnosis of

ASD that can be suitably differentiated using machine learning techniques.

The LENA recording system was also used by Pawar et al. (2017) to analyze

vocalizations of children with autism and their interaction with adults. Their approach

utilized a SVM classifier to distinguish between adult and child utterances as well as

detect laughing. Their results were comparable with Xu et al. (2009, 2008).

This project differs from much of the work on VAD and speaker separation because

of its implementation in handling adult and child vocalizations, along with unpredictable

noise. Additionally, the project needs to account for children with limited verbal skills that

may not be able to formulate complete words and adequately recognize all vocal

utterances.

The LENA system provides a similar function to the research presented in this paper.

This paper focuses on classifying audio from untrimmed videos of PRT sessions. This is

intended to work within the current structure of PRT implementation and research

practices. The videos can be unpredictable in the interactions depicted and the quality of

the recording. The LENA system benefits from using hardware attached to the child’s
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clothing. This likely provides higher quality recordings, particularly of the child’s vocal

utterances; however, it is dependent on a specific device.

4.2 Corpus Description

The corpus used for audio research was extracted from the video probes described in

Chapter 3. Each of the parent-child dyads consisted of an adult female and a male child.

The children ranged in age from 24 to 60 months. The communication skills exhibited

varied depending on the child. Table 4.1 provides an observation of the vocal abilities that

the child shows in each of the videos. The majority of the child vocalizations expressed do

not consist of fully articulated words. The data from five of the seven children contained

few single word utterances. The child utterances in these videos primarily consists of

sounds unrelated to speech or attempts to pronounce the first phoneme of a prompted

response. The child from the Dyad 4 videos spoke in single words, or two word phrases

with some additional non-speech vocalizations related to play activities. The child in

Dyad 7 spoke in multi-word phrases with few non-speech utterances.

Table 4.1
Speech level exhibited in the video probes by the child in each dyad.

Child Exhibited Vocal Skill

Dyad 1 Vocal attempts, single words
Dyad 2 Vocal attempts, no fully articulated speech
Dyad 3 Vocal attempts, single words
Dyad 4 Single words, two-word phrases
Dyad 5 Vocal attempts, single words, two-word phrases
Dyad 6 Vocal attempts, single words
Dyad 7 Multi-word phrases, full sentences

The parent speech consists of individual words, sentences, and exclamations. Much

of the parent’s speech follows child-directed speech patterns. This consists of using a

higher pitch than in normal conversational speech, along with extending syllables and
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exaggerated excitement or surprise. Only the parents vocal utterances were attributed to

the adult in the labeled audio segments. Sounds made by the parent that were not

verbalization, such as clapping or sneezing, were labeled as noise.

In the video, various play scenarios are participated in, creating different types of

noises including shuffling toy pieces and objects banging together. Additionally, the toys

themselves often emitted noise, such as a dinosaur roar, music, or audible speech. In one

video, Dyad 2 Post, the parent and child are watching a popular children’s movie on a

mobile phone. Speech from the toys or other media were omitted from the dataset.

Sounds from the movie that were not recognizable speech were labeled as noise.

In addition to the parent talking in the video, there are some instances of an

additional adult in the room speaking. For this publication, only audio from the parent is

used in the dataset. Audio segments were labeled at 250 ms as either parent speech, child

vocalization, or non-speech sounds. Segments with an energy level below 1e−6 were

excluded. The number of labeled segments for each video are posted in Table 4.2.

Table 4.2
Number of labeled samples for each of the three classes for each video probe.

Video Parent Vocalization Child Vocalization Non-speech Audio

Dyad 1 Base 797 591 1049
Dyad 1 Post 156 162 622
Dyad 2 Base 763 120 1533
Dyad 2 Post 365 64 700
Dyad 3 Base 1017 124 1208
Dyad 3 Post 477 247 1645
Dyad 4 Base 1358 375 702
Dyad 4 Post 967 429 1009
Dyad 5 Base 705 97 1538
Dyad 5 Post 509 248 1686
Dyad 6 Base 574 108 1778
Dyad 6 Post 295 132 1996
Dyad 7 Base 923 785 708
Dyad 7 Post 797 591 1049
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4.3 Experiments and Results

The objective of the experiments is to find an algorithm that is able to detect vocalizations

in the video, determine if they are from a child or an adult, and to identify noise segments.

To achieve this, methods incorporating WebRTC VAD, pitch-based filtering, clustering

algorithms, and machine learning techniques were explored.

The first experiment that was conducted was to determine how well a state-of-the-art

VAD system performed on the video probe data. Google’s WebRTC VAD 1 is an

open-source tool for extracting speech segments from audio files. Each of the video probe

files was processed using WebRTC VAD independently. The VAD can be configured to

integer-based levels of aggression that influence the threshold for determining noise from

valid speech. The two lowest levels of aggression, one and two, were tested. The results

are presented in Table 4.3.

Table 4.3
The percent of label segments that were correctly included in an audio segment if a vocal-
ization or excluded if noise after processing each video with WebRTC VAD.

Aggression
Level

Ave. Correct
Noise

Ave. Correct Adult
Speech

Ave. Correct Child
Vocalization

One 0.27 0.98 0.97
Two 0.91 0.12 0.06

The results show that WebRTC cannot accurately filter the video probes. On the

lowest setting, the majority of vocal samples were correctly captured by the VAD;

however, noise was not sufficiently filtered. On this setting, 73% of the noise samples

were included in the processed audio segments. Conversely, on aggression setting two,

91% of the noise was correctly removed, but the majority of speech samples were not

captured, particularly for the child utterances. This performance is likely due to several

1https://webrtc.org/
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factors. The VAD may be designed to filter environmental noises which may be periodic

or droning, and is thus looking for anomalous signal magnitudes to detect speech events.

The noise in the video probes does not fit this pattern and is usually the result of the child

or parent playing with a toy or participating in an activity. Detecting noise may also be

based on energy levels. The noises in the video probes are often high energy events

whereas the vocalizations, particularly from the child, may be low energy.

The second experiment sought to distinguish between noise, child vocalization, and

adult speech using a filter on the estimated signal pitch for each 250 ms segment. The

estimated pitch was extracted using PRAAT (Boersma and Weenink, 2018) within a range

of 75 to 600 Hz. The average estimated pitch for the segment was calculated and used for

classification. The classification model used a rule based on the expected average range

for female adults and male children. The range for adults was 165-255 Hz (Titze and

Martin, 1998). The child range was 260-440 Hz, based on information from Hunter

(2009). The results are illustrated in Figure 4.2. This method had marginal success in

determining noise segments, with an average F1 score of 80%. Adult and child segments

were less successful, with average F1 scores of 52% and 39% respectively. This shows

that much of the noise in the segments falls outside of the pitch range of 165 to 440 Hz. It

is also notable that the method had the best success in classifying child vocalization in

Dyads 4, 6, and 7. These children exhibited more complete word usage.

Recorded pitch frequencies for children in research studies is varied (Hunter, 2009).

In the corpus presented in this study, both the child vocalizations and the adult speech

registers at a higher estimated pitch than other publications. Figure 4.1 presents a box plot

for the average estimated pitch frequencies for adult, child, and noise segments for each

video. The range of all three classes extends from 75 to 600 Hz based on the parameters

provided to PRAAT. This indicates that samples in the adult and child classes contain

samples outside the expected vocal range. The means of both are higher than reported in
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Figure 4.1: Box plot showing the average estimated pitch for segments in the video probes.
The plot shows the distribution for class labels C, A, N, or child, adult, and noise respec-
tively.

other publications. For child samples, the mean is 343 Hz and for adult samples it is 279

Hz. The means of each class is distinct; however, the interquartile range shows a large

degree of overlap.

The estimated pitched-based classifier described above was rerun using ranges from

the dataset distribution. The adult and child ranges were based on the 1st and 3rd

quartiles. The region of overlap between the parent and child data was handled by

dividing the region and ascribing samples in the higher frequencies to the child. This gave

an adult range of 202 - 308 Hz and a child range of 308 - 396 Hz. The results are

compared to the previous implementation in Figure 4.2. This method gives a narrower

range of values for the adult and child classes and exhibited a lower accuracy than the

previous method, based on published frequencies. This discrepancy likely shows that
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Figure 4.2: F1 scores from using estimated average pitch to classify audio from the video
probes. Two value ranges were explored on the dataset with the child range of the first
classifier being 260-440 Hz and the second classifier being 308-396 Hz.

outliers in the data are skewing the frequencies. This could be due to variance in the

energy of samples causing less accurate estimates of the pitch quality. It could also be the

case that exclamations and exaggerated excitement could cause the adult pitch estimations

to be higher than spoken language.

The third set of experiments utilized the open-source library PyAudioAnalysis

(Giannakopoulos, 2015) for feature extraction and running machine learning algorithms.

This experiment compared five classifiers that are available in PyAudioAnalysis: support

vector machines (SVM), k-nearest neighbors (KNN), random forests, extra trees, and
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gradient boosting. Each of these classifiers is implemented with the sklearn python library

(Pedregosa et al., 2011).

For processing, each labeled 250 ms segment was saved to a wav file. The wav files

were converted into 68 element vectors consisting of the midterm features extracted by

PyAudioAnalysis. The feature vectors consist of values for zero cross rate (ZCR), energy,

energy atrophy, spectral spread, spectral flux, spectral runoff, mel-frequency cepstrum

coefficients (MFCC), chroma, and chroma standard deviation. The feature set is then

standardized prior to training the classifier.

Twelve of the 14 videos were used for training each classifier. The remaining two

videos, the base and post video for a single dyad, were used as a validation set. The

average results across all validation sets for each model are displayed in Figure 4.3. These

results are similar across each of the classifiers, with gradient boosting and SVM

providing the best F1 scores for each class. These results also mirror the filter-based

results. This shows that the noise segments are easily distinguishable from the other

classes, but the human vocalizations are more difficult to classify.

The results from the PyAudioAnalysis algorithms illustrate that there is a high degree

of variability amongst the data samples that is preventing adequate classification. This is

particularly clear with the voice sample classes.

To address the between-video variability in the data, k-means clustering was

explored. Using an unsupervised method would allow each individual video to be

assessed without incorporating samples from other videos. Each 250 ms sample was

converted to vector representation of the midterm features extracted by PyAudioAnalysis

and standardized. Additionally, to aid classification, the samples were divided into 25 ms

subsamples with 5 ms of overlap between each sample. The 25 ms samples consisted of

short-term features extracted from PyAudioAnaylsis. Subsamples with an energy value
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Figure 4.3: Average F1 scores from five classification algorithms in the PyAudioAnalysis
library.

less than 1e-6 were discarded. The k-means algorithm was implemented using the sklearn

python library (Pedregosa et al., 2011) with 10 maximum iterations.

The F1 scores from implementing k-means clustering are presented in Figure 4.4.

These results varied between videos; however, performance was poorer than previous

methods. Often, one cluster would dominate the data, accounting for the majority of

samples. This was particularly true for the child and adult speech samples. A predominant

issue with using clustering algorithms on this dataset is the level of data imbalance. The

majority of the samples from each video are classified as noise, with a small minority of

the samples coming from child utterances. In the cluster algorithm, this means that noise

samples that have similar feature vectors to the speech samples will skew cluster centers,

preventing the speech samples from created distinguishable groupings.
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Figure 4.4: Child (C), adult (A), and noise (N) F1 scores from k-means clustering with
PCA. Results are presented for using three classes and three clusters, and two classes with
teo clusters. The two-class implementation excludes noise samples.

To account for the imbalance with noise samples, just the adult and child utterance

samples were used in a two-cluster implementation. This shows improvement over the

three-class classification; however, classification on child segments was still poor. This

also could be due to data imbalance, as parent samples were more plentiful in the dataset.

Child-directed speech patterns could also cause the adult speech samples to be similar to

child samples, preventing effective cluster differentiation.

The final set of experiments revisited SVM implementation to explore approaching

the VAD and speaker separation problems separately. To account for VAD, an SVM was

trained using the noise samples as a class, and the combined adult and child speech

samples as a second class. Similarly, speaker separation was accomplished by using child

speech samples as a class, with the noise and adult samples as the second class. Both
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Figure 4.5: F1 scores for speech detection using a two-class SVM model.

SVM implementations used a C value of one and a RBF kernel. As with the

PyAudioAnalysis experiments, the SVMs were trained using 12 of the 14 videos, using

the remaining videos for validation, and the feature set consisted of the PyAudioAnalysis

midterm extracted features. Data imbalance in the training set was addressed by

undersampling the overrepresented class. The results are presented in Figure 4.5.

The separate VAD and speaker separation SVM implementations had a greater

performance than the three-class classification techniques, particularly in distinguishing

speech and noise samples. Classifying 250 ms segments on noise versus speech had an

average F1 score of .85 over both classes across all seven validation sets Figure 4.5.

The average F1 score for speaker separation is lower than the VAD implementation,

at .69; however, this is still higher than previous methods (Figure 4.6). In addition to

testing 250 ms samples, the samples were divided into 100 ms subsamples with 25 ms

overlap and used to train a separate SVM. Each 100 ms sample was processed through
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PyAudioAnalysis to obtain the same feature set as previously noted. The goal of this was

to determine if the subsamples were more diagnostic than the full sample. The F1 scores

for the 100 ms samples was nearly identical to the 250 ms samples.

Figure 4.6: F1 scores for speaker classification using a 2-class SVM model. Results for
250 ms and 100 ms samples are shown.

The VAD and speaker separation SVM models were used to classify the audio in

each of the 14 videos mimicking the intended implementation. The overall accuracy was

78%, with a range of 70 to 91% (Figure 4.7). Similar to the results presented in Figure

4.5, classifying noise samples had the highest accuracy at 87%. Noise samples are the

highest represented class in the videos, leading this score to largely influence the overall

accuracy. The speech accuracy was lower, averaging 65% for both classes. The Dyad 3

Post had the lowest accuracy for both the parent and the child at 42% and 46%

respectively. This video had relatively low instances of vocalization for both individuals.

The highest degree of error occurred by misclassifying speech as noise. Most of the
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Figure 4.7: The classification accuracy for 250 ms noise and 250 ms speech segments in
each of the PRT videos after running SVM models.

utterances made by the child in the video are attempts at the first phoneme of the

prompted word. These attempts are generally short and clipped. This contrasts to the other

children in the corpus that had longer vocalizations, even when they were only able to

attempt a word. The parent in the video is drawing out words, pronouncing each syllable

distinctly as an example for the child.

Each video was also evaluated for accuracy using the 100 ms speech classification

model (Figure 4.8). The 100 ms samples were classified, then a label for the 250 ms

segment was determined based on a voting scheme. This implementation had a similar

overall accuracy of 79% compared to the 250 ms implementation. The average for both

speech classes was slightly lower at 64%. The adult recognition improved over the 250 ms
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Figure 4.8: The classification accuracy for 250 ms noise and 100 ms speech segments in
each of the PRT videos after running SVM models.

implementation; however, the child accuracy decreased. The increase in overall accuracy

is due to the adult samples being more numerous than child samples in each video.

4.4 Discussion

When considering obvious differences between adult and child speech, pitch becomes one

of the key components. As was shown in the pitch estimation analysis (Figure 4.2) and the

results from the rule-based classifier, differentiation of pitch can be seen between sample

classes. However, pitch alone could not be fully utilized to discern the vocal samples. As

seen in the corpus and in other research studies, the most common composition for the

parent-child dyad is an adult female with a child male, which have more similar vocal
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frequency than may be present with other compositions. In addition to this, the adults in

the videos have been shown to utilize child-directed speech, raising the intonation of their

speech. This further limits the differences in frequency between the child and the adult.

This necessitates exploring more features for speaker separation and the creation of

classification models.

Evaluating the PRT audio corpus illustrates that a large degree of variability can be

expected. Examining the participant’s age range and communication skills accounts for

much of the difficulty in creating a generalized solution with limited data. Child

development rate is an important factor, with large differences between children at 24

months and 60 months. This is elevated when differences in development rate are factored

in. These factors complicate the training of adequate models to encompass the dataset,

making overfitting a large problem. This can particularly be a problem with deep learning

algorithms using a small dataset. This led to the decision to focus on traditional machine

learning implementations.

As PRT is implemented on a wide range of individuals of all ages and

communication abilities, it is necessary to look for ways of addressing these large

variations. This is illustrated by the three-class classification results presented in Figure

4.3. These results show moderate performance on distinguishing noise and adult samples,

but a low performance on child sample classification. This is likely due to the

underrepresentation of similar child data samples across the videos. The lowest average

child F1 scores were seen in Dyad 2 and Dyad 3. The children in these videos exhibited

few fully formed words, with very different patterns. The child in Dyad 2 is the youngest

amongst the dataset. His vocalizations are largely akin to babble. The child in Dyad 3

communicated in short attempts at a specific word.

In this study, we examined unsupervised clustering to address variability between

videos. The clustering algorithm allowed each video to be classified only on samples from
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the same video. This eliminates model confusion based on sample variation in the same

class. In terms of the PRT corpus, this means that the model was not trying to associate

the limited vocal attempts from the child with less developed communication skills with

the more articulated speech from other videos. This approach proved to be impractical for

the PRT videos, largely due to data imbalance, along with between-class similarity. The

results in Figure 4.4 show that the child samples, which are underrepresented in each

video, are poorly differentiated from the noise or adult classes. This is still an issue after

removing the noise samples to perform the classification only on the speech segments.

The larger number of adult samples causes the adult class to have a greater influence on

the clusters in the algorithm. This, along with the prevalence of outliers that are similar to

child samples, could prevent the clusters from adequately distinguishing between samples.

Ultimately, the best results on the dataset were achieved by training separate

classifiers for differentiating between noise and speech, and child vocalizations from adult

speech. The VAD classification performed adequately across the dataset. This is

congruent with the results from the three-class classifier results. This shows that much of

the ambiguity in the data is in the speech samples.

Spot checking the full video classifications showed several trends in misidentified

segments. For speech segments, adult samples labeled as child speech often contained low

energy speech or have limited amounts of speech in the segment. This was most

commonly seen at the end of a multi-segment vocal event where the trailing speech was

presenting in a portion of the last labeled segment. The misclassification was also more

prevalent if the trailing syllables of the word were elongated. When full vocal events

spanning multiple labeled segments were misclassified, the adult speech often had more

inflection and higher tone, which is typical of child-directed speech.

Child speech segments that were classified as adult vocalization often didn’t consist

of speech or attempted speech sounds. Most commonly the misclassified segments were
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excited babbling or higher pitched vocal sounds. This is likely due to examples of

exaggerated excitement present in the adult training set.

Misclassifying either adult or child vocal segments as noise was most commonly due

to the segment containing sounds other than the vocalizations. This could also occur in

segments where the vocalization was low energy. In noise segments misclassified as

adults, sounds from the adult not associated with speech, such as coughing, were

classified as adult speech. Interestingly, a toy’s tinkling chime was consistently classified

as adult speech in the Dyad 1 Base video. This is likely due to child-directed speech

patterns utilized by the parent in the videos. Several of the women exaggerated excitement

in their voices to engage the child. This reflects in higher pitched sounds that are not

typical of conversational speech. Noises that were misclassified as child speech were

either low energy or consisted of a brief sharp sound.

In the Dyad 1 Base video, the parent and child are playing with a toy that emits

intelligible speech when being played with. These sounds were classified as noise. The

toy’s speech sounds are noticeably lower tone, resembling an adult male’s speaking voice,

than the child and parent vocalizations. Audible speech from a movie the parent and child

are viewing in the Dyad 2 Post was classified in part as noise, as well as adult and child

speech.

Future work regarding VAD and speaker separation in PRT videos should continue to

focus on sample variability. This work utilized a feature set consisting of mid-term or

short-term features extracted using PyAudioAnalysis. Additional work could be

undertaken to explore which features most adequately capture the differences between

adult speech and child vocalizations. Increasing the number of samples could also help

account for the variability seen between participating dyads. Including more samples

representative of each child’s age and communication ability could aid classification. It

may also be beneficial to use separate models or classes for different child ability or age
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groups. Adding more data by using models pre-trained on other speech corpora could aid

classification. Including more samples would also allow utilization of more data intensive

algorithms, such as deep learning networks.

4.5 Conclusion

Classifying audio segments in PRT videos is a challenging problem due to the video

capture techniques, atypical adult vocal patterns, and limited child vocal activity. Using a

limited data corpus, adequate results were achieved by separating the VAD and speaker

separation tasks between two SVM models. Incorporating more data samples and

pre-trained models will likely produce greater accuracies by addressing the variability

across sample videos due to the child’s age and vocal acquity.
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Chapter 5

MULTIMODAL PROCESSING AND CLASSIFYING OPPORTUNITIES TO

RESPOND

Detecting whether or not a caregiver has created an ‘opportunity to respond’ is dependent

on multimodal analysis of the interaction. An appropriate ‘opportunity to respond’ occurs

when the caregiver has captured the attention of the child, and the caregiver has provided a

clear instruction at the child’s language level. For automated detection, the system needs

to be able to determine when these two conditions are adequately met; however, for the

current project, the analysis of the vocal activity of the caregiver will focus only on

determining when vocalization has occurred. The language utilized by the caregiver,

which would determine if the vocalization was an instruction and if the instruction was at

the child’s level, will not be evaluated.

Detecting attention and voice activity detection and speaker separation were

examined in Chapters 3 and 4 respectively. Classifying the audio signal using common

machine learning techniques was shown to be feasible, even when given conditions

including child-directed speech patterns and non-vocal speech; however, the attention

classification has significant room for improvement. Including the audio signal in the

classification needs to be examined as a potential means for improving attention

classification. The attention state of the child will likely be influenced by the environment.

Adding the audio signal provides additional contextual information that may be useful for

classification.

This chapter presents an evaluation on how the audio data and visual pose features

extracted from the PRT videos could be utilized to improve the attention classification and

detect when a sample segment from a PRT video is a candidate for being an ‘opportunity

to respond.’ To do this, there are four primary questions that need to be addressed:
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• How should the video and audio features be mapped?

• How should the data streams be fused for utilization in a classification model?

• How can confidence estimates be used to improve classification?

• How can the results of classification be aggregated to provide a meaningful

resolution for clinician feedback?

After addressing these questions, it is apparent that the epistemic uncertainty within

the dataset has a large effect on the performance of classification approaches. Results for

detecting attention vary between validation sets depending on the activities depicted in the

videos. In spite of the difficulty with detecting attention in the videos, there are promising

results regarding using multimodal data to infer candidate samples that exhibit a correct

opportunity to respond.

5.1 Related Research

Research into multimodal classification has focused on different methods for combining

modalities for a singular classification task. These methods primarily consist of feature

fusion, or early feature fusion, the combining of features from each medium to use as a

classification for a single model, or decision fusion, also known as late feature fusion,

which combines the output of separate models for all of the media to infer a new

classification.

In addition to multimodal research, studies involving the use of confidence estimates

pertaining to the probability that the model produced the correct predicted class are

relevant to the current project. The PRT data is rife with both aleatoric and epistemic

uncertainty. Using the confidence estimates produced by the classification models

provides a means of addressing uncertainty.
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5.1.1 Multimodal Classification

Examples of relevant studies on multimodal classification on implementations are

presented below. These primarily focus on the use of audio, lexical, or video data. This

research covers speech recognition and analysis, affect and engagement detection, and

human activity recognition.

5.1.2 Audio-Based

Detecting humor based on acoustic and lexical modalities was presented by Bertero et al.

(2016). Their approach followed a decision fusion methodology. Two CNN’s were

trained, one with lexical features and one with acoustic features, to predict when a

punchline would occur in the TV show The Big Bang Theory. The decision merging

utilized a SoftMax function to determine the final sample label. They validated the

approach by comparing it against a conditional random field classification model,

logistical regression, and an RNN implementation. Each model was evaluated using

combinations of each modality. They conclude that the multimodal CNN approach

produced the best results based on F1-score and accuracy.

Acoustic and lexical modalities have been used in a similar manner to detect

deception in audio recordings. Mendels et al. (2017) extracted spectral and prosodic

features for audio signals and used concatenation fusion with lexical features to train a

hybrid LSTM-DNN network. Their network was tested against logistic regression and

random forest implementation. They concluded that their approach had the best

performance, and achieved the greatest record F1-score for the Columbia X – Cultural

Deception corpus.
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5.1.3 Visual-Based

Using facial images and application logs, Bosch et al. (2015) evaluated affect detection.

For the experiment, participants interacted with an educational software program. It

collected data during usage that was stored in log files. These files were synchronized

with a video being recorded of the participant’s face during use of the application. They

examined 14 different classification approaches, including SVM and Naı̈ve Bayes

algorithms. Both feature and decision fusion techniques were explored. They concluded

that, on average, decision-based fusion approaches produced the greatest results based on

AUC metrics. Metrics on face-only feature sets were nearly as high as the multimodal

feature set. The authors state in their conclusion that the face-only feature set likely

suffered from missing data due to occlusion from hand or head movements.

Similar to Bosch et al., Castellano et al. (2012) used video recording and log data

from playing an educational game to detect affect. The researchers evaluated 17

combinations of features from the two modalities, presumably using concatenation feature

fusion, with an SVM classifier. They validated their results using leave-one-subject-out

cross-validation. Utilizing all of the features was reported at having the highest

performance based on prediction accuracy.

Concatenation feature fusion was used on data regarding body language, facial

features, and application logs for affect classification while using a tutoring program

(D’mello and Graesser, 2010). Different combinations of the feature set were analyzed

using linear discrimination with leave-one-out cross validation. Their results showed that

multimodal feature sets outperformed unimodal sets.

Also evaluating affect during the use of a tutor system, Grafsgaard et al. (2014)

extracted dialog and task actions from application use logs to be used along with facial

and body pose data. Their approach used concatenation fusion and evaluated different

combinations of feature sets. Linear regression and model averaging were used to predict
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sample affect labels. Notably, compared to other research that used experts to evaluate and

label affect, this publication relied on self-reported class labels. Their conclusion was that

the multimodal feature set consisting of all of the collected modalities surpassed

unimodality models.

RGB-D video and Lidar were used as modalities for human activity detection in a

system designed for human-robot interaction. In their work, Moencks et al. (2019) created

a new dataset under laboratory conditions based on common actions humans undertake at

home or in the office. Their feature set consists of human pose data and distance metrics.

They validated a classifier on the dataset by comparing multiple machine learning

algorithms, with a DNN implementation having the highest reported accuracy.

5.1.4 Audio-Visual-Based

Harwath and Glass (2017) used a novel approach for associating speech with images. The

goal of the work is to train an unsupervised classifier to be able to learn associations of

images and speech without the need for text transcriptions. Their approach utilized the

spectrogram visualizing the waveform of speech in association with an image of a scene

or object. Both the object image and the spectrogram are encoded to reduce

dimensionality, then the inner product of the feature matrix is calculated. This calculated

matrix is used to train a CNN. Validation of the model compared the results to a previous

CNN implementation from the same authors (Harwath et al., 2016). The results were

based on clustering accuracy.

An attention-based decision fusion method is discussed in Hori et al. (2017). The

goal in this publication is to predict words in a sequence for automatic video descriptions.

Image information related to object recognition, optical flow motion data, and audio

information are utilized for the prediction tasks. Their framework utilizes different

network layers for each modality and a decoder layer that performs the decision fusion.
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This decoder layer has an additional activation layer that learns weights for the decision

features for each modality. The authors compare this approach to a ‘naı̈ve’ decision layer

on two versions of the YouTube2Text dataset. Performance is reported as BLEU,

METEOR, and CIDEr metrics, which are designed for evaluating natural language

processing and machine translation tasks.

Audio-visual speech recognition was the focus of a publication by Mroueh et al.

(2015). Their approach used late feature fusion to merge the final layers of separate DNN

implementations for audio and visual data. The audio data was presented as a spectrograph

image, while the visual data depicted the speaker’s face between the nose and chin. They

validate their model against unimodal implementations and two different methods for

fusion techniques. Their best reported results based on phone error rate indicated that a

multimodal technique using a SoftMax fusion layer had the greatest performance.

A recent work focused on using audio-visual data for determining affect and

engagement of children with autism interacting with a robot. The research, conducted by

Rudovic et al. (2018), used acoustic, video, and electrodermal data in addition to

contextual information about the child participant to train a multimodal classification

model. The audio, video, and electrodermal data was concatenated and used in an

autoencoder to handle missing or noisy features. The contextual information was utilized

as a means of providing additional parameters, such as age and gender, that could help

personalize the model. The results were reported using interclass correlation, with the

authors concluding the personalized network outperformed other implementations.

Using facial motions from videos in addition to acoustic data for speech separation

was the subject of an article by Gabbay et al. (2018). For their approach, they used a

video-to-speech neural network model to predict likely speech based on silent video clips.

The speech predictions were then used to evaluate and filter speech predictions from noisy

audio. They evaluated their method against audio only implementations and concluded
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that their work had better performance. This was extended to predict speech from multiple

speakers in Ephrat et al. (2018).

5.1.5 Calculating Confidence Estimations

Obtaining confidence estimations in machine learning, particularly deep learning, is not a

straightforward undertaking. SoftMax calculations that are often used as part of the

classification process do not represent an accurate measurement for the model’s

confidence in its label selection (Guo et al., 2017). For SVM implementations, this has

been addressed by using logistic regression on the distance a point is from the optimal

hyperplane (Rüping, 2004). Similarly, the SVM implementation from Scikit-Learn used

for the initial experiments for the framework utilizes Platt scaling regression techniques

for its probability estimations (Pedregosa et al., 2011). Other methods have looked at

temperature scaling the SoftMax values to better represent the network’s confidence

(Neumann et al., 2018) and cluster density models that rely on distance measurements to

infer confidence (Ju et al., 2018; Subramanya et al., 2017).

Numerous methodologies have been proposed for calculating confidence estimations

for deep learning networks. A common method is to use a Bayesian neural network to

learn distributions for weights instead of discrete values (Kendall and Gal, 2017).

Additionally, ensemble methodologies evaluating common loss functions have been

explored (Lakshminarayanan et al., 2017).

5.1.6 Using Confidence in Classification Tasks

Confidence estimation can be used to improve classification in numerous ways. In

selective classification or hypothesis evaluation methods, multiple evaluation pathways

are computed with the output being selected based on the highest confidence score. This

can be done by using different classification methods, such as RNN and CNN

94



implementations (Zhao et al., 2017), or by setting a threshold confidence level and

rejecting hypotheses below this value (Specia et al., 2009; Wang et al., 2011).

The confidence estimations can also be included as part of the network learning and

optimization phase. DeVries and Taylor (2018) added a confidence loss based on a

parallel layer in their network that penalized low confidence in a solution. Geifman et al.

(2018) used confidence estimation to short-stop network training to prevent overfitting.

One example of the use of confidence estimates in improving human activity

recognition examined pose estimation. Einfalt et al. (2018) explored improving pose

detection in video data streams of swimmers. Their approach used confidence prediction

in parallel branches representing past classifications, present data, and future predictions

to estimate and track body points over time. This approach followed a similar procedure

to multiple hypotheses testing where multiple paths were evaluated with low confidence

paths being pruned.

5.1.7 Unreliable Labels

Related to the idea of confidence estimation is the concept of unreliable data labels. This

is particularly relevant given the subjective nature of discretely labeling human behavior.

Zhao et al. (2011) and Sukhbaatar et al. (2014) addressed noise in labels by creating

estimates of label probabilities. These probabilities are learned through training neural

networks in a similar fashion to an autoencoder implementation. A similar approach was

undertaken by Jindal et al. (2016) that utilized a deep network for clustering samples to

infer proper labels. In a publication looking at sparse data, Li et al. (2017) used an

autoencoder to evaluate EEG data samples regarding human task engagement levels. Also

looking at similarity metrics, Bootkrajang and Kabán (2014) used cross-validation and

labels with trusted samples to address label noise in regression tasks.
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5.2 Methodology

Two research goals are examined in this chapter. The first goal was to determine how the

audio data can be used to improve the classification accuracy for detecting attention. This

was explored by looking at feature concatenation by combining the audio and visual pose

data into a single vector to use as an import for training a classification model, and by

decision fusion using the prediction and confidence estimates for separate audio and video

models to train a final classification model.

The second goal was to create a classification model for detecting samples that could

contain an opportunity to respond. As with the multimodal detection model, the

opportunity to respond model used both feature and decision fusion methods. For feature

fusion, the features from the audio and video datasets were combined to train a classifier

directly on the binary classification task of determining an opportunity to respond. Using

decision fusion, the results from an attention classification model trained on video data

and a speaker separation classifier were combined to infer if an ‘opportunity to respond’

occurred.

The scikit-learn (Pedregosa et al., 2011) support vector machine (SVM)

implementation was used for the classification tasks. The SVM was trained with a C value

of 10, gamma value if 0.001, and radial basis function (RBF) kernel. These parameters

were chosen because they provide the most accurate probability estimates for the class

predictions. Using the parameters, along with changes to how the videos were sampled,

caused slightly different performance metrics compared to those posted in Chapter 3. Due

to processing times, the 30 ms feature sets models were created using scikit-learn’s

ensemble package. This was implemented using the same SVM parameters as the 250 ms

models on fifty estimators.
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In order to properly fuse the two data modalities, a common sample size needed to be

determined. The video dataset was labeled for attention at one second, 30 frame

increments, while the audio labelling occurred in 250 ms segments. Four methods for

mapping the data were used in the experiments. First, the one second segments were

divided into the individual frames, with each frame having the same label. The feature set

for each frame consisted of the normalized data extracted using OpenPose (Cao et al.,

2017). The audio data was processed on approximately 33 ms samples. The short-form

representations of the audio features were extracted using PyAudioAnalysis

(Giannakopoulos, 2015) as discussed in Chapter 4. Each sample was labeled based on the

250 ms sample it was extracted from.

The remaining three methods for mapping the data were based on 250 ms samples.

The audio features were congruent for all three methods and directly reflect the labeling

and feature extraction process presented in Chapter 4. For the visual feature extraction,

four samples were taken from each labeled segment. Two of the methods involved

dividing the segment into four subsegments, then selecting a single frame to represent the

subsample. The frames with the most and least similarity to the other frames in the

subsegment were selected. These will be referred to as centroids and outliers, respectively.

The final sample set, referred to as the composite set, was created using the same

methodology described in Chapter 3; however, only four subsamples were produced

instead of six. These subsamples were created by providing an average based on the

OpenPose data from eight adjacent frames. Frame overlap was allowed to account for

dividing the 30 frames equally into four subsamples.
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5.3 Results and Discussion

5.3.1 Feature Selection Comparison

The classification performance metrics for each of the feature sets was compared in Table

5.1. The centroid, outlier, composite, and 30 ms sample sets were used to train an SVM

model to detect attention using audio, video, and combined audio and video feature sets.

Each of the three 250 ms sample sizes shared the same audio data. For these experiments,

the audio data models were trained using the corresponding attention labels, not the

speaker labels. Overall, the performance on each classification model did not vary

significantly. The variation in validation accuracy between sets is only 0.05 between the

lowest and highest averages. Similarly, F1 scores for each of the classes is similar between

approaches. Unlike the validation accuracy, the training accuracy does show a significant

difference between each set. The centroid and outlier audio and video combined models

had training accuracies at 98%. This likely indicates that the model overfit the training

data; however, this only had a marginal effect on the performance metrics. Conversely, the

visual-only feature set models had training accuracies of approximately 70%, but had

slightly better performance metrics. The audio-only model’s metrics were slightly lower

than when the visual features were included.

Looking more at the results for the Dyad 1 and Dyad 2 validation sets shows an

interesting contrast (Table 5.2). The results for Dyad 1 illustrate that the audio features aid

in the attention classification in the videos. The audio-only classification results are

substantially higher than the visual or audio-visual models. The opposite is true for Dyad

2, where the audio-only classification was significantly lower than the video-only. In

particular, the Dyad 1 Base video and the Dyad 2 Post video require greater examination.

The Dyad 1 Base video had an accuracy of 52% when using only the audio features,

compared to 27% when using only the visual features. The video consists of the child
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playing with three different toys: a tower game were the child places balls into holes and

the ball slides to the bottom; a peg with star rings where the child can construct a tower;

and, a mechanized Cookie Monster toy that speaks and eats cookies. Each of these toys

have distinct sounds: the balls make a plastic-on-plastic banging noise, the stars emit

chimes, and the Cookie Monster toy’s motor and gears produce noise during its functions

in addition to when it talks. These noises particularly occur when the child or parent is

interacting with the toy, which indicates the child’s attention is not on the parent. The

parent also speaks often during both attentive and inattentive periods; however, generally

when the parent speaks the toy noises are also present. Other than transitions between

toys, there were not many instances of relative silence.

The child’s positioning in the video could be problematic for extracting the visual

features. For most of the video, the child has his back to the camera. This could make the

OpenPose recognition less accurate, as well as having a profound effect on the ability to

infer visual focus.

The post video for Dyad 2 was substantially different from the other videos in the

dataset. The video depicts only one activity - the child sitting in the parent’s lap while

watching a video on a mobile phone. Because the parent is participating in watching the

video, the activity is considered shared attention. This means the majority of the samples

in the video shared the same class label. The video-only model correctly classified 61% of

the samples. Having both individuals relatively still and facing the camera improved the

pose estimation rates and made detecting visual attention easier. As the parent is holding

the camera, this meant that the child’s visual focus was always on her hands. Additionally,

the proximity of the individuals likely aided the video classification as other shared

attention activities, such as reading a book, would have a similar closeness.

Unlike many of the other videos in the dataset, Dyad 2 Post does not have strong

audio cues. The parent speech is limited to single words to prompt the child to attempt to
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say the movie’s main character’s name and praise after the attempts. The child

vocalizations are limited to babble elicited after the parent’s prompts. The audio from the

movie is relatively lower energy and infrequent in the first half of the probe, but it does

contain spoken adult speech. These periods of low energy are not common in other

videos, that are generally filled with speech or toy noises. In particular, other instances of

shared attention would have more adult speech, such as when reading a book.

Additionally, a brief conversation between the parent and an additional out-of-frame adult

occurs. This adult speech could cause misclassification of samples.

The dichotomy illustrated in the videos for Dyad 1 and Dyad 2 indicates that both

audio and video data can be useful for detecting attention under different circumstances.

Comparing the individual performance on the individual modalities to the models using

both the video and audio feature sets shows that concatenating the modalities into a single

input is not the best approach. In the case of both Dyad 1 and Dyad 2, the performance

decreased, with the accuracy for both dyads being 40% with the multimodal model;

however, as stated above, part of this performance decrease is likely due to overfitting.

Evaluating these two examples provides an opportunity for looking at ways to incorporate

both modalities to create a more general classification model or system of models.

Analyzing the classification probabilities to determine prediction confidence estimates

could provide a meaningful approach for utilizing both methodologies.

5.3.2 Classification Probabilities for Decision Fusion

Examining only the correct cases, Figure 5.1 shows the class probabilities for the centroid

sample set for all of the validation sets. This shows that there is little difference in the

probability distribution between the visual only and the audio-visual feature sets. For each

of these, the average probability is between 60-65%. For the shared class, the mean for the

probability distribution was within the 2nd to 3rd interquartile range of the other two
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Table 5.1
Comparison of SVM performance for audio and visual feature sets for classifying attention
(attn), inattention (inattn), and shared attention.

Frame
Selection

Feature
Set

Validation
Accuracy (%)

Training
Accuracy (%)

Shared
F1

Attn.
F1

Inattn.
F1

Outlier
Audio-
Visual

0.39 0.98 0.26 0.31 0.47

Visual
Only

0.44 0.73 0.33 0.32 0.50

Centroid
Audio-
Video

0.41 0.98 0.28 0.30 0.51

Visual
Only

0.43 0.73 0.33 0.30 0.54

Composite
Audio-
Video

0.42 0.95 0.26 0.26 0.54

Visual
Only

0.41 0.61 0.30 0.30 0.50

250 ms Audio
Only

0.38 0.84 0.26 0.26 0.50

30 ms
Audio-
Visual

0.41 0.76 0.26 0.32 0.51

Visual
Only

0.44 0.69 0.32 0.32 0.51

Audio
Only

0.38 0.52 0.28 0.26 0.46
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Table 5.2
Detailed comparison of Dyad 1 and Dyad 2 feature configurations using centroid sample
sets for classifying attention (attn), inattention (inattn), and shared attention.

Feature Set Validation Accuracy
(%)

Training Accuracy
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Dyad 1 Audio-
Visual

0.40 0.98 0.09 0.39 0.64

Dyad 1 Visual
Only

0.30 0.73 0.10 0.40 0.60

Dyad 1 Audio
Only

0.49 0.83 0.16 0.33 0.66

Dyad 2 Audio-
Visual

0.40 0.98 0.48 0.21 0.30

Dyad 2 Visual
Only

0.55 0.72 0.67 0.35 0.34

Dyad 2 Audio
Only

0.26 0.81 0.23 0.25 0.18

feature sets. For attention and inattention, the distribution mean fell well below the visual

and audio-visual feature sets. This illustrates that, overall, the classification model was

less confident when assigning classes using only the audio data. Incorrect classification

probabilities that were comparable followed a similar distribution to correct predictions.

Figure 5.1: Box plots for the SVM probabilities across all dyads using the centroid sample
set. The results are shown for correctly classified shared (left), attention (center), and
inattention (right) samples.
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The results presented above showed that the audio data was particularly diagnostic of

the Dyad 1 validation set, while the visual-only feature set showed the best performance

for the Dyad 2 validation set. This trend was not reflected in the examination of the class

probabilities. Both the Dyad 1 (Figure 5.2) and Dyad 2 (Figure 5.3) showed similar

distributions to the amalgamated results in Figure 5.1. These results suggest that simple

decision fusion methods, such as using the highest probability classification, will be

dominated by the video results.

Figure 5.2: Box plots for the SVM probabilities for Dyad 1 using the centroid sample
set. The results are shown for correctly classified shared (left), attention (center), and
inattention (right) samples.

Figure 5.3: Box plots for the SVM probabilities across ofr Dyad 2 using the centroid sample
set. The results are shown for correctly classified shared (left), attention (center), and
inattention (right) samples.
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To better understand using the multimodal fusion for attention classification, four

methods were compared. First, the results for the audio-visual feature set presented in

Table 5.1 represent early feature fusion, using a single input vector that represents the

concatenation of the data from both modalities. Second, the SVM probabilities for the

separate visual and audio sample sets are compared and the highest probability is selected

as the prediction for the sample. Intuitively this would compensate for cases where one

modality is more diagnostic than the other. Third, the probabilities for each class are

summed between the audio and visual classification results and the greatest probability is

selected for the prediction. This would address instances where a single class is not

dominant for one of the modalities for a sample. Adding the second modality’s probability

estimate would allow for a greater distinction. The final method is to train a decision tree

classifier on the probability estimates. Using a decision tree would aid in discerning a

pattern in the probability’s relation to the true class. A depth value of three was used for

the decision tree. It achieved an average training accuracy of 74%.

Table 5.3
Comparison of fusion methods for audio and visual feature sets for classifying attention
(attn), inattention (inattn), and shared attention. Values based on an average over all seven
validation sets.

Fusion Method Validation Accuracy
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Feature Concatenation 0.41 0.28 0.30 0.51
Max. Probability
Decision

0.43 0.33 0.31 0.49

Sum Probability Decision 0.43 0.31 0.32 0.47
Probability Decision Tree 0.45 0.27 0.28 0.45

The fusion results are represented in Table 5.3. These results do not show a

significant difference between each fusion methodology. The decision tree

implementation had the highest overall accuracy, while feature concatenation had the
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lowest accuracy. The two decision fusion methods using probabilities had similar results,

and presented greater F1 scores for the shared and attentive classes. It is not surprising that

these two methods produced similar results when considering the probability distributions.

Examining the decision fusion methodology of selecting the highest probability

between separate audio and video classifiers illustrates that the video classifications are

dominant. Table 5.4 presents the metrics for each of the validation sets. On average only

23% of the class labeling used the audio classifier prediction. Overall, selecting the audio

classification was also less accurate, only being correct 38% of the time. The visual

classifications were correct on average 44% of the time. The notable exceptions are Dyad

1 and Dyad 2, which remained congruent to the results discussed above, with Dyad 1

having a higher accuracy using audio data and Dyad 2 achieving better performance with

visual data. Also interesting is that there is a low rate of agreement on correct predictions.

On average, both models only predict a correct label on 36% of the samples.
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Comparing results for each validation set between the decision tree method for

decision fusion (Table 5.5) and feature fusion using concatenation (Table 5.6) shows that

the accuracy increase is pronounced for three of the validation sets, while two sets showed

little improvement, and the remaining sets had slightly lower accuracts. Dyads 4, 5 and 8

had a solid improvement using the decision tree, with Dyad 5 showing the greatest

improvement with an accuracy of 55% compared to 43%. However, examining the F1

scores shows a decrease in the discernibility of shared class samples and a slight increase

in the F1 score for inattentive class samples. This illustrates that the tree classifier is

selecting inattentive samples at a greater rate than the feature concatenation method. The

increased accuracy is a result of the data imbalance problem.

Table 5.5
Comparison of results for each validation set using a decision tree to perform decision
fusion using SVM probabilities on centroid sample sets. Results are presented for overall
validation and training accuracy, and F1 scores for shared, attentive (attn), and inattentive
(inattn) classes.

Validation
Set

Validation Accuracy
(%)

Training Accuracy
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Dyad 1 0.39 0.75 0.18 0.6 0.29
Dyad 2 0.41 0.73 0.46 0.19 0.27
Dyad 3 0.34 0.75 0.17 0.28 0.32
Dyad 4 0.53 0.74 0.06 0.29 0.65
Dyad 5 0.55 0.74 0.3 0.15 0.62
Dyad 6 0.51 0.75 0.32 0.13 0.56
Dyad 7 0.44 0.75 0.38 0.29 0.46
Average 0.45 0.74 0.27 0.28 0.45

5.3.3 Classification Probabilities for Sample Selection

Label subjectivity and class imbalance are two inherent issues with classifying attention in

the PRT videos. While label subjectivity has not been addressed, class imbalance has been

approached by undersampling high volume classes to match the lowest represented class.
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Table 5.6
Comparison of results for each validation set using concatenation to combine audio and
visual features into an input vector for training an SVM model. Results are presented
for overall validation and training accuracy, and F1 scores for shared, attentive (attn), and
inattentive (inattn) classes.

Validation
Set

Validation Accuracy
(%)

Training Accuracy
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Dyad 1 0.40 0.98 0.09 0.39 0.64
Dyad 2 0.40 0.98 0.48 0.21 0.30
Dyad 3 0.35 0.98 0.24 0.38 0.29
Dyad 4 0.46 0.98 0.08 0.45 0.66
Dyad 5 0.43 0.98 0.37 0.20 0.65
Dyad 6 0.48 0.99 0.39 0.25 0.63
Dyad 7 0.33 0.98 0.30 0.23 0.43
Average 0.41 0.98 0.28 0.30 0.51

The expectation is that utilizing the prediction probabilities for the training sets would

offer a way of solving these sampling issues. Additionally, the intuition is that this

approach will address the overfitting problem that was apparent in the audio-visual SVM

models in Figure 5.1.

The results presented in Table 5.7 do not support the intuition for employing the

prediction probabilities to perform a sample dropout. Two sample sizes, 4000 and 2000,

were used to evaluate the methodology. These sample sizes reflect the minimum class

representation in each training set (Table 5.8). Reducing the sample size did achieve the

goal of reducing the training accuracy in order to address overfitting; however, this did not

result in an improvement of training accuracy or average F1 Scores.

5.3.4 Opportunity to Respond Classification Evaluation

Labeling the dataset for an opportunity to respond was based on combining the labels for

attention and speaker separation. This is a binary classification problem with a positive

label being attached to a sample where the attention state is either attentive or shared and
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Table 5.7
Comparison of the average results for using the training probabilities to drop low confi-
dence samples for training a second SVM. Values indicate validation and training accuracy,
along with shared, attention (attn), and inattention(inattn) F1 scores.

Feature
Set

Max.
Samples

Validation
Accuracy (%)

Training
Accuracy (%)

Shared
F1

Attn.
F1

Inattn.
F1

Audio-
Visual

4000 0.37 0.71 0.10 0.32 0.49
2000 0.38 0.71 0.15 0.33 0.50

Audio
4000 0.38 0.71 0.15 0.33 0.50
2000 0.39 0.62 0.22 0.30 0.50

Visual
4000 0.42 0.71 0.30 0.32 0.53
2000 0.41 0.61 0.16 0.33 0.53

Table 5.8
Number of samples for each class (shared, attentive, inattentive) for each validation set.

Validation Set Shared Attentive Inattentive

Dyad 1 8577 4800 10755
Dyad 2 6413 4989 11689
Dyad 3 7004 4683 11285
Dyad 4 8719 4459 10490
Dyad 5 7545 5006 9846
Dyad 6 7794 4867 10484
Dyad 7 7120 4952 11195

the audio label is adult speech. To map the modalities, the one second segments labeled

for attention are divided into four subsegments, retaining the original label, and associated

with corresponding labelled audio segments. These only represent candidate samples for

determining an opportunity to respond. At this point, the algorithm is identifying only if

the parent has vocalized at a time when the child was attentive. This does not account for

the natural language processing task of evaluating if the vocalization was a proper

instruction. Table 5.9 displays the number of ‘opportunities to respond’ candidate

segments identified in each validation set in the dataset.
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Table 5.9
Number of ‘Opportunity to Respond’ (OTR) 250 ms centroid segments for each validation
set in the dataset.

Validation Set OTR Seg Total Seg OTR Seg Time (sec)

Dyad 1 336 2982 84.00
Dyad 2 642 4022 160.50
Dyad 3 1043 4141 260.75
Dyad 4 691 3445 172.75
Dyad 5 524 4716 131.00
Dyad 6 452 3968 113.00
Dyad 7 834 3846 208.50

Three methods for classifying multimodal data were explored for detecting

opportunity to respond candidates. First, separate classifiers for audio and video data were

trained on speaker separation and attention tasks respectively. A sample was determined

to be an ‘opportunity to respond’ candidate if the attention classifier predicted shared or

attentive and the audio model predicted adult speech. The second method used the

prediction probabilities from the same classification models as the first method to train a

decision tree. The probabilities were used as the input with binary opportunity to respond

labels to train the tree model. The final method was to use feature concatenation to train a

single SVM classifier on the concatenated feature vector for audio and visual data. The

results of these methods are presented in Table 5.10.

In comparing the classification results, it is seen that the decision fusion methods had

a higher accuracy than the feature fusion method. Using the decision tree provided a slight

increase in accuracy and F1 scores over the comparison method. These scores are

influenced by the data imbalance. The classification models predict that a sample is false,

and due to the majority of samples being false, has an inflated accuracy. This is shown in

the disparity between the true and false F1 scores. The F1 scores for the true class are
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Table 5.10
The table displays results for decision fusion using sample comparison and decision tree
methods, and feature fusion.

Comp. Dec. Fusion Dec. Tree Fusion Feature Fusion

Validation Set Accuracy F1 True F1 False Accuracy F1 True F1 False Accuracy F1 True F1 False

Dyad 1 0.83 0.40 0.90 0.85 0.38 0.92 0.73 0.74 0.74
Dyad 2 0.82 0.48 0.89 0.83 0.47 0.90 0.74 0.76 0.79
Dyad 3 0.75 0.45 0.84 0.77 0.56 0.85 0.68 0.70 0.71
Dyad 4 0.67 0.35 0.78 0.65 0.3 0.75 0.62 0.53 0.59
Dyad 5 0.84 0.44 0.91 0.85 0.37 0.91 0.72 0.74 0.75
Dyad 6 0.90 0.44 0.94 0.91 0.63 0.95 0.72 0.76 0.83
Dyad 7 0.77 0.52 0.85 0.78 0.48 0.86 0.71 0.69 0.68
Average 0.80 0.44 0.87 0.81 0.46 0.88 0.70 0.70 0.73

below 50% for both decision fusion methods. This illustrates the classifier could not

adequately distinguish when true samples were present.

The feature fusion results did not produce the same accuracy as the decision fusion

methods; however, the improvement in the F1 score for the true class predictions provokes

more confidence in the model’s learning power. The average F1 score for the true class in

the feature fusion method was 70%, while the F1 score for false predictions was 73%.

This shows that the classification model is not defaulting to false in a majority of cases, as

it was with the decision fusion methods. This indicates that it has learned some features

for distinguishing the two classes; however, the problem is still a challenge for the model.

The greater accuracy of the speaker separation models (as shown in Chapter 4) over

the attention models used in decision fusion methods dominated the decision fusion

classification for determining opportunity to respond candidates. This caused the samples

that were false due to the audio being noise or child vocalization to be easy to detect.

When the speech was identified as from an adult, the prediction was left to the less

accurate attention classification label to determine a final class label, causing the low

metrics for the true class. The improvement in the F1 scores for the true class for the

feature fusion method over the decision fusion methods is likely due to the classification
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model using the audio features to overcome some of the ambiguity in the visual data used

for the attention classification. This indicates that the audio features may be useful in

improving the attention classification.

The results for Dyad 4 were an outlier among the validation sets, having an accuracy

score roughly 10 points lower on all three methods. This is likely due to difficulties with

the audio classification. The audio in both the base and post video is relatively lower

energy, due to the recording and the caregiver, the child’s mother, speaking quietly.

Despite speaking quietly, the caregiver is animated during the play interactions with her

child, often making audible noises mimicking the toys and using child-directed speech

patterns. Additionally, a toy being used in the post video emitted loud noises and elicited

exaggerated excitement in the caregiver vocalizations. These factors may not be

significantly represented among the videos for the other six dyads. Without similar

samples in the training set, the model was not able to classify the Dyad 4 validation set at

the same performance level as the other sets.

5.3.5 Execution Performance Comparison

The runtime performance metrics are presented in Table 5.11. These metrics are based on

a Windows 10 execution environment with an Intel i7 eight core 2.50 GHz CPU and 16

GB memory. The increased number of elements in the audio-visual combined feature sets

had a large effect on performance times when training and validating a three-class model.

Performance was improved when using two classes, as illustrated by the ‘opportunity to

respond’ SVM results which used the same feature set as the audio-video SVM. Overall,

validation times were not substantial. Performance could be improved by using parallel

computing to process segments of the data simultaneously. These metrics only include

post video processing classification. The data extraction using OpenPose takes a

considerable amount of time. This extraction was executed on a Windows 7 machine with
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a six core AMD 3.2GHz CPU, 16 GB RAM and NVidia GTX 970 GPU. The NVidia

CUDA platform was used to run OpenPose using the GPU. This process took an average

of four hours and 12 minutes to run a 10 minute video.

Table 5.11
Comparison of the average time for training and validation for the different classification
methods and feature sets.

Model
Type

Feature Set Training Time
(h:mm:ss)

Validation Time
(h:mm:ss)

SVM

Audio-Video 0:25:04 0:00:23
Video 0:03:45 0:00:09
Audio 0:07:28 0:00:08
Opp. To
Respond

0:02:53 0:00:03

SVM +
Dropout
SVM

Audio-Video 0:51:31 0:00:27
Video 0:09:29 0:00:11
Audio 0:33:01 0:00:15

SVM +
Decision
Tree

Audio and Video 0:17:46 0:00:08
Opp. To
Respond

0:12:43 0:00:07

5.4 General Discussion

The experiments presented in this chapter further illustrate the epistemic uncertainty that

challenges classification models on the PRT dataset. Classification performance varies

across the different methodologies for each validation set. This is illustrated by the

differences in attention classification based on modality as observed in the Dyad 1 and

Dyad 2 sets, which responded more favorably to audio and visual data, respectively. This

can also be seen in the lower performance on the binary multimodal classification of

‘opportunity to respond’ seen in Dyad 4. These differences between sets makes it difficult

to implement a system that adequately addresses each scenario.
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Using the prediction probabilities as confidence estimates also proved problematic.

Examining the distribution patterns between audio, visual, and multimodal feature sets did

not exhibit an exploitable behavior. The classification models exhibited high probabilities

for predictions based on the ST feature set. This caused the visual results to largely

overwhelm the predictions based on the audio feature set during decision fusion.

Although detecting attention remains a challenging issue, more favorable results

were obtained for detecting opportunity to respond candidate samples. Using a feature

fusion model produced an adequate classification that exhibited more favorable F1 scores

than the attention models. Being able to reliably detect ‘opportunity to respond’

candidates could be used to identity video segments that would be of interest to clinicians

during PRT fidelity scoring and performance evaluation.

5.5 Conclusion

Detecting the child’s attention state in the PRT videos remains a challenging problem.

Adding audio data in addition to pose information extracted from video frames provided

more information; however, it did not reliably address the epistemic uncertainty inherent

in the problem. This is largely due to the variation in activities the participants are

engaged in in the videos, along with the unstructured recording environment. Decision

fusion, feature fusion and using prediction probabilities as confidence estimates methods

were explored to combat the uncertainty, but no single method provided an improvement

across all validation sets. Including more data would be useful in addressing this issue as

the models would have a greater pool of samples to draw from to determine similarities.

The multimodal problem of detecting an ‘opportunity to respond’ produced more

adequate results than attention classification methods. Of the three methodologies that

were examined, the feature concatenation exhibited the greatest classification prowess.

Although the feature concatenation method had a lower accuracy than the decision fusion
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methods, the greater F1 score for the positive class reflects a greater capacity to predict the

true label. This is especially important given the class imbalance in the validation sets.
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Chapter 6

PERSON-CENTERED CLASSIFICATION MODELS

A person-centered approach is an important consideration when designing a feedback

system for PRT. Implementation of ABA is itself a person-centered approach aimed at

adapting treatments to the individual recipient (Baer et al., 1968). This is particularly

important in PRT where the recipient drives the activities and selects the objects he or she

is motivated by in that instance. This is inherently individualistic and a source of variation

that needs to be considered in the design as these factors contribute to epistemic

uncertainty when training classification models. The variation inherent with the

parent-child dyad exists alongside other key variations regarding context, demographics,

and skill levels. Accounting for these variabilities in system design would be difficult,

therefore it is important to look for ways to generalize behavior and adapt the system to

each dyad.

In PRT involving parents and their children, the parent is expected to observe his or

her child to ascertain an object or activity they are interested in, in that moment. After

identifying this, the parent is expected to interject him or herself in the activity and

facilitate learning by prompting the use of maintenance and target skills. Imagining this

scenario playing out for a myriad of individuals quickly shows the amount of variation

that will likely occur. This variation could be related to contextual and environmental

settings, activities involving the participants, characteristics and behaviors of the

individuals, and variance in recording devices.

The context and implementation environment where the session will take place will

be different for each dyad, whether this takes place at home, school, or in a clinician’s

office. These environments will provide different opportunities for activities or

interactions, have varying levels of distraction, and constitute different factors that could
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influence the data, resulting in challenges for machine learning classification. Although

these environments vary between different dyads, it is likely that a single dyad will use

environments in multiple sessions.

Variation can also be expected based on the participant’s level of known PRT.

Observing differences between baseline and post-training video probes illustrates the

difference the treatment makes in the behaviors of the participants. Typically, there are

more instances of child-attentive or shared attention states and more child vocalizations,

and less examples of adult speech in post video probes. Adapting to progress could help

make the application more robust and useful to the user.

The activities that the dyad participates in in the videos will vary. Unlike contrived

ABA methodologies, such as discrete trial training, there is no predetermined activity in

PRT sessions. As stated above, the child selects the activity based on what appeals to them

at that moment in time. This leads the activities that can be depicted in the videos to be a

function of the recipients’ preferences, mood, and the activities afforded to them in the

environment. As with environments, it is likely the same activities would be performed in

multiple sessions.

The age, gender, and ethnicity of both the child and parent will vary between dyads.

Variations in gender and ethnicity will influence classification tasks. Ethnicity could affect

classification models if the individuals exhibit accents or mannerism that were not

adequately represented in the models’ training samples. Similarly, racial characteristics,

such as skin color or cranial morphology, have been shown to affect recognition tasks in

computer vision. The age of the child is an important variation consideration for the

proposed system. Child speech recognition is known to be challenging, especially in

younger children (Lee et al., 1999; Potamianos and Narayanan, 1998). This is due to

relatively slower speech patterns compared to adults, greater frequency of

mispronunciations, and variations in pitch and volume. Additionally, the age of the child
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will likely influence the interactions in the videos. The activities preferred by younger

children will likely be different than those of older children. Speculatively, how the parent

treats the child will also be associated with the child’s age. The parents are more likely to

use child-directed speech and exaggerated exclamations with younger children. As the

child ages, the parent will be more likely to use speech patterns that reflect adult

exchanges.

The communication skills of the children will vary across dyads as well as over time.

Children with autism can exhibit a varying degree of verbal communication skills ranging

from non-verbal or singular word usage to phrases and sentences. It is important for the

system to be able to evaluate the entire spectrum of this speech. Related to this, the tasks

being utilized to develop the child’s skills will differ between individuals. During the

intervention, the parent will need to identify maintenance tasks and target tasks for his or

her child. Maintenance tasks are intended to be skills the child has developed but needs to

continue practicing. These also serve to provide easily achievable goals that help limit

frustrations by fostering a sense of accomplishment and providing access to praise and

motivators. The target skill is intended to be in the child’s zone of proximal development

and represent a challenge that promotes educational growth.

Variation in the dyad’s access to technology could impact their utilization of the

framework. The framework is intended to work with affordable technologies that are

readily available. This is intended to reduce the cost and make implementation easier and

more accessible for the parents. Using different recording devices could affect the results

of the classification system if the video quality is low. Also, the skills of the person using

the device to record the session could have an impact. The operator’s skill will influence

how well the participants are kept in frame and how stable the device is while filming.

Examining the dataset that was used in the foundational research for the framework,

described in Chapters 2 and 3, illustrates these concerns about variation. Although the
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videos in the dataset depict a similar environment, a training room at an autism resource

center, the activities the dyad participates in varies. Often, these activities are depicted in

only one video. Watching a movie on a cell phone, and spinning in an office chair, are two

examples. Attempting to classify these activities solely on the training samples in the

dataset would be unsuccessful.

The dyads in the videos are comprised of an adult female and a child male. This

representation fails to account for inclusion of the genders in each role. Additionally, all

the individuals in the videos have light skin tones. This could fail to account for

challenges regarding the computer vision portion of the project regarding the recognition

of individuals with darker skin tones. The age of the children in the videos ranges from 24

to 60 months. This is a considerable gap when considering child development. This is

reflected in a diverse range of vocal communication abilities ranging from phoneme-only

vocalizations to full sentence speech. Accounting for all these variations solely using

traditional classification techniques would require extensive amounts of data and is likely

not feasible.

The current attempt to address these variations was to look at generalization to create

a base model. As presented in Chapter 3, OpenPose (Cao et al., 2017) was used for

performing the computer vision tasks in the framework. It is assumed that this application

could adequately extract the individuals in the scene from the environment, along with

accounting for variations in the individual’s physical appearance. The output of OpenPose

is a set of Euclidean coordinate values indicating where in an image frame-specific

landmark body points are for each individual. These body points were used to calculate

additional information including the likely focus of the individual’s gaze and the

relationship between the parent and child’s hands in the frame. The purpose of calculating

this additional data is to extract generalizable characteristics of attention from the activity

and look for common cues such as eye contact, reaching for an object, or stillness. This is
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based on PRT literature (Koegel, 1988; Suhrheinrich et al., 2011); however, this does not

address individual behaviors that indicate attention. People, particularly people with

autism, exhibit different cues to indicate attention. It is not uncommon for a child with

autism to look away from an individual or avoid eye contact while still being attentive.

Often described not only as a training methodology but a way of life, PRT is

expected to be undertaken over a long period of time, adapting as the participants grow

and their needs change. Likewise, the expectation is that a feedback system would be

utilized frequently. The frequency of use along with maintaining the relationship with the

clinicians affords the opportunity to provide additional information to the system that

could be used to personalize classification models. Intuitively, by creating a mechanism

for personalizing the feedback, framework problems with aleatoric and epistemic

uncertainty can be addressed over time.

Addressing aleatoric uncertainty could be undertaken by providing feedback on the

recording device, environment, and other issues that would affect data acquisition. This

would aid the caregiver in creating a more effective recording context for PRT sessions,

allowing the system more favorable conditions for performing classification tasks.

Epistemic uncertainty could be addressed by adding additional information to the system

that could be utilized to refine classification models or select diagnostic pathways. This

could include providing information regarding the child’s age or language ability to the

system, along with introducing new labeled data for fine-tuning classification models.

This chapter examines how a person-centered approach could be used to address

epistemic uncertainty in the classification models. This will be undertaken by examining

several key research questions. First, the role of providing easily obtainable a priori

information, particularly the age and exhibited verbal communication level, was examined

to determine how this can affect attention classification and speaker separation. Second,

providing additional labeled data samples was explored. The goal of this was to determine
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if providing labeled samples of the dyad will have an effect on classification tasks and

how many samples would be needed to influence the classifier. Along with this, the effect

of mislabeled samples needed to be addressed. Finally, a framework for presenting the

data to the clinician for labeling was theorized. This examined the interface for clinicians

along with the methodology for selecting samples to label.

6.1 Related Research

Examining the areas where variation occurs in PRT helps illustrate how a person-centered

approach could be incorporated to enhance the framework. This could consist of using

both automated and human-in-the-loop methodologies to foster co-adaptation between the

system and the user. Human-in-the-loop adaptation could focus on facilitating

personalization of the system to the individual and addressing activity and behavior

variations from the videos. Automated methodologies could provide cues to users to

modify use of the system, addressing environmental and technological variations. In

addition, the parent-child dyad, clinicians, and PRT are important parts of the systems that

would be influenced by a person-centered approach. The information supplied by the

clinician as part of the human-in-the-loop paradigm and the data inferred through

automated processes can be utilized to retrain the classification models to provide more

personalization.

6.1.1 Automated Adaptation

Part of the feedback the system provides the user could be used to drive co-adaptation,

particularly to address creating a more favorable climate for data extraction. Discussions

with clinicians revealed that parents often do not conduct PRT in a conducive

environment. This usually pertains to a high level of distraction, including other people in

the room, cluttered play areas, or electronic media running in the background.
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Automatically detecting these issues and informing the user would provide an opportunity

for her or him to take corrective actions. Similarly, issues regarding device records may be

addressed the same way, leading to more optimal recordings with less occlusion or audio

noise.

Automatically adapting classifiers has also been researched. Garcia et al. (2018)

improved human activity classification by automatically fine tuning hyperparameters,

primarily window size and sample overlap, in an ensemble model. Charles et al. (2016)

used confidence estimates to include unlabeled samples of individuals to personalize and

improve human pose classifications. A similar approach was used by Kato et al. (2018) in

multi-person pose estimation.

Although not discussed in the early phase of the project, assessment and adaptation

could be relevant person-centered features driven by automated voice data collection. One

example that would address an identified need in the PRT implementation is the

evaluation of maintenance versus target skills for the child. In interviews with clinicians

and parents, both parties stated that adapting PRT to new skills was often difficult. The

system could aid this by evaluating the child response rates and pronunciation on specific

words to determine words that have been mastered, need to be reinforced as a

maintenance task, or are in an area of proximal development and should be a target task.

Much like the assessment in the Adaptive Training Assistant (ATA) (Tadayon et al., 2018;

Venkateswara et al., 2018), this assessment would be handled implicitly by the system.

Unlike the ATA that augments the user experience automatically, the assessment would be

used to explicitly inform the user and aid them in developing a personalized training plan

for the child. Adherence to this plan could then be further assessed by the system. The

system could further leverage person-centered computing to incorporate information on

toys and activities favored by the child to provide example instructions that address target

and maintenance skills.
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6.1.2 Human-in-the-Loop

Human-in-the-loop systems integrate autonomous computations with human operators to

accomplish a shared goal. The roles of the human and autonomous agents in the system

differ based on the problem being addressed and the approach that is undertaken. The role

of the human in these systems can be categorized as being the primary actor, an expert

discriminator, or a tutor.

Technology provides a means for providing additional information to human

operators to make tasks safer and more efficient. Utilizing sensors and data processing

techniques affords a means of cueing the human to potentially important situations. In

these types of systems, autonomous agents and human actors collaborate to achieve a

goal. A common example is autopilot systems for airplanes and semi-autonomous

vehicles (Gruyer et al., 2017). The autopilot systems analyze the environment and

contextual information to provide greater insight into a situation to inform the human

operator. As technology increases, the amount of autonomous actions and support

becomes more sophisticated. Current human-in-the-loop systems have begun to analyze

the condition of the human operator in addition to circumstantial awareness. This

emphasizes human considerations including comfort, strain, and fatigue to provide a more

optimal experience (Chiang et al., 2010; Feng et al., 2016).

For difficult or critical problems and operations, a fully autonomous system may not

produce sufficiently reliable results. Addressing these problems can utilize autonomous

systems to a limited extent; however, human experts, individuals, or crowd-sourcing (Li,

2017), are required to make a final determination. In these systems, the human acts as a

final discriminator. This is common in the health and medical domain where problems can

lack sufficient data, there are large sample imbalances between classes, or crucial events

are rare (Holzinger, 2016). This approach can also be useful for more subjective

classification tasks, such as bias detection (Jong et al., 2018).
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Human operators can be used in a system to aid in training agents to perform

autonomous tasks. This is a common approach for teaching robot systems motor controls

(Peternel et al., 2015, 2018; Suomalainen and Kyrki, 2017). For these systems, the human

assumes the role of tutor, demonstrating and correcting behavior. The human is providing

additional data to the system that can then be utilized for refining autonomous decision

making.

Maintaining the relationship between the clinician and the parent is a pivotal part of

the proposed framework. Largely, this has been done to promote efficacy in the parent,

provide feedback on the minutiae of the interaction not feasible for automated assessment,

and promote social pressure for continued compliance. Keeping the clinician as part of the

system provides the opportunity to have an expert label additional data samples, as well as

record contextual information about the dyad, particularly regarding the child’s vocal

performance. This allows for the clinician to act as a tutor for the autonomous

classification process, providing additional expert information that can be used to refine

models.

Evaluating the confidence values during the classification process would allow the

system to identify sequences where the generalized models could not adequately assign a

label. These sequences could then be provided to one or more clinicians for labeling and

used to retrain the models to personalize the classification task to the users. This would

allow the models to gradually be improved as the dyad utilized the system. This likely

would show significant improvements when the child and parent participate in similar

activities across multiple videos. Incorporating this approach for vocalizations would help

adjust generalized models for voice activity detection and speaker separation. This would

address the challenges of child-directed speech patterns for the parents, and provide

greater accuracy at detecting child vocalizations.

124



The clinician’s expert knowledge could also be used to adapt the framework by

providing additional contextual information, particularly when the parent-child dyad has

limited use on the system. The clinician could initialize the system to account for

parameters, such as the child’s vocal ability, to configure the system to favor distinct

classification models. One of the most important aspects of having the clinician involved

in the system is to identify plateaus in the child’s performance, and make

recommendations to the parent on how these can be addressed. Additionally, the

clinician’s initial evaluation of the adult’s familiarity with PRT could be useful contextual

information for adapting the system.

The research provided by Xu et al. (2016) provides a scaffolding for how the

co-adaptation could be implemented in the proposed framework. In their work, Xu et al.

examined data from wearable sensors to classify and assess human activity. They utilized

contextual information along with classification confidence levels to select appropriate

models for detecting behavior from a network of ensemble machine learning algorithms.

This allowed for the system to adapt to the individual and assess them effectively as they

improve in the activity. Like this implementation, the proposed framework could utilize

the contextual information to favor specific classification models that would better suit the

individual. It could also evaluate the confidence levels in order to determine when it

would be appropriate to obtain the aid of a domain expert to incorporate additional labeled

samples.

6.1.3 Classification Fine-Tuning

Deep learning algorithms are powerful tools for artificial intelligence; however, these

approaches require a plethora of labeled data samples to achieve optimal results. For many

domains and specific classification tasks, there is insufficient data for training these types

of classification models. Fine-tuning is a methodology using transform learning to
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leverage classification knowledge on one set of data to be used on a separate set of data. In

addition to addressing a lack of data, using pre-trained networks can reduce the training

time and reduce the likelihood of the network overfitting (Campos et al., 2017).

Fine-tuning is undertaken by training a deep learning network on a substantial dataset,

commonly ImageNet (Deng et al., 2009), then adding additional layers trained on the

target dataset. It is also common to use a pre-trained model such as AlexNet (Krizhevsky

et al., 2012) or Inception (Szegedy et al., 2015).

Fine-tuning classification exhibits the best performance when the initial training data

has a similar structure to the fine-tuning data (Chu et al., 2016). The key concept is that

the pre-trained network has learned to distinguish important features in the data. Having

learned these features, adding the new data allows the next work to use the pre-established

weights to extract features and relate them to the new target labels. Better results can be

obtained by using only the subsets of larger datasets that best relate to the new target data

(Ge and Yu, 2017).

Different methodologies can be used for fine-tuning networks. An alternative

approach is to expand the nodes in the final classification layer of the network instead of

deepening the network with a new layer specific to the target task (Wang et al., 2017).

Using multi-task training has also been explored, where the initial training data and target

training data are jointly presented to the network during the training processing (Ge and

Yu, 2017).

Literature surrounding fine-tuning has primarily focused on visual data, with object

classification and scene description tasks being common targets. It has an important

application to the medical field (Kumar et al., 2016; Tajbakhsh et al., 2016) where labeled

data on a specific task can be parsed. Research surrounding fine-tuning image-based

networks with medical imaging has been favorable, showing that the networks can utilize

feature information extracted from general visual data. Other novel applications include
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specific classification, such as plant taxonomy (Reyes et al., 2015) and sentiment analysis

(Campos et al., 2017).

For the PRT data, there are two types of fine-tuning that have been employed. First,

as was detailed in Chapter 3, a pre-trained AlexNet model was fine-tuned with images

from PRT videos to classify the child’s attention state. Second, using fine-tuning to

personalize classification models to a specific dyad was explored. This implementation is

different from the common research applications. For personalization, the goal is not to

perform transfer learning, it is to refine the classification domain to focus on an individual

dyad.

6.2 Methodology

The research aim of this aspect of the project is to examine ways the clinicians could

provide information that could be used to improve attention classification accuracy. There

are three methods that need to be explored. This will be undertaken using the visual pose

feature set using centroid samples as presented in Chapter 3 and the concatenated

multimodal audio-visual feature set described in Chapter 5. As with previous experiments,

data imbalance is handled by undersampling.

First, the clinician could provide a priori information about the child’s age or

demonstrated vocal communication ability that could be used to select a classification

track that uses models trained on data from children of a similar demographic. This

method has been demonstrated on similar tasks by Rudovic et al. (2018). For this chapter,

this will be simulated by dividing the dataset into two groups based on the language skills

apparent in the videos. This has been summarized in Table 4.1 in Chapter 4. Dyads 1, 2, 3,

and 6 were included in the first group. These children were younger and exhibited one

single word response or vocal attempt. Dyads 4, 5, and 7 were included in the second
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group. Separate SVM classifiers were trained for each group using the SVC package in

scikit-learn (Pedregosa et al., 2011).

A second way of using prior knowledge to segment the training data is to consider

the ability of the caregiver. In the dataset, baseline and post-treatment probes display

different patterns in terms of the child’s attention. Typically, baseline videos have more

periods of inattention and little shared attention. Post videos either have more periods of

shared attention, or exhibit a clear pattern of transition from inattention to attention, back

to inattention, as the parent effectively gained control of the child’s motivational activity

and releases it after an acceptable response. The effect of the different patterns can be

examined by training SVM classifiers on the baseline and post-treatment videos

separately. This will allow for an inference to be made regarding how parental familiarity

with PRT affects the classification models.

While the first two methods looked at organizing models, the third will look at

fine-tuning models to personalize the classification tasks. This will simulate having the

clinician review the baseline video to extract labeled data specifically on the dyad that can

be incorporated into the model with the expectation that it will improve the classification

accuracy in future videos. Intuitively this would be due to two factors. First, recognition

of the attributes that distinguish the child and adult in the video could be learned by the

model. Second, based on the assumption that the child’s preferred activity would appear

in multiple videos, the signs of attention particular to that child (or the activity he or she

frequently engages in) would be learned by the model. To evaluate this, multiple SVM

models were evaluated to look at different ways of incorporating samples from the

baseline videos for classification of the post-treatment videos. This effectively reduced the

validation size to only the number of samples in the post-treatment videos. As fine-tuning

has been a useful tool for computer vision applications, the AlexNet fine-tuning

application used in Chapter 3 will again be used as a comparison. This will be trained
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with the RGB frames corresponding to the visual pose samples used in the SVM

classifiers. In addition to the raw RGB frames, the AlexNet will be trained with cropped

images that only feature the hands and faces of the parent and child. This is to prevent the

background from affecting the classification performance.

Three experiments were conducted based on fine-tuning the models. First, all of the

base video samples were included in the training set, with only the post video used for

validation. Second, only the shared and attentive samples from the baseline video are

used. This is to help address the data imbalance by including additional samples from the

underrepresented classes. Third, the baseline video is classified using a model trained with

the videos from the other dyads. Shared and attentive samples that were correctly

classified with a high probability were included in the fine-tuning for evaluating the

post-treatment video. For SVM implementations, the probability is based on Platt’s

algorithm as provided by scikit-learn. For the AlexNet implementation, the softmax

values are calibrated using temperature scaling (Guo et al., 2017) to create probabilities.

6.3 Results

6.3.1 Demographic-Based Model Tracks

The performance results for training separate models based on the perceived vocal ability

of the child are presented in Tables 6.1, 6.2, and 6.3. These tables reflect the SVM metrics

for using visual pose data, audio-visual data, and only audio data, respectively. Based on

these results, no significant difference is apparent when dividing the training set based on

the demonstrated vocal abilities of the child. Comparing the attention-based models to the

centroid results in Table 5.1 shows that average accuracy and F1 scores remained within a

few points of one another. This indicates that data gathered from activities did not differ

significantly between the two ability groups. The idea of using the OpenPose data was to
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generalize the activities. Although this has not yielded stellar results, the congruency

between the methods presented here suggests that there is some generalization occuring.

A more profound effect could have been expected in regard to audio-only results.

The separation task results in Table 6.3 are comparable but slightly lower than the values

illustrated in Figure 4.7. This could indicate two things. First, the single word group had

more class imbalance as these children had fewer utterances, resulting in fewer training

and validation samples. The lower representation could have made the child speech more

difficult to recognize, lowering the overall validation accuracy of the model. The second

indication, which is related to the first, is that the samples of child’s speech from the

multi-word group were similar enough to the single word group’s utterance features to

have a positive effect on the classification.

The most profound effect that could be observed from audio classification is in

regard to Dyad 6. Dyad 6 represents an outlier in comparison with the children present in

the single word group. The child in Dyad 6 was older and articulated words more clearly

than the other children in the group; however, he only demonstrated single word

responses. This suggests that intelligibility and age could be relevant factors that should

be considered when selecting models.

6.3.2 PRT Knowledge-Based Model Tracks

Dividing the data set into baseline and post-treatment video training sets was undertaken

to observe if the parent’s PRT fidelity has an effect on the attention classification. As

stated above, the baseline and post-treatment videos have different attention patterns.

Also, presumably, there could be activities that are more common in baseline videos than

post-treatment videos, and vice-versa. Similar to separating the dataset by the child’s vocal

ability, the results of this division were not profound. Examining the visual-feature-only

classification model for the baseline videos (Table 6.4) does not exhibit a strong pattern
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Table 6.1
The table displays results for using only visual pose features for classifying shared at-
tention, attention (attn), and inattention (inattn). Separate models were used based on the
child’s demonstrated vocal communication ability, either single word or phoneme attempts,
or multi-word speech.

Model Validation
Set

Validation Acc.
(%)

Training Acc.
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Single
Word

Dyad 1 0.31 0.73 0.09 0.36 0.60
Dyad 2 0.52 0.72 0.65 0.33 0.30
Dyad 3 0.36 0.72 0.26 0.39 0.39
Dyad 6 0.43 0.74 0.34 0.21 0.59
Average 0.40 0.73 0.34 0.32 0.47

Multi-
Word

Dyad 4 0.44 0.72 0.04 0.36 0.66
Dyad 5 0.44 0.73 0.43 0.20 0.69
Dyad 7 0.45 0.74 0.48 0.29 0.52
Average 0.45 0.73 0.32 0.28 0.62

Table 6.2
The table displays results for using audio-visual features for classifying shared attention,
attention (attn), and inattention (inattn). Separate models were used based on the child’s
demonstrated vocal communication ability, either single word or phoneme attempts, or
multi-word speech.

Model Validation
Set

Validation Acc.
(%)

Training Acc.
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Single
Word

Dyad 1 0.36 0.98 0.11 0.35 0.62
Dyad 2 0.31 0.98 0.32 0.32 0.21
Dyad 3 0.35 0.98 0.26 0.33 0.36
Dyad 6 0.48 0.99 0.40 0.26 0.64
Average 0.38 0.98 0.28 0.32 0.45

Multi-
Word

Dyad 4 0.47 0.98 0.11 0.47 0.70
Dyad 5 0.42 0.98 0.34 0.22 0.63
Dyad 7 0.34 0.98 0.32 0.30 0.43
Average 0.41 0.98 0.26 0.33 0.59
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Table 6.3
The table displays results for using audio features for classifying adult, child, and noise
samples. Separate models were used based on the child’s demonstrated vocal communica-
tion ability, either single word or phoneme attempts, or multi-word speech.

Model Validation
Set

Validation Acc.
(%)

Training Acc.
(%)

Adult
F1

Child
F1

Noise
F1

Single
Word

Dyad 1 0.86 0.95 0.64 0.52 0.93
Dyad 2 0.77 0.94 0.64 0.27 0.94
Dyad 3 0.72 0.96 0.65 0.35 0.79
Dyad 6 0.86 0.95 0.64 0.52 0.93
Average 0.79 0.95 0.66 0.40 0.90

Multi-
Word

Dyad 4 0.70 0.95 0.75 0.41 0.76
Dyad 5 0.77 0.95 0.64 0.46 0.92
Dyad 7 0.72 0.95 0.70 0.53 0.82
Average 0.73 0.95 0.69 0.46 0.83

across the different validation sets. All of the dyads, except 6 and 7, had better accuracy

when all of the training data was utilized. Dyad 6 and 7 had moderately better accuracy

using only the base training. For Dyad 6, the shared F1 score for the baseline-only training

is greater than when all of the probes are used. In this video, the shared attention segments

are represented by the child and the parent playing with a toy car track, sitting side by

side. A similar scenario is presented in the Dyad 7 video. Conversely, a large portion of

the shared attention samples in the post videos are from Dyad 2, and represent the child in

the parent’s lap watching a movie on a mobile device. These additional samples that have

a significantly different structure to the spatial graph could cause confusion of the shared

samples when all of the videos are used for training and validation.

The performance of Dyad 2 is the most interesting validation set when examining the

visual pose model results (Table 6.6). While the post-only metrics are low (only 21%

accuracy) the results when the full training set is used are 61%. As this video depicts the

parent and child viewing the movie on the mobile, the sample representation is much more

homogenous than other video probes. Since the samples are similar, the classification
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models predict a single class for the majority of samples. When the full training set was

used, the model benefitted from the other shared attention samples and was able to predict

the correct class for most of the samples. Shared attention samples in other post-treatment

videos often do not have the same proximity. The activities predominantly include reading

a book side-by-side as seen in the Dyad 3 Post video probe or playing a game where the

parent and child are sitting across a table from one another. as in the Dyad 7 Post probe.

Examining the audio-visual combined feature sets (Tables 6.5 and 6.7) illustrates that

some dyads benefit from the inclusion of audio, while others see a reduction in

performance metrics. This is similar to what was discussed in Chapter 5.

6.3.3 Fine-Tuning for Personalized Models

The results for the AlexNet approaches (Table 6.8) illustrates that adding all of the

samples from the baseline video improved the validation average accuracy; however, this

came at the cost of shared and attention class F1 scores. This indicates that providing the

additional labeled samples caused the classification model to select the inattentive class

more often than when only the training set was used. This inflated the accuracy and

Inattentive F1 scores, but caused the shared and attentive scores to be reduced. The F1

scores were already problematic for shared and attention classes and suggested that the

refined AlexNet model overwhelming favors the inattentive class. Adding only the shared

and attentive samples from the baseline videos caused a slight drop in accuracy, but an

increase in the shared and attentive F1 scores. This illustrates that adding the additional

samples aided in the selection of these classes; however, it also caused a greater

misclassification of inattentive samples.

Using only the confident shared and attentive samples facilitated a general increase in

accuracy compared to using all of the shared and attentive samples; however, the value

was still below using all of the baseline video samples. Adding only the confidently
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Table 6.4
The table displays results for using only visual pose features from baseline videos on classi-
fying shared attention, attention (attn), and inattention (inattn). For comparison the baseline
results for models trained with all baseline and post-treatment videos is presented.

Validation
Set

Training
Set

Validation Acc.
(%)

Training Acc.
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Dyad 1
Base

Base 0.26 0.77 0.15 0.29 0.75
All 0.27 0.73 0.10 0.34 0.32

Dyad 2
Base

Base 0.35 0.76 0.02 0.27 0.58
All 0.45 0.72 0.03 0.44 0.60

Dyad 3
Base

Base 0.34 0.77 0.30 0.37 0.33
All 0.35 0.72 0.32 0.41 0.33

Dyad 4
Base

Base 0.53 0.78 0.00 0.19 0.81
All 0.58 0.72 0.00 0.21 0.74

Dyad 5
Base

Base 0.43 0.76 0.44 0.12 0.77
All 0.44 0.73 0.55 0.06 0.51

Dyad 6
Base

Base 0.47 0.79 0.45 0.16 0.51
All 0.40 0.74 0.41 0.12 0.51

Dyad 7
Base

Base 0.46 0.76 0.40 0.37 0.50
All 0.39 0.74 0.39 0.32 0.45

Average
Base 0.40 0.77 0.25 0.25 0.60
All 0.41 0.73 0.26 0.27 0.49
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Table 6.5
The table displays results for using audio and visual pose features from baseline videos on
classifying shared attention, attention (attn), and inattention (inattn). For comparison the
baseline results for models trained with all baseline and post-treatment videos is presented.

Validation
Set

Training
Set

Validation Acc.
(%)

Training Acc.
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Dyad 1
Base

Base 0.36 0.99 0.11 0.28 0.68
All 0.39 0.98 0.11 0.35 0.52

Dyad 2
Base

Base 0.43 0.99 0.01 0.32 0.62
All 0.45 0.98 0.02 0.44 0.55

Dyad 3
Base

Base 0.33 0.99 0.25 0.29 0.33
All 0.35 0.98 0.29 0.27 0.44

Dyad 4
Base

Base 0.45 0.99 0.00 0.24 0.83
All 0.51 0.98 0.00 0.28 0.44

Dyad 5
Base

Base 0.39 0.99 0.40 0.08 0.62
All 0.42 0.98 0.44 0.09 0.53

Dyad 6
Base

Base 0.43 0.99 0.50 0.17 0.52
All 0.44 0.99 0.45 0.16 0.54

Dyad 7
Base

Base 0.39 0.99 0.27 0.33 0.49
All 0.40 0.98 0.30 0.32 0.51

Average
Base 0.40 0.99 0.22 0.24 0.58
All 0.42 0.98 0.23 0.27 0.53
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Table 6.6
The table displays results for using only visual pose features from post treatment videos on
classifying shared attention, attention (attn), and inattention (inattn). For comparison the
baseline results for models trained with all baseline and post-treatment videos is presented.

Validation
Set

Training
Set

Validation Acc.
(%)

Training Acc.
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Dyad 1
Post

Post 0.44 0.77 0.00 0.45 0.49
All 0.44 0.73 0.07 0.46 0.58

Dyad 2
Post

Post 0.21 0.74 0.34 0.00 0.00
All 0.61 0.72 0.76 0.00 0.00

Dyad 3
Post

Post 0.40 0.76 0.35 0.36 0.44
All 0.35 0.72 0.19 0.36 0.45

Dyad 4
Post

Post 0.40 0.78 0.08 0.49 0.49
All 0.37 0.73 0.07 0.41 0.44

Dyad 5
Post

Post 0.51 0.78 0.25 0.35 0.63
All 0.47 0.73 0.29 0.31 0.61

Dyad 6
Post

Post 0.42 0.78 0.19 0.23 0.64
All 0.49 0.74 0.16 0.23 0.66

Dyad 7
Post

Post 0.33 0.81 0.23 0.28 0.42
All 0.39 0.74 0.39 0.32 0.45

Average
Post 0.38 0.77 0.20 0.30 0.45
All 0.45 0.73 0.28 0.30 0.46
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Table 6.7
The table displays results for using audio and visual pose features from post-treatment
videos on classifying shared attention, attention (attn), and inattention (inattn). For com-
parison the baseline results for models trained with all baseline and post-treatment videos
is presented.

Validation
Set

Training
Set

Validation Acc.
(%)

Training Acc.
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Dyad 1
Post

Post 0.39 0.98 0.00 0.36 0.49
All 0.42 0.98 0.02 0.40 0.54

Dyad 2
Post

Post 0.25 0.98 0.40 0.00 0.00
All 0.36 0.98 0.53 0.00 0.00

Dyad 3
Post

Post 0.36 0.99 0.21 0.36 0.43
All 0.36 0.98 0.15 0.32 0.51

Dyad 4
Post

Post 0.35 0.98 0.15 0.50 0.54
All 0.42 0.98 0.12 0.50 0.42

Dyad 5
Post

Post 0.45 0.99 0.14 0.32 0.63
All 0.45 0.98 0.23 0.33 0.57

Dyad 6
Post

Post 0.45 0.99 0.11 0.28 0.67
All 0.52 0.99 0.24 0.32 0.67

Dyad 7
Post

Post 0.30 0.99 0.16 0.31 0.36
All 0.30 0.98 0.30 0.27 0.32

Average
Post 0.36 0.98 0.17 0.31 0.45
All 0.40 0.98 0.23 0.31 0.43
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predicted samples decreased the overall new samples being introduced when refining the

model, allowing the inattentive samples to dominate. This is further reflected in the

increased inattentive F1 score in comparison to the model trained with all of the baseline

shared and attentive samples.

Comparing the images with cropped hands and faces to the full image shows a small

increase in the average accuracy and shared F1 score. This could be explained by the

differences in the training accuracy. The high training accuracy from the full image could

indicate that the model overfit the training set.

Using the visual pose data showed greater overall performance (Table 6.9). The

visual pose feature set model had consistent F1 scores through the three training

conditions, with a slightly improved validation accuracy when only confident shared and

attention samples were used for fine-tuning. Adding the audio features did not aid

classification in this scenario in comparison to the visual pose data; however, it illustrated

a similar trend. Although not a profound effect, this does indicate that adding additional

labeled samples for each dyad positively influences the classification model.

Relying on human experts to label samples that can be incorporated into the system

provides a means for introducing error in training the models. The effect of erroneous

samples was examined by selecting the same baseline samples used in the confident

shared/attention fine-tuning methodology; however, half of the samples were randomly

given the incorrect label. The incorrect label that was assigned to the sample was also

selected at random. Reviewing the results from both Table 6.8 and 6.9, all of the

approaches except the visual-pose-data-only model showed improvement. The F1 scores

from the full image AlexNet models suggest that the erroneous data caused the classifiers

to assign samples to the inattentive class more frequently. As this class is

over-represented, the increased predictions can inflate the accuracy despite more incorrect

classification of the other two classes. The audio-visual models’ average F1 scores do not
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show this trending, with the shared F1 score improved slightly and the attentive and

inattentive F1 scores decreased. Explaining this and the larger accuracy increase

illustrated with the face-hands-only AlexNet models requires scrutinizing the models’

performance on Dyad 3.

As mentioned in previous chapters, the post-treatment video for Dyad 3 is an outlier

in the dataset. The samples of this video are overwhelming labelled as shared attention.

There is little variation between samples through the video, causing the classifications to

be largely concentrated on one of the three classes, particularly for the AlexNet models.

For each of the AlexNet model configurations, apart from the face-hand images with

random incorrect samples for fine-tuning, the predictions were predominantly in the

inattentive category. This caused the validation accuracy to be approximately 1%. For the

face-hands models with random mislabeled samples, the validation accuracy rose to 31%,

indicating a greater number of correctly classified samples. The explanation for this, and

the other increases in accuracy after adding mislabeled samples, could be a reflection of

the subjectivity of labeling attention, especially with shared attention.

6.4 Discussion

The evaluation presented in the results sections indicates insufficient data to adequately

explore dividing the dataset into separate classification models. Intuitively, children of a

similar age and communication level are more likely to engage in similar activities and

display similar vocal patterns. This was not reflected in the results for the

demographic-based models. Other works, such as Rudovic et al. (2018) have

demonstrated that it can be an effective way of improving classification. More data is

needed to develop more specific models that could be used to personalize the

classifications.
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Table 6.8
The table displays results for fine-tuning an AlexNet CNN with frames from PRT videos
to classifying shared attention, attention (attn), and inattention (inattn). Results are shown
for the full image and cropped images showing only the hands and faces of the dyad. Only
post-treatment videos were used for the validation set and metrics are averages across the
seven validation sets.

Image Set Fine-
Tuning

Validation Acc.
(%)

Training Acc.
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Full Image

Training
Set Only

0.38 0.98 0.12 0.20 0.51

All 0.41 0.98 0.10 0.17 0.53

Shared/Attn 0.35 0.96 0.15 0.25 0.46

Confident
Shared/Attn

0.37 0.98 0.09 0.19 0.49

Random
Incorrect

0.39 0.98 0.08 0.20 0.52

Face-
Hands
Image

Training
Set Only

0.40 0.89 0.13 0.17 0.50

All 0.42 0.88 0.13 0.14 0.53

Shared/Attn 0.35 0.81 0.14 0.24 0.42

Confident
Shared/Attn

0.39 0.87 0.06 0.18 0.51

Random
Incorrect

0.44 0.86 0.12 0.16 0.52
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Table 6.9
The table displays results for including baseline samples in training to improve classifying
shared attention, attention (attn), and inattention (inattn). Two feature sets are presented
- visual pose data and audio-visual data. Only post-treatment videos were used for the
validation set and metrics are averages across the seven validation sets.

Feature Set Fine-
Tuning

Validation Acc.
(%)

Training Acc.
(%)

Shared
F1

Attn.
F1

Inattn.
F1

Visual Pose
All 0.42 0.72 0.27 0.31 0.46

Shared/Attn 0.42 0.73 0.28 0.30 0.46

Confident
Share/Attn

0.45 0.73 0.28 0.30 0.46

Random
Incorrect

0.44 0.73 0.27 0.30 0.41

Audio-
Visual

All 0.39 0.98 0.24 0.31 0.45

Shared/Attn 0.40 0.98 0.28 0.33 0.46

Confident
Share/Attn

0.41 0.85 0.22 0.32 0.47

Random
Incorrect

0.42 0.98 0.26 0.29 0.39
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Dividing the dataset by baseline and post-treatment videos was performed to research

if the PRT ability of the parent had an effect on the attention classification. This was

undertaken because of the clear difference in attention patterns between base and post

videos. The performance metrics are mixed, showing some validation sets improved while

others did not. The expectation is that this effect would be minimized if following the

same methodologies with more data. This can be expected as additional data would

introduce more variety that would help the model generalize. Classification in these

experiments focused on single frames. This division of the dataset may be more

applicable if incorporating sequence-based algorithms that would benefit from learning

the different attention patterns.

As with the discussion of the AlexNet performance in Chapter 3, it does not appear

that enough data is present to train reliable models based on the RGB data. Increasing the

data for each validation set did, however, show an improvement in the F1 scores for the

shared and attentive classes when supplying all of the shared and attentive samples from

the baseline video. Limiting the number of samples to only those the original classifier

was confident with reduced this effect. This could indicate that using a pre-trained

AlexNet approach could be feasible with more data. Greater research is needed looking

specifically at classifying visual cues of attention based on raw images.

Incorporating the baseline data from the SVM for the visual pose information did

marginally improve the classification accuracy. As opposed to other improvements, this

did not correspond with an increase in the F1 score of the inattentive class. This suggests

that adding the new information helped positively shape the model instead of having

predictions cluster to the dominantly represented class. Considering how SVMs are

trained, it is not surprising that the smaller number of samples in the confident-only

fine-tuning had a more profound effect on the classifier than the corresponding

experiments with the CNN-based AlexNet classifiers.
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This work was meant to explore the basic concepts of how personalization could be

applied using the PRT dataset for a human-in-the-loop feedback system. As such, there

are several key limitations that need to be addressed. Classification model parameters

were kept static between different feature sets. Adjusting the parameters, such as the

number of trainable layers, dropout rate, and learning rate in the AlexNet approach and

the C value, game, and kernel in the SVM models, may have produced more optimal

results. In particular, SVM parameters were fixed to allow for more accurate prediction

probability scores. Not fine-tuning these parameters may have subjected the models to

overfit the classifiers. Additionally, the number of different configurations of feature sets

and data selection was limited for feasibility. Future work could be undertaken to examine

additional organization and selection methods.

6.5 Design for Human-in-the-Loop

Implementation strategies for collecting information from clinicians as part of the

human-in-the-loop system needs to be streamlined to prevent excessive time costs.

Baseline information regarding the child’s age and vocal abilities could be easily provided

by either the caregiver or clinician during an initial setup. Ideally, in a mature system, the

system could automatically assess the child’s progress and update the vocal ability

designations over time. This would allow the system to adapt and personalize the user

experience without additional human intervention. This system could be made more

robust by incorporating common assessment metrics rather than a more subjective

observation-based designation. Using these formal assessments would provide a better

means of clustering individuals and training models utilizing participants with similar

qualities. Depending on the protocol the clinician is operating under, this may not require

more time investment compared to the current evaluation practices. If the clinician is

collecting these metrics as a standard part of their current practice, the only additional
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requirement would be to supply the information to the system. Depending on the

recording format, this is likely a trivial task.

From a machine learning standpoint, having the clinician involved in system could be

interesting for aiding the models to adapt to individuals and become more robust over

time. As part of the human-in-the-loop procedure, clinicians are expected to review

metrics and media clips of the participating dyad to provide expert advice and feedback.

This review process could be utilized to provide additional labeled samples to the system;

however, this needs to achieve a balance between the time investment required by the

clinician versus the classification performance improvements. The methodology presented

above using samples classified with high confidence to be provided as additional training

samples was included to simulate a possible implementation for evaluating samples.

Instead of requiring clinicians to review a segment in its entirety, individual samples could

be selected for approval. This would allow the clinician to quickly accept or reject

samples the system identified. As was observed in the results, the effect of mislabeling

additional samples was minimal.

In addition to the clinician, the parent could also provide information to the system to

aid in personalization of the models. Much of the background assessment and

demographic information could be provided by the parents when setting up an initial

profile for the system. This could include providing sample video or audio that could be

used to calibrate the system or perform preliminary classifications that could be used to

personalize the system.

The parent could also review the classification results to determine if an error has

occurred or to provide additional labeled samples. This leverages the parent’s knowledge

of his or her child’s behavior in assessing the model’s performance. Samples identified as

incorrect could be incorporated to fine-tune the model or passed to the clinician for further
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evaluation. The parent could also eliminate samples with poor recording quality or

disruptive environmental conditions before they are passed to the clinician.

6.6 Conclusion

Keeping the clinician as part of the feedback system can be utilized to aid in the

personalization of classification algorithms for assessing PRT video probes. This chapter

explored different ways that additional information could be added to the system to

improve data predictions and present a more optimal experience for the users. The results

from fine-tuning an SVM trained on visual pose data suggests this is possible; however,

due to limited data, more research is needed to form a firm conclusion on how this can be

approached.

Design for incorporating sample label validation from clinicians was presented. This

needs to be explored in greater detail and in conjunction with ABA professionals to ensure

it is properly implemented. The goal of this aspect of the system should be to minimize the

cost of manual assessment of classifier performance. The methodology that was suggested

was to choose the samples where the base model was most confident in its prediction, and

provide these to the clinician for a binary approve or reject designation. This limits the

intervention from the clinician and should not require a significant investment of time.
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Chapter 7

CLINICIAN USER INTERFACE DESIGN AND EVALUATION

Mapping the current manual data collection processes to automated collection processes

requires some consideration. Automatically extracted data collection and analysis can be

undertaken at a finer level of temporal granularity. This makes it possible to report metrics

for smaller intervals than the one to two minutes used in current practice. Additionally,

information that is tedious for human collection, such as number of vocal responses,

becomes plausible with automated analysis. How the greater level of detail and additional

metrics can be utilized by clinicians remains an open question that this project will

address.

Ensuring that an application adequately addresses the needs of its target users

requires the developers to consult the users frequently. A prototype user interface (UI) for

presenting automated PRT data to clinicians was developed on an iterative life cycle. This

consisted of three sprints - the initial design based on literature review, observations of

PRT sessions, and conversations with clinicians. The result of this sprint was a wireframe

mock of the interface along with examples of extracted data. The data and wireframe were

presented as a deliverable to the clinicians at the end of the sprint. The second sprint

consisted of building an alpha prototype of the UI. The UI was evaluated using a

think-aloud session with the clinicians. The final sprint improved the UI based on the

results of the think-aloud session. This beta prototype was presented to the clinicians for

review. The primary objectives for creating this UI are to: elicit information regarding

how caregiver and child performance metrics should be displayed; determine what new

data metrics can be extracted based on the affordances of automated multimodal analysis;

and, develop a UI prototype that could potentially reduce the time required for analyzing

PRT implementation and providing feedback based on participatory design methodology.
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The following sections will discuss the design process in greater detail, and present

recommendations on how the UI could be adapted to accommodate caregivers directly.

7.1 Related Work

This project incorporates several distinct areas of research. To situate the project into the

intended implementation setting, the use of technology in ABA training will be presented.

Publications regarding video summarizations and keyframe extraction are relevant to

reducing the amount of footage needed for evaluation of the scenario will be discussed.

The project design process followed elements of agile software development methodology.

The project incorporates several areas of research. First, research into the application

of technology for aiding the ABA training process will be presented. This will provide

context related to the intended implementation environment the project is designed for.

Next, publications regarding video summarization and keyframe extraction will be

discussed. These publications are relevant to the project goal of reducing the time needed

to review PRT video probes. Finally, elements of agile methodology will be explored.

These elements were incorporated into the design process in order to aid in gaining the

clinician’s perspective throughout early development.

7.1.1 Applications Used By Clinicians for ABA

Online resources, telemedicine, and video modeling, described in Chapter 2, are

technologies utilized in research regarding training individuals in ABA. In practice, two

applications were introduced during observations and conversations with clinicians.

Naturalistic Observation Diagnostic Assessment (NODA) by Behavior Imaging Solutions

is a mobile application designed to assess and diagnose children for autism. The

application is advertised for parents to facilitate recording a video on their mobile device

to be sent to a panel of clinical experts. The parents interact with the child in a series of
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preselected activities. The clinicians then review the video according to the current

diagnostic methodologies and return a report to the parents. The application also facilitates

requests from the experts for additional videos (Oberleitner et al., 2017; Solutions, 2018b).

This process is based on a human-in-the-loop system relying on asynchronous

communication between the parent and the clinicians. Utilizing this process allows the

clinicians to review the behavior of the child in a natural context, outside of a laboratory

or clinical setting. The application interface was designed to be simple to use. On the

client interface designed for the parents, four icons are displayed. These icons relate to the

specific scenario that should be videographed. This forces categorization that makes

evaluation of the videos simpler for clinicians. For the clinician’s interface, the experts

can review the videos, create clips, and attach notes to the clips describing the interaction

as it relates to the assessment (Nazneen et al., 2017, 2015).

Behavior Connect, also by Behavior Imaging Solutions, is a program and record

management system designed for clinical staff. The application allows users to share

videos and messages and store client records, with the goals of promoting transparency

and facilitating collaboration (Solutions, 2018a).

The research presented in this chapter differs primarily in the incorporation of

automated data processing. The aforementioned applications rely solely on human

intervention for data labeling and abstraction. The UI presented below examines how the

interface needs to be adapted to the clinician’s needs based on automated video processing

and data visualizations.

7.1.2 Video Summarization and Keyframe Extraction

Manually reviewing videos is a time consuming task, and with the vast amount of video

data available, summarization techniques have been an important area of multimedia

computing research. Video summarization methodologies focus on detecting differences
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between frames, commonly using a histogram representation of the pixel’s color value

(Sheena and Narayanan, 2015; Thakre et al., 2016). The between-frame comparison

results in a distance metric that can be compared against a provided or calculated

threshold. If the threshold is surpassed, the frames being compared are from distinct shots

or scenes within the video. This can also be accomplished with clustering (Mei et al.,

2015) or deep learning (Mahasseni et al., 2017; Zhang et al., 2016) techniques. The end

result of this process is the identification of key frames that illustrate an abbreviation of

the diversity of the video. An alternative approach focuses on identifying important

objects that occur across several frames (Meng et al., 2016).

The problem addressed in this project focuses more on creating a summary of the

content in the video, particularly the interaction of the parent and child. These videos are

short in duration, around 10 minutes, will likely occur in a single location, and consist of a

few distinct actions. Creating automated sports highlights addresses a similar problem.

Video highlights in sports have utilized event detection focusing on identifying key actors

or action in the frames (Boukadida et al., 2017; Ramanathan et al., 2016). However,

unlike the sports examples, the actions depicted in the video cannot be anticipated, since

the nature of PRT is dependent on activities selected by the child.

Keyframe detection and video summarization focus at examining the color difference

between frames in order to determine when a significant amount of change has occurred to

designate a new point of interest. The expectation for PRT videos is that RGB-based

approaches for keyframe detection will not adequately capture the important interactions.

Significant interactions could occur without a dramatic change in the image

representation. Rather than focusing on the visual information for video segmentation, the

initial approach utilized for this project was based on audio data. Communication is the

fundamental motivation and a large part of clinician evaluation of the caregiver’s

implementation fidelity. The audio can be used to create segments based on a discrete set
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of interactions. The keyframes used to summarize the videos are extracted from the

segments created through the audio analysis. In addition to using voice activity for

creating video clips, the spatio-temporal data was explored. Graph-based keyframe

detection algorithms look at how the spatial patterning of objects in a frame change over

time (Demir and Isil Bozma, 2015; Ngo et al., 2005; Vázquez-Martı́n and Bandera, 2013).

This follows a similar methodology to RGB-based keyframe detection; however, by

focusing on the change in graph representation of the dyad it was expected to be more

interpretive of different interactions.

7.1.3 Agile Development

Agile software development methodologies are based on an iterative delivery of

application features. Individual features are designed, implemented, tested, and presented

to stakeholders (users and other individuals outside of the development team that are

invested in the project) after short development cycles in order to gain end user feedback

quickly and adjust future efforts as needed. UI mockups are an important part of this

process. Using mockups provides the opportunity to gain feedback from users on the

design layout before undertaking development work. Gaining the perspective of the end

user on the mockup helps provide insight into the ultimate user experience for the

interface (Urbieta et al., 2018).

Ideally, stakeholders should be a fundamental contributor to the design and

evaluation of the project. Having a co-design process with the stakeholders will aid in

ensuring the project requirements are explicit and being addressed as expected (Kildea

et al., 2019). This also helps the project implement a person-centered design, where the

application addressed the needs of individuals, as opposed to appealing to a hypothetical

‘average’ user.
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Incorporating the stakeholders can be difficult, as it often requires a willingness on

the stakeholders’ part to invest their time and cooperate over a prolonged period. Often,

stakeholders are accommodating in the beginning but become less enthusiastic as time

progresses. A recommendation by Urbieta et al. (2018) is to invest more time in the

beginning of the process, particularly in examining the user’s needs and current solutions

to problems the speculative project intends to address.

This project was developed with routine interactions with clinicians to examine

desired features, evaluate designs, and test implementations. The application of

participatory design toward designing telemedicine or eHealth technologies has not been

common (Mitchell et al., 2018). Similar studies in eHealth (Andersen et al., 2017; Gordon

et al., 2015) have taken the same approach, as they often rely on a relatively long pilot

evaluation period. Gaining cooperation over a long period of time may be difficult given

that the application evaluations would likely be in addition to the user’s daily work

commitments. Following the suggestion of Urbieta et al. (2018), the early mockup

development was primarily based on conversations with clinicians, evaluation of current

tools being utilized, observations of PRT feedback sessions, and video probe evaluations.

This was intended to reduce the time-investment required from the clinicians in the early

stages of the project design and development.

7.2 Design Process

7.2.1 Observations

Understanding the needs of a system’s users is paramount to the design process. Prior to

designing a solution, I attended a week-long group training program for teaching

caregivers PRT, and observed one-on-one training sessions between behavior analysts and

a parent with his or her child. This provided the opportunity to learn about the materials,

methodologies, and feedback employed by clinicians when training caregivers. Attending
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these sessions also facilitated conversations with parents and clinicians regarding the

views on PRT and the challenges of consistent long-term usage. The primary observations

from these sessions relevant to this project are: performance feedback from clinicians is

situated in the context of an activity; evaluating video probes for fidelity was

time-consuming; feedback on progression relied on manually gathered data; and

post-treatment feedback and support was minimal. These observations formed the base

assumptions utilized for the initial UI design.

During the observed one-on-one sessions, the caregiver practiced implementing PRT

with her child in the presence of the clinician. This afforded the clinician the opportunity

to provide suggestions and feedback in real time. This benefits the caregiver by helping

her situate the feedback into the context of his or her immediate behavior. It allows the

caregiver to immediately act on the suggestion. Commonly, the feedback that was

provided started with example. Either the clinician modeled a behavior with the intention

that the caregiver emulated that behavior, the clinician praised a specific interaction that

occurred, or the clinician identified a particular instance where the caregiver acted

incorrectly or missed an important opportunity.

Only the adults were present during group sessions. Clinician evaluation during these

sessions was conducted using 10-minute videos of the adult and child interacting. The

videos were reviewed as a group, with the clinician pausing to provide feedback. As with

in-person training sessions, this allowed the clinician to isolate specific instances in the

video where the feedback was applicable.

Outside of providing face-to-face feedback, scoring video probes is a manual task,

requiring a clinician to review the video, evaluate the adult’s behavior in regards to

implementation criteria, and identify frequency of child vocalizations. This involves

watching the video probe multiple times to ensure proper assessment. For adult

implementation, the scores were assessed in minute increments on a binary system
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reflecting if the adult adequately met the criteria during the interval. The criterion is met if

the adult correctly demonstrates the behavior twice during the interval. No data is

recorded on the specific action that was taken or where in the interval the actions took

place. The scores for each category are tallied and averaged to create a fidelity score

percentage. Achieving a score of about 80% is considered adequate implementation.

Primarily, utterance frequency is used for child vocal assessment. This is based on a

presence or absence value determined by whether or not the child vocalized during a 15

second time period. This can be recorded on whether the utterance was spontaneous or a

response to an instruction from the caregiver, however, this practice was not observed.

The only information collected on the child’s vocal attempts were binary indications of an

adequate vocal attempt being made.

Upon completing the one-on-one training, the caregiver is presented with a report

detailing the treatment and the evaluation metrics from the video probes. This presents a

comparison between an assessment of a baseline video probe recorded prior to receiving

training, and a post-training probe record on the final day of the course.

After the course is concluded, options for continual support are limited. As observed,

the process of training and evaluating caregivers is intensive, and centers lack the resource

availability for support after training. This is problematic. In interviews, clinicians

informed me that one of the primary challenges that led caregivers to abandon PRT is an

inability to adapt the procedure to new activities and learning objectives. This was also

related to me during the group course by a participant that was attending the class after

previously undertaking the one-on-one training.

7.2.2 Automated Data Processing

Both the parent’s implementation fidelity and the child’s vocal ability improvement is

determined by evaluating baseline video probes recorded before treatment and
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post-treatment video probes. Data automatically extracted from each video could be used

for the same purpose. Automated analysis focused on multimodal data, utilizing the video

and audio recorded in the video probes. The probes present a challenge for automated

processing and classification. The videos are often recorded using a handheld camera or

mobile device, causing visual instability. Additionally, due to the activities that are

commonly depicted, the individuals in the frames are often partially or fully occluded.

Audio processing is also challenging, particularly for identifying child vocalizations. The

audio recording quality is often dependent on the camera operator’s proximity to the dyad,

and external noises. Additionally, all child utterances need to be identified. Depending on

the vocal ability of the child, the utterance may represent only attempts at speech that may

just include individual phonemes.

For the initial research, automated data processing focused on extracting information

about the attention state of the child and identifying the caregiver and child vocalizations.

Extracting the attention state of the child follows the methodology described in Heath

et al. (2018). The video was processed using OpenPose to detect body and facial landmark

points from the individuals in each frame. This data, along with an estimation of the

visual focus of the individual, was used to construct a spatio-temporal graph of the dyad in

the frame. The data was used to train a support vector machine (SVM) classification

model based on three class labels - attentive, inattentive, and shared attention. The labels

were based on 30-frame segments, representing approximately one second of the video.

The conclusion reached in Heath et al. (2018) stated that this method only produced 44%

accuracy on individual frames; however, an accuracy of 56% is achieved when

aggregating samples to assign a label to 30 frame segments.

The audio assessment was based on research presented in Heath et al. (2019c) using

the same dataset as Heath et al. (2018). The probes’ audio data was processed to extract

common features using PyAudioAnalysis, and was classified as being silence, noise, adult
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speech, or child vocalizations. Two SVM models, one trained to separate speech from

noise, and a second for differentiating child and adult vocalizations, were used for the

classification tasks. Using this methodology, an overall classification accuracy of 79%

was achieved.

7.2.3 Video Clip Creation

Segmenting the videos into semantically meaningful clips was identified as an important

feature for utilizing automated processing. This would reduce the amount of time the

clinician needed to invest in viewing the video and extracting example clips for situating

pointed feedback. These clips were created by first analyzing the audio data to identify

when adult and child vocalizations occur. This classification information was then used to

create segments containing adult-only speech, child-only speech, and both adult and child

speech. Based on the temporal relationship between the adult and child speech, the child

speech could be labeled as either spontaneous or a response. Each of these segments were

then classified for the attention state by analyzing the video frame data of the segment and

using the most represented label.

7.2.4 Initial Assumptions and Project Goals

The objective of the project is to explore how data metrics automatically collected from

video probes could be used to reduce the amount of time clinicians need to invest to

evaluate caregiver PRT implementation, and how an interface can be designed to afford

new opportunities for clinicians to provide feedback. This involves not only how the

interface can be designed to promote ease of use, but also how PRT evaluation procedures

can be expanded by new data collection techniques.

Initial assumptions on the design were developed to alleviate the need to view the

entire video. Creating the video segments would allow clinicians to view an annotated
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storyboard of the video and select the clips they felt were important to view and remark

on. Additional information would be provided in accompanying graphs. These graphs

were expected to provide a summary of the video, or sections of the video, that could be

utilized to gain an understanding of the interactions prior to reviewing the clips.

Additional graphs would be made to display comparison data between video probes from

the same dyad. This was intended to show the progression of the caregiver’s PRT

implementation fidelity and the child’s vocal communication skills.

The data for the graphs was related to the evaluation criteria that the clinician

manually collected; however, at this stage it was not intended to supplant the manual

metrics. The data that was initially thought to be important to track was the overall

percentage of each attentive state in the video, the percentage of audio classification

throughout the video, the number of adult speeches that occurred while the child was

inattentive or attentive, the number of child spontaneous vocalizations and responses, and

the average length of the child’s utterances.

7.2.5 Sprint 1: Wireframe

The wireframe created for the first sprint consisted of a mockup of the primary interface

page and graphs for visualizing the data extracted from the video. The primary interface

page (Figure 7.1A) was designed to function as a storyboard depicting an abbreviation of

the video along with controls for launching media players and filtering the gridview based

on the video clip labels. Each row of the gridview consists of the time interval, audio label,

attention state label, four screen shots from the clip, audio play button, video play button,

and a comments section. The screen shots were selected from the clip at evenly spaced

intervals. This is intended to show the interaction, without the necessity of viewing the full

video. The comments field was intended for clinicians to provide feedback to the caregiver

based on that specific clip and allow the feedback to be situated within its context.
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Figure 7.1: Depicts the storyboard page throughout the project. (A) is the wireframe
mockup, (B) is a screenshot of the alpha build, and (C) is a screenshot of the beta build.
Video images were retrieved from (Virgir05, 2015)
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Pie charts, bar graphs, and box plots were chosen for displaying data metrics

extracted from the videos. The percentage of the video pertaining to specific attention

states and audio labels was illustrated in pie charts (Figure 7.2). These charts were created

to provide a broad overview of the video. In accordance with current procedures of

evaluating each minute of the video, bar graphs (Figure 7.3) were utilized to show

important related vocal utterance scenarios for the child and parent. In particular, these

show when the parent is vocalizing based on the attention label and if the child

vocalization is spontaneous or a response. A vocalization was determined to be a response

if the child vocalized within three seconds after the adult spoke. More information on the

child utterances were presented in box graphs. Bar graphs were created for each minute

along with a total graph representing the cumulative data from the video.

Figure 7.2: Example pie charts showing child attentive state and speech separation from
video analysis.

Mean length of utterance is a metric that is commonly seen in PRT research as a

measure of the child’s vocal usage. This was represented as a box and whisker plot

(Figure 7.4) showing the distribution of the child’s vocalizations. At this stage, these

vocalizations were based on aggregate 250 ms segments as classified by Heath et al.

(2019c). Frequency of the child utterances was displayed in a grid-based plot showing the

presence or absence of at least one vocalization in a 15 second interval (Figure 7.5).
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Figure 7.3: Example bar graph showing the number of vocalizations in a one-minute seg-
ment. Shows adult speech based on child attention state, as well as child responses and
spontaneous utterances.
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Figure 7.4: Box plot showing the length distribution of the child’s vocalizations. In this
plot, the mean is the top boundary of the box.

Figure 7.5: Grid showing the presence or absence of a child vocalization for each 15 second
increment of the video.
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The storyboard, graphs, and media clips were presented to a group of four behavior

analysts and the design was discussed as a group. Design critiques focused primarily on

the storyboard layout. The use of four screenshots for each segment was seen as

superfluous. The segments typically encapsulate a few seconds of the video, leading to

little new information being provided in each shot. It was stated that a single shot would

be sufficient, as the most important information in the image was the toy or activity the

dyad were engaged with.

Buttons on the storyboard page were also reorganized. The audio-only button was

not seen to be beneficial. With the reduction of the screenshots to a single image, it was

requested that the image be used to trigger playing the video clip. Additionally, a button

for playing the video in its entirety was desired.

The behavior analysts also wanted to be able to easily view the interaction in context.

To facilitate this, they wanted the ability to continue watching the video after the clip’s

ending as well as view preceding seconds of the video without having to navigate to a

different segment. The ability to save these adjusted clips was also requested.

7.2.6 Sprint 2: Alpha Prototype

After receiving the feedback from the sprint 1 deliverable session, the UI was developed

using a .NET WPF framework. The storyboard page (Figure 7.1B) was developed using a

dynamic grid that loaded screenshots and video segment information created in a separate

video extraction process. The framework supported column sorting, resulting in removal

of filter buttons. This page supports multiple videos of the same dyad by using separate

tabs for each video, allowing the clinician to easily move between them. For each

segment, an export button was added to the row to allow the clinician to save the video

clip. As requested, a button for playing the full video was added to the top of the screen.
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Figure 7.6: Screenshots of the video viewer window. (A) represents the alpha build, while
(B) is from the beta build. The pane for viewing the video has been reduced.

An additional page was created for displaying the video segments (Figure 7.6A).

This page is launched when a user clicks on the screenshot image. When launched, the

page loads the full video and cues the playback pointer to the segment start location and

begins playing the video. Once the segment end point is reached, the video is

automatically paused, but can be continued by pressing the play button. Pressing the

‘Update Start’ or ‘Update End’ buttons will save the current playback time as either the

start or end time respectively, allowing the clinician to re-cut the clip.

The deliverable session of the alpha prototype was conducted using a think-aloud

methodology (Lewis and Rieman, 1993) with the same group of clinicians as the previous

session. During the think-aloud, one of the behavior analysts walked through the use of

the UI while verbally describing her actions. This provided perspective on the flow of

events that could be expected in a typical use-case scenario. She began by viewing the
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entire video to perform the typical fidelity scoring process, making a note of exemplary

interactions. Next, she viewed the graphs, particularly noting the ratio of inattentive

versus attentive states. Finally, she examined the video clips, stating she would first look

at attentive and shared attention samples, then view inattentive samples. While going

through the think-aloud it became apparent that clinician’s notes that were not intended to

be passed to the parent were an important part of the process and should be

accommodated in future designs.

Using the video segment viewing page also elicited areas to improve and expand the

UI. During the think-aloud, the clinician viewed the clip, then extended the segment past

the end pointer. She then created a new end point and wanted to return to the start of the

clip. This involved viewing the start time displayed in the text box and manually moving

the playback pointer to the appropriate spot. This could be improved upon by providing a

button to reset the cursor to the beginning.

An additional feature that was requested was the ability to add comments directly to

the video in addition to external feedback that pertained to the entire clip. These notes

would be intended to further capitalize on situated feedback by displaying the comment

for the duration of the video it is applicable to. This will help the feedback recipient to

contextualize the information within the specific action.

7.2.7 Sprint 3: Beta Prototype

For the third sprint, the storyboard page (Figure 7.1C) only received minor revisions. In

the video segment grid, the export button was removed and a new, editable text field was

added for clinician notes. A single export button was placed at the top of the page for

creating and saving video clips. Additionally, a separate button was created for displaying

single video graphs and graphs comparing multiple videos.
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The major features for the beta were centered around saving data and exporting video

clips. For this version of the project, comments and notes were saved to a file, while video

clips were created and saved in a specified directory. Only segments that have comments

from the clinician are selected for export.

The video clip viewing page (Figure 7.6) was updated to include a button to restart

the video from the clip start position and a grid was added for creating in-video

comments. This grid allows the clinician to input the start and stop time that a comment

will appear on the video. The text overlay consists of a dialog box with high transparency

to prevent obscuring the video. This can support multiple comments appearing at different

times during the video clip.

The beta prototype was evaluated by providing the same group of clinicians as the

previous sprint with a downloadable copy of the application. The download package

included the program files, data, example results, and a text document containing

installation and usage instructions. The clinicians were given 12 days to review the

application, and were asked seven questions regarding the usability of the program, the

practicality of the information being provided, and desired features not included in the

prototype. Due to the small number of evaluating users, responses was not anonymized.

Overall, the clinicians stated that the program was easy to use. The clinicians felt that

navigating between videos, launching segments, and viewing graphs was intuitive. The

installation process for the prototype required mapping directories to load the data

correctly, resulting in unnecessary and confusing installation steps. This would be

improved in future iterations by using installers and distributed data storage systems.

The clinicians were excited by the data that was being provided and felt that it would

reduce the amount of time necessary for reviewing the videos. They felt that this would

aid in the feedback they could present caregivers. Additionally, the ability to add

comments directly to the videos was a praised feature. In regard to data, the clinicians
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stated that the metrics being extracted reflected the majority of what would be useful, and

did not have suggestions for additional information that should be collected. It was stated

that providing the child’s utterance frequency data (Figure 7.5) would reduce the time

needed to review a video by 10 to 20 minutes.

No new features were suggested for future implementations, however, there were

requested improvements. One of the questions asked referred to the minimum segment

size for video clips the clinician felt would be useful. Each clinician stated that 10 to 15

seconds is the smallest increment they would like to see. In its current state, the smallest

clip size is 0.75 seconds. Accommodating this will require examining sequence

classification and result aggregation in future research. Apart from segment size, quality

of life improvements, such as providing numerical information on graphs and more

descriptive graph titles, were requested.

7.3 Discussion

The goal of this project was to gain an understanding of how automatically collected data

could be utilized in the feedback and evaluation of caregiver-implemented PRT sessions.

This required looking both at ways to facilitate the current data collection and evaluation

process, and how it can be expanded. The current process collects minimal data based on

segments of time due to the cost of human evaluation. Automated processing allows for

fine granularity of data to be collected that would aid in providing overviews of the videos

along with facilitating comparisons between videos. The intended effect would be to

provide long-term data tracking that could be used to identify progression and indicate

when skill acquisition plateaus are encountered. This would aid the clinician in providing

encouraging feedback, and indicate when new skills or approaches need to be introduced.

Based on the feedback sessions, the data graphs created for the prototype would be useful

in accomplishing this goal.
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The progression of the user interface illustrated that several of the assumptions that

were involved in the initial design did not come to fruition. The goal was to eliminate the

need to review the entire video, however, the first action that was taken during the

think-aloud was to watch the entire video and perform the traditional evaluation. This is

understandable to an extent at this stage of the project, as the metrics being automatically

collected do not encompass the entirety of the criteria being used for evaluation by

clinicians. The segmentation layout and automated collection of child utterance statistics

did eliminate the need for multiple viewings of the video.

An additional assumption that was false regarded the still frames used for the

storyboard. It was presumed that the clinicians would benefit from multiple images in

order to gain an understanding of the actions undertaken by the dyad in the segment. The

clinicians stated that this was unnecessary as the actions could largely be deduced from

the visible objects in the frame.

Also in regards to the segments, the initial assumption was that isolating speech

events would be the preferred method for creating each clip. While this is partially

correct, the clinicians each stated that this information alone was inadequate. The group

consensus was that clips should be at least 10 to 15 seconds long, encapsulating the

important events. The context leading up to the vocal event, and the consequences after,

were valuable for feedback, as well as creating more concrete examples of behaviors.

The two best received features were the frequency of utterance graph and the ability

to create customized video clips. The frequency of utterance graph is a full automation of

a currently undertaken task. The clinicians saw a direct benefit to this information since it

would no longer be needed to be collected by hand. Similarly, the clip controls were seen

as valuable for the creation of demonstration and training tools. During the think-aloud

session, the first comments on how this could be useful were related to creating examples
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for training and presentations, rather than the effect it would have on reducing the time

required for conducting evaluations as intended.

The most important outcome of this project is that it forms the basis for continuing to

integrate automated data collection into PRT evaluation. The data being captured in the

graphs was based on a conceptualization of what would be important to provide more

specific feedback at a reduced human cost. Apart from the utterance frequency metrics,

this data is not currently being collected for use in caregiver training. The project provided

an opportunity to evaluate how useful this data could be, and the best way it could be

presented to clinicians to increase the feedback that can be provided to caregivers.

7.4 Re-examining Keyframe Detection and Clip Automation

The audio signals were used for creating video clips; however, the clinicians felt the

granularity of the clips was too small to be of specific use. Instead they want 10 to 15

second clips that encapsulate the interaction. Naively, this could be accomplished by

localizing the audio signal, then expanding the clip to include preceding and succeeding

videos. Depending on the actions that are depicted, this may not be the ideal division.

Examining keyframe detection techniques could provide a method of ensuring that the

important interactions are depicted in the video clip. Detecting the keyframes would

provide starting and stopping points for video clips. Before incorporating the audio signal,

it was important to evaluate how current keyframe approaches perform on the PRT dataset.

There are two related goals that keyframe algorithms address. First, keyframe detection

has a low threshold of change and is intended to abbreviate the video by removing frames

with a high similarity. This was explored on the PRT dataset using Key Frame Detector1.

The second approach, scene or shot detection, has a higher threshold for change and is

more concerned with detecting larger background changes that indicate a scene change in

1https://github.com/joelibaceta/video-keyframe-detector
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the video. Scene detection was applied using Shotdetect1. Both Key Frame Detector and

Shotdetect compare data frames using the histogram of pixel color values.

Neither keyframe detection nor scene detection are ideal for identifying the important

interactions in the videos. The PRT sessions are shot in a single environment and may not

contain significant changes in the pixel values to suggest a different scene. For the most

part, this is reflected in the results from using Shotdetect on the PRT videos, where the

majority of the videos have under five shot change frames detected. The high results from

the Dyad 2 Base video are understandable considering the child in the video is highly

ambulatory and there is substantial movement of both the individuals and the camera

throughout the video. The high number of detected scenes from the Dyad 2 Post and Dyad

4 Post videos are more difficult to explain. In the Dyad 2 Post video, the parent and child

are seated and watching a video on a mobile device. There is some instability with the

camera and the child changes seating positions; however, there are no other major frame

changes that would indicate 19 different scenes. The Dyad 4 Post video is a similar

scenario with the parent and child playing with toy cars on the floor. The entire scene has

a singular perspective of the interaction. Making the threshold value for detecting scenes

more sensitive did not change the number of keyframes that were detected.

Key Frame Detector responded to threshold adjustments. Keeping the value too low,

at 0.3, resulted in thousands of keyframes for each video, while a high value, 0.8,

produced more manageable results. These capture the macro movements of the

individuals, but it is difficult to calibrate to account for more subtle movements. Making

the threshold too sensitive causes the algorithm to react to camera instability.

A graph-based approach to keyframe detection is likely to yield more favorable

results. Part of the process involves extracting the body pose points for the individuals in

the frame. These values can be used to detect when substantial body movements occur

1https://github.com/yu239/shotdetect
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that indicate a change in the interaction. This change can be used as the basis for detecting

keyframes. Using this approach will aid in addressing camera instability and occlusion

that could be problematic for interaction-based keyframe detection.

Part of the data extraction process for the body pose information incorporated

methods for normalizing the data. The normalization process was intended to account for

different frame sizes; however, this also provides an anchor point that addresses

instability. The individual on the left of the frame’s neck coordinates are used as a

common origin for the body points from each individual. All of the point values will be

based on their relation to this point, making the camera perspective less influential than

would be expected in a color histogram approach.

Occlusion was also addressed in the pre-processing techniques described in Chapter

3. This approach attempts to approximate a missing point’s location based on past and

future values. Apart from this, if a body point is occluded from the graph it should not be

utilized when comparing two frames. This was accomplished by removing the missing

point and the corresponding point in the comparison frame from the calculation of the

similarity score.

Reviewing the keyframes counts in Table 7.1 provides insight into how the different

approaches compare with one another. Primarily, what needs to be determined is how well

the algorithms are able to detect important interactions between the parent and child in the

video, and its robusticity to camera instability and occlusion. For these we want to look at

the most dissimilar results in the table. Intuitively, the dissimilarity identifies videos where

the approaches diverged in the information that was useful for determining keyframes.

The Dyad 2 Post, Dyad 4 Post and Dyad 7 Post videos provide scenarios that can be used

for diagnostics.

The Dyad 2 Post video depicts the child and parent watching a video on a cell phone.

As described previously, there is no substantial movement or shift in perspective during
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Table 7.1
The number of keyframes detected for Shotdetect and Key Frame Detector are compared
to an ST graph-based approach. Results are reported for multiple threshold values.

Shotdetect Key Frame Detector ST Graph

1.0 0.3 0.6 0.8 300 400 500

Dyad 1 Base 3 3366 70 17 60 26 10
Dyad 1 Post 3 4521 390 47 149 88 66
Dyad 2 Base 3 3042 301 83 86 50 34
Dyad 2 Post 27 5714 252 26 18 5 4
Dyad 3 Base 19 4044 182 34 180 132 87
Dyad 3 Post 1 2792 60 8 84 46 27
Dyad 4 Base 5 1898 87 12 45 31 16
Dyad 4 Post 35 2676 127 29 139 79 53
Dyad 5 Base 1 5682 188 32 132 83 49
Dyad 5 Post 1 6006 746 25 249 211 176
Dyad 6 Base 2 5903 555 14 114 73 61
Dyad 6 Post 2 5610 306 41 329 275 218
Dyad 7 Base 1 5600 284 28 165 126 95
Dyad 7 Post 2 5931 425 7 104 78 53
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the recording. Interestingly, both the Shotdetect and Key Frame Detector have relatively

high keyframe counts in comparison to their performance on other videos. Conversely, the

ST graph approach has a much lower keyframe count compared to other videos.

Reviewing the video, there is steady camera movement likely reflecting the breathing of

the operator, and occasionally more erratic movement when the operator adjusts her

position. These movements are not substantial; however, because the comparisons are

relative to the video and there is little movement from the individuals and no changes in

the background, the camera movements are triggering the keyframe detectors. Confirming

this, the images from the keyframes map to periods of camera movement. As

hypothesized, the ST graph was less influenced by the camera movement, and the

keyframes are limited to the movement of the dyad. A similar effect is likely why

Shotdetect identified a high number of keyframes in Dyad 4 Post. In the majority of the

video, the individuals are sitting on the floor playing with cars. Unlike in Dyad 2 Post,

there is movement from both the parent and the child as they drive the toys along the

ground with their arms and maneuver into different positions. These actions seemed to be

adequately captured by the ST Graph approach and, depending on the threshold, the Key

Frame Detector. However, the Key Frame Detector appears susceptible to camera

instability, particularly in the early part of the video.

The Dyad 7 Post video begins by recording the parent and child selecting a game

from a counter, then sitting at a table to play the game. What is interesting in the keyframe

metrics is the difference in the Key Frame Detector performance between threshold values

of 0.6 and 0.8. Reviewing the frames from the 0.8 threshold reflects the process of

selecting the game, moving to the table, and sitting down. No additional frames are

reported after sitting, despite periodic hand and arm movements when each individual

takes his or her turn. These movements were then captured in minute detail at a threshold
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of 0.6. The ST graph was more stable between threshold changes and was able to capture

more of the key movements while the dyad are playing the game.

Viewing the results for Dyad 3 Post and Dyad 7 Base provide insight into how the

detectors perform under occlusion conditions. Dyad 3 Post is an example of periods of

partial occlusion, particularly in the middle of the video when the parent is showing an

illustrated book to the child. The parent is often partially occluded, including frames

where her face is blocked by the book. The algorithms appear to be fairly resilient to this

behavior. Dyad 7 Base has sustained periods where the adult is not in the frame. During

these periods, the ST graph was more sensitive to creating unnecessary keyframes.

These results suggest that more dependency on the individuals’ movements reflected

in the ST graph is a viable method for addressing camera instability; however, more

research is needed, particularly in addressing full occlusion. This research would include

evaluating different similarity metrics such as cosine distance or Mahalanobis distance if

using a clustering approach. The Key Frame Detector approach may also be viable if

provided an optimal threshold. These approaches also need to be validated using

additional datasets depicting dyadic interactions.

7.5 Extending the Interface for Parent Usage

The application evaluated in this article was designed to accommodate clinical

professionals and aid in the support they are able to provide caregivers learning to

implement PRT. The question of how relevant this system would be if provided directly to

the caregiver is worth addressing briefly. Caregivers choose to learn PRT in order to gain a

structured methodology for helping their child develop social and communication skills.

Acquisition of knowledge on intervention methods is left solely to the caregiver, requiring

him or her to be self-motivated to improve implementation of the techniques. Because of
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this, designing technology to directly aid parents learning PRT needs to follow principles

of self-regulatory learning.

Self-regulatory learning has four primary phases: defining a task, setting goals,

working on achieving the goals, and adapting the process to a new task (Winne, 2011).

Utilization of the storyboard features presented in this article could aid the learner in

evaluating progress on meeting his or her goals. By automatically creating segments of

interest, the caregiver could review specific areas of the video that could highlight correct

implementations of PRT, while also showing missed opportunities or ineffective

behaviors. Reviewing this video immediately after the PRT sessions would help the

caregiver situate the feedback in the context of the activity (Robinson, 2011; Suhrheinrich

and Chan, 2017). This provides a framework for self-monitoring and self-evaluation of the

caregiver’s interaction with his or her child (Kitsantas and Kavussanu, 2011).

Building self-efficacy is an important part of the learning process and is a key

component of successful self-regulatory learning (Kuhl, 2000). This situation is an

interesting scenario from a learning and motivational perspective. The caregiver is

primarily interested in the knowledge acquisition and improved skill performance of the

child, not his or her own; however, the child’s improvement will be influenced by the

caregiver’s implementation fidelity. Fostering self-efficacy in the caregiver, and improving

his or her confidence in the effectiveness of PRT, is dependent on both the child and

caregiver performance metrics and how they progress over time.

Although self-regulatory learning is directed at the individual, facilitating

communication between the learner and experts is an important part of the process.

Learners who have access to other individuals to ask questions are more likely to be

successful (Pintrich, 2000). In the case of PRT, maintaining a connection between the

caregiver and the clinician will help the caregiver gain confidence in the implementation
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strategies, as well as provide a resource to aid in overcoming plateaus in the learning

process for the caregiver and the child.

7.6 Future Development

The UI presented in this article reflects a prototypical design evaluating core components

that would facilitate evaluation and feedback tasks for behavior analysts. Further work

could be undertaken to make this prototype more robust and personalizable.

This UI is intended to be part of a larger system. A complete system would include a

persistent back-end for data storage, a distributed architecture for handling the video

processing tasks, and a second front-end application for caregivers to upload videos,

receive clinician comments, and view automatically extracted performance metrics.

Designing the caregiver UI would benefit from a similar approach to the clinician UI,

incorporating both clinicians and caregivers to evaluate the UI at incremental stages in the

development. The expectation is that caregivers would benefit from features that help

provide motivation and support self-regulatory practices.

More effort is needed to improve the automated video clip creation and labeling.

Based on clinician feedback, the video clips need to be aggregated to a minimum length of

10 to 15 seconds. Additional research will focus on how to evaluate longer sequences of

video data, as well as examine multimodal solutions to identifying periods of attention.

In addition to the current data being extracted, there is the opportunity to provide

information regarding the affective state based on video, audio, and lexical data (Bertero

et al., 2016; D’mello and Graesser, 2010; Le et al., 2017; Parthasarathy and Busso, 2017;

Rudovic et al., 2018). Data on the emotional state of the individuals could provide useful

information to the clinician, as well as being important for caregiver self-reflection on

depicted activities. This could also provide insight into activities that are particularly

motivating for the child.
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The design evaluation for this project was limited to four behavior analysts. This

provided adequate insight to develop a prototype; however, the application would benefit

from recruiting a broader number of users for future evaluations.

7.7 Conclusion

Incorporating behavior analysts into the design and development process afforded the

opportunity to gain a greater perspective on not only the interface needs of the project, but

the practicality of the information being collected and presented. Following the

collaborative design structure in combination with aspects of agile methodology allowed

the researchers to gain perspective and pivot the project to meet the clinician’s needs as

they were identified. The foundation of the project, the initial wireframe, was based solely

on observation and research. Although fundamentally useful, it was immediately apparent

to the clinicians that it needed to be simplified. Utilizing a think-aloud for the evaluation

of the alpha prototype created the opportunity for both researchers and clinicians to

identify missing key functions and desirable features. The final evaluation of the beta

prototype gave the clinicians the opportunity to experience how the application could be

utilized, and provided important feedback for continuing the project in the future.

Additionally, the clinician feedback drove the need to discover methodologies for

capturing important interactions in a video clip. Using color histogram-based approaches

to keyframe detection were subject to camera instability. To address this, a keyframe

detection approach using the ST graph of the visual pose data was introduced. Preliminary

results suggest this is a more robust method for determining keyframes that could be used

to create video clips.
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Chapter 8

CONCLUSIONS, UNANSWERED QUESTIONS, AND RECOMMENDATIONS FOR

FUTURE WORK

This dissertation has evaluated the initial steps for designing and creating an automated

feedback system for supporting parents learning to implement PRT with their children.

This domain exposes novel and complex problems for machine learning and artificial

intelligence research. The forefront of the research discussed in previous chapters

examined detection of child attention. Detecting human behavior is a distinctly more

complicated problem than detecting specific activities. Human behavior manifests

differently in different scenarios and activities, and often varies between individuals. The

research presented sought a means of using machine learning techniques to generalize the

detection of attention to support the variation that can be expected in PRT video probes.

Accomplishing this task has important applications in a wide variety of domains ranging

from education to public safety.

PRT video probes offer a novel scenario for exploring speech-related technologies.

The difficulty of common VAD and ASR techniques to model the child-directed speech

patterns utilized by the adults in the PRT videos reflects models that are rigidly trained

under assumptions of acceptable degrees of articulation. This illustrates challenges that

need to be addressed in order to accommodate people with atypical or varied speech

patterns. The PRT videos also present a situation where it is not only important to detect

and understand verbal speech, but where nonspeech vocalizations are equally as

important. This is reflected in the need for the speech system to correctly recognize all of

the child’s utterances during the interaction.

In addition to these challenges, the recording environment presents obstacles that are

relevant to the application of machine learning in the real world. Recording environment
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and quality of data capture cannot be guaranteed in the PRT video probes. Correctly

assessing the videos requires using methodologies and algorithms that are robust to

missing and noisy data.

Addressing these challenges places the research presented in this dissertation into the

next frontier of machine learning research and application. Examining the feasibility in

applying computer science to the domain of PRT videos is a novel undertaking and

presents the opportunity to examine conditions that are important for expanding the

capabilities of new technologies. These new technologies need to be trained to generalize

tasks, looking beyond detecting specific activities into identifying key behaviors. The

technologies need to be robust and implementable on ubiquitous devices under predictable

environments. Most importantly, the technologies need to be diverse, supporting a wide

range of variation in activities and individuals.

Continuing the research in automated metric extraction needs to examine different

learning methodologies, particularly how deep learning can be incorporated. To

accommodate this the dataset needs to be expanded. Creating the ideal dataset will focus

on increasing the number of participants, and incorporate more variety regarding the

people, places, and activities that are depicted. This will aid in the creation of algorithm

that can generalize learning tasks to accommodate the naturalistic implementation at the

center of PRT.

Extracting implementation metrics and diagnostic data is an important task the

automated system can perform that alleviates the workload for expert clinicians.

Examining the current formal assessments that are used in autism-related research

provides an avenue for additional tasks that could be automated to the benefit and support

of academic communities.

The data extraction algorithms and the prototype UI are intended to be a part of a

larger system. The ideal design and implementation of this system requires additional
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debates weighing the pros and cons of different system architectures. Distributed

computing and low-power processing are two particular paradigms that warrant

discussion. Additionally, the feedback modalities of the system need to be examined to

determine the best methodology for relaying information to participants and utilizing

performance metrics to motivate continued usage. In tangent with this, new technologies

are emerging that could be incorporated into PRT and the automated feedback system to

provide more flexible tools for parents to engage their children, and for clinicians to

extract new data metrics.

The final thoughts of the dissertation briefly explore other domains that could benefit

from the approach that has been presented. Educational and clinical environments are the

most likely candidates as these reflect similar circumstances to PRT. Going beyond these

domains, other recordings of dyadic and multi-person interactions could benefit from the

dissertation research. Interview scenarios and police body camera recordings will be

briefly discussed.

8.1 Alternate Approaches

8.1.1 Application of Deep Learning Algorithms

Deep learning algorithms require a large amount of data to be successful. The size of the

PRT dataset limited the feasibility of training deep learning algorithms from the ground

up. Exploratory attempts to train a PyTorch DNN classifier did not achieve above an

average of 60% training accuracy across the validation sets. With more data, deep learning

approaches should be explored for their classification potential and the flexibility they

could provide to addressing the problem. In particular, the multimodal aspects of the

project could benefit from deep learning algorithms. This includes looking at different

feature and decision fusion techniques that could be explored.
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Multi-task learning has been used in similar domains as multimodal learning

algorithms. Emotion and affect recognition are a common topic. Bidirectional RNN (Le

et al., 2017), DNN (Parthasarathy and Busso, 2017), and deep belief network (Xia and

Liu, 2017) have been utilized recently in order to classify arousal and valence from audio

data. These approaches classify arousal and valence separately, then use the two values to

determine affective state. Arousal is typified by level of emotion or excitement in a

response, while valence measures whether the response is positive (happy, excited) or

negative (angry, frustrated).

Thanda and Venkatesan (2017) incorporated video data into an automatic speech

recognition network in order to capitalize on the visual cues when audio signals were

insufficient due to noise or interference. They built upon existing research to design a

DNN-HMM ensemble network. They validated their approach against a single task

trained DNN model and concluded that the multi-task approach reduce word recognition

errors when noise was present in the audio data.

Multimodal data is an important aspect of this project. The correlation between the

audio data and the visual data in regards to attention was discussed in Chapter 6.

Exploring multi-task learning solutions could be a useful method for extracting features

that could be diagnostic for both visual attention recognition and VAD/speaker separation.

As with other deep learning approaches, there was insufficient data to effectively train a

multi-task classify. Attempts exhibited poor ability to converge, only achieving an average

accuracy of 53%.

8.1.2 Self Supervised Learning

Self supervised learning is a promising method that has the potential to aid in multimodal

assessment of PRT videos. The audio-video action recognition research conducted by

Owens and Efros (2018) could be applicable to this problem. This work trains a deep

179



neural network to learn the association between audio signals and actions in videos based

on their temporal alignment. The synchronization of audio and action is important in PRT

fidelity measurements. A fundamental goal of this dissertation is the identification of

when a proper ‘opportunity to respond’ has been created by the interventionist. This

involves the temporal alignment of the interventionist’s instruction with the visual

inference of the attention state of the child. Utilizing a training methodology similar to

Owens and Efros’s could make the recognition of this event easier to detect, and not

require directly classifying the attention state. This would need to be explored based on its

ability to generalize to difference sequences of actions that would reflect the variation in

activities that can be anticipated in PRT videos.

Contingency is an important part of PRT implementation fidelity that has not been

explored previously. This involves the interventionist relinquishing control of the

motivational activity or object to the recipient quickly after a recipient provides an

adequate answer. Self supervised learning techniques could be used to assess when this

transfer has occurred and aid in the localization of preceding and succeeding vocalization.

The networks trained by Owens and Efros appear to associate the audio signals with

alterations in the pixel data of the images to identify the audio’s likely source. While the

examples that have been presented show this to be fairly robust, PRT video probes would

offer a challenging implementation environment. In particular, the toy noises and sounds

from other activities may be difficult to localize if other motions are occurring

simultaneously in the videos. An example from the publication illustrates the algorithm is

capable of discerning speech from actors out of the frame. It would be interesting to

explore if this translates to in-frame occlusion scenarios.
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8.1.3 Alternate Sample Labeling and Attention Models

The model of attention utilized for labeling the dataset was based on available literature

regarding visual cues (Koegel, 1988; Suhrheinrich et al., 2011). The primary visual cues

that the child is paying attention to the adult focus on the child’s gaze, body orientation,

and rate of movement. According to the resources, the child is attentive when looking

directly at the adult or looking at an object in the adult’s control. This is often

accompanied by the child having his or her body oriented toward the adult, and the child

may be reaching or pointing at an object in the adult’s control. Generally, the child will

not be rapidly moving during these periods of attention. Shared attention is a more

prolonged attentive state. This is reflected by the adult and child engaging in a joint

activity or sharing a visual focus on a mutually controlled object.

In contrast to the attentive state, the inattentive state occurs when the child is engaged

in a solitary activity, ambulatory, or engaged in stereotypical or self-stimulating behaviors.

This also includes disruptive behaviors such as acting out or having a tantrum.

For the dataset labeling, the individual one second segments were viewed and

assigned a class based on these visual cues and the activity presented in the clip. In future

research, alternative sample labels and models could be explored and compared in order to

determine the most effective methodology.

Labeling the dataset for attention was based on if the child was attentive to the

parent, inattentive, or engaged in a shared activity with the parent. However, this labeling

simplification may have exacerbated the epistemic uncertainty condition in the dataset. As

has been discussed in the previous chapters, circumstances depicted in the validation sets

did not have sufficiently similar samples in the training set for accurate classification.

Labeling the dataset based on visual cues, instead of attention state, may have aided in the

generalization between samples.
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Recommendations from the literature regarding the visual cues for determining

attention were followed during the dataset labeling. This alternatively could have been

accomplished by labeling the cues themselves, then inferring attention after classification.

For instance, this would have included data labels regarding the child looking at the

parent’s face, looking at the parent’s hands, engaged in solo play, or looking at a shared

object. These labels could have been general enough to not require specific activity

detection.

This approach may not be ideal considering the size of the dataset. Having more

classes would dilute representation and exaggerate class imbalance problems. Using

visual cues may have provided more opportunities for using pre-trained models and

external datasets. While the attention labels were specialized to the problem, other dyadic

datasets may be applicable to classifying visual cues.

Apart from visual-based methods, audio and biometric media could be utilized to

assess engagement and attentive state. Analyzing the child’s utterances in regard to the

parent’s instructions could be utilized to infer if the child was paying attention.

Presumably, the proximity of the child’s vocalization, the relevance to the instructions,

and the perceivable emotion in the response could indicate if the child was paying

attention when the instruction was initiated. The primary limitation of this approach

would be in assessing individuals with developing communications skills that only

demonstrate a limited vocal range. In particular, if the child is non-verbal, there may not

be a vocalization to indicate attention. Using wearable sensors that monitor an

individual’s body metrics could also be used to infer attention. In particular, electrodermal

activity and heart rate sensors could be utilized to detect engagement, arousal, or anxiety

in the individual. If the child was wearing the sensor, the data regarding these states may

be able to provide insight into the child’s attention state. This would also be more robust

to individuals that do not demonstrate stereotypical visual cues for attention.
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The aforementioned approaches to modeling attention employed absolute classes for

labeling. An alternative would be to treat labels as continuous instead of discrete.

Discerning attention state, and similar human behaviors, can be subjective, especially

when considering children with autism may not conform to stereotypical signs of

attention. Instead of assigning a specific label, using a likelihood or probability value may

make detection more accurate. This could be implemented in a similar fashion to emotion

detection, where arousal and valence scores are computed on a continuum and the values

are used to infer the subject’s motivational state. A limiting consideration is how much

data would be needed to train a sufficient model.

8.1.4 Sequence Recognition

The research presented in the preceding chapters have followed the idea that most action

recognition focuses on particularly diagnostic frames for classification, and not on an

entire sequence (Schindler and Van Gool, 2008). While this has worked well for action

recognition that is decidedly objective, the same may not be true for behavior recognition.

In conjunction with the visual cue labeling, examining the sequence of frames may

provide more diagnostic information for attention classification. This would provide

flexibility in how the temporal information can be incorporated into the classifier. Feature

fusion techniques that were described in Chapter 5 could provide a foundation of methods

of merging the data when training classification models. These approaches could be

compared to sequence specific classification techniques such as HMM and conditional

random fields.

Detecting shared attention, as seen in the results from Chapters 3, 5, and 6, is

particularly difficult, and largely task dependent. Unlike the attention state that has clear

visual cues of attention, shared attention could have a more varied visual profile. Different

activities could have periods where the child shows attentive visual cues, such as looking
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at the parent or a shared object, or inattentive cues such as concentrating on an object in

his or her possession during a game. The assumption in using the ST graph approach for

visual cues relied on the classifiers recognizing proximity and shared gaze as indicators of

shared attention. Research moving forward needs to address the sequence of events that

indicate shared attention more overtly.

8.2 Ideal Dataset

Examining the attention classification shows that the variety of circumstances and actions

depicted in the videos causes a high level of epistemic uncertainty in the model.

Increasing the labeled samples would address this uncertainty by providing more diverse

training samples that would help the model generalizing the classification tasks.

Constructing a new dataset affords the opportunity to look at a holistic approach to

applying artificial intelligence to PRT video probes. The ideal dataset for PRT should be

designed to incorporate related audio-visual classification objectives in addition to the

labels for attention and vocal utterance that are the focus of the proposed project. This

would aid in attracting more research attention to technology-supported PRT, while

providing a challenging ‘in-the-wild’ dataset for testing various algorithms. This dataset

would need to be created in ways that would reflect the intended implementation

environment and incorporate experts in the data labeling.

8.2.1 Leveraging Existing Video

An astonishing amount of video is publicly available on popular sharing sites,

predominately YouTube1 and Vimeo2. With hosted videos numbering in the billions, it is a

logical assumption that a large number of these videos will reflect dyadic interactions

under similar conditions to PRT videos probes, with many direct samples of PRT. While
1https://www.youtube.com
2https://vimeo.com
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the volume of videos presents a boon to finding data, it also makes the task of identifying

acceptable samples difficult. While querying is the best method of finding candidates, it

still produces a large quantity of results, making manual video selection time consuming.

This also requires that the video descriptions adequately describe the contents. To

effectively utilize YouTube and other sharing sites for samples, either teams of individuals

are needed to review candidates or an automated evaluation process needs to be enacted.

This could be implemented using the base information regarding expectations and

assumptions in PRT scenarios that have been analyzed for this research. In particular,

examining extracted information on the individuals in the frame using OpenPose could

provide an opportunity to evaluate if the video represents an applicable scenario without

manual intervention. Additional videos for analysis could also be obtained from autism

research and resource centers; however, unlike publicly shared data, these videos are

collected under privacy agreements which will limit their usage.

Along with the challenges to finding and selecting appropriate videos, using the

videos in supervised algorithms will require manual labeling. Ideally, for scenarios

involving human behavior, an expert should be used for sample labeling. This would

provide the best opportunity for a machine learning model to correctly learn the

application. In particular, the expert would be more adept at detecting subtle signs of

attention, especially in individuals who may not exhibit the stereotypical visual cues.

Even without labeling, the additional video data could be used to improve

classification models. The data could be included in training early layers in deep learning,

giving the model more data for detecting low level features. The labeled data would then

be used to train the final layers to detect the specific class. Similarly, the unlabeled data

could be used to train an autoencoder that would aid in reducing the dimensionality of the

input vector, which may improve classifier performance.
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8.2.2 Behaviors and Activity Recognition

Recognizing activities and making inferences based on individual and dyadic behavior are

an integral part of PRT evaluation, as explained in Chapter 2. Of foremost importance to

the research presented in this dissertation is the evaluation of the child’s attention state.

Expanding the dataset would not only benefit from more labeled samples of joint

attention, but would be improved by adding labels regarding affect and engagement, as

well as activity recognition. Addressing each of these tasks separately would allow for

additional metrics to be extracted from the videos, providing more information that could

be used for assessments. Additionally, as the concepts are influenced by one another,

having additional labels would allow for joint model and multi-task training that could

improve classification performance.

The attention state of the child, particularly social attention, is an important part of

autism research and a fundamental aspect of the proposed project. Numerous studies have

focused on analyzing and developing joint attention in children with autism (Jones and

Feeley, 2009; Kasari et al., 2015; Lawton and Kasari, 2012). Having a labeled dataset on

attention would aid this research by providing the opportunity to develop detection and

classification technologies that could aid clinicians and parents in evaluating intervention

procedures.

A dataset for joint attention was created using a wearable camera that provided the

perspective of the child (Frank et al., 2013; Pusiol et al., 2014). This dataset was labeled

in regards to the periods where the child was visually focused on the caregiver and

performed an action that he or she was engaged with the adult. The MMDB (Rehg et al.,

2014) dataset provides multiple camera views of interactions between a child and a

clinician. These interactions are labeled on a five-class scale based on the visual cues that

show the child is engaged with the clinician or a joint task; however, publications using

the dataset for automated classification have combined labels to create few classes
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(Rajagopalan et al., 2016, 2015; Tsatsoulis et al., 2016). This dataset was created using

predetermined activities under laboratory conditions.

The proposed dataset would differ from these by providing a third person perspective

of interactions in an uncontrolled setting. The attention labeling would focus on three

states based on the child’s attention: attentive, inattentive, and shared attention. Attentive

refers to when the child is actively focused on the parent. In a PRT session, this is

illustrated by the child being still, visually focused on the parent, and possibly reaching

toward the parent. This likely occurs when the parent has control of the object or activity

the child is wishing to engage with. The inattentive state would be indicated by the child

engaging in solo activities, being ambulatory, exhibiting frustration or tantrums, or

self-stimulating. Shared attention occurs when the parent is integrated into an activity

with the child in a way that allows him or her to pause to prompt a learning opportunity

without disrupting the activity. In this case, both attentive and shared attention states are

likely indicative of joint attention or social engagement as defined in the datasets

described above.

Judging affect or engagement has been a focus area for several multimodal

classification research publications (Bosch et al., 2015; Castellano et al., 2012; Grafsgaard

et al., 2014; Le et al., 2017; Parthasarathy and Busso, 2017; Rudovic et al., 2018; Xia and

Liu, 2017). Approaches based on audio-video data are most applicable to the proposed

project; however, adding physiological sensors, particularly electrodermal activity

monitors, would be beneficial for affect and engagement studies. The aforementioned

works, with the exception of Rudovic et al. (2018), did not focus on individuals with

autism. Additional samples for children with autism would benefit the research

community. These works also focused on engagement in interactions between

applications or robots, while the proposed dataset would present scenarios for affect based

on social interactions. Additionally, detecting affect of both the parent and the child has
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been an important part of assessing PRT fidelity in research studies (Johnson et al., 2011;

Kazdin and Whitley, 2003; Verschuur et al., 2019).

Like attention, labeling the dataset for affect should be conducted by two behavior

experts and consist of labels for the parent and child. The labeling should follow the

standard presented in other publications, focusing on levels of arousal and valence

exhibited by the individual.

Although the approach to the current project has been to extract behavioral trends

without regard to specific activity, the dataset would provide an opportunity for activity

recognition. In particular, these activities would largely include child play and dyadic

interactions. Dyadic interaction datasets have focused on common two-person activities,

such as handshakes, kissing, hugging, and high-fives (Patron-Perez et al., 2010; Ryoo and

Aggarwal, 2010; Sener and Ikizler-Cinbis, 2015; Van Gemeren et al., 2016).

Annotating the dyadic actions would aid in developing more robust activity

recognition algorithms, especially for child-preferred activities. This also provides a video

activity dataset for children with autism that is not focused solely on self-stimulating

activities; however, if a child did engage in self-stimulating activities, this dataset could

capture the activity that preceded the behavior. This could help put self-stimulating

behaviors into context to aid in identifying triggers. Activity labels should include a brief

description of the activity, and whether it is engaged in by the parent, the child, or both.

8.2.3 Object Detection and Tracking

Object tracking in videos is an important step in evaluating PRT fidelity criteria involving

parent recognition of a natural motivator. Often a child is motivated by one or more

objects, such as toy cars or a cell phone. Parent identification and control of this object is

important for engaging the child and gaining the child’s attention in order to prompt a

response. Outside of PRT research, this provides an opportunity for developing object
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recognition, tracking, and saliency algorithms from ‘in-the-wild’ video data. In particular,

the dataset could be useful for research regarding detecting or predicting objects that

video subjects will interact with, and tracking objects under conditions with high rates of

movement and occlusion.

Ideally, annotating objects in the video would provide coordinates for the bounding

box on each frame. For PRT-based research, identifying the object that is currently the

motivator along with who is in control (the parent or child) may be sufficient labelling.

One of the main areas caregivers struggle with is creating new instructions based off

of the child’s object of interest. Having descriptions of the objects in the frame, such as

color and function, provide the opportunity to research machine learning tasks directed at

generating sample instructions based on visual information.

8.2.4 Vocal Utterance Detection

The majority of the research and application of PRT has focused on improving social and

communication skills. The approach relies upon effectively providing instructions,

evaluating responses for validity and effort, and delivering reinforcement in a timely

manner. Automatically evaluating these tasks is dependent on voice activity detection,

speaker separation, and automated speech recognition. The ideal dataset needs to address

these activities by providing labeling on audio data along with transcripts of speech and

vocalizations.

As presented in Chapter 4, PRT videos offer a challenging scenario for audio

recognition. As observed in the current video probe dataset, the audio contains not only

the parent and child vocal utterances, but noises from toys and play activities, voices from

electronic media, additional adult speech from session spectators, and general

environmental noise. Research into extracting speech from noise often examines droning
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repetitive noises from different locations (Drugman et al., 2016; Kim and Hahn, 2018).

The noise in PRT videos is aperiodic and largely dependent on the activities in the videos.

Speech and vocal utterance patterns differ from other conditions. Parents often use

child-directed speech patterns that are exemplified by elongated pronunciation of words,

high voice pitch, and exaggerated excitement. This could make the speech more difficult

to differentiate from noise or child speech. Child vocalizations may not consist of fully

articulated speech, which may be more difficult to detect and separate from other audio.

For the ideal dataset, vocalization audio should be annotated with start and stop times

and the speaker for each segment. Likewise, noises from activities or toys should be

labeled based on their time interval and the object creating the sounds.

Going beyond voice activity detection and speaker separation, the vocal patterns

observed in the PRT video probes would provide challenges for ASR technologies. In

addition to the difficulty in identifying child-directed speech patterns from adults,

recognizing the individual words could be problematic. In child-directed speech,

pronunciation of words could be intentionally distorted. Depending on the ASR

implementation and training dataset, this could lead to misrecognition of words from adult

speech. Child vocalization and speech skills exhibited in PRT video runs the gamut from

non-vocal to fully articulated, sentenced speech. The variation in speaker ability further

compounds inherent difficulty in child ASR tasks. Using the corpora from PRT video

probes would aid in creating robust ASR technologies and may be beneficial to

researchers in the domain of speech pathology.

Studies involving lexical data would also benefit from labeled vocal data from PRT

video probes. From a PRT perspective, analyzing the lexical data would aid in monitoring

child vocal abilities in order to determine appropriate maintenance and target tasks to be

utilized in training. The lexical data could also be used in conjunction with video, audio,
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or physiological data to enhance affect research (Bertero et al., 2016; Mendels et al.,

2017).

8.2.5 Contextual Information

Information regarding the implementation context and attributes of the participants in the

videos should be recorded and easily accessible. This should include descriptions of the

environment the session occurred in along with demographic and skill information for the

parent-child dyad. As addressed in Chapter 6, data on the child’s age and his or her vocal

skill could be useful information for researchers to improve classifiers (Rudovic et al.,

2018), as well as provide a means for filtering the dataset to address specific

configurations. The parent’s familiarity with PRT would also be an important feature to

note. Additionally, knowing if a video is a baseline, inter-treatment, or post-treatment

assessment would be beneficial.

8.2.6 Dataset Logistics

Collection of a dataset for PRT video probes should emphasize variation as much as

possible. This variation would require classification algorithms working with the data to

learn generalized representations for the target tasks. This generalization would be needed

in order to account for the broad concept of PRT implementation.

The dataset used in the initial work for this project had seven participants in 14

videos with approximately 10 minute runtimes, giving a total dataset length of 140

minutes. Due to the variability in the domain, more participants and a greater number of

videos should be collected. Due to task repetition in the video, the 10 minute runtime

could likely be reduced to five minutes. Making considerations for participant recruitment

and labeling time, 25 participants recording three videos each would likely be sufficient

for continued research. This would bring the dataset total to 375 minutes of data.
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Most of the research on PRT implementation has focused on children between the

ages 24 – 60 months. The lower age limit for participants should be above the age when

children begin to develop verbal communication skills. The upper bound is less

significant, but likely should be restricted to 12 years of age if the dataset is expected to be

directed at adult-child interactions. Ethnographically, the dataset should represent a

diverse population.

Activities should be left to the participants to decide. Ideally, the video probes would

be collected in a home environment. This would provide different environmental context

along with variation in the activities across the videos. It is expected that the videos would

largely contain dyadic play scenarios. It would be beneficial if the videos contained

noncompliant behaviors such as tantrums and self-stimulation; however, how to illicit this

data would need to be discussed between parents, clinicians, and researchers.

Ubiquitous handheld recording devices are the most ideal for capturing the PRT

scenarios. This is due to their likely use in designing an application for PRT feedback. In

addition to audio-video recording, discrete physiological sensors could also be utilized to

collect electrodermal activity and heart-rate data for use in attention, affect, and

engagement research.

Labels and annotations should be collected by two behavioral experts. This

redundancy would be utilized to identify areas of agreement and disagreement in the

dataset in order to identify scenarios that will likely be difficult for automated recognition.

Final labels would include identifying video segments regarding attention, affect, and

audio signals. A transcript should also be created identifying spoken language, noises

from toys and activities, and all child vocalizations.

PRT specific data should also be collected on the parent implementation fidelity and

the child’s verbal communication skills. This should be conducted in a different manner

than currently seen in ABA research and application. Ideally, evaluations should occur for
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smaller increments of the video since one minute is a large amount of time from an

automated system perspective.

8.3 Expanding Metrics and Assessments

Parent fidelity assessments and frequency of child functional utterances metrics, discussed

in Chapter 2, are common evaluation criteria that are used in applied parent training as

well as research studies. Examining the research surrounding PRT implementation and

training presents other assessment methods. Table 8.1 presents the different assessment

metrics that have been employed in the PRT literature along with speculation on the

feasibility of employing automated data extraction. Examining these different assessments

provides insight not only into how this approach could be used to reduce the manual cost

of data collection in research, but also identifies additional information that could be

collected and presented to the parent for more complete feedback.

Assessments given a low feasibility rating focus on self-reporting and examination of

a history of behaviors. The Parent Sense of Competence Scale (Brookman-Frazee and

Koegel, 2004) and Questionnaire on Resources and Stress (Holroyd, 1974) are concerned

with the parents’ perception of their abilities and current situation. This involves

meta-cognition that cannot be inferred by data analysis. Aberrant Behavior Checklist

(Aman et al., 1985), Children’s Yale-Brown Obsessive-Compulsive Scales (Scahill et al.,

1997), and Early Childhood Inventory v. 4 (Sprafkin et al., 2002) employ a questionnaire

that asks for information on a variety of activities over a long period of time. Capturing all

of the observation required for video analysis would require constant monitoring of the

child, which is not feasible.

Several of the assessments would require specific classification models to be feasible

for automated data analysis, or would require longitudinal cooperation. Griffith’s Mental

Development Scales (Griffiths, 1996) and Vineland Adaptive Behavior Scales (Sparrow
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et al., 1989) would require activity recognition models for data classification. Parent

Sense of Competence Scale (Johnston and Mash, 1989) is dependent on activities

recognition and stress measurements which would require emotion detection models for

analysis. Data from the Clinical Global Impressions-Improvement Scale (Guy, 1976) and

Social Responsiveness Scale (Constantino, 2013) could be inferred from PRT video

probes; however, this would require regular recordings over a period of several months to

adequately cover the questionnaire materials.

Assessments that currently depend on video analysis, examine dyadic behaviors, or

utilize specific language models would be the most likely candidates for data automation.

The Autism Diagnostic Observation Schedule (Lord et al., 2000) and the Autism

Diagnostic Interview (Lord et al., 1994) use video recordings of specific situations to

evaluate the likelihood a child has autism. This could benefit from the automated data

extraction and video clip creation described in previous chapters without requiring

significant deviation from the current approach. The Mullen’s Scale of Early Learning

(Mullen and others, 1995) and Home Situations Questionnaire (Altepeter and Breen,

1989) are concerned with dyadic behaviors that could be recorded and processed in a

similar manner to PRT video probes. The MacArthur-Bates Communicative Development

Inventory (Fenson and others, 2007) and Preschool Language Scale (PLS-4) (Zimmerman

et al., 2002) involve assessing demonstrated language skills. These measures could be

automated by employing automated voice and speech classification techniques.
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Table 8.1
Assessment standards and methods along with speculated automation feasibility.

Assessment
Standard

Evaluation Purpose Method Feasibility
(High,Medium,Low)

Aberrant Behavior
Checklist

Measures deviant behaviors
including irritability, social
withdrawal, stereotypic
behavior, etc.

Questionnaire Low

Autism Diagnostic
Interview

Evaluates communication
skills and reciprocal social
interactions. Identify
stereotypic behaviors.

Interview/
Observation

High

Autism Diagnostic
Observation
Schedule

Diagnoses autism based on
four interactions

Observation/
Video

High

Children’s
Yale-Brown
Obsessive-
Compulsive
Scales

Diagnoses if levels of
fixations indicate the
presence of a disorder.

Questionnaire Low

Clinical Global
Impressions-
Improvement
Scale

Generalized form for
measuring effectiveness of
treatments

Questionnaire Medium

Early Childhood
Inventory v. 4

Diagnoses mental disorders
including autism. Based on
behaviors including selective
mutism, eating/sleeping
habits, problem behavior, etc

Questionnaire Low

Griffith’s Mental
Development
Scales

Evaluates child motor skills,
adaptive behaviors, and
coordination.

Observation/
Question-
naire

Medium
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Table 8.1 Continued: Assessment standards and methods along with speculated automation
feasibility.

Assessment
Standard

Evaluation Purpose Method Feasibility
(High,Medium,Low)

Home Situations
Questionnaire

Evaluates child compliance
to instructions in different
situations

Caregiver
Question-
naire

High

MacArthur-Bates
Communicative
Development
Inventory

Measures vocabulary,
comprehension, and
language usage

Observation/
Question-
naire

High

Mullen’s Scale of
Early Learning

Evaluates behavior and
language between clinician
administrator and child

Observation High

Preschool
Language Scale
(PLS-4)

Measures child language
comprehension, vocabulary,
grammar, and inference.

Observation High

Parent Sense of
Competence Scale

Measures parent perceived
confidence and skills when
interacting with their child.

Questionnaire Low

Observed Parent
Confidence

Measures parent stress and
confidence, and child affect,
engagement, and
responsiveness

Observation Medium

Questionnaire on
Resources and
Stress

Measures emotional state of
individuals in a household
with a person with a
disability

Questionnaire Low

Social
Responsiveness
Scale

Evaluates behavior for
autism diagnosis and the
identification of
social/communication
deficits.

Questionnaire Medium
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Table 8.1 Continued: Assessment standards and methods along with speculated automation
feasibility.

Assessment
Standard

Evaluation Purpose Method Feasibility
(High,Medium,Low)

Vineland Adaptive
Behavior Scales

Evaluates response to verbal
instruction, following
direction, performing tasks,
and problem behaviors.

Questionnaire Medium

8.4 System Implementation

Mobile technologies are an important consideration in designing the application

architecture for the feedback system. Currently, video probes are recorded on handheld

devices, most likely a smart mobile device. Due to the ubiquity of smartphones and

tablets, providing a mobile interface is important as this would be a convenient way for

users, the caregivers in particular, for accessing the system. The computer vision and

audio classification algorithms have heavy computation requirements, especially if using

OpenPose for visual pose extraction, as discussed in Chapter 5. The computation

consideration means that two primary strategies can be employed for supporting a mobile

interface, which are using a cloud-based distributed system and developing lower power

classification processes.

8.4.1 Cloud Distributed Computing

Distributed architectures afford the ability to disperse system functions and processing

tasks amongst different hardware components and devices. Different network designs can

be utilized to accomplish this. The most common designs are centralized, decentralized,

and hybrid systems (Tanenbaum and Van Steen, 2007).

Centralized distributed systems are based on a client-server relationship between

devices. The client device contains the front-end interface responsible for retrieving data
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and displaying results. The server is responsible for the computation tasks on the input

and generating the output. In a typical workflow, the client will collect an input, then

signal the server, often transferring the data. The server performs the necessary

processing, then returns a result to the client. Upon receiving the return message from the

server, the client system will display the results.

In centralized systems, the client and server devices are specialized and arranged in a

linear workflow. Decentralized systems provide a more generalized approach to a

distributed system. In decentralized networks, each system is able to perform the same

functionalities, leading to decentralized systems often being called peer-to-peer networks.

This creates redundancy in the network that can be utilized to share processing tasks in

order to balance the computation load over the network, as well as provide fail-safes if a

given system ceases to function.

Hybrid systems seek to provide the control of having a central server, with the

scalability of a decentralized peer-to-peer network. For this architecture, the client system

connects with a server that acts as middleware, facilitating the distributing computation

tasks amongst a larger backend network. This allows the network to be scaled with

minimum updates, as only the middleware hub would need to know the new configuration.

Cloud-based distributed systems build these architectures in a fully online

environment. This provides additional benefits to the system, including greater

opportunities for remote access and increased redundancy.

Communication protocols between the system components can be conducted either

synchronously or asynchronously. Synchronous communication requires the devices to

maintain a connection for the entirety of the transaction. Doing so reduces the

management requirements for processes by keeping individual transactions encapsulated.

The major drawback is that maintaining this connection locks the client system processing

thread until the transaction is complete, or a fail-safe time limit is exceeded. This could
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lead to a poor user experience if the operator of the client system experiences a long delay.

Asynchronous protocol addresses this by separating the communication into two separate

calls. The first call initiated by the client system provides the request to the server. This

call is terminated after the data transfer, allowing the client system to continue other

processes. The second call occurs after the server has completed the computational task

and performs a call back to the client system. This triggers an event process in the client

system that will handle the incoming response.

The design of a PRT feedback system as discussed in the preceding chapters is

dependent on a distributed system architecture. The expected use case is that the caregiver

records a PRT session on a mobile device, then uploads the video to a central server via a

client application on the device. Video processing and classification tasks would be

undertaken in a server cloud that could leverage distributed processing in order to generate

the analysis efficiently. This would be undertaken using asynchronous communication.

The caregiver would be notified when the video automated analysis was complete,

allowing him or her to view the results in the client application. This is also a necessary

procedure for the human-in-the-loop components of the project. Uploading the video to a

central server would make the video available to the clinician for review. The clinician’s

assessment could then be stored in the central network for access by the caregiver.

Utilizing this system architecture provides several benefits. Offloading the processing

from the client device provides the opportunity to use more robust hardware for

computational tasks. This ensures that regardless of the client device, processing times

will be efficiently controlled by the central system. Additionally, multiple backend

processing modes could be employed in parallel to further hasten processing. The video

could be divided to allow multiple machines to process it simultaneously. An additional

benefit is that software upgrades to the backend systems would be transparent to the client
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applications, requiring no additional actions from caregivers. This would allow the system

to continuously improve the classification models.

Costs, connections, and privacy concerns are the principal drawbacks of using a

cloud-distributed computing paradigm. Operational costs related to the number of servers

required are a logistical concern for the system. Efficient video processing would require

sufficiently powerful servers to produce results in a timely manner. Offloading the

processing to a cloud-based server also requires the user to maintain a network

connection. This could be problematic for rural users with less reliable access to high

speed networks. Additionally, as the data is uploaded into the network data management,

security and privacy become important concerns. Many parents may be apprehensive of

transferring videos of their children into the network.

8.4.2 Mobile and Low Power Computing

Examining mobile and low power computing approaches can be a way to address the

concerns regarding a cloud-distributed solution. Low power computing addresses

optimizing complex computational processes for embedded systems and mobile devices.

These types of devices often have limited processing capabilities and rely on battery

power. Relevant competitions in low power computing have focused on various areas of

computer vision, including object recognition, classification, and localization (Alyamkin

et al., 2018; Debenedictis et al., 2016; Gauen et al., 2017; Lu, 2019; Lu et al., 2015).

PRT videos present a difficult application of low power computing (Heath et al.,

2019e). The task requires making inferences regarding dyadic human behavior based on

visual cues. This is a complex problem that may incorporate many sub-problems

including human pose detection and body segmentation, gaze estimation, facial expression

recognition, individual and dyadic activity detection, and engagement and attention

detection. Additionally, due to the dataset, algorithms for approaching these sub-problems
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need to be robust against occlusion, low-resolution, incomplete data, and low training set

sample representation. This will likely involve taking a different approach than what has

been described in previous chapters. The previous approaches relied upon OpenPose

which is not currently conducive to low power scenarios. Successful implementation

would need to discriminate vital keyframes to reduce the volume of data that would need

to be processed. Additionally, the implementation would need to focus on key features of

the individuals, such as face and hand location, instead of searching for every body and

landmark point.

Employing the classification and analysis tasks directly on the recording device

eliminates the need to transfer the data to an external source. Potentially, if the low power

algorithms were efficient, this could reduce the processing time. However, it is expected at

this current state that the computational system afforded from external hardware would

compensate for the communication time. Eliminating the external transaction would

alleviate security and privacy concerns. The data would not need to leave the caregivers

device, making it less susceptible to nefarious internet activity.

The limitations of this approach are based on the performance of the employed

device. Currently, mobile devices are limited by processing power and energy

consumption, as opposed to a distributed solution where these resources are potentially

unlimited. This constricts the algorithms and data processing methods that can be utilized.

This also makes the process more device dependent. Essentially, an individual’s

experience will be dependent on the device he or she has available. This could be

prohibitory to families that cannot afford a compatible device.

Removing the data transfer completely from the system would also restrict the

interaction between the clinician and the caregiver. One of the goals of this project has

been to examine how the system could facilitate this connection, and reduce the time

required for clinicians to provide support. Without transferring the video, the clinician
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will have less information for forming conclusions. A compromise based on decentralized

networks could reduce privacy concerns while maintaining this connection. A

peer-to-peer-based network and providing a communication link directly from a parent’s

system to a clinician’s system, without centralized routing or data storage, could be

utilized to mitigate concerns of unauthorized data access.

8.5 Feedback Modalities

Assessment and feedback are important for aiding individuals in acquiring new skills. The

type of assessments and the methods for delivering feedback need to be considered to

ensure they are conducted in an effective manner. For a PRT feedback system,

interventionists need to be provided with data they can use to capitalize on opportunities

to provide instruction, evaluate language uses, and ensure reinforcements are appropriate.

Presenting this information can be done in real time, during the session, or off-line after

the session has concluded. Each of these strategies offer different affordances and

drawbacks.

Both systems are largely dependent on the preferences and unique circumstances of

the individuals and the environmental context they have available. There are some areas of

overlap, however, the approaches for this application are, for the most part, mutually

exclusive. Ideally, the system would follow a person-centered paradigm allowing for the

configuration of both approaches on a per user basis.

8.5.1 Off-Line Feedback

In the PRT feedback system, there are three main types of data metric gathering

opportunities to exploit for providing feedback for off-line feedback. The first is the data

that can be extracted from a single video in isolation. The second examines the
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progressive and aggregate data from multiple sessions over time. The third is data from

clinician review of videos, usage, and data metrics.

Providing feedback to the parent needs to focus on how his or her adherence to PRT

methodology, and the relationship between his or her actions and the response of the child.

In the scope of this project, the primary focus is to understand when the child is attentive

to the parent and when the child vocalizes. For this, classification models to detect the

attentive state and identify the parent and child speech segments can be used. Feedback

can then be provided on the relationships between the attentive state, the child

vocalizations, and the adult speech. The expected correlations, and what can be inferred

by comparing the baseline video probes to post-training video probes, is that child

vocalizations are positively correlated with increased attention and negatively correlated

with adult speech. This aligns with PRT methodology that states an effective instruction is

clear, limited to the language level of the child, and delivered when the child is attending

the parent. Additional metrics including the mean length of a child utterance, or a

breakdown of child responses based on types of prompts, or spontaneous speak, could also

be important feedback for the parent. Affective states have been noted as an important side

effect of PRT training sessions. Future data collection could include inferring affective

state from the video and audio (D’mello et al., 2008; Grawemeyer et al., 2016; Sanghvi

et al., 2011) data as a means of easing parent stress levels (Lecavalier et al., 2017).

Feedback on individual videos also provides the opportunity to give corrective

notifications based on the environment the session occurred in and the recording quality.

This will aid in future data collection and assessment as well as reassure the users that

they are using the system correctly.

In addition to providing metrics, the system should promote self-reflection on each

session as part of the feedback system. Self-reflection is an important part of

self-regulated learning and helps the learner understand his or her performance on a given
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exercise. It also provides insight on how to continue to improve. During the self-reflection

phase, the learner can compare performance to goals, build self-efficacy, and adapt the

process for the future (Isaacson and Fujita, 2006).

The feedback system, like PRT itself, is intended to be utilized over a prolonged

period of time. This provides the opportunity to examine both the child’s and the parent’s

progress over time. Particularly, this is helpful in identifying plateau periods in the child’s

demonstration of skill that should elicit a change in instructions and the identification of

new target and maintenance skills. Implementation of PRT is similar to a motor skill.

Initially, large improvements will be made by the learner, but the rate of improvement will

slow with the rate of mastery (Kitsantas and Kavussanu, 2011). At a point, feedback

directly related to the parent will become less important, as there are fewer corrective

actions they need to take to maintain PRT implementation fidelity. This is another reason

why it is important to emphasize child data metrics, affective improvements, and

self-reflection.

The role of the clinician in the system is to provide additional pointed feedback to the

parent, help the parent understand the metrics that have been gathered, and to aid the

parent in planning and executing PRT sessions. The planning portion of their role is

particularly important during plateau periods when the parent needs to adapt PRT to

incorporate new skills or activities. In addition to this, keeping the clinician involved

facilitates a social obligation to continue using the system, and may aid in the confidence

of the parent by maintaining a supportive connection between client and expert (Kitsantas

and Kavussanu, 2011; Pintrich, 2000).

There are three related drawbacks to offline feedback. First, and probably most

substantial, is that reviewing the feedback requires an additional time investment from the

user. At the least, the parent will need to upload the media, wait for processing, then

review the results. Gathering more metrics will increase the overall review time.
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Improvement will then be dependent on the parent spending a sufficient amount of time on

reviewing and understanding the feedback. Addressing this drawback requires ensuring

that the system processes data quickly and that the UI design is intuitive. Additionally, the

data needs to show a clear benefit for the parent in order to ensure compliance.

Second, feedback does not occur directly after an action. This delay could cause a

disassociation with previous actions that could make correcting behavior more difficult.

This can be rectified using the video records to review and self-reflect on the sessions in

addition to receiving feedback(Suhrheinrich and Chan, 2017); however, this further

increases the time commitment.

Third, in addition to not associating feedback to an erroneous action in the moment,

not providing real-time assessment prevents the parent from immediately correcting his or

her actions. Being able to immediately correct an incorrect action helps to display the

contrast between appropriate and inappropriate actions. This will not only help the parent

learning the correct behavior, but will also aid in fostering self-confidence in his or her

abilities.

8.5.2 Real-Time Feedback

Considering the discussion on feedback above, looking at effective real-time feedback is

challenging. There are two primary aspects that need to be considered for providing

feedback to the parents during PRT sessions. First, the important metrics, data, and

feedback goals that are important in real-time interactions needs to be addressed. Second,

the feedback delivery method needs to be examined.

Whereas offline feedback can look at collective data over one or more sessions,

real-time feedback should focus on actions that can be immediately enacted or corrected.

In observations of feedback sessions between parents and clinicians, real-time feedback

was most often demonstrative. This largely consisted of modeling a type of instruction for
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a given task, showing how to engage the child or elicit his attention when he was involved

in solitary play. This is not totally conducive to an automated real-time system. In the

observations, the clinician is capitalizing on the limited amount of time. Distracting the

parent or child is not a primary concern. Automated systems may be best implemented by

using information gathered at the beginning of a session to improve implementation

toward the end of a session.

In PRT, the parent is expected to provide two opportunities for the child to respond

per minute in the session. An automated feedback system could attempt to detect if these

attempts have occurred, and if they have not, prompt the parent to engage the child.

Similarly, variation of task and instruction is important. The system could track

instruction type variation along with target skills to prompt the parent to differentiate.

Real-time feedback could be used to determine if the child is paying adequate

attention to the parent. The prompt could initiate the parent to provide the instruction at an

opportune moment; however, this could be problematic if the parent is focusing on

catching the prompt and not directly observing their child. Similarly, in the moment

assessment of the session context could help the parent identify the object the child is

interested in.

In conversations with parents learning to implement PRT, one of the challenges that

was expressed was composing appropriate instructions for a given task during the session.

A more elaborate real-time automated intervention could analyze the object or activity the

child is motivated in along with the child’s language level to determine sample instructions

for the parent to enact. This could also be utilized to address instruction and skill variation.

Real-time expert-based feedback was addressed by Machalicek et al. (2010). In this

study, an ABA session involving a teacher and student was broadcast to a behavioral

expert in order for the expert to provide feedback to the teacher on her implementation.

Although the research conclude that this method was successful for training the teachers,
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there were a couple of limitations that should be considered. The technology used for the

tele-conference was a hindrance. Several of the teachers in the study had difficulty

connecting the hardware and some students were distracted by its use. Additionally, the

researchers report a decline in fidelity for some teachers that they theorized may have been

due to the teacher anticipating negative feedback. This illustrates that the success of

real-time feedback is likely to be dependent on the behavior and preferences of the

participants.

For the feedback to have the most universal appeal, it should be implemented in the

least intrusive means possible. Selecting a mode for the feedback delivery is a challenging

design consideration. Overtly visual or audio clues are likely to be the most distracting;

however, it would be difficult to deliver complex notification without the use of either

medium. If the session occurs in a pre-designated area, then a discrete monitor could be

placed in the room to notify the parent, particularly if the system provides example verbal

instructions. This may still be distracting to the child, and pure PRT implementation

should not be confined.

Haptics may provide a methodology for conveying covert notifications. Using a

simple pattern-based system could prompt the parent to add a maintenance instruction, or

that it has been too long since the parent last engaged the child.

Reviewing the drawbacks listed above, real-time feedback could be distracting

depending on the individuals involved and the modality used to provide notifications. The

notifications themselves need to be simple and easy for the parent to digest quickly to

adequately capitalize on the prompt. Real-time assessment adds additional technological

constraints in order to process the video stream quickly and provide results.

The final drawback of real-time feedback is that its worth to the user diminishes over

time. Real-time feedback is best suited to correcting behavior. As the parent gains skill

and efficacy in PRT, the necessity for correction or prompting is reduced. This would need
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to be weighed along with the developmental complexity against the benefit to the parent in

order to determine its true value to the system. Most likely this would be largely

dependent on each individual case.

8.6 Adapting PRT to New Technologies

The primary focus of this dissertation has been how current multimodal data processing

and machine learning strategies can be applied to aid in the support of parents

implementing PRT. This has been conducted under the assumption that PRT is immutable.

Looking at PRT and technology as co-adaptable provides opportunities to incorporate new

technologies that are currently not being utilized. Examining these new technologies

provides affordances that would benefit clinicians, parents, and children during PRT

sessions. These technologies could provide opportunities to gather metrics that are not

currently tracked, allow for the expansion of imagination and possibilities for participants

during sessions, and aid in automatically detecting activity and attention. In particular,

wearable sensors, additional recording, and augmented reality (AR) are worth a brief

discussion.

8.6.1 Biometric and Inertial Sensors

Wearable sensors facilitate an opportunity to retrieve information directly from the users.

For PRT video probe analysis, this supplements the video data by providing information

about each individual directly. This can be useful in activity recognition using inertial

sensors such as accelerometers and gyroscopes. Biometric sensors, such as electrodermal,

heart-rate, and brain activity monitors, can provide insight on each individual’s affective

state, especially when it is not apparent in the video or audio recordings.

Accelerometers and gyroscopes have been studied as wearable sensors for human

activity recognition (Attal et al., 2015; Casale et al., 2011; Zeng et al., 2018). For
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individuals with autism, the focus of inertial sensors has been detecting self-stimulating

behavior (Coronato et al., 2014; Kientz et al., 2007; Rad and Furlanello, 2016). Only

relying on these types of sensors would not be adequate for PRT analysis. The referenced

studies focus on activities that have repetitive periods. Detecting attention has some

dependence on movement; however, it also requires more spatial information to make an

adequate inference. Additionally, data streams from the sensors would need to be

synchronized across both individuals in order to provide a perspective on dyadic

interactions. Despite these drawbacks, the data could be useful in conjunction with the

video, particularly during periods of occlusion.

Electrodermal activity and heart-rate sensors have been studied in regard to

engagement and emotion detection (Conati et al., 2003; Fletcher et al., 2010; Picard,

2009). Skin conductivity and heart rate have been associated with states of arousal and

can be used to infer engagement, stress, or anxiety. Using these types of sensors can be an

effective means of determining a wearer’s affective state in regard to a given activity. A

positive affect and improved stress has been listed as a benefit of parent-led PRT.

Measuring the child and parent’s affective states during PRT sessions, and progressively

over time, could aid in motivating continued use of the treatment along with promoting

greater self-efficacy in the parent regarding his or her ability to implement the

interventions. These sensors would provide a more precise way of measuring efficacy than

relying on self-reporting or making inferences through video or audio data. As suggested

in Picard (2009), a child with autism may not visually or vocally express emotion. Using

the sensors would provide a means to collect this information.

Obtaining the affective data regarding the child could also be used to facilitate a

greater connection between the parent and child. Picard (2009) relates a use case scenario

where a teacher could pair a device with a child’s wrist sensor in order to better

understand engagement in the material. A similar system could be beneficial for parents
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during PRT. Providing haptic cues to the parent on the emotional state of the child during

a PRT session could help them determine periods of engagement or frustration that would

allow them to continue, adjust, or stop the treatment. Use of the affective information in

conjunction with the video as part of part of the post-session review could help parents

relate how their actions affected the emotional state of the child.

Electroencephalograms (EEG) have been utilized in making inferences of

engagement and attention to tasks (Billeci et al., 2016; Li et al., 2017). In these

publications, engagement is detected using EEG headsets by looking for spikes in brain

activity. EEG is also becoming a commonly used instrument for early autism detection

(Bölte et al., 2016). Using EEG in PRT sessions would be an additional method for

inferring child engagement in an activity. In their study, Billeci et al. (2016) concluded

that they could differentiate when a child was engaged with an activity and when he or she

was not. The sessions were conducted in a ‘semi-natural’ setting, where the child

interacted with a clinician. It would be interesting to see the results if the same

experiments were conducted in a PRT session. In their scenario, the activities were likely

selected by the clinician, or the child had a limited number of options. The PRT

experiments would need to be conducted in the child’s home environment, with access to

the child’s favored activities and objects. During PRT sessions, the child could be engaged

in solitary play, or be attentive to parent. This research would address if these two states of

engagement could be differentiated.

Implementing sensors as part of the data collection process for PRT sessions could

provide insight that would otherwise be difficult to glean from only the video and audio

modalities. This does come with the caveat that the additional technology would provide

complexity for the users and could lead to technical difficulties during installation and use

(Marcu et al., 2012). Additionally, physical activity can have an effect on each of these

types of sensors, causing false readings (Sun et al., 2010). Utilization of the data might
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require using video context to ensure it was properly analyzed. A further drawback could

be the participants acceptance of the technology. Both the parent and the child may have

an aversion to wearing a device. The device itself could be a distraction during the PRT

session, which may result in non-compliance.

In addition to exploring wearable sensors, attaching sensors to objects used in PRT

sessions could provide benefits for PRT and automated analysis. Under the philosophy of

naturalistic ABA, any object a recipient selects could be used as a reinforcer. In practice, it

is likely that the interventionist could promote the recipient selecting specific objects. This

would generally be enacted when the recipient knows a favored object of the recipient and

places the object in the environment before a session. This is often utilized by placing the

object in a location that is visible but unreachable to the recipient. The recipient will then

need to initiate communication to acquire the object. Under this practice, the object could

be marked or enhanced to aid in tracking the object in the video. Using retroreflective

markers was a common approach to early object tracking (Dorfmüller, 1999). Utilizing

common color patterns, similar to image codes (Mehner et al., 2015), could allow for

improved object identification if the tracking system was pre-trained on the patterns.

Embedding sensors into the object to allow it to transmit data would aid in object

tracking and identification. By attaching inertial sensors and using wireless

communication, the automated system could detect when an object is moved, providing

additional information for tracking (Zhang et al., 2017b). During the session, this would

likely indicate that the object is being manipulated by one of the dyads. When added to

visual information, this could be used to make inferences regarding detecting attention,

identifying the natural reinforcer, and providing immediate consequences.

Radio-frequency identification (RFID) tags should be explored to determine if they could

be used for localized tracking. This could provide a cost-effective solution for attaching

sensors to objects.
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8.6.2 Recording Devices and Perspective

In previous chapters, the discussion of the application of technology to analyze video

probes is based on the assumption that no changes will be made to the procedures

currently being used in recording the videos, the environment where interactions are

taking place, and the devices being utilized. This is based on the idea that using

ubiquitous devices and limiting required preparations affords the interventionist the ability

to initiate sessions naturally and spontaneously. However, it is valuable to explore how

incorporating new devices would aid in automated assessment. In particular, automated

evaluations would benefit from the utilization of new camera technology, audio recording

equipment, and marked or enhanced objects.

Three dimensional cameras utilize two lenses to capture a stereoscopic image that

provides information regarding depth in addition to pixel color values. Adding the depth

data to the image aids detection and classification of human actions (Jazouli et al., 2016;

Shahroudy et al., 2016; Zhao et al., 2017), improves occlusion handling (Pi et al., 2016),

and aids in estimating visual focus (Wei et al., 2017). Having perspective in the image

would help in detecting the visual attention of the child. In particular, this would provide

improved estimates of visual focus when the interventionist and an object are overlapping.

Different camera perspectives have been used in studies on joint attention and child

engagement. Static exocentric cameras are most commonly used and can include multiple

cameras capturing multiple angles of the interaction (Rajagopalan et al., 2016, 2015; Rehg

et al., 2014). Using this configuration has several benefits. This configuration works well

for laboratory conditions, but does not translate as well to real-world scenarios due to the

equipment and installation required. In addition to multiple exocentric cameras, the

Multimodal Dyadic Behavior dataset (MMDB) included an egocentric camera worn by a

clinician during interactions with a child. Egocentric cameras for human activity or
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behavior recognition are more common in the field of human-robot interaction (Foster

et al., 2013; Li et al., 2012).

There are three concepts that are relevant to the use of video in the proposed system:

detecting and analyzing child and parent behavior, providing multimedia material for

clinician review, and promoting self-reflection in the parent. We can look at these under

the consideration that the parent is wearing the camera.

For analyzing behavior and activity detection, the egocentric camera offers several

affordances. It is known, relative to the scenario, where the camera is spatially located.

This allows data processing algorithms to make assumptions when analyzing the

interactions. Most important to the research that has been done thus far is the assumption

that when an individual is looking at the camera, he or she is likely attending the person

wearing or holding it. This eliminates the need for a machine learning algorithm to

estimate visual attention and is likely more accurate than the current method used in the

initial work discussed in Chapter 3. Additionally, the wearable camera is likely to be

closer to the interaction than is depicted in exocentric video probes. This could provide

the opportunity to use eye tracking algorithms to gain a further understanding of the

subject in the frame’s visual attention. This would prevent a few of the difficult scenarios

that were observed in the video probes used for the initial work on the proposed projects.

The system had difficulty determining when a child was looking down or looking at the

camera. Also, camera perspective was an issue when the algorithm would incorrectly

attribute the child’s object of visual attention as the parent, when the parent was actually

in the background of the frame behind a toy that was the true object.

Improved audio recording quality could be an additional benefit of egocentric

cameras. The closer proximity of the recording device to the interaction could allow the

device to capture lower energy vocalizations; however, the wearable microphone could

also record additional noise, such as clothing rustling.
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Having the camera as a wearable also eliminates the need for an additional person to

operate the recording device. Ideally, attaching the camera to the parent would also make

it easier to keep the camera directed at the child. As the parent is expected to continuously

observe and engage the child, he or she should be oriented toward the child.

The optimal use for wearable cameras is restricted to certain types of interactions. In

the MMDB dataset, both the child and the clinician are sitting across one another at a

table. The activities they engage in are undertaken seated, maintaining distance between

the two individuals. This ensures the child is kept in frame, and movement is minimal.

This scenario does not account for the freedom of activity expected in PRT interventions.

The activities in a PRT session could include physical movement that would affect the

quality of the recording and the ability of the parent to keep the child in the frame.

Similarly, the perspective of the parent and child facing each other cannot be guaranteed.

For example, a video from the dataset examined in initial work on the project depicted a

child sitting in the parent’s lap watching a cell phone video. This is a valid PRT scenario,

as the parent can prompt the child to vocalize by pausing the video and issuing an

instruction. If the parent was wearing a camera, the camera would capture the child from

behind. Additionally, the close proximity to the parent and child would limit the field of

view of the camera, resulting in a potential clip that cannot be processed by the analysis

algorithms, limiting the value for clinician feedback.

Ruminating on how the clinician would use egocentric perspective illustrates similar

benefits and challenges to the automated analysis. The clinician would be presented with

video that focused on the child’s behavior but may be left to assume or infer the action

taken by the parent. This may be particularly problematic with parents in the early stages

of learning that may not be efficiently following PRT methodology. In these cases,

without direct knowledge of the parent’s actions in the video, it may be difficult for the

clinician to provide specific feedback.
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The effects of using egocentric video for self-reflection from a meta-cognitive

perspective is unclear. In accordance with self-regulated learning methodology, the video

would meet the criteria of self-monitoring; however, it is my opinion that part of the

importance of reviewing video tape for performance is experiencing the event from a

different vantage point. This allows the individual to understand how his or her actions are

situated in the complete interaction. Only providing an egocentric viewpoint would allow

the parent to replay the interaction, but would largely lack additional information that

could be useful in reflecting on his or her performance.

Attaching the camera to the child to gain his or her perspective has been explored by

Marcu et al. (2012) and Pusiol et al. (2014). Pusiol et al. found mixed results in terms of

identifying periods of joint attention using a camera attached to the child’s head,

ultimately concluding that parameters such as object movement during interactions is

more diagnostic of attention than periods where the caregivers face was in the

field-of-view of the camera. This would also likely be the case in the context of the PRT

video probes. During periods of inattention, the parent’s position in the child’s field of

view may not be a diagnostic feature.

Regarding clinician feedback and parent reflection, this video perspective becomes

more powerful. Providing the child’s point of view of the interaction could offer insight

into his or her experience during the interaction. This could help from an empathetic

standpoint, allowing the parent or clinician to reflect on the child’s perspective of the

treatment. This could illustrate periods of joy and frustration in a way that would help the

adults tailor future interactions. The importance of this perspective was expressed by the

parent participants in Marcu et al. (2012).

In regard to the video sound track, speaker separation was described as a challenge

facing automated audio analysis in the video probes. Under the current assumption, this

would be audio collected using a single handheld device. Incorporating wearable
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microphones would afford the opportunity to improve data collection and have different

streams for each speaker. The LENA system (Pawar et al., 2017; Shivakumar et al., 2017;

Xu et al., 2009, 2008) employed discreet wearable microphones for the child. Using this

approach on both of the individuals in the interaction would enable automated processing

to separate individual speakers based on the strength of the signal from their assigned

devices. This would also provide perspective on how environmental sounds affect each

individual, which could be used to infer when ambient noise could be a distraction.

8.6.3 Augmented Reality

Augmented reality (AR) is a methodology for projecting virtual images into real-world

space. Using AR creates an ‘intuitive metaphor’ and affords the opportunity to seamlessly

blend interaction between the physical and virtual contexts (Billinghurst and Kato, 2002).

For educational systems, this provides a means of easily displaying the effect of

manipulating objects. For example, an AR system is presented along with a sandbox that

can be utilized to explain topographical features and aid students in learning to read a

topographical map (Beals, 2017). This system allows students to construct mounds and

troughs in the sand and observe how this affects the overlaid topographical map. Through

this interaction, they are able to visualize how their actions influence the overlay being

projected. This helps situate the learning objective in context, in this case interpreting

topographic symbolism, that can help solidify abstract concepts (Shin et al., 2016).

AR research for children has focused on presenting information in a new and

interactive medium. These studies report favorable results in terms of child enjoyment and

teacher satisfaction (Lim and Park, 2011; Rasalingam et al., 2014), even extending to

preschool aged children (Yilmaz, 2016). Studies regarding children with autism have

focused on imaginative play (Bai et al., 2015), selective and sustained attention (Escobedo

et al., 2014), and improved social etiquette (Liu et al., 2017).
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Imaginative, or symbolic, play is the child’s ability to use his or her imagination to

transform objects and environments as part of an intrinsic narrative scenario. This is often

cited in literature regarding autism as being linked to underdeveloped social and language

skills (Orr and Geva, 2015; Stahmer, 1995). In Bai et al. (2015), the authors projected a

virtual overlay onto a physical block to change its appearance to a car. They concluded

that after using the AR system, the children showed a greater propensity for symbolic play

without the use of the AR. While symbolic play is not a specific area being addressed in

PRT methodology, incorporating AR technology would easily allow for the incorporation

of imagination into intervention sessions aimed at other target behaviors

The use of AR has been examined in DTT. Due to the inherent repetition in the tasks,

the recipient may lose attention and become noncompliant. More generally, deficiencies in

selective attention, the ability to focus on a single activity, and sustained attention, the

ability to maintain one’s focus on a single task for a prolonged period of time, are common

in children with autism. Escobedo et al. (2014) used AR as a means of promoting

engagement for the children during the treatment sessions. That was accomplished by

using a mobile phone to display an overlay on learning materials. They found that this

method resulted in increased selective and sustained attention for their participants.

Utilizing BrainPower, a commercially available AR system developed for individuals

with autism, Liu et al. (2017) explored how headset-based AR could aid individuals in

improving social interactions. Their system used facial detection algorithms to identify

faces in the wearer’s field of view and project an animated overlay on the person’s face.

The study reports that this led to a caregiver-reported increase in eye contact and other

social skills. Additionally, the authors state that measures of common negative effects

associated with individuals with autism, such as irritability and social withdrawal, along

with stereotypical behaviors, were greatly reduced after using BrainPower.
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These studies produce interesting results, however, there are some key caveats.

Primarily, the number of participants and the number of sessions is limited. This limits the

generalizability of the results, and does not address the fact that the conclusions are the

result of a novelty effect due to the new technology. This novelty effect could also be

problematic for individuals with high levels of idiosyncratic behavior. In particular, the

research presented by Liu et al. (2017) provokes skepticism. The authors of this work only

used two individuals for their case study, and the authors of the article have a financial

stake in providing exemplary results. Regardless of these caveats it does show the

potential of AR technology for children with autism.

Including AR in parent-led PRT sessions could benefit from the development of

symbolic play associated with AR research. Selective and sustained attention are less

likely to be an issue in PRT based on the requirement that the child select an activity that

is naturally motivating. Implementation of AR in a PRT session could be undertaken in

several different ways. This will be discussed for both collaborative AR environments and

displays restricted to the parent or clinician. Providing displays for the child only has its

benefits, but since this would limit the participation of the parent, it will not be discussed

in detail.

Incorporation of a collaborative AR environment for PRT sessions would provide

more opportunities to engage the child by providing a configurable environment. The

potential to virtually augment the appearance of objects and environments would increase

the number of activities that could be utilized. This could be particularly powerful for

helping children generalize their verbal skills to new tasks. For instance, a simple example

would be if the overlay on a wooden block transforms it into a yellow car. The parent

could issue an instruction for the child to identify the color of the object. Changing the

AR to transform the car into a submarine would provide the opportunity to again ask for
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the color of the object, reinforcing in the child that the color is not dependent on the object

representation.

Different overlays in the system could also aid the child in progressing to written

communication skills. The AR technology would allow for providing text descriptions of

objects that would aid the child in reading skills. Additionally, parent instructions could

be displayed in text as well as spoken verbally.

It would be interesting to research how the technology could be used to facilitate the

parent taking control of the activity to introduce an instruction. This could potentially

occur in one or two scenarios. The first scenario involves an object within the augmented

experience being the motivator for the child. For this, the parent would need to physically

exude control over the object, in the same manner as non-AR sessions. In this case, the

AR is supplementary to the interaction and serves primarily to enhance the experience of

interaction with that object.

In the second scenario, the AR experience is central to the child’s motivation. In

these instances, the parent can exude control over the virtual environment to gain the

child’s attention to issue an instruction. Ideally, the parent would be fully integrated into

the activity the child is participating in. This would afford the option of working the

control into the endogenous fantasy of the activity, making the learning objects more

integrated. For example, instead of the parent physically taking control of an object from

the child, the parent could initiate an overlay change on the object that would alert the

child to an instruction.

An additional research question for AR implementation would be how engaging the

parents find AR activities compared to traditional PRT implementation. If the parents are

more engaged in the interaction, they would achieve a greater affective boost from

participating, and would be more likely to continue the sessions.
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There are two technical implementations for creating collaborative AR environments

based on the technology being used. These approaches can use linked individual displays,

such as mobile phones, head-sets (Google Glass, Microsoft HoloLens), or shared displays,

primarily consisting of projectors. Each of the technologies would have affordances and

disadvantages.

A dyadic AR experience was facilitated in a study conducted by Dierker et al.

(2011). This system allowed two individuals in the same room to view virtual exhibits

projected onto a physical museum. This allows the individuals to collaborate on the

placement of the exhibits. This is a similar scenario that we could see being enacted for

PRT sessions. In the sessions, the parent and child wear separate headsets and interact

with a shared set of objects. This would require two synchronized displays; however, it is

likely a simpler implementation than projector-based solutions. Having the two headsets

would afford the opportunity to record both participants’ perspectives of the interactions

that could be used for self-reflection or clinician review.

Shared display systems could be implemented using a single screen device shared

between the two participants, or a projector creating an environmental AR overlay. Using

a projector likely causes a greater sense of immersion compared to screen-based

implementations due to the removal of the screen as a conduit for the experience. Using

the projector does create additional technological challenges. The virtual image would be

more dependent on the surface it was projected upon. This would likely place a

requirement on the types of spaces the technology could be used in. Projected images also

have the challenge of ensuring each individual experiences of the same AR display. A

participant’s view of the virtual image could be influenced by his or her perspective of

projection (Benko et al., 2014). Depending on the distance between individuals in the

interaction, and their orientation, multiple projections may be needed to facilitate a

simultaneous AR experience. Considering this, the approach undertaken in the sandbox
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video (Beals, 2017) with a top-down projection is ideal configuration for collaborative

projector-based AR using the current state of technology.

Parent-only AR systems would focus on delivering real-time feedback in an

unobtrusive manner. This could largely consist of environmental and object overlays that

would help the parent improve the session context, both for data capture and for

instruction delivery (Liu et al., 2017; McMahon et al., 2015). For instance, the headset

could relate information on environmental clutter or excessive noise so that the parent

could take corrective action during the session. Similarly, the display could be linked to an

exocentric perspective camera and inform the parent when there were substandard

conditions for capturing the parent’s or the child’s body pose or vocal data.

Utilizing object recognition, or detecting objects with QR tags (Yilmaz, 2016) along

with contextual information regarding the child’s vocal ability level, could provide the

opportunity for the system to display sample instructions. The system could recognize the

child’s natural motivator, then generate a variety of instructions based on this object or

activity. This would aid in generalizability of PRT to new activities, and help the parent

ensure they are delivering the appropriate amount of maintenance and target skill

opportunities.

A novel concept for using AR could involve incorporating the clinician into the

session via telepresence (Pejsa et al., 2016). Telepresence essentially is an AR video call,

where one individual is projected into the environment of another. Using this technology

could virtually situate the clinician in the PRT session through the parent’s AR display.

This would help the clinician provide in-context feedback while the parent is interacting

with the child. Additionally, the parent’s session could be projected into the room of the

clinician to give them a full view of the interactions.
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8.7 Other Applications for Approach

8.7.1 Diagnosing Autism

Diagnosing autism through computer vision and speech analysis has received attention

from the research community. Computer vision techniques have focused on behavior

analysis (Hashemi et al., 2012; Martin et al., 2018; Rajagopalan et al., 2013), visual focus

(Alie et al., 2011; Jiang and Zhao, 2017), and neuroimaging (El-Baz et al., 2007; Elnakib

et al., 2011). Vocal-based diagnostic systems have focused on speech patterns (Xu et al.,

2008) and sentiment analysis (Marchi et al., 2015). The intent of these approaches is to

find an effective method of identifying individuals with autism to make diagnoses more

accessible. Essentially, the goal is to remove the human component of analysis to reduce

the cost of evaluation.

The classification methods described in this dissertation are similar to the works

above, but differ in the methodology and target analysis tasks. Computer vision

techniques focused on behavior are often looking for specific actions such as stereotypical

behaviors (Rajagopalan et al., 2013) or head movements (Martin et al., 2018). The goal of

the research presented in this dissertation has been to examine attention in a general sense,

divorced from specific actions. In regards to audio data, the works mentioned in the

previous paragraph (Marchi et al., 2015; Xu et al., 2008) assume the participant is vocal.

As discussed in Chapter 4, individuals with autism may exhibit limited vocal skills but

produce non-speech vocalizations.

The NODA application (Nazneen et al., 2017, 2015; Solutions, 2018b) introduced in

Chapter 7, in conjunction with the diagnostic assessments presented in Table 8.1, provide

a scenario where the methodology discussed in this dissertation can be applied to

diagnostic tasks. The NODA approach is to direct the parents to enact scenarios with their

child while creating a video recording. The recording is then manually analyzed by
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behavioral experts to create a diagnosis. Like the PRT video probe evaluations, the

methodology described in the preceding chapters could be utilized to create analytics and

key video segments that would aid clinicians in their assessment. Keeping the clinician as

part of the diagnostic process, in contrast to the approaches above, would allow for more

versatile feedback and immediate treatment options.

8.7.2 Classrooms and Educational Environments

The approach for detecting attention presented in this dissertation could be applied to

classroom situations. Although classrooms contain multiple individuals, during a

teacher’s lecture period each student should be focused on the teacher. This is essentially a

dyadic interaction similar to what has been discussed in previous chapters. The

expectation is that each student is attentive to the teacher, reflecting similar visual cues as

were addressed in assessing PRT fidelity. In particular, these would include visual focus

on the teacher and limited interaction with other students in the class. Visual focus is the

main methodology for detecting attention that has been employed in research (D’Mello,

2016; Raca et al., 2015). This is likely to be the most overt visual cue of engagement;

however, the approach becomes more difficult in scenarios that would require discerning

note taking from a student having his or her head bowed or resting on the desk.

Implementation of the system could address different aspects of the classroom.

Teacher and coursework evaluation could be primary use cases. Gathering attention

metrics along with verbal requests and responses would be expressive of activities or

subjects that were engaging. This would aid teachers and teaching instructors in assessing

a particular teacher’s classroom demeanor. Looking at the data, especially if multiple

classrooms and schools are involved in the study, would be useful for pedagogists in

creating new classroom materials. By evaluating student attention and engagement, they

evaluate specific learning tools and subject matters. Research also suggests that the
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distribution of activities has an effect on school children’s attention and academic

performance. Students are more likely to be attentive after engaging in physical exercise

(Gapin et al., 2011; Hoza et al., 2015).

On an individual level, evaluating the attention and engagement of a student could

aid in identifying subjects where the student is not challenged, struggling, or disinterested.

This information would be used for creating a more personalized education plan. This

would be useful under a universal design for a learning paradigm (Coyne et al., 2012;

Crevecouer et al., 2014; King-Sears et al., 2015) that would allow for more individualized

academic activities.

In addition to classroom activities, looking at peer and group interactions would be

an important application of the approaches discussed in this dissertation. Peer teaching

and group projects can be great ways for students to learn to collaborate. Providing

feedback and assessments on collaboration can be difficult, and would typically require

direct observation or worksheets for peer evaluation. Applying the multimodal analysis

discussed in this dissertation would provide a means for extracting data from these

interactions, and create video clips of both on-task and disruptive interactions.

8.7.3 Counseling and Therapy

Similar to PRT interventions, counseling and therapy sessions present a dyadic scenario

that would benefit from automated analysis. The techniques would be useful for gathering

metrics on the treatment recipient as well as evaluating the counselor’s or therapist’s

performance in the session. Speech and language pathology (SLP) represents an

explanatory example for how the methodology could be adapted. SLP has a similar

relationship to technology as autism treatments. Technological implementation research is

dominated by telehealth models (Chen et al., 2016c; Ekberg et al., 2019; Keck and Doarn,

2014; Regina Molini-Avejonas et al., 2015). Other approaches have included use of ASR
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systems (Lee et al., 2016), serious games (Nasiri et al., 2017), and expert tutor

applications (Robles-Bykbaev et al., 2015). The approach in this dissertation is mainly

applicable to the therapist-recipient relationship.

The most direct association between this dissertation and SLP therapist sessions is in

extracting data to evaluate the therapist. Like PRT, the therapist’s actions, in particular the

auditory instructions and reinforcement techniques, could be automatically analyzed and

presented. Tracking the child’s responses could also be accomplished. As with child

vocalizations in PRT, it is important to capture speech and non-speech vocalizations for a

child in SLP therapy. This provides a means of tracking the progress between sessions that

would show a visualization of the child’s improvement.

Outside of therapy sessions, conversational counseling could benefit by using the

automated video clip creation techniques discussed in Chapter 7. These techniques were

based on instruction and response-based interactions. Using this analysis, clips could be

created that isolated specific segments of the session for easier review.

8.7.4 Interviews

An applicant’s behavior in an interview is an important part of the hiring process for many

employers. As with counseling sessions, question and response segments would be useful

for hiring managers to review post-interview. Depending on the number of applicants,

reviewing interview recordings could be a costly processes. Creating an interface, such as

that presented in Chapter 7, would provide a simple means of reviewing specific questions

during the recorded session. Additionally, body posture metrics and engagement could be

gauged in a similar manner as attention detection. This would provide additional analysis

of the interaction, particularly if the verbal responses were mapped to the extracted visual

metrics.
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Automated analysis of interview sessions has been explored in the literature.

Common approaches focus on multimodal models, particularly looking at facial

expression, gaze tracking, verbal language, and voice intonation (Chen et al., 2016a,

2017a; Naim et al., 2015; Rasipuram and Jayagopi, 2019). These works have primarily

focused on web-based interviews. This provides the benefit of effectively having an

egocentric camera perspective from the point of view of the interviewer. This affords the

system the assumption of perspective, for example, looking at the camera is equivalent to

looking at the interviewer. For in-person interviews, this perspective may not be able to be

accommodated. In these instances, video analysis using the methodologies discussed in

this dissertation would be applicable.

8.7.5 Police Body Cameras

A novel and important application for the techniques researched in this dissertation is

automatic video parsing of police body cameras. These cameras are worn by police

officers to capture their perspective of events while on duty. Reviewing the interactions in

the tapes is important for corroborating the officer’s depiction of events in cases of dispute

and for the community to hold authorities accountable. The data recorded in the videos is

multimodal and shares similarities with the recording circumstances examined in PRT

videos.

Like PRT videos, these recordings represent ‘in-the-wild’ conditions. It can be

expected that subjects of interest will be moving in the frame, often subject to occlusion

and partial depictions. Also like PRT videos, generalizations of actions are more

important than recognizing the actions themselves. A subject’s visual attention, his or her

movements in association with other individuals, and general demeanor would be likely

be more important data to extract than specific actions. By applying similar techniques to

the approach used in this dissertation, automated analytics of interactions could be
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collected. These analytics could be used in assessing the officer’s behavior as well as

identifying scenarios that would be useful in training new officers.

The expectation of having every officer recording throughout their shift creates an

insurmountable amount of data for manual review. Manual review of the videos is

presumably only undertaken for high profile events and disputes. Utilization of automated

analysis and clip generation would provide a methodology for evaluating more data and

identifying important clips for human review. Like PRT, this would benefit from keeping a

human moderator as part of the system in order to gain a greater understanding of

significant events that were identified by the automated system. Important events in the

videos could consist of audio, video, or multimodal events. Using computer vision-based

techniques would not be sufficient for creating the automated clips. Additionally, unsteady

camera conditions are inevitable during periods of action. This was a concern that was

discussed in Chapter 7 in regards to video summarization and clip generation. The

unsteady camera conditions could cause video clip generation algorithms to misinterpret

camera movement as important changes in the frame. Applying a multimodal approach

using VAD and speaker separation along with normalized comparisons of body position

between frames (as discussed in Chapter 7) would create more accurate clips on

interactions.

Research regarding automated analysis of police body cameras has focused on

activity detection (Chen et al., 2019), facial recognition (Brown and Fan, 2016) and

detecting foot-chases (Aguayo et al., 2017). While these works have looked at specific

aspects of detection and classification in the videos, applying the approach from this

dissertation would provide more general information to aid manual review of the videos.
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