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Abstract

The increased capabilities and lower cost of Micro Aerial Vehicles (MAVs) unveil big
opportunities for a rapidly growing number of civilian and commercial applications. Some
missions require direct control using a receiver in a point-to-point connection, involving
one or very few MAVs. An alternative class of mission is remotely controlled, with the
control of the drone automated to a certain extent using mission planning software and
autopilot systems.

For most emerging missions, there is a need for more autonomous, cooperative control
of MAVs, as well as more complex data processing from sensors like cameras and laser
scanners. In the last decade, this has given rise to an extensive research from both
academia and industry. This research direction applies robotics and computer vision
concepts to Unmanned Aerial Systems (UASs). However, UASs are often designed for
specific hardware and software, thus providing limited integration, interoperability and
re-usability across different missions. In addition, there are numerous open issues related
to UAS command, control and communication(C3), and multi-MAVs.

We argue and elaborate throughout this dissertation that some of the recent standard-
based publish/subscribe communication protocols can solve many of these challenges and
meet the non-functional requirements of MAV robotics applications. This dissertation
assesses the MQTT, DDS and TCPROS protocols in a distributed architecture of a UAS
control system and Ground Control Station software. While TCPROS has been the
leading robotics communication transport for ROS applications, MQTT and DDS are
lightweight enough to be used for data exchange between distributed systems of aerial
robots. Furthermore, MQTT and DDS are based on industry standards to foster commu-
nication interoperability of “things”. Both protocols have been extensively presented to
address many of today’s needs related to networks based on the internet of things (IoT).
For example, MQTT has been used to exchange data with space probes, whereas DDS
was employed for aerospace defence and applications of smart cities.

We designed and implemented a distributed UAS architecture based on each publish/-
subscribe protocol TCPROS, MQTT and DDS. The proposed communication systems
were tested with a vision-based Simultaneous Localisation and Mapping (SLAM) system
involving three Parrot AR Drone 2 MAVs. Within the context of this study, MQTT
and DDS messaging frameworks serve the purpose of abstracting UAS complexity and
heterogeneity. Additionally, these protocols are expected to provide low-latency commu-
nication and scale up to meet the requirements of real-time remote sensing applications.
The most important contribution of this work is the implementation of a complete dis-
tributed communication architecture for multi-MAVs. Furthermore, we assess the viabil-
ity of this architecture and benchmark the performance of the protocols in relation to an
autonomous quadcopter navigation testbed composed of a SLAM algorithm, an extended
Kalman filter and a PID controller.
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Chapter 1

Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) have become a popular topic in com-
mercial, military and governmental applications. The technology has evolved to Minia-
ture Aerial Vehicles (MAVs), and has gained major attention in a number of civilian
applications. MAVs can fly autonomously within or out of the line-of-sight to serve a
variety of purposes.

Due to the overwhelming popularity of MAVs, technology giants like Amazon and
Alphabet are currently developing commercial programs to tap into the huge market po-
tential of drones. Small, low cost, commercial autonomous drones are being considered
as an important part of the Internet of Things (IoT). The application of this technology
includes automated package delivery, precision farming, terrain mapping, 3D modelling,
surveillance and security, support of minimally manned installations, and wildlife mon-
itoring, to name only a few. Autonomous drones are also being used in manufacturing
and production industries such as oil, gas, mining, and railway etc. Application of au-
tonomous drone is far and wide as compiled by the Canadian Centre for Unmanned
Vehicle System, see [18].

This huge burst of popularity and market growth has put pressure on aviation author-
ities and researchers of this field. Both entities need to address some critical concerns
and challenges if they want the MAV technology to provide real benefits to the civil-
ian market. The major concerns focus on control systems, public safety, privacy, and
data security. Since most of the drones are managed from their ground control stations,
researchers are expected to devise efficient mechanisms to manage MAV missions.

Unmanned Aerial Systems (UASs) are required to address the need of all these ap-
plications, and manage drone missions from a ground control station. A UAS, in very
general case, consists of the following main components: a UAV, a ground control station
(GCS) operated by a “pilot”, and data links to transmit control inputs to the aircraft and
receive payload/telemetry data from the aircraft. The work presented in [19] elaborated
how diverse types of UASs are designed and implemented. Recently, many applications
involving multiple drones have been shown. These systems aim to operate with multiple
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heterogeneous drones, vastly increasing their complexity over single drone control sys-
tems. With more complex system requirements, the architecture needs to be extended
with control units and M2M communication.

1.1 Background to the problem

The development of open protocols for communication between control units and MAVs
can solve a number of real world problems. Despite the improvements and success of
research-driven UAS hardware and software, it is difficult to implement a practical, real-
time MAV mission. The complexity lies in: 1) collecting and interpreting data, 2) config-
uring the embedded avionics, and 3) establishing secure and quick communications with
the GCS. MAV autonomous navigation is another complex problem that is a challenge
for research community. This involves topics like probabilistic state estimation, linear
control, and path planning. Academic research in the robotic labs around the world has
been focused on the development of autonomous MAVs. Efficient and reliable network
communication is a critical component of enabling robots to navigate without human
intervention.

Another major challenge lies in implementation of algorithms for multiple-MAVs mis-
sions. With growing advancements in the industrial and commercial application of MAVs,
it is becoming essential to develop and implement algorithms that can control different
categories of MAVs or multiple-MAVs. Even when cooperation is not needed for some
applications, it is still essential to build robust and integrated remote sensing software to
bridge the gap between wireless network communications and other sources of informa-
tion. Hence, the ability to communicate among themselves and with other devices are
essential requirements for enabling aerials robots to realise meaningful missions.

Since UASs require a combination of both wired or wireless connections to communi-
cate with MAVs, this domain poses further research challenges. UASs often also comprise
of dynamic network topologies with high performance and reliability requirements. Thus,
a major challenge lies in choosing the appropriate communication standard to power MAV
systems.

Furthermore, MAV platforms and ground control stations generally have limited com-
putation power to execute resource intensive tasks like planning, mapping, and vision-
based algorithms. Mobile robots could integrate with intelligent external autonomous
robotic systems running on a cloud platform to share and augment the abilities of MAVs.
These systems often involve higher volume of data and have a higher data processing
rate. Therefore, MAVs require powerful hardware and software combinations. In addi-
tion, researchers aim to reduce the operation costs and increase the flight duration of
UASs by offloading the algorithm computation tasks that have no stringent real-time
requirements.

Integrating the MAVs to a country’s National Air Space (NAS) is another major
ethical and legal consideration. Research works have highlighted the important challenges
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of integrating the autonomous flying robots into the civil airspace, see [20], and this field is
expected to be the dilemma for all major aviation authorities. A distributed architecture
that uses open standards can propose the required services to enable integration of small
UAV swarms into the aviation systems within non-segregated air space (i.e. at an altitude
that is not reserved for conventional aircraft). This would involve assurance of a secured
communication and proper trust mechanism between a network of distributed agents.

1.2 Research motivation and objectives

1.2.1 Research motivation

This research derives its motivation from the fact that flying robots will play an impor-
tant role in the 21st century’s technological evolution. This is driven by recent emerging
advances in MAV mechatronics, autopilots, data transfer rates, and payload. This re-
search investigates the communication architectures within unmanned aerial systems for
the advancement of its industrial and commercial application. With the proliferation
of wide-area networks and the Internet, there has been a clear trend in various fields to
move from confined systems based on a monolithic approach to a distributed architecture.
First, a comprehensive literature review is presented. Furthermore, emerging communi-
cation protocols in the field of unmanned aerial system are described. To analyse the
communication systems, this study uses a robotics navigation system as a testbed, and
demonstrates the performance and scalability of an architecture design to route high
volume of data in UASs at high frequencies.

Furthermore, this dissertation develops and demonstrates a messaging software ar-
chitecture that can execute low latency navigation and computer vision algorithms. In
the process, it aims to simplify the overall hardware and software complexity as a ser-
vice oriented platform, hence improving the interoperability and MAVs coordination.
A major motivation for such an architecture is to enable the aerial robots offload their
heavy computations to modern data centres via open communication protocols. Robotics
applications have very strict computational needs to be viable in production. In addi-
tion, the computational capability of a flying robot is limited due to payload and power
constraints. To answer these challenges, the proposed communication model is designed
to offload computation load to a networked distributed system. This strategy to move
the control unit to a data centre or cloud infrastructure allows the application to make
efficient use of the MAV/GCS hardware resources and limited payload capacity. Further-
more, the use of public and private clouds– which have powerful computational, storage,
and communication resources– would reduce maintenance and overhead costs.

This dissertation implements a middleware-based MAV communication and evalu-
ates the proposed architecture with a Simultaneous Localisation and Mapping (SLAM)
algorithm. The experimental results are obtained from a simulated in-door setup of a
distributed UAS of few MAVs and findings from experiments helped to assess the per-
formance, challenges and viability of the proposed system.
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Finally, the intent of this work is to describe a possible architecture which will enable
to build applications needed to execute similar low-latency algorithms. Eventually, the
same concept can be extended to develop applications that require long range communi-
cation, multi-MAVs swarm control, and dense environment mapping.

1.2.2 Aim and objectives

The research aim of this project is to develop a UAS for MAV robotics applications
based on emerging standard publish/subscribe communication protocols. The intent is
to investigate the reliability, ease, and performance of such protocols for near real-time
processing of information.

One of the main objectives is to simplify the data processing capability of MAV
missions by using a distributed control architecture. The proposed architecture imple-
ments the communication gateways to exchange data between the two main components
- the UAS Control Unit (UASCU) and the GCS, as depicted in Fig. 1.1. The GCS
and control unit can exchange information using the default protocol of ROS middle-
ware like TCPROS. However, the focus of this study is to evaluate the recent publish/-
subscribe messaging protocols as alternative communication standards between the dis-
tributed agents. In this respect, TCPROS and two lightweight middleware technologies
are tested, namely the MQTT [21] and Data Distribution Service (DDS) [22]. MQTT is a
publish/subscribe ISO standard protocol (formerly Message Queue Telemetry Transport)
and described as a “lightweight” messaging protocol for IoT sensors and mobile devices.
It provides three QoS levels to guarantee delivery of messages between the UAS and the
Control Unit. MQTT uses a broker as the back-end component to connect decoupled
MQTT clients. DDS, on the other hand, does not need a broker and communicates
in a decentralized peer-to-peer model; data is exchanged within a domain space, and
accommodates both Machine-to-Machine (M2M) and Machine-to-Ground (M2G) com-
munication. Both MQTT and DDS promise to provide better performance and scalability
than TCPROS and conventional SOA protocols.
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Figure 1.1: Conceptual architecture of the proposed sub-systems and communication
primitives for a simple scenario of two ground stations and few MAVs.

MAVs data can be obtained using various kinds of sensors, such as inertial measure-
ment units (IMUs) and real-time image/video capturing devices. In the proposed archi-
tecture, the GCS relays data to the UASCU for processing or to expose it to other systems.
Hence, this abstracts the complexity of the UAS from the main processing systems. This
distributed architecture also allows the possibility of offloading computationally intensive
processes from the drone to a control system. Multiple data processing sub-systems can
be integrated in the control unit (referred as ‘internal systems’ in Fig. 1.1).

Primarily, this research study objective is to focus on the design, development, sim-
ulation and testing of a distributed UAS architecture with a vision-based real-time navi-
gation algorithm. Fig. 1.1 illustrates the following main components of the distributed
Unmanned Aerial System (UAS):

1. The micro aerial vehicle(s) and payloads.
The MAV platform consists of an IMU and an on-board computer connected to the
on-board sensors. It provides sensor measurements (navigation data, image/video
frames, range scanners like lasers and depth cameras) and receives flight commands.
It also consists of a radio transmitter and receiver.

2. UAS messaging client.
The base station is designed to act as a client using publish/subscribe standard
communication protocol to transfer information between the UASCU server and
MAV. It uses a communication pattern that meets the key architecture requirements
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like performance, security, and robustness. The data transmission technology over
the network (from GCS to UASCU) is based on TCP/IP protocol across a LAN
or WAN (Internet) network. The motivation for having the GCS and UASCU
within the same local/wide area network or data centre is to benefit from a reliable
network, bandwidth and computing power as required by robotics applications.

3. UAS Control Unit (UASCU) middleware.
The UASCU offloads the computationally intensive processes from the UAS to a
control unit and sub processing systems. The UASCU can be hosted within a cloud
computing server infrastructure with shared services accessible to multiple agents
and ability to implement failover mechanisms. Additionally, it allows integration
to external systems and multi-MAV control.

One of the primary advantage of a standard messaging protocol is that it eliminates
the need to build custom middleware for specific MAVs and missions. A main objective of
the system is to use a service-oriented architecture which would allow the control unit and
GCS to interact via reliable packet based networks. A service-oriented architecture allows
sending commands and receiving payload data across distinct, pre-defined interfaces.
For instance, the data from the MAVs in Fig. 1.1 is transmitted through topics like
uas/mav2/navdata and uas/mav2/image2.

MQTT and DDS service-based models and event-based programming paradigms can
ease the implementation of distributed software through network abstraction, service
discovery, authentication, Service Level Agreement (SLA) or Quality of Service (QoS)
parameters for reliable data delivery and performance. In addition, the proposed architec;
e.g. intelligent data processing systems, web servers, and mobile devices. The driving
force towards exploring an open distributed architecture was to ease development and
enable a wider range of remote sensing applications. In this respect, the aim behind using
standard communication protocols is to provide higher levels of guarantee and security
for safe operation of networked MAVs.

The future aim of the proof-of-concept implemented in this research, based on open
communication technologies, is to enable the messaging client to be part of the MAV
hardware. This will significantly decrease reliance on the GCS. Here, the messaging client
could be hosted on an embedded microprocessor platforms like Raspberry Pi, BeagleBone,
Arduino or any Linux powered on-board computer. Fig. 1.2 shows a conceptual view of
the resulting alternative setup, where the control can be fully-automated through 3G/4G
GSM networks or other faster WLAN networks. In this case, the MAV plans and executes
the missions through a Control Unit. The GCS becomes an optional component since the
control capabilities can be within the UASCU. While the set-up in Fig. 1.2 is meant to
be fully autonomous, generally it also has a direct link to the MAV within a given range
to enable manual overriding operation, if necessary.
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Figure 1.2: Alternative setup of proposed system, communication primitives and sub-
systems, using an on-board messaging client for fully autonomous control.

Besides moving some GCS functions and messaging client to the embedded MAV pro-
cessing unit, there are some other notable differences between the proposed architecture
implemented in this project (as in Fig. 1.1), and the planned evolution illustrated in
Fig. 1.2. In the latter case, there is a greater need to use a platform independent middle-
ware technology built specially for long-range communication, low-latency data transfer,
and uses a software client that can be executed on resource-constrained embedded de-
vices. Here, the ROS transport TCPROS is not a suitable candidate as ROS is known to
be a resource intensive middleware. Also, M2M messaging is only realisable with DDS as
neither MQTT nor TCPROS provide for peer-to-peer communication, needing a broker
and master respectively.

1.3 Research context

Real-time tracking and control is essential for some categories of MAV applications where
the control software needs to be executed at the GCS or within embedded device OS. On
the other hand, for many other applications, processing can be distributed to other sys-
tems. In this respect, this research aims at deducing what are the system constraints
and what is the achievable performance in the proposed real-time distributed
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environment when executing a robot mapping algorithm on the UASCU. MAV real-time
applications need to run on the same UASCU instance, cluster or private cloud (‘Inter-
nal Systems’) for higher performance. This study proposes an architecture to help cope
with the strict latency, bandwidth, and QoS in MAV communication systems. Further,
this would eventually provide the ability to bridge the data communication gap between
MAV and other systems. Studies in network robotics, based on the cloud architecture
paradigm, have discussed the possibilities for MAVs to interact within a distributed ar-
chitecture [23, 24]. The intention of this research is to present a practical approach of a
MAV communication system within wide/large area networks, using messaging technolo-
gies based on open standards. Such communication has predominantly been achieved
using device specific communication and using purpose built drivers on Robot platforms
such as ROS. Hence, we critically argue the need for investigating the use of alternative
standard-based protocols.

A key area where this work is relevant is within the context of near real-time MAV
robotics applications, and to assess the architecture and messaging protocols for systems
in this domain. The application used as testbed in this dissertation is a MAV autonomous
navigation system. Navigating in unstructured environments is a complex task which
needs fusion of data from multiple sensors and IMUs. SLAM is an example of a similar
task where the vehicle must estimate both its location and the map of the environment.
It is a widely studied problem for robots to navigate autonomously. In SLAM, the
robot starts at an unknown environment and simultaneously maps the environment and
locates itself. On similar ground, this research work aims to use an extended Kalman
filter (EKF) based SLAM navigation system as testbed with different implementations
of the communication architecture and using real-life MAVs as distributed agents.

1.4 Research questions

This study seeks answers for the following research questions:

1. (a) Does a distributed architecture based on publish/subscribe protocols like MQTT
and DDS address the complexity of implementing diverse UAS applications?

(b) Does the distributed architecture proposed based on standard-based messaging
also allow easy integration with diverse types of UAS and data processing
applications?

2. (a) How does the publish/subscribe protocols MQTT and DDS compares to each
other in terms of performance(i.e. communication latency) and bandwidth?

(b) How does these protocols compares to conventional robotics messaging trans-
port like TCPROS?

3. How well an architecture based on distributed computing and asynchronous com-
munication technologies meet the functional and non-functional requirements of a
real-time MAV robotic algorithm?
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4. (a) Does the system based on MQTT/DDS provides the required performance,
robustness, accuracy, resiliency, and scalability for the MAVs to navigate in
an unknown and GPS denied environment?

(b) And finally, how does the MQTT/DDS/TCPROS variants of the architecture
perform in a multi-MAV and constrained bandwidth environment?

1.5 Organisation of the dissertation

Chapter 2 provides a comprehensive literature review on UAS and works related to the
design of the different components of UASs’ components. In Chapter 3, we survey dif-
ferent MAV platforms and their remote sensing applications. Chapter 4 looks at MAV
networks and related distributed communication technologies. We also give an overview
of the IoT concept in relation to robotics. Chapter 5 introduces the robot mapping and
localisation problem. It explores the Bayesian filtering methods and SLAM algorithms
used in autonomous navigation systems. Chapter 6 covers the methodology to design the
UAS Control Unit, communication gateways and SLAM navigation testbed. Chapter 7
describes the overall system architecture and software implementation components fol-
lowed by a description of the experiments carried out. Chapter 8 outlines the results and
performance obtained from the distributed UAS architecture along with the accuracy of
the SLAM algorithm. Finally, Chapter 9 concludes with the dissertation achievements
and proposes future directions for further research.
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Chapter 2

Unmanned Aerial Systems (UASs)

2.1 Introduction

This chapter gives an overview about UASs, their characteristics, and their functional
design elements. The primary aim of this chapter is to define the components within a
UAS and describe the functions of each part of the system.

2.2 Characteristics of UASs

A UAS is an intelligent system of the UAVs, and recent research from academia and
industry have demonstrated its importance for scientific applications. Literature on UAS
cover primarily medium to large UAVs for commercial and military applications. UAS
is defined as a system whose components includes the necessary equipment, network, and
personnel to control an unmanned aircraft, see [25]. C3 (Command Control and Commu-
nication) is the main system within a UAS, besides the other activities like personnel for
the mission, shelter facilities, launch, and recovery [26]. The survey in [26] categorises
UAS C3 into two broad sets: LOS (within radio frequency Line-of-Sight) and BLOS (Be-
yond Line-of-Sight). In addition, each group have other subcategories of systems, some
specific or common to both group of C3. Example of subsystems include command and
control, autonomy, data links, and Air Traffic Control (ATC). BLOS can also mean the
systems that are beyond radio frequency or BVLOS (Beyond Visual Line-of-Sight), this
in turn implies that the UAV could be connected using longer range frequencies or cel-
lular data network. BVLOS navigation requires precise mission planning and additional
autonomous features.

In fact, designing, developing, and operating a UAS covers various other research
disciplines in aeronautics; a detailed argument can be found in [19]. Table 2.1 summarises
key UAS concerns in the category of UAVs that fly within non-segregated airspace. The
features outlined are generally required for mission configuration and orchestration of
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most typical MAV application.

Payload Awareness services Flight services Mission services Data Links

Actuators Conflict detection Virtual autopilots Data Storage Protocols

Radars Sense and avoid Path planning Mission management
and monitoring

Bandwidth

Image sensors Contingency manage-
ment

Frequency usage

Sensor data acquisition Flight monitoring Real time data process-
ing

Link loss procedures

Air traffic control

Table 2.1: UAS components and services for configuration and orchestration of UAV
missions.

2.3 Unmanned Aerial System(UAS) design

UASs are systems of UAVs composed of multiple other sub-systems responsible for specific
set of functions. The UAV is equipped with navigation/sensing equipment and payloads.
An on-board radio or modem transmits data to the ground station. There is also a
need for manual launch/recovery/control of the aircraft. Ground control station includes
software and hardware for configuring, planning missions, programming behaviours, and
monitoring progress of a given task or mission. In [19, 25] an elaborate background on
UASs is given, in addition to all aspects related to the design and development of UAV
missions. Recently, the use of MAVs to enable robotics and remote sensing applications
have attracted researchers’ attention.
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Figure 2.1: Functional components of UASs and purposes of each: automation soft-
ware/hardware to control and program the UAVs, and the communication links to analyse
data from UAVs.

Fig. 2.1 presents a general abstraction of each component of UASs and its features.
The following points provide a detailed description, current trend, and example from
literature for each of the functional components abstracted hereafter:

1. UAV is the main component, which houses the on-board flight controller, pay-
loads, and sensors. UAVs can carry a wide range of payload for various purposes;
for example, typical sensors are used to gather visual data, survey an area, or cap-
ture data from other mobile/non-mobile sensors during a mission. Examples of
payloads includes image/video camera, infrared/thermal camera, and Light Detec-
tion and Ranging (LiDAR) device. Beside the traditional mechanical control, a
flight controller or autopilot (e.g. the ‘Pixhawk autopilot’, as shown in Fig. 2.2)
serves as the ‘brain’ of the UAV. It is used to enable autonomous navigation, and it
can be programmed to connect multiple sensors or communication modules, see [1].

Figure 2.2: A Pixhawk autopilot as illustrated in [1].

2. The Ground Control Station (GCS) provides the human control interfaces with
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help of a mission planning software. Mission operators use a GCS to plan and com-
municate directions, as well as other desired flight behaviours which enable UAVs
to perform an assigned task. Hence, the GCS is often used to configure missions
and monitor the UAVs during an operation. QGroundControl [27] is an example of
an open source GCS with a graphical mission planner and multi-MAV visualization.
It can connect to several devices’ autopilots like the Pixhawk, ArduPilotMega, and
Parrot AR Drone 2.0.

3. The Communication sub-systems include the communication components and
links between the command and control of a drone. These technologies facilitate
the transmission of different types of sensor data from the aircraft to the GCS
and vice-versa. This is achieved through a wireless transmission communication
infrastructure and networking communication standards. Some example of long
range radio frequencies used by MAVs are: the IEEE standards like WiFi 802.11n,
802.15.4 personal-area network (PAN) radio standard, LTE-A, ZigBee wireless tech-
nology. In more complex scenarios, the communication can extend to one or more
MAVs with MAV-to-MAV and MAV-to-ground data interchange links.

4. Remote sensing application is the software that allows data from the UAVs to
be collected, processed, and analysed. This enables intelligent use cases.

The research presented in [28–30] describe examples of MAV applications which in-
volve data capture such as terrain mapping, security operations, ocean and wild-life
monitoring. These systems mainly need to capture the sensory data by flying over
a GPS defined area. Afterwards, the sensory data is sent for processing/analysing.

The UAV research community has also shown growing interests in Robotic sens-
ing, imaging, and navigation techniques. For instance, navigation systems in struc-
tured or unstructured environments were reported in [31, 32]. In [9], the results
involved navigating in GPS-denied environments using a camera and IMU sensors.
In [33], the navigation employed four cameras in stereo mode. Other practical
robotics applications include sense and avoid, and tracking of external landmarks,
as described in [34,35].

UAVs can also have robotic arms and actuators which can interact with the environ-
ment. These type of UAV systems can perform complex tasks like package delivery,
repair works, and object manipulation, as shown in [36]. Cooperative control of
a fleet of UAVs is another important area of UAV robotics applications which is
getting major attention in recent years. This direction involves studies in Machine-
to-Machine (M2M) communication. For example, the work presented in [37, 38]
explored co-ordination frameworks of UAVs and leader-follower algorithms.

2.4 Summary

This chapter provided the reader with a brief description of a UAS and its various com-
ponents. Furthermore, this chapter described each part of the UAS system with suitable
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examples and related studies, thus, presenting a general view of the modern UAS. Spe-
cific attention was drawn toward the communication technologies and remote sensing
applications as this dissertation focuses on these constituents.
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Chapter 3

Micro Aerial Vehicles(MAVs) and
Their Applications

3.1 Introduction

This chapter narrows down the discussion from UAVs to MAVs. In this respect, this
research assesses the capabilities of some new and common MAVs available off-the-shelf,
and gives an overview of their technical specifications. This part extends from the concept
of UAS to show how the MAV system can serve multiple applications in real-life scenarios.

3.2 Micro Aerial Vehicles(MAVs)

Though UAVs dates back to the 1920s, MAVs like quadcopters appeared quite late,
around 2004. This delay is attributed to the software/hardware complexity and electronic
stability issues. Recently, the capabilities of MAVs have progressed exponentially, as
shown in Fig. 3.1. Moreover, MAV technology is reshaping how human beings use their
airspace. UAVs are being built for military, governmental and commercial applications.
Most of the manufacturers like DJI and 3D Robotics develop only a specific category
of drone, while others like Boeing constructs drones for both military and commercial
applications. The technology media has publicised the capabilities of the civilian UAVs,
highlighting the impressive impact it can have on people’s daily lives. The increase in the
demand of drone applications is pushing UAV manufacturers to shift towards developing
a low cost commercial device.

MAVs are a smaller form of UAVs, typically weighing less than 25Kg [39] with a
wing-spanning less than 1.5m on an average. They are categorized into the following:

• Fixed-wing;
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• Multi-copters; and

• Hybrids of fixed-wing and multi-copters.

Multi-copter MAVs are common because they are easy to launch and recover. They
are suitable for flights range of less than 10 km with load less than 2 kg. This demonstrates
rapid, frequent, low cost transport capabilities of MAVs in difficult terrains such as valleys
and forests. Fig. 3.1 shows the 3DR-X8 multi-copter, which is an example of a robust
MAV platform. It can be used for tasks like aerial mapping and mission planning. On
the other hand, fixed-wing MAV are suitable for demonstrating long range flights ranging
up to 50 km.

Figure 3.1: Evolution of MAV platforms and specifications according to [2, 3].

MAV capabilities have been enhanced rapidly over the past decade. Modern day
MAVs comprise of on-board sensors like visual sensors (monocular or stereo), range sen-
sors, depth sensors, thermal sensors, and infra-red sensors. Table 3.1 presents a brief
survey on the most common characteristics of the new MAVs. An important feature of an
advanced MAV is the fact that “Telemetry and command” bandwidth is considered sep-
arate from “Payload” (video camera, and lasers) bandwidth. For instance, [39] discussed
the telemetry communication could be accommodated by a 56 Kbps link, while payload
bandwidth would require at least 8 Mbps for good quality video. Additionally, [39] also
describes the following communication techniques:
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• Wireless Local Area Network (WLAN) 802.11 standards based on 2.4 GHz band;
and

• Coded Orthogonal Frequency Division Multiplexing (“COFDM”) relying on 5 to
24 GHz band.

A major concern highlighted is the fact that systems for payload communication are
degraded by Doppler frequency shift, and this limits the speed of the MAV. As described
in [39], Orthogonal QPSK (Quadrature Phase Shift Keying) is a technique that can
alleviate the Doppler effect.

Table 3.1: Micro Aerial Vehicle (MAV) categories and common capabilities of MAVs
available off-the-self [10–12].

This study used the Parrot AR Drone2 MAV platform, which runs an on-board Linux
computer with a WiFi interface for communication. The Parrot AR Drone2 MAV has
multiple sensors, e.g. pressure, ultrasound, allowing precise control and stability of the
drone. It also has an optional GPS device for supporting the semi-autonomous flight. The
system is equipped with a front and bottom facing camera, which can stream navigation
data and video over WiFi to an iOS or Android device. The Parrot drones have been
used extensively in areas of MAV robotics research

Recently, there has been a surge in the market of nano-sized micro aerial vehicles
like the nano and pico quad-copters. The smaller size and mass of a nano-sized aerial
vehicle makes it possible to accelerate and manoeuvre in tighter spaces. Researchers
have explored formation control and swarm control techniques to provide coordination
among the MAVs, as well as planning and executing of group tasks. In particular, the
work presented by [40] achieved remarkable results with pico-quadrotors. However, this
is fairly a new area for real-life application, and it is driven by latest advances in the field
of microelectronics, battery capacity, payload, and sensory capabilities.
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(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 3.2: Examples of unmanned aerial systems remote sensing applications: a)
Wild life monitoring [28]; b) Mapping and surveying [29]; c) Mine mapping and 3D-
Reconstructions [41]; d) Precision agriculture [42]; e) Minimally manned installations
inspection [43]; f) Law enforcement [30]; g) Disease prevention [44]; h) Climate monitor-
ing [45]; i) Search and rescue [46]; j) Disaster recovery and emergency [47]; and k) IoT
and scientific research.

3.3 MAV applications

The introduction and motivation into this work show that UAVs are enabling progressive
and disruptive applications. The UAV industry has a wide scope and a crucial role to
play in the near future. This research narrowed down the focus on MAVs, which are a
special form of miniature UAVs. Fig. 3.2 lists down some MAV applications that have
received higher attention in recent years. In many smart city scenarios, MAVs are used
regularly, filling the gaps in cases like 3D (Dull, Dirty and Dangerous) operations.

MAVs have been widely used in filming and surveillance activities; but, many compa-
nies now use them for delivery services and medical aid. Therefore, MAVs provide both
commercial and social value to our community. They can also be used in the health-care
transport systems of under-developed and complicated regions. Matternet [48] is very
good example of a company extensively testing MAVs to deliver medical supplies and
other goods. The MAVs perform frequent flights and carry packages of up to 1 kg over
20 km to hard-to-reach rural clinics.

In September 2015, Foster&Partners, a global studio for architecture, design, and
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engineering revealed plans to work on a pilot drone port in the Rwanda. The ‘Droneport
project’, depicted in Fig. 3.3, offered to address the lack of infrastructure in Africa and
provide UAS facility to support goods transportation and community life.

Figure 3.3: A glimpse into the future, with the DronePort project, appeared in the
United Nations Office for Project Services (UNOPS) annual publication [49]. The concept
describes how drones and goods transportation could become the centre of community
life.

E-Commerce delivery system in mega cities provides another long-term opportunity
for using the MAVs. Nevertheless, at present state, this technology faces many chal-
lenges. Some major challenges include lack of sufficient autonomy and lack of efficient
communication system for flying MAVs in city and rural environments. Another area
where MAVs are extensively used is for the Dull, Dirty and Dangerous (3D) scenarios
where autonomous systems are used in places dangerous for human beings to access.

UASs and MAVs are disruptive technologies for many industries, but also present
many threats to the infrastructure they operate in. In order for MAVs to be used in
smart-city scenarios, the current city infrastructure has to provide for public safety and
data security. Authorities need to consider a lot of other factors to unlock the growth of
small transport UAVs. Presently, the following are the main regulatory barriers:

• Public safety;

• Airspace safety;

• Wireless communication licences; and
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• Licence to operate civilian UASs.

‘The Law Library of Congress’, a global law agency has surveyed UAS regulations
of twelve countries including the European Union in April 2016, see [50]. They assess
extensively the legislative proposals and provisions for UAVs with respect to its weights,
altitudes and types of use. Survey shows that the integration of UAVs into the National
Air Space (NAS) is a major concern. The EU and many other countries have developed
a regulation road map to enable the ‘Remote Piloted Aircraft Systems’ within their
airspace. Other governments are also considering to roll out regulations as early as
possible to build infrastructure towards harnessing the benefits of MAVs.

3.4 Summary

This chapter gave a general categorisation of MAVs based on their features and specifica-
tions. In addition, this research compiled a collection of UAS remote sensing applications
specifically leveraging MAVs and showing the breadth of opportunities for smart cities
and villages. These applications have specific technical requirements in terms of network,
communication infrastructure and algorithmic data processing. These specific challenges,
and needs, do justify the need for further research, in order to get a deeper understand-
ing of the UAS architecture. Discussion in the chapter also highlighted the research
requirements to advance, support, and enable technologies around MAVs.
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Chapter 4

Distributed UAS Frameworks and
Communication Technologies.

4.1 Introduction

The first part of this chapter surveys existing literature on distributed UAS frameworks
that applies the concept of centralised control. The chapter starts by discussing the
organisation of a MAV’s network. The few works found on distributed UAS relate mainly
to larger UAVs and more complex UAS. Extending on these, the relevant concepts that
can be applied to civilian MAVs and simpler UAS are highlighted. In the second part of
this chapter, the relevant middleware and communication frameworks that can be applied
to the field of robotics are discussed. This chapter evaluates the possible communication
technologies and protocols, which can meet the needs of networked MAVs. In this respect,
the transport layer of ROS and the IoT protocols are discussed.

4.2 MAV networks

There are two broad categories of network topology that can be applied to autonomous
UAVs:

1. Infrastructure-based networks consist of nodes that require a central access point.
For instance, a single MAV connected to a base station through a wireless network.
Consequently, for the infrastructure-based network the information of each MAV is
processed by a control unit. The use of satellite communication is another example
of infrastructure network. The majority of UAS applications employ infrastructure-
based network with fewer MAVs where air-to-air connection is either not feasible
or not needed. However, such multi-MAV systems might restrict the MAVs to
cooperate in several tasks. Another drawback is the control unit can be the source
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of the central point of failure.

2. Infrastructure-less networks involve point-to-point, ad-hoc formation of networks
between MAVs. In this case, the nodes do not require a central access point.
For infrastructure-less networks, cooperation between MAVs helps in building a
complex application. In a recent work, [51] investigated an ad-hoc vehicular network
known as ‘Flying Ad-hoc Network’, which in general does not rely on pre-existing
infrastructure. It is formed spontaneously as the nodes connect, and addresses
collaboration between the MAVs and the control stations.

Fig. 4.1 depicts the layouts of MAV communication infrastructure which are based
on one or a combination of the aforementioned concepts. The systems in a) Direct, b)
Cellular, c) Satellite, and d) Mesh, show the common multi-MAV communication network
layouts which transfer data using the radio frequencies and other long-range wireless
networks; whereas e) Distributed networks architecture, shows a network topology that
relays data from the GCS to the control unit.

(a) Direct network (b) Cellular network

(c) Satellite network (d) Mesh or ad-hoc network

(e) Distributed network

Figure 4.1: Unmanned aerial systems communication networks.
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MAVs can form more complex networks based on mesh and star topology. Conse-
quently, engineers face specific challenges to operate emerging UAS networks. In [52],
the important issues in UAV communication networks are highlighted. These networks
are characterised as slow, unreliable and sometimes subject to dynamic organisation.
In an interesting study, [53] discussed the dynamic routing for flying ad-hoc networks,
whereas [54] and [55] presented different frameworks for formation of fixed-wing MAVs
and UAV swarms respectively. According to [52], the routing demands of UAV networks
will certainly go beyond the needs of the current ‘Vehicular Ad-hoc Networks’. While
wireless networks of MAVs present many opportunities, it involves other challenges re-
lated to wireless transmission links, data transfer rate, communication range, and embed-
ded device capabilities. In [56], different network topologies– including ad-hoc multihop
networks– were analysed to investigate the factors of UAV system which influences the
data transfer rate and range.

This dissertation motivates for a distributed UAS architecture and considers that
many of the future UASs will depend on architecture decisions which can address the
network and communication challenges mentioned. The discussion which follows focuses
on the communication technologies that could facilitate deployment and management
of network services. One way to try to achieve this is through the use of flexible and
robust communication middleware and messaging protocols. The same problems can be
looked at from a network routing perspective; in this case, the dynamic networks of robot
agents can use the concept of Software Defined Networking (SDN) to manage network
behaviour programmatically via open interfaces. The aim in the latter case would be
to address the challenges in network communication and to abstract low-level network
components. In addition, SDN has the ability to increase security and availability in
MAV networks. The work presented in [57] demonstrated an application of SDN and
OpenFlow, in conjunction with the Data Distribution Service.

Another concept which is also closely linked to distributed UAS is the concept of multi-
MAV control or swarming. Even if this work does not cover swarming, the literature on
this subject is of importance as multi-MAV cooperation is a logical extension to the
distributed framework and messaging infrastructure presented. Future trends and some
studies in the last decade have been centred around the control and networking of multiple
MAVs. [58] showed what MAV capabilities could be used to form automated routes
and network of different types in conjunction with ground, sea and other air vehicles.
The authors give a deeper insight on vehicular networks and multi-hop communication
requirements of multi-UAV coordination.

4.3 Distributed UAS frameworks

Since this research applies the distributed computing paradigm to UAVs, it is important
to survey the frameworks developed in this field and related technologies which are ap-
plicable to a network of smaller UAVs. The most distinctive feature of a distributed UAS
is the decoupling between the MAV messaging client and the control unit. A centralised
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control unit is hence essential to achieve distributed control of MAVs.

The Cloud paradigm is a key technology that can bring many benefits to distributed
UAS architectures. Cloud robotics architectures has attracted a growing body of litera-
ture, in addition to an undeniable commercial interest. Cloud robotics is driven by the
possibility for distributed mobile agents to be part of a broader ecosystem of Internet
applications in order to access a huge knowledge base. The other main advantage is
the capability to leverage the extensive computing resources available on the cloud. A
decentralised UAS control unit can be deployed on more than one server instances and
configured based on the computing power requirements of the applications and bandwidth
needed. The architecture of the cloud can include components like a load balancer, which
distributes workloads to a more reliable system. Use of the disaster recovery mechanisms
like active-active or active-passive configurations of server instances could increase avail-
ability and reliability of UASs. Auto-scaling is yet another important feature provided by
cloud-based services, allowing instances to be provisioned as and when the load increases.
This research does not utilise a clould framework; however the distributed UAS concept
can be easily extended to any private or public cloud infrastructure.

There have been few studies that describe the concept of distributed UAV control in
the military domain of larger and more complex UAVs and UGVs(Unmanned Ground
Vehicles). However, there is very limited information on implementations of distributed
UASs in the civilian domain. Therefore, more detail is needed on the distributed ar-
chitecture and messaging infrastructures relevant to MAVs. This dissertation assessed
the characteristics and approaches of several contributions from academia on distributed
UAS and their respective communication mechanism. These contributions can be roughly
categorised into the following:

• A middleware based UAS and simulation framework was presented in [59]. The
autonomous distributed system was based on the commLibX/ServiceX middleware,
which is a specific and non-mainstream middleware technology;

• The CORBA Service Oriented Architecture(SOA) communication standard
(developed in 1991) was used to design a distributed software architecture for an
aerial robotic system (WITAS project) in the research work presented in [60]. Ad-
ditionally, the work in [61] proposed a layered architecture model and service ab-
straction of interconnecting systems with UAVs;

• In [62,63], their results were based on SOA frameworks where the focus was mainly
on embedded avionics and low-level electronics components’ communication. In
[63], a ‘Virtual Autopilot Service’ was proposed. This system interacts with mis-
sion and flight services like flight planning, mission management/monitoring, and
contingency management. These works require a customised software/hardware
components and they are not practical for off-the-shelf quadrotors and fixed-wing
aircraft that come with predefined communication standards;

• A publish/subscribe messaging pattern framework for UAS operations was
published in a report by the US Department of Defence, see [64, 65]. The middle-
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ware based architecture uses the Data Distribution Service (DDS) protocol to ad-
dress UAVs integration within military applications. This framework was meant to
address the integration challenges between different UAVs, as well as other ground
systems. Civilian MAVs have a distinct set of requirements; nevertheless, they also
share similar integration needs as the control architectures discussed above; hence,
motivating for a distributed architecture and centralised unit of communication;
and

• Integration within the National Air Space(NAS) is one critical area regroup-
ing various challenges and concerns for integration of MAVs into segregated and
non-segregated air space. For instance, [20] investigated various challenges UAS
faces to access non-segregated airspace. The authors also gave a description of
regulations and design of interacting components of a system-of-systems involving
UAVs. [66] outlined a reference software architecture with key functionalities such
as control, conflict detection, and situation awareness for integration of UAVs.

4.3.1 Multi-MAV systems

As discussed, multi-MAV systems depend on a solid distributed framework for the C3
(command, control and communication). Another interesting feature of multi-MAV sys-
tems is the ability to cooperate and coordinate actions to perform an operation. This
feature is often know as ‘swarming’ of MAVs; it involves a MAV operating as the mas-
ter and communication backbone between other MAVs. A common scenario is when
the master MAV is always connected to the GCS and coordinate with all the agents
to perform a mission. A multi-agent network involving MAVs poses many challenges
related to the underlying communication and networking between the agents. Building
reliable communication among the multi-MAV systems and network is hence imperative
to designing a UAS.

Many smart-city applications of networked robots are time-sensitive; hence, they re-
quire instantaneous or minimal delay in communication and data transfer. Examples of
such algorithms are localisation and mapping algorithms, used for navigating and map-
ping unknown or GPS-denied environments. Another example is an object detection
application where the robots react dynamically based on the available sensor data. Thus,
it can be concluded that efficient communication among multi-MAV systems is essen-
tial for building real-time and near real-time applications when there are strict latency
requirements.

Other applications within smart cities that involve MAVs, do not have strict require-
ments for communication lag or data delay. A delay-tolerant network (DTN) paradigm
in [67] has been used to show how MAVs re-connect sensors to a network in network-
constrained scenarios. The drones essentially act as relays in the network. DTN is
presented to address the limitations of telecommunication infrastructure to support mo-
bile aerial vehicles and sensor communication. The study in [67] also identifies potential
bottlenecks with the Wide Area Networks (WANs) to handle large number of nodes and
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data.

The collaboration, coordination, mission planning and control of multiple robots is no
simple task. The framework presented in [13] describes a layered protocol and architec-
ture to support coordination among the members of a MAV team and with Unmanned
Ground Vehicles (UGVs). The system enables robots with different abilities to contribute
to complete a high-level task. The protocol layers consist of an application layer, which is
designed to cater for the specific requirements of managing and prioritising tasks among
the heterogeneous robots. Search and rescue operations during calamity or disaster are
examples of practical instances where this could be applied. Another example of mis-
sion that uses collaboration are the missions of finding and recognising a target. These
missions may be executed and coordinated using a team of aerial robots.

Table 4.1: Summary of the layers of the mission-oriented protocol framework as presented
in [13].

Table 4.1 highlights salient features of the communication protocol presented in [13]
and the responsibilities of each layer of the architecture stack. For instance, within a
team of MAVs, air-to-air communications paves the opportunity to apply the leader-
follower algorithms to navigate drones. The control node primarily acts as the mission
controller and dispatches information to the team of drones. The work in [58] proposed
a multi-UAV network architecture for cooperative Air-to-air (A2A) and Air-to-ground
(A2G) communications. The study suggested the use of UAVs as relays to support
ground vehicular networks. The authors applied the concept of multi-hop networking and
evaluate the challenges, performance and reliability of A2A, A2G, A2A-A2G (multi-hop)
with respect to the IEEE 802.11a specification for sensor data transmission and ZigBee
for control. The device specific hardware and software characteristics often hampers the
mechanism to implement drone-to-drone communication. Furthermore, the architecture
and application requirements for designing mission with air-to-air coordination is by far
more demanding and difficult to achieve without custom built units.
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4.4 Distributed robots communication

MAV applications rely heavily on the underlying communication frameworks. For exam-
ple, UASs require robust telecommunication capability based on cellular network or radio
tower. In the previous section, the distributed architecture and some of the communica-
tion aspects of UASs and multi-MAV systems have been discussed which could involve
both wireless and wired networks. In this section, we focus deeper into the technologies
and protocols of the communication. A UAS requires handling real-time situations. This
is driving the need for more reliable, low-footprint communication frameworks involving
MAVs within the context of mobile robots. Previous published works have focused on
the cooperative control, task planning, reliability, and fault tolerance of the communica-
tion. However, only few research works have focused on improving the distributed robotic
systems’ communication. Therefore, we assess in more detail the relevant robotics and
alternative communication technologies.

4.4.1 Robot Operating System (ROS)

The advent of advanced embedded devices like autonomous robots has added more com-
plex requirements to real-time control and monitoring of robotics applications. ROS
open-source middleware has been the most common development platform for large scale
robotics software. It has been built to operate on multiple computers distributed in a
network. Each node can function independently in a hybrid peer-to-peer architecture
after initiating the connection with the help of the Master node, see [68].

ROS provides for two topic transport protocols:

1. TCPROS is a simple, reliable and ordered communication stream. With TCP,
lost packets are resent.

2. UPPROS is a transport protocol in ROS where packets are not guaranteed to
arrive or can be duplicated. It has the advantage of low latency and often suitable
for lossy WiFi or GSM modem audio/video transmission.

ROS achieves a distributed communication using asynchronous message passing mech-
anism over Topics. RPC-style synchronous communication is also possible between nodes
via a Service. Nodes and nodelets serve as application modules with two primary com-
munication mechanisms based on XML-RPC (Remote Procedure Call) and publish/sub-
scribe protocols. Fig. 4.2 shows the information flow of the aforementioned communica-
tion mechanisms inherent to ROS.
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Figure 4.2: ROS nodes initialise connection with intervention of the master and exchange
data directly using publish/subscribe mechanism.

ROS disadvantages

ROS has been a state-of-the-art operating system in the research domain and comes with
many advantages such as being modular, loosely coupled, multi-language, and able to
communicate between ubiquitous device components or process information in parallel.
However, one of the main drawback of ROS is that it is not a real-time framework [69]. A
real-time software provides a set of guarantees within the time that certain operations take
to complete, e.g. inter-process communication, process scheduling and Input/Output.
While ROS can be coupled with a real-time OS or process, it only provides a ‘best-effort’
timing during robot operations. Secondly, ROS is only really compatible with Unix-
based platforms. Third, ROS is often deemed too heavy to run embedded and resource
constrained devices. Lastly, ROS is unable to work efficiently in network restrained
environment with limited sources.

To address these disadvantages, ROS is planned to undergo a major upgrade to
“ROS2” [70] and utilise the Data Distribution Service (DDS) as transport middleware.
With the growing popularity of robots and their use in commercial domain, an upgrade
to ROS is mandatory. ROS2 is still in Beta version and aims to target multiple DDS mid-
dleware implementations, multi-platform systems, and various programming languages.

The main reasons given by ROS2 contributors [70] for starting a parallel release of
ROS2 rather than just improving on ROS1 can be summarised as follows:

• Support for multi-robot systems involving unreliable networks;

• Support for real-time control; and

• Cross-platform support.
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4.4.2 Internet of Things (IoT) publish/subscribe messaging pro-
tocols

Robots have evolved much in the last decade and consequently the middleware and com-
munication technologies need to keep pace with this evolution. The emerging robotics
applications consist of ubiquitous services consumable from applications over the Internet.
This has given way to the “Internet of Robotics Things” concept that aims to provide
access to the shared resources like processes, memory, big data, and machine learning,
as described in [71]. While, the preferred communication pattern is Publish/Subscribe,
there are several other requirements of the IoT that have given rise to messaging protocols
with a richer set of features to support various levels of quality assurance, as well as meet
the needs of both robots and networks. Furthermore, the IoT applications and services
can consist of a number of mobile agents such as autonomous robots, cars, and drones.
Therefore, researchers from academia, industry, and government institutes are giving
special attention to messaging technologies for the vehicular communication networks of
autonomous vehicles.

The works focused on IoT in [16, 17] describe multiple abstraction of the IoT layers
and architecture models. The three-layered model, summarised in Fig. 4.3, is a high-
level model generalised from literature on IoT architectures. IoT often uses low-energy
Wireless Sensor Networks (WSNs); consequently, such wireless communication needs to
manage a trade-off between data rate, range, and energy consumption.

Figure 4.3: Three-layered IoT architecture model and design considerations as presented
in [4].

Publish/Subscribe messaging protocols

Publish/Subscribe (Pub/Sub) messaging technologies are considered a derivative of the
Message Oriented Middleware (MOM) system communication infrastructure between dis-
tributed systems. The protocols based on Pub/Sub have been used extensively in enter-
prise applications (e.g. IBM MQ), in research platforms like ROS as described in previous
section, and many others. However, the proliferation of the IoT provided a rapid boost
to the number and quality of these messaging technologies.
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The competition and complexity of the IoT protocols has brought along many chal-
lenges. Engineers face major difficulty in achieving convergence and flexibility because of
the wide range of IoT application architectures. From a technical perspective, the major
difficulty lies in defining the architecture and standards that should govern the IoT sys-
tem of systems. Researchers are working to address logical concerns such as security and
privacy issues. The major operational concerns include connectivity and scalability of
the IoT systems. A successful IoT architecture should be a loosely coupled system. Ad-
ditionally, the communication should be asynchronous and provide recovery mechanisms
in the event of failures or high load.

Standardisation of IoT Pub/Sub communication protocols has been a recurrent topic
within stakeholders and governing bodies like the European Commission, see [72]. In [73]
a comparative study was done by Prismtech; a company specialised in providing system
solutions for Internet of Things applications. The study assesses DDS, MQTT, AMQP,
JMS, REST, and CoAP IoT communication standards with respect to requirements of
industrial IoT applications. In another interesting work, [14] used the event-based pro-
gramming paradigm of MOM protocol AMQP for self-management automation systems.
In another work by [15], the evaluation of two common IoT protocols namely AMQP and
MQTT over unstable and mobile networks is presented.

Table 4.2 outlines a comparative study of relatively important features for each of these
IoT standard protocols. The assessment also shows limitations of these technologies to
support some types of use cases.

Table 4.2: Qualitative comparison of MQTT, DDS, CoAP and MQTT according to
[14–17] .
M2M: Machine-to-Machine, M2S: Machine-to-Server, S2S: Server-to-server

The characteristics of MOM communication standards protocols like MQTT, CoAP,
AMQP and DDS are very compelling for robots to communicate within a network. This
is because some of these protocols are primarily designed to be lightweight and run
on constrained networks (other than HTTP) and devices with low computation power
and memory. Furthermore, these protocols are open standards providing asynchronous
publish-subscribe communication, but have very subtle differences that must be assessed
before being selected as possible implementation choice for UAS communication. These
protocols also provide hierarchical topic naming scheme that would allow access to send
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and collect data to and from a MAV.

One of the main feature of IoT protocols is the various levels of assurance when
messages are delivered over unreliable networks; this is referred to as Quality of Service
(QoS) levels of the communication technology. HTTP protocol is established for client-
server communication on the Internet. However, it does not have neither a broadcast
mechanism nor a built-in support for QoS. HTTP also requires a web-server to accept
data, thus, requiring more computation, which in turn is a scarce resource for robots and
embedded systems. Both MQTT and DDS are very lightweight, with minimal headers,
packet routing information and data packaging semantics. This research work compares
the MQTT and DDS communication standards. Both protocols have a small footprint,
making them applicable to low-powered devices, however differ in implementation and
semantics.

MQTT (Message Queue Telemetry Transport)

MQTT [21] is a protocol for M2M and IoT applications with the following key features:

• 256 Mb maximum message size;

• Uses TCP/IP for fragmentation, transmission ordering and reliability;

• Reliable storage and forward mechanism; and

• Network efficiency, since there is no polling from the server.

MQTT, as its name implies, is suitable for transporting telemetry data from sensors.
Being lightweight, it is suitable for WSNs (Wireless Sensor Networks) and wired TCP/IP
networks. There is notable differences in the functionalities of MQTT and DDS, as de-
picted in Fig. 4.4. MQTT uses a Publish/Subscribe mechanism using a broker; therefore,
it is optimised for applications running on distributed servers. MQTT can also achieve
M2M communication using the classic model i.e. communicating via a central server, in
this case the communication broker.

Figure 4.4: MQTT and DDS communication models.
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MQTT for Sensor Networks (MQTT-SN):
While MQTT assumes a TCP/IP network and takes the advantages of TCP without the
need to reinvent the wheel, MQTT-SN does not require the connection oriented transport
provided by TCP. It is adapted for wireless networks based on UDP. ZigBee1.

Besides the fact that MQTT-SN makes MQTT possible across a non-conventional
network, there are interesting features of MQTT-SN, e.g. auto-discovery and registration
of topics that can enable nodes to form a dynamic network topology. These features can
allow mobile sensor platforms like MAVs to form networks as they move into the range
of other gateways. However, the MQTT-SN specification has not been standardised like
MQTT. Furthermore, MQTT-SN is mainly designed for small messages and networks
with higher risk of link failures, hence, it might only be useful for telemetry/air-to-air
links, rather than for high rate of larger image packets size coming from vision sensors.

Figure 4.5: MQTT-SN architecture and specification (Copyright IBM Corporation 1999,
2013.). Clients can connect to gateways dynamically based on the range or when they
become available. Gateways can also help with load sharing.

Data Distribution Service (DDS)

DDS is a feature-rich standard that adopts a data-centric approach to alleviate devel-
opment efforts. Fig. 4.6 gives a good overview of the DDS framework according to the
standard specifications. The implementation of the DDS framework can be found in few
air and ground vehicle operations, like the UAS Control Segment for military UAVs, see
e.g. [65]. The decentralised protocol eliminates the need for a centralised message bro-
ker. While MQTT uses essentially the machine to server communication pattern, DDS
focuses on M2M messaging model; hence, it is optimised for distributed processing of
data. Furthermore, it provides important additional properties such as:

• M2M Peer-to-peer communication between devices with different hardware and
networking capabilities;

1ZigBee specification is an appealing type of Wireless Personal Area Networks (WPANs) used by low-power devices,
which require higher speed and range of data transfer. It is based on the 802.15.4 IEEE wireless network communications
protocol. Zigbee networks can use XBee radios to transmit data
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• Very high and predictable performance to scale for large-scale deployments;

• Data-Readers and Data-Writers are automatically matched using Dynamic Dis-
covery; and

• Rich set of QoS to control existential, temporal and spatial properties of data.

Figure 4.6: QoS-controlled data-sharing communication. Subscriptions can specify time
and content filters and get only a subset of the data being published [5].

4.5 Summary

This chapter gave a formal description on the distributed UAS with respect to other
prevalent types of networks. It also presented works specifically relating to the civilian
UAS involving MAVs, and proposed the need to consider broader literature on the UAS
control systems. The chapter concludes by discussing features of client-server technologies
and communication frameworks available for designing the architecture of MAVs. The
characteristics of IoT networks and the features of publish/subscribe protocols were also
surveyed.
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Chapter 5

MAV Autonomous Navigation

5.1 Introduction

This chapter presents an overview of components of an autonomous navigation system
for a MAV. The discussion aims to introduce the navigation system implemented in [9].
This system comprises of a setup that consists of an extended Kalman filter, a monocular
SLAM algorithm and a PID controller. This setup makes it possible for the robot to
navigate in an unknown environment. First, this chapter gives an overview of the state-of-
the art visual SLAM and filtering techniques. Then, the chapter introduces the algorithms
used in implementation of the system.

5.2 Robot mapping and localisation

Researchers define the problem to map an unknown environment and simultaneously com-
puting robot localisation as Simultaneous Localisation and Mapping (SLAM). In
this section, we discuss on the two tightly coupled concepts of robot navigation on which
the SLAM problem is based: mapping and localisation. Often associated to chicken-
or-egg problem, a map is critical for estimating the robot location and inversely a pose
estimate is needed to build a map.

The robot’s motion, execution, and planning depends on its ability to create a model;
in other words, to formulate a map of the surrounding environment. Therefore, environ-
ment mapping by the robot is vital for autonomous navigation. Clearly, the environment
perceived by the robot needs interpretation; there are many available techniques to en-
able this representation, such as 3D points from sensors like the laser range-finder or
visual sensors like monocular or stereo cameras. Robot mapping has been extensively
researched in the field of mobile robotics. Basically, a robot creates a topology or geo-
metric map using its on-board sensors. Subsequently, the resultant map is used by the
robot to navigate the area. The map can also be used as a working environment. The
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mapping problem can be defined as the ability of the robot to gradually discover and map
its environment. The on-board sensors are utilised to perceive points of interest, which
are then integrated and related to each other.

The robot ensures consistency in integration of all the spacial points by precisely
computing its new position with respect to the previous point. Therefore, localisation is
necessary to accurately estimate the robot state variables in an unknown environment
and relate its location to new points of interest. The work presented in [4] proposed the
following techniques to achieve localisation:

• Global Positioning System (GPS) is an external method to localise a robot;
however, often GPS is not available or not precise enough;

• Odometry or Inertial Measurement Unit (IMU) provides incremental motion
displacement; however, this tool is subjected to drift over time and accumulation
of errors; and

• Feature recognition is a recognition technique, where landmarks are identified
and then used to determine object’s translation.

5.2.1 Simultaneous Localisation and Mapping (SLAM)

From the perspective of a computer vision specialist, SLAM finds its roots from the
Structure From Motion (SFM) algorithms. While the focus of SFM is popular mainly
for offline 3D reconstruction of scenes, SLAM tries to build upon the same concept of
multi-view geometry of SFM to reconstruct a 3D model based on visual or range sensors.
The key difference in SLAM is the need for the robot to determine the camera position
in real-time.

SLAM forms the basis of most autonomous navigation systems. It is crucial for a range
of indoor and outdoor, air and underwater applications for both manned and unmanned
vehicles. These systems face the same problem of simultaneously building a model of
the environment on one hand, and estimating the position of the robot on the other
hand. These two operations, that is, building the environment and estimating position,
are inseparable. In other words, these operations are tightly coupled.

To navigate autonomously in an unknown environment, the SLAM algorithm needs to
associate the data coming from the robot’s sensors to a global map, which is continuously
updated during the learning process. The general idea is quite straight forward: basically,
the map of the environment is generated, and then it is used to re-estimate the position
of the robot after regular time interval. Following this straight forward procedure, two
questions are answered by the robots: 1) What does the world looks like?, and 2) Where
is the robot?

The mathematical framework for SLAM is well established. However, there exists
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many open issues related to complexity of dealing with large, dynamic environments and
data association.

The general probability distribution for a SLAM system is represented by Equation 5.1.
This process is described using the following variables: the vehicle state xk, for all time
steps k along its path given by the set X0:k = {x0, x1, x2, .., xk}. Besides the state, the
map m is also estimated during each iteration of the SLAM process. The new state and
map m are dependent on the landmark observations Z0:k and history of control inputs
U0:k, as well as the initial state of the vehicle x0.

p(xk,m | Z0:k,U0:k, x0) (5.1)

There are essentially two forms of SLAM: full and online, see [74]. Equation 5.1
refers to the full SLAM; it estimates the posterior over the full robot path. The online
SLAM only estimates the current pose of the robot xk, rather than the entire path.
Online SLAM algorithms are incremental and derived from the Markovian model. The
Markov chain is a stochastic process, where the state xk is assumed to be complete in
its temporal evolution, i.e. it is conditioned by the previous state and control. Similarly,
the measurement probability is conditioned on the current state.

This work focuses on the online SLAM. The aim is to compute an estimate of
the vehicle’s location xk at time step k and a map of the environment m. Hence,
a joint posterior over these two variables are computed by applying Bayes theorem.

Probabilistic SLAM methods like the Extended Kalman Filter (EKF)-based SLAM,
calculate the probability of the robot location and landmark positions using data from
prior robot location, controls, and landmark observations. The mathematical models for
the filtering-based SLAM system have been widely researched and presented in academic
works.

The following mathematical notations are used in this section and in the subse-
quent chapters to represent system variables and coordinates:

• xk represents the state vector describing the location and orientation of the MAV;

• m is the map representation of the environment, composed of landmarks;

• uk represents the control vector to move the robot from state xk−1 to xk;

• zk represents the measurement vector of a landmark at time step k;

• W , C,K: calligraphic upper-case letters are used to denote coordinate frames. W is
the world coordinate frame. C is the camera frame and K, the keyframe coordinate
which is camera-centred;

• M ,N italic capital letters are used to denote sets, where M is the collection of
landmarks on the map and N , the set of keyframes during the SLAM process;
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Fig. 5.1 illustrates the essential SLAM problem for a robot moving on a path while
sensing landmarks as presented in [6]. Both the trajectory of the robot and the location
of all landmarks are estimated in real-time, without the need to have a prior knowledge
of the location.

Figure 5.1: The essential SLAM algorithm problem [6]. The True locations are not
known, hence the need to estimate the robot and landmark locations simultaneously.

Visual SLAM tracks the motion of a camera/robot while it moves in a natural en-
vironment, where image features serve as landmarks. The need for the features to be
distinctive and recognisable from different viewpoints is an essential dependency for ef-
ficient feature tracking. In Fig. 5.1, at the starting point, it is assumed that the robot’s
uncertainty is zero. If the robot makes one observation at each step, the following can be
used to describe the sequence of operations for each frame:

• Predict how the robot has moved;

• Measure by observing new features; and

• Update of the internal representations;

The first action of prediction is based on the motion model and vehicle kinematics.
This activity logically increases the uncertainty of the robot position. In the subsequent
step, the robot uses its camera to observe surrounding features. The new positional
uncertainty results from the combination of the measurement error and the robot pose
uncertainty. Finally, the robot updates its state representation, gradually correlating the
features observed to the map and estimating the robot position.

1. A state transition model, represented in Equation 5.2, to obtain the new state,
given the known vehicle location for the previous time step and control applied.

p(xk | xk−1, uk) (5.2)
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2. An observation model of the sensor readings, given the vehicle location and
location of landmarks in the map are known, represented in Equation 5.3.

p(zk | xk,m) (5.3)

A key part of SLAM is its ability to define the robot pose relative to an external
coordinate system, after perceiving features in its environment. Hence, in probabilistic
robotics, the concept of belief is a probability distribution over the true state variable
xk. The posterior probability, before incorporating a measurement, is known as the pre-
diction step; this is represented by Equation (5.4). Subsequently, the measurement
update step after a measurement or observation is being made is described via Equa-
tion (5.5). The SLAM algorithm (excluding the map update here for simplicity) is then
implemented recursively in a two-step sequential prediction and update steps.

bel(xk) = p(xk | z1:k−1, u1:k) (5.4)

bel(xk) = p(xk | z1:k, u1:k) (5.5)

The overall SLAM process shown in Fig. 5.2 needs to address various sub-problems
namely: managing uncertainties, estimating state, and associating data. As discussed, so-
lutions to the SLAM problem rely on a probabilistic framework; the robot pose correction
and map fusion are modelled with Gaussian noise variables to represent and handle un-
certainties. In this respect, the Kalman filter is used for linear systems and the extended
version of the Kalman filter is applied on non-linear systems.

Figure 5.2: SLAM process as proposed in [4]. Here, following an observation, the local
perception or map has to be associated with the global one in order to update both the
robot pose and global map.
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The EKF-SLAM is based on non-linear Bayes filtering and considered a well-known
algorithm to implement SLAM. The results obtained from the prediction and the update
of the location posteriors and map are approximated using an EKF. It is worth mentioning
that the EKF technique have one main disadvantage, which is the quadratic increase in
the computation complexity associated with the number of landmarks. This is due to
the fact that landmarks and positions of the vehicle are jointly computed; therefore, the
co-variance matrix of xk is updated for addition of each new landmark. Obviously, this
limits the number of landmarks and its ability to navigate in large environments. This
limitation, however, was addressed using the so-called Rao-Blackwellised particle filter
and FastSLAM as reported in the algorithm presented in [75].

Keyframe-based SLAM algorithm

The aforementioned discussion shows that tracking and mapping are two important inter-
related processes in visual SLAM. Prior to key-frame based methods, EKF-SLAM and
FastSLAM were widely used methods to update the current camera position and location
of all landmarks. In these cases, besides increased computation complexity, bad data
association lead to catastrophic consequences; to overcome this limitation new robust
mechanisms were developed which would prevent corruption of the map.

The Keyframe-based methods like the Parallel Tracking and Mapping (PTAM)
is based on a monocular SLAM system, and has been argued to perform better than
filtering-based SLAM methods in certain situations, see [76]. Keyframe-based methods
execute the two processes of tracking and mapping in two separate threads. Instead
of using the Bayesian filtering method of EKF-SLAM, keyframe-based SLAM relies on
an efficient Bundle Adjustment (BA) step for pose and map representation. The visual
representation in Fig. 5.3 compares the map for both methods.

Referring to Fig. 5.3, in the case of a) filtering-based, the map is a fully connected
graph of landmarks, whereas in the case for b) keyframe-based, a selected number of
correlations between landmark positions and keyframes are maintained as well as the
uncertainties.

(a) (b)

Figure 5.3: a) EKF-based SLAM uses a filtering based technique where all tracked points
are fully correlated among each other; b) keyframe-based SLAM methods links keyframes
to a set of landmarks and links serve to denote observations.

The entire algorithm for keyframe-based SLAM can be represented into the following
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three steps: 1) Initialisation, 2) Tracking, and 3) Mapping. In the SLAM algorithm
which is both keyframe-based and vision-based, the robot starts at an assumed location;
therefore, it requires the initialisation stage. An initial map localises the robot in the
unknown environment. This initial map is obtained by using a stereo technique that
baselines the two frames with respect to a translation movement as shown in the Fig. 5.4.

Figure 5.4: PTAM initialisation process. The initialisation process needs a baseline to
function properly. To provide this, the camera need to move sideways between the first
two keyframes.

After initialisation, the algorithm tracks and maps landmarks, and updates the robot
pose in continuous loop by identifying new landmarks and incrementing the map. In this
process, the robot pose is updated by tracking the 3D point features in each acquired
image frame. Another way of representing the tracking process is through the association
of the localisation to the camera position C, with respect to landmarks x. The Bundle
Adjustment (BA) process, which is described shortly after, performs a batch optimisation
of observations.

The initialisation and tracking processes include generation of the image pyramid of
the keypoints in each frame, containing four levels of intensity at different resolutions.
The keypoints are identified using the FAST algorithm corner detectors. FAST corner
detectors use a technique where the keypoints can be identified at various scales. The
keypoints identified at different pyramid levels. This method makes the system more
robust to scale changes as well as to resolution changes due to motion blur, i.e. erratic
shifts and rotations in camera frame. This robustness is owned to the state of low
resolutions, which in turn reduces the impact of motion blur.

In the tracking process, the camera position is also computed based on the perspective-
n-point (PnP) technique and on the 3D-to-2D coordinate mapping. The camera pose
and re-projection process transformation from the global coordinate W to camera
coordinate C is given by (5.6) and (5.7), where:

• pjC is the camera coordinate of the jth point on the map m, in the form pjC =
(x, y, z, 1)T ;

• ECW is a square matrix denoting the transformation from frame W to C. It is
composed of a rotation and translation component;

• pjW represents the coordinate of a patch in the world coordinate frame;
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• ui and vi represents the image point coordinates projected from the camera frame;
and

• CamProj is the camera projection function to calculate image points.

pjC = ECWpjW (5.6)(
ui
vi

)
= CamProj(ECWpiW ) (5.7)

Using the new pose location estimated by (5.6) and (5.7), an accurate location of the
camera is computed at a higher resolution of the pyramid. If tracking is lost, the system
will attempt to re-initialise the process and compute a new pose estimate.

After each successful observation which tracked a set of keypoints for successive frames
during the PTAM process, the local perception or map has to be associated with the global
one. This is done in order to update both the robot pose and global map. The mapping
process as depicted in Fig. 5.5, is the process that maps the landmarks and optimises
the relationships. This step is important since more landmarks are continuously added.
Throughout this process, themaximum likelihood approach can be used to minimize the
error between landmarks and camera locations. This minimization technique is based on
the so-called Levenberg-Marquardt iterative technique as proposed in [77], which is also
known as global bundle adjustment. The main disadvantage of this technique however, is
that it is computationally unfeasible to do this for all landmarks and camera positions. In
order to overcome this disadvantage, the concept of local bundle adjustment was proposed.
In this case, a subset of the keyframes is matched with new keyframes using epipolar
search. If a match is found, the landmark is not added; but if no matches are found, the
landmark is added to the map and to the corresponding camera location. The keyframe-
based SLAM process includes further refinements, such as outlier rejection of landmark
observations.
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Figure 5.5: PTAM mapping process flow as in [7]. The input is keyframes computed from
the camera image frames.

5.2.2 Bayes filters and related models

As discussed earlier, SLAM requires a probabilistic framework to manage uncertainties
in estimating and mapping the robot’s position. Given the past measurements and sent
controls, the Bayes filter is a general framework for recursive state estimation and
represents belief of the robot by a posterior distribution over the state of the environment
and the robot. The Bayes filter aim is to get an accurate estimate of the system state
variables by using the data from multiple sensors and knowledge of the system dynamics.

The Bayes filters estimates the state x of a system at time t, given by:

• observations z; and

• actuating variables u over previous time steps.

This is represented by the following probability distribution:

p(x | z, u).
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In practice, this eventually involves application of Bayes rule to define a recursive
algorithm to integrate sensor observations and control data. Applying Markov assump-
tion, where the current ‘state of the world’ is known, there is no requirement to handle
all the previous states and only previous state of the system at time t− 1 is needed. The
posterior distribution of the state of the Bayes Filter is represented as p(xt | ut, xt−1).

The Kalman Filter (KF) and Extended Kalman Filter (EKF) are the two common
variants of Bayes filtering techniques employed in the field of robotics. Both the KF and
EKF are members of the parametric filters family, described in [78]. The Kalman Filter
is an optimal estimator for linear systems whose noise is modelled by a Gaussian distri-
bution, i.e. the noise is assumed to be a multivariate normal distribution, parametrised
using the moments parametrisation mean µ and covariance Σ.

The Kalman filter algorithm can be summarised as follows:

1. Prediction step:

bel(xt) =

∫
p(xt | ut, xt−1)bel(xt−1)dxt−1.

The term p(xt | ut, xt−1) is actually the motion model, denoting how the robot
moves from time t to t− 1. The predicted belief is given by integrating the motion
model and the previous belief of the system bel(xt−1).

2. Correction step:
bel(xt) = η p(zt | xt)bel(xt).

The sensor or observation model is represented by η p(zt | xt) used to estimate the
corrected belief xt, from the prior predicted belief, where η is the normalisation
constant to obtain a probability density distribution.

In the case of the linear Kalman filter, the following is assumed:

1. Firstly, the prediction and the states are modelled by

p(xt | ut, xt−1) (5.8)

xt = Atxt−1 +Btut + εt (5.9)

where At and Bt are the system and input matrices, respectively, xt and xt−1 are
the state vectors, ut is the control vector, and εt represents independent Gaussian
noise, i.e. εt ∼ N (0, Qt) . is a multivariate normal distribution with 0 mean and
covariance Qt.

2. The second assumption of the linear Kalman filter is that the measurement proba-
bility are represented by

p(zt | xt) (5.10)
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zt = Ctxt + vt (5.11)

,

where zt is the measurement vector, Ct is the output matrix describing how to map
state xt to observations zt. Lastly, vt represents the Gaussian noise distribution
where vt ∼ N (0, Rt) . and Rt represent the covariance.

3. The final assumption of the linear Kalman filter is that the initial belief, bel(x0) has
to be normally distributed. The aforementioned assumptions help to ensure that
the posterior belief bel(xt) is also Gaussian at any time t.

On the other hand, the EKF approach is applied to non-linear systems, with the
state and observation vectors given by (5.12) and (5.13). These two equations are the
non-linear versions of equations (5.9) and (5.11) respectively. εt and vt represent process
noise vectors, with 0 mean and a certain covariance matrix recomputed at every step.

xt = f(ut−1, xt−1) + εt−1 (5.12)

zt = h(xt) + vt (5.13)

In the case of the EKF model, the belief bel(xt) of the robot at time t, is no longer
expected to be Gaussian [78]. Therefore, the functions f and h need to be linearised
using the first order Taylor Expansion. This enables the EKF to calculate a Gaussian
approximation of the true belief of the robot, represented by the means and covariances.
The steps and mathematical equations involved for the EKF are discussed below.

For EKF-based SLAM algorithms, once the extraction of landmarks and the data
association from SLAM are executed, the filtering process below is applied. This process
can be described in the following three steps based on the inputs (xt−1, Pt−1, ut, and zt),
where Pt−1 is the covariance for the previous belief of both the robot pose and landmarks:

1. Odometry update:
Let x̂i|j be the estimate of xi using the observation information up to and including
time j. Then, the current state is estimated using the odometry data. This is given
by the motion model defined for the vehicle dynamics. The following two equations
are used to model this process:

x̂t|t−1 = f(xt−1|t−1, ut−1). (5.14)

Pt|t−1 = Ft−1Pt−1|t−1F
T
t−1 +Qt−1. (5.15)

As is the case for the Kalman filter, the first steps of the EKF is prediction of the
next state to obtain bel(x) from the previous state xt−1, covariance Pt−1 and controls
ut. The covariance P represents the degree of correlation between the variables at
discrete time steps. It contains the variances of robot and landmarks positions.

44



F is the state transition model. The state transition matrix is a partial derivative
(from first order Taylor expansion), known as the Jacobian.

The following Equation (5.16) is an example of a motion model f for a robot mod-
elled by location variables (x, y and ψ)T , with respect to a global world coordinate
frame.

f(x, u) =

 x+ (cos(ψ)ẋ− sin(ψ)ẏ)δt
y + (sin(ψ)ẋ+ cos(ψ)ẏ)δt

ψ + ψ̇δt

 (5.16)

The model is obviously non-linear because of the trigonometric nonlinear functions;
the Jacobian F is then given by the following differentiating function:

F =
∂f(x, u)

∂x
(5.17)

2. Observation update:
This step consists of computing a new state from the landmarks observation and
tracking process. This process is also called the innovation process and determines
the difference between the estimated robot position and the new robot position.

Each landmark observation is also associated with a certain uncertainty. This
eventually involves the following steps; first the innovation residual yt and covariance
residual Sk are computed. Then, the KalmanGain Kt is calculated as follows:

Kt = Pt|t−1H
T
t S
−1
t . (5.18)

The Kalman gain represents the degree of uncertainty in the predicted belief and
observations. Ht is the Jacobian matrix for the observation model, while I is the
identity matrix. The updated state estimate and covariance estimate are computed
using the Kalman gain, as defined in equations (5.19) and (5.20):

x̂t|t = x̂t|t−1 +Ktyt. (5.19)

Pt|t = (I −KtHt)Pt|t−1. (5.20)

This part is also called the measurement update, which incorporate the sensor(s)
reading to update the state mean and covariance.

3. Landmark update:
The estimated location of new landmarks are added to the current list of land-
mark locations. The correlations between previously observed landmarks and new
landmarks are also stored.

A key point to note on the computation complexity of the EKF, is that the computa-
tional complexity of the prediction step is linear with respect to the number of landmarks,
whereas it is quadratic with respect to the number of landmarks in the observation step.
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The full steps and proofs of the KF and EKF algorithm in robotics navigation are beyond
the scope of this study. They are explained in great detail in [78].

The EKF has been a common state estimation technique used in the field of robotics.
This is primarily because of its computation efficiency. The particle filter on the other
hand, the computational time grows exponentially with respect to the dimension of the
state vector xt. The limitation is the degree of non-linearity at the point of approximation
using Taylor expansion. Bayes filters can be implemented using different techniques such
as the Unscented Kalman Filter, Information Filter, Histogram Filter, and increasingly
popular Particle Filter. Each technique makes certain assumptions on the robot initial
belief, state transition, and measurement probabilities. The following properties are key
in evaluating and choosing a specific technique:

• Computational complexity;

• Accuracy of the approximation; and

• Ease of implementation.

We can classify three main filtering approaches applied to SLAM algorithms, as well
as several variants for each one of them [78]:

1. Kalman Filter and Extended Kalman Filter approaches are suitable for feature-
based map. The difference being for online SLAM only the current estimate of the
robot is maintained, whereas in full SLAM the full path of the robot is computed
recursively [78] [79].

2. Particle Filter based approaches are similar to the parametric filters (KF/EKF). It
uses a sampling approach based on Rao-Blackwellized, montecarlo or other random
number generation techniques. As discussed in the previous section, Fast-SLAM
uses a particle filter to provide estimations on the robot locations.

3. Graph based optimisation techniques maintains a graph of nodes of each robot
pose, as well as constraints between the nodes [80].

5.2.3 Sensors used for state estimation

State estimation for MAVs can be achieved by using the following kind of sensors. This
section describes filtering methods applied in conjunction with these sensors:

1. Monocular sensor:
The work in [81] demonstrated a MATLAB implementation of fusing vision and
IMU data using EKF; however, it was only a simulation based demonstration, and
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it might be difficult to apply for practical systems in real-time control. Alter-
natively, [82] and [83] implemented state estimation using the Monocular SLAM;
however, the first research work only used a KF, arguing that the MAV platform
already provides some levels of noise filtering, while the second research used an
EKF implementation on the ROS platform.

2. RGBD cameras and Range scanners like Lidars:
In [84] an RGB-D camera and laser scanners were used to show autonomous indoor
environment mapping and generation of occupancy grid 3D maps. The work in [85]
and [86] also showed similar methods for 3D dense mapping using RGB-D sensors.

3. Kinect sensors:
The Microsoft Kinect sensing device and Kinect fusion library were used in [87] to
localise a MAV and perform complex manoeuvring like gripping to a vertical wall.

4. Stereo cameras:
Stereo cameras method was presented in the work of [88]. The presented method
employed a Kalman-filter approach, assigning white Gaussian noise levels to 2D
image acquired from stereo 3D images from two cameras. Later, [89] showed a
stereo and motion fusion algorithm yielding a 6D representation of mobile robots
positioning and motion.

5.3 MAV control

Control theory involves addressing the problem of controlling a set of variables of a
dynamic system. The system set values, e.g. position and orientation, are controlled
by adjusting one or more of the system actuating variables. Existing literature provides
impressive results on the control techniques of MAVs. For example, [90] showed two agile
quadcopters juggling with a ball, whereas [91, 92] are interesting publications on precise
and aggressive control of MAVs and nano-UAVs. While the core motion of the aerial
robot is based on the control architecture techniques, these types of precise movements
are often achieved using external fixed camera systems like the Vicon.

This work employs a PID controller in the closed-loop. This approach is widely used
in autonomous robot navigation consisting of SLAM algorithms and Kalman filters.

5.3.1 MAV control architecture and the PID controller

An aerial vehicle platform utilises multiple control techniques, applied based on the me-
chanics and aerodynamics of the vehicle’s body. These can be summarised as the following
stacked layers of controls:

• Motor speed controllers generating forces to move the MAV in a 3D space;
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• Attitude control and state estimation, i.e. system controls are based on the motor
speed and voltages applied to the quadcopter;

• Position control and localisation modules; and

• Way-points and trajectory following.

The motion process model is used within the Kalman filter to estimate the state of
a moving robot after a certain time interval δt, based on the control ut applied. At this
level of the control architecture stack, calculating the control signal u, to reach a goal
state or position, is the most common problem of input/output feedback control loops.

Fig. 5.6 shows a block diagram of a control system. Here, the controller output ut is
derived to influence the system state based on the previous state xt−1. The error et is
constantly updated based on the difference between the sensor measurements and desired
values. In this example, a simple linear model was used to program the controller using
the past state, control command, and a constant error in the system εt.

Figure 5.6: Block diagram of a standard input/output feedback control system. The goal
or desired value xdes is constantly compared to the measured state xt, to determine the
error et, which in turn specifies the controller output ut based on the control gain K..

The PID controller is a very common feedback control loop to influence the states
of dynamic systems. The output u(t) of the PID controller is given by the following
Equation:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
, (5.21)

where,

• t is the current time;

• Kp is the tuned parameter for proportional gain;

• Ki is the tuned parameter for integral gain;

• Kd is the tuned parameter for derivative gain;

• e(t) = SP − PV (t) represents the error, calculated as the difference between the
setpoint SP and process variable PV (t); and
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• τ is the variable of integration, from time 0 to the present time t.

The tuned coefficients Kp, Ki and Kd are obtained experimentally by trial and error
or other heuristic methods. The aim is to determine the coefficients that minimises the
error e(t).

The value of the gain Kp influences the performance and robustness to noise of the
system being controlled. The time delay in the system is another factor that requires
consideration when applying control; incorrect account of delays can cause overshooting
or oscillation to reach a desired value. For modelling the rigid body kinematics and
dynamics, a differential component D is often needed to smooth the rate at which a
body approaches a desired location i.e. it helps to dampen the oscillations due to errors.
An integral term I can be added to compensate for steady state errors, such as the
gravitational force and other disturbances in the system.

Fig. 5.7 shows how the PID controller parameters affects the response of a generic
system for a step input. When the integrator gain is too large (Ki = 2), this causes
overshooting or oscillation. On the other hand, when this gain is too low (Ki = 0.5), the
control takes a long time to converge. In this example, the three controls (Kp = 1, Ki =
1, Kd = 1) were applied together, creating a fairly optimal tuning for the system.

Figure 5.7: System response using various gains of the PID-controller, see [8]. The black,
green and red graphs show the effect of applying different gains Kp, Ki and Kd for a step
input.

The Parrot AR Drone2 uses a vector of four control command parameters for motion
control as outlined in [83, 93]. The motion control vector is defined in (5.22) and expect
values for the roll Θ and pitch Φ angles, as well as yaw rotational speed Ψ̇ and vertical
speed ż.
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The controller running on-board uses the orientation angles and linear velocities values
to adjust the motors speeds accordingly.

u = (uΘ, uΦ, uΨ̇, uż)
T ∈ [−1.0,+1.0]4 (5.22)

where,

• uΘ represents the control for roll angle;

• uΦ represents the control for pitch angle;

• uΨ̇ represents the control for yaw angular velocity; and

• uż represents the control for linear velocity along the z axis.

5.4 The autonomous navigation system

This section combines the methods defined so far to describe the setup of a system
capable of navigating a MAV autonomously. Each subsection can be viewed as practical
implementation of the aforementioned methods as used by the testbed system from [9].
The testbed uses the monocular SLAM algorithm PTAM from [7], an extended Kalman
filter and a PID controller.

5.4.1 The monocular SLAM system

The state of the drone is a key vector as it is used by both the SLAM and Kalman filter.
Fig. 5.8 shows both the drone and world coordinate systems. PTAM is a keyframe-based
method for estimating the pose of the MAV, and it needs to translate from the drone
coordinates to the world coordinate system.

Figure 5.8: The drone body (b) and world (w) coordinate systems. Φ, Θ and Ψ are the
orientation angles: roll, pitch and yaw respectively.
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As discussed in section 5.2.1, online SLAM estimates the posterior of the robot given
by (5.23), which is obtained by integrating out past poses. xt is the state at discrete
time steps and m the map which is composed of a set of tracked features. In this case,
the correspondences ct is made explicit. In the traditional EKF-SLAM approach, maps
are ‘feature-based’ [78], whereas PTAM maps keep a subset of previous observations
related to keyframes. Each keyframe consists of a set of features or point landmarks
and their positions in 3D space. At every step, each feature-set (keyframe) tracked are
corresponding to previous features using a maximum likelihood probabilistic technique.

p(xt,m, ct | z1:t, u1:t) (5.23)

The PTAM system has been defined in section 5.2.1 as a keyframe-based SLAM
method. The system was first presented in [7]. Here, each keyframe is built using FAST
corner detector as shown in Fig. 5.9. The initial map is based on a stereo technique
using five-point algorithm and using RANSAC to estimate the essential matrix (relation
between two images viewpoints) and triangulate the base map. Then, in a continuous
loop new keyframes are tracked and added to the map using a method known as bundle
adjustment, described in details through section 5.2.1.

Figure 5.9: PTAM tracking from the camera feed. The colours blue, green, yellow, and
red denote intensity of the FAST corners or how coarse the feature points were identified
at: blue representing the coarsest and red representing the finest patches.

PTAM pose estimates

The visual SLAM system provides 6 degrees of freedom (DoF) pose estimations. However,
PTAM pose tracking does not contain scale estimation. In [9] and [82], different methods
for scale estimation using drift-free altitude measurements from the sonar were shown.

The video frames from the MAV monocular camera serve as an input to the PTAM
implementation from [7]. The output of this process is a 6 DoF pose estimate of the MAV
in the Euclidean space R3. The original PTAM implementation, like other monocular
SLAM algorithms cannot determine the scale of the scene and the global coordinate.

The scale of the map is calculated by generating 3D sample pairs within each time
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interval. It is based on two factors i.e. first, it depends on the distances measured by the
SLAM system, and second, it depends on the available navigation sensors data i.e. inte-
gral over the horizontal speeds. As described in [9], the ultrasound height measurements
are used to estimate a scaling factor utilising a maximum likelihood approach. This is
required in order to translate the PTAM pose to the global pose. The resulting Equation
5.24, where the offset o is adapted for each value of the scaling factor λ is given by:

 x
y
z


world

= λ

 x
y
z


ptam

+ o (5.24)

The MAV pose (combination of position and orientation) from PTAM is re-estimated
at each video frame, as well as the scaling factor λ and offset o. Since the PTAM provides
6 DoF pose, the roll, pitch and yaw values are treated as direct observations, resulting in
the following vector: 

x
y
z
Φ
Θ
Ψ


ptam

PTAM observation model

The state vector of the drone state is obtained by applying observation functions to the
direct measurements of the drone sensors. There are two distinct observation sources,
namely the PTAM and IMU, hence the need for two observation functions:

• hptam(x), represents the PTAM observation function; and

• himu(x) is the IMU observation function.

As discussed in section 5.2.2, for the normal Kalman Filter algorithm, the measure-
ment vector is modelled mathematically by (5.25):

zt = Htxt + vt (5.25)

where:

• zt ∈ R3 represent the measurement vector;

• Ht is a correction feedback matrix;
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• xt is the true state at time t; and

• The process noise is normally distributed and represented by vt.

For the extended Kalman Filter, the matrix multiplication Htxt to compute the pre-
dicted measurement is replaced by function h(xt) in (5.26):

zt = h(xt) + vt, (5.26)

where, h is non-linear mapping function, and hence will be different for each state, re-
quiring a first order Taylor series expansion to linearise the subsequent changes in values
over time.

The measurement vector for the SLAM source is represented as:

zptam ∈ R3,

defined with respect to the drone body coordinate system. To obtain the measurement
vector zptam, the observation function hptam(xt) maps the current state to the expected
measurement. This is described first by the equation (5.27) representing the 3D drone
body positions, roll, pitch and yaw measurements; and second, by the equation (5.28)
which denotes the mapping function to obtain the 6 DoF state vector with respect to the
global coordinate frame.

hptam(x) = (xb, yb, zb,Φb,Θb,Ψb)
T (5.27)

zptam= hptam(x) + vptam
= f(EDCEC,t)

(5.28)

,

where,

• hptam(xt) is the observation from the PTAM, with the added noise vptam;

• EDC is a transformation matrix from camera to drone coordinate; and

• EC,t is the camera pose from the PTAM.

At each successful observation which tracked a set of points during the SLAM process
from one frame to the other, the local perception or map is associated with the global
one to update both the robot pose and global map. Fig. 5.10 and Fig. 5.11 shows the
generated 3D PTAM map and the tracking points on the image respectively. The red
crosses on the PTAM map are used to denote the landmarks already tracked as more are
added over time.
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Figure 5.10: GUI for drone control, PTAM camera-feed/frame tracking(top right) and
PTAM drone pose 3D map (bottom right).

Figure 5.11: GUI for PTAM 3D map - The Camera positions are shown as red-white-
green world coordinate frames, where-as red crosses denotes landmarks position.

5.4.2 The extended Kalman filter

The EKF estimates the drone state based on estimates provided by PTAM and IMU
sensor measurements. As discussed in section 5.2.2 and in the previous subsection, this
will require visual SLAM and sensor observation models, state transition model and
control models to be defined, as well as time synchronisation among sensors.

The observation model calculates the expected measurement vector zt based on the
current state vector xt. In the previous part, PTAM provided a measurement vector
zptam based on the optical tracking from the observation function hptam(x) ((5.27)). A
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similar model was used for the IMU sensor, defining a measurement vector zimu from an
observation function himu.

The functions himu and hptam give the state space variables of the MAV xt defined in
(5.29):

xt := (x, y, z, ẋ, ẏ, ż, Φ, Θ, Ψ, Ψ̇)T ∈ R (5.29)

The Parrot MAV sends sensor values, referred to as navdata, which are received at
regular time interval of approximately 5 ms. The following velocities and orientation
variables, obtained from the observation models, define the state of the EKF:

1. MAV position: x, y and z world coordinates; x, y positions are obtained from
PTAM, whereas the height is measured using the ultrasonic altimeter which also
provides for stabilised motion. However, this sensor value is not entirely reliable
because of its height limitation (6 m) and it is subject to error over uneven ground
[94]. Nevertheless, it provides the relative height measure of the MAV, used in [9],
together with a maximum likelihood estimator to calculate the scale of the scene.

2. MAV velocities: ẋ, ẏ, ż. The Parrot AR Drone IMU computes the horizontal
speed using a 60 FPS bottom-facing camera. The camera recognises the texture of
the ground using an on-board optical-flow algorithm. However, current technical
manuscripts do not provide insights o the method for on-board speed calculation
[95]. From simple experiments, it was observed that the speed value (magnitude)
deviates from the true value if the texture of the ground is poor.

3. MAV orientation: angles for roll, pitch and yaw Φ, Θ, Ψ, and yaw rotational
speed Ψ̇. These values are direct observations from the gyroscope and require to
little pre-processing.

The state vector of the Kalman filter is given by (5.30). This vector consists of the
global-coordinates (x, y, z), the velocities (ẋ, ẏ, ż), the roll Φ, the pitch Θ, the yaw angle
Ψ, and the yaw rotational speed Ψ̇.

xt := (x, y, z, ẋ, ẏ, ż, Φ, Θ, Ψ, Ψ̇)T (5.30)

Following from the methods described, the state transition function for a complete
state update x(t) + f(x(t), u(t))→ x(t+ δt) is defined by:
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ẋ
ẏ
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(5.31)

This state transition model essentially predicts the state for the next time step δt.
The velocities are directly obtained from the IMU, whereas the accelerations in x and
y directions is approximated based on the variables from the state x. The horizontal
acceleration of the drone is given by (ẍ, ÿ)T , and it is approximated in relation to the
different forces acting on the drone. This is based on the fact that a quadcopter accelerates
by tilting its body in response to greater thrust forces applied by the rotors.

The drone’s horizontal acceleration ẍ(x) and ÿ(x), are then given by Equations (5.32)
and (5.33), correspondingly:

ẍ(x) = c1(c2(cosΨsinΦcosΘ− sinΨsinΘ)− ẋ) (5.32)

ÿ(x) = c1(c2(−sinΨsinΦcosΘ− cosΨsinΘ)− ẏ) (5.33)

where, c1 to c2 are the model constants of the EKF. These constant are determined
and calibrated experimentally based on a simulation method as described in Appendix
A.6. Here, the drone is assumed to behave in the same manner in both the x and the y
direction.

The Kalman filter generates accurate state estimates of the MAV’s pose after each
video frame using these aforementioned models, together with the PID controller, i.e.
with respect to the state and control commands applied. The control model parameters
for Φ̇, Θ̇, Ψ̈ and z̈ are discussed in the next section 5.4.3.

The EKF has two other main purposes. First, it is used for initialising image tracking
because SLAM needs a prior map to integrate new information. Second, the EKF is used
as substitute for initialisation when the device loses tracking. Tracking is considered lost
when the roll and pitch measures have high deviations, and in this case the keyframes
are not added to the global map.
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5.4.3 The PID controller

The PID controller is applied to the MAV system and uses the quadrotor rigid body
kinematics to generate the control commands required to moving the system into a desired
location. Control commands are generated by the extended Kalman filter at a rate of
100 Hz (commands per second). These commands are predicted based on the expected
pose of the drone.

As presented in section 5.3, the Parrot AR Drone 2 uses the following vector of control

commands to influence the motion of the vehicle. (Φ,Θ, Ψ̇ , ż)T . The following functions
and variables are used for modelling the influence of a control command with respect to
the current state:

Φ̇(x, u) = c3(c4Φ− Φ)

Θ̇(x, u) = c3(c4Θ−Θ)

Ψ̈(x, u) = c5(c6Ψ̇− Ψ̇)

z̈(x, u) = c7(c8ż − ż)

(5.34)

where, c3 to c8 are the constants of the EKF which are determined and calibrated exper-
imentally based on a simulation method described in Appendix A.6.

5.5 Summary

This chapter gave an overview of the SLAM problem and discussed the various approaches
to solve it. In addition, this chapter compared the filter-based and keyframe-based tech-
niques.

This chapter also provided a formal definition to the SLAM problem and the Kalman
filter. PTAM was discussed as an improvement over the well-known EKF-SLAM method.
However, PTAM was originally designed for small spaces and augmented reality applica-
tions; hence, it does not scale well in large environments.

Then, this chapter described MAV control techniques and how a PID controller is
employed in a closed-loop to regulate dynamic systems.

Summarising all previous results, the last section explained how the methods have
been implemented for the autonomous EKF-PTAM-PID system used as testbed in this
dissertation.
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Chapter 6

Research Methodology

6.1 Introduction

This chapter presents the proposed steps and methods of the main study of this disserta-
tion. The experiments conducted are based on an empirical approach which collects data
from a real-world MAV system. This work implemented a distributed UAS prototype
and tested it in an indoor laboratory setup, which comprises of networked computers and
MAVs to simulate a distributed UAS communication architecture, and the navigation
testbed consisting of a SLAM algorithm, coupled with a probabilistic filtering method.

This chapter starts by describing the parts of the target systems, followed by a discus-
sion on key requirements of the distributed architecture. Furthermore, this chapter also
discusses different metrics which were applied to benchmark the communication, such as
the performance and observation on the stability of the SLAM navigation system. Fi-
nally, this chapter describes the usage of the navigation testbed presented in Section 5.4,
namely the EKF-PTAM-PID system.

6.2 Research approach and methods

This work uses an experimental approach to test the research hypothesis. Initial research
hypothesis states that a distributed UAS architecture can provide the required commu-
nication technology for an autonomous navigation sub-system. In this respect, a UAS
control architecture needs to address several technical issues. This research makes an ef-
fort towards addressing some of the key technical challenges related to the implementation
of distributed autonomous systems of MAVs. First, the experiments test the feasibility
and quality of operating the navigation system under the proposed constraints. Second,
the performance and scalability of the communication are analysed in a controlled en-
vironment, simulating a distributed scenario constituting of more than one MAV flying
with a set of on-board sensors.
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The proposed system design abstracts the complexity of the UAS by hosting the au-
tonomous navigation sub-system on a server. This decoupled client-server architecture of
an autonomous system aims to address issues related to its scalability, computing power,
performance, and reliability requirements. While there are many benefits of implement-
ing a distributed UAS architecture, the control unit adds another layer of communica-
tion. This additional layer of communication requires the development of additional data
transfer software components, in order to enable communication between the GCS and
control unit. In this context, first, the overall system is tested with ROS as the end-
to-end communication and application middleware, with TCPROS used as the default
messaging protocol. Second, this work assesses two main protocols employed in com-
munication technologies; particularly, the MQTT and DDS. Furthermore, there is the
need to carefully account for additional delays induced in the system, by the distributed
communication infrastructure.

This research proposes the use of the autonomous navigation system implementation
from [9] as a testbed. The study in [9] consisted of a set of experiments with a low-cost
quadcopter and a ground-based laptop to show a visual SLAM system. This mechanism
localises the MAV by tracking landmarks in the environment. In this research, the nav-
igation sub-system is executed within the UAS control unit; hence, from the context of
an autonomous navigation system, this research work describes the details of an UAS ar-
chitecture and communication components. Consequently, the research method involved
the following steps to evaluate the system:

• The TCPROS, MQTT and DDS protocols were evaluated for the latencies in data
communication;

• Comparative view of different implementations of the communication gateway were
analysed;

• Communication latencies were measured for different scenarios such as constrained
bandwidth and number of MAVs; and

• Overall stability of EKF-PTAM-PID navigation system was evaluated based on the
quality of the sensor input data;

• The SLAM algorithm accuracy was assessed with the EKF managing the delays
and sensor uncertainties.

It is worth mentioning that this thesis primarily uses experiments and critically anal-
yses the experimental data obtained from the prototype system. The overall system
architecture is a simulation of a real-life UAS architecture for low-latency robotics appli-
cations. This can also be categorised as the hardware-in-the-loop simulation with MAVs
connecting to a Ground Control Station and system evaluated under different scenarios.
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6.3 UAS system requirements

This section discusses the system components required for designing the proposed dis-
tributed architecture. The design of UAS can vary based on the size, capability and
number of MAVs. In addition, the type of missions which include range, and types of
controls (direct or distributed) also defines appropriate UAS design. Areas of particular
focus include the network transmission and type of payload which have an influence on
the system design. This work focuses on defining the UAS requirements of real-
time and near real-time autonomous systems to accomplish remote sensing
missions.

In order to provide viable real-life solutions, aerial robotic systems need to meet cer-
tain strict architecture requirements. Major operational concerns, related to UAS, include
redundancy, fail-over mechanisms, scalability, performance, and security. If these con-
cerns are left unattended, they can cause catastrophic failures. In the following section,
we discuss system architecture concerns, describing the selection criteria and principles
adopted to meet these requirements.

Performance:
A resource constrained network is characterised as the network that limits the data pro-
cessing capability of a device. Bandwidth and throughput are two major factors that
influence the network performance. UAS comprises of a mix of wireless and wired net-
works. Wireless networks are known to have limited resource in terms of energy and
bandwidth; which affects the rate at which data is received from the devices. This leads
to the need for communication between the ground stations and control unit to be a
high-bandwidth link. Additionally, the messaging protocols need to be able to provide
high throughput based on the total payload size arriving at each time-step.

Scalabililty:
A scalable architecture allows seamless addition of modular functionality or agents to the
system. This provides an additional processing power or addresses the high load of data.
Scalability is also required when the same information needs to be shared with several
consumers. Both MQTT and DDS were designed to provide for scalable communication
at different scales.

Persistence:
The storage of data is another requirement of MAV applications that often arise, that is in
other words the ability to store high volume of data generated from different devices. The
data at the control unit can be stored either on physical network storage, disk storage,
or in-memory databases.

Computational power:
A system made of one or more robots produces large amount of data and processing all
of this knowledge in a central system requires powerful computation capability based on
the type of algorithms. For instance, the filtering technique used in robot applications
can have significant impact on the required computational complexity.
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Reusability:
In contrast to the traditional customised systems for a specific class application, a dis-
tributed multi-agent system model is generally based on reusable software components
and framework. This ensures ease of implementation and maintenance of the software.
The standard messaging protocols MQTT and DDS provide brokers and client libraries
across multiple programming languages and communication between different processing
units. This work adopts a generic approach for the gateway, allowing in-bound and out-
bound channels of communication to be parametrisable in a config file. Fig. 6.1 shows an
example of a parameter file for the control unit.

Figure 6.1: Extract of an example of the communication gateway parametrisation. sub-
scribed** ROS topics are in-bound data coming from the navigation system and pub-
lished** MQTT topics are out-bound communication to the control unit.

Delays:
Delays to transmit information is prevalent in dynamic systems, and they can cause os-
cillations, overshoots, or undershoots of the system behaviour. For example, a control
system exhibits oscillations when an action is applied with a delayed or outdated infor-
mation to define a target state. In a dynamic MAV system, delay or lag can result in an
unstable system response, which directly affects motion control and response to real-time
path planning. For example, delays occur in quadrotors due to network transmission,
mechanical movement, and interference. Thus, it is often critical to effectively manage
or account for information delays.

In a system that needs to control the motion of a MAV, wireless delays actually
vary as the quadrotor flies or is impacted by interference. These disturbances are partly
addressed by the Kalman filter and by the PID controller, which is employed in the
closed-loop of the navigation system.
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6.4 System design

Distributed computing is a model where a network of computers passes messages to
trigger action, send request, or post information. The service-oriented pattern allows
services to be defined in an interface that can be consumed by nodes in the network.
Fig. 6.2 gives a high-level view of a distributed network of MAVs, with a communication
framework allowing sharing of data.

(a) Distributed network

Figure 6.2: Distributed MAV communication network.

First, this study defines the logical architecture and system components required for
the distributed UAS. The “UAS Control Unit” software platform is the central server
running the navigation algorithms of the system architecture. The UAS control unit is
based on the publish/subscribe messaging technology, and proposes a generic framework
that allows mission control of current and emerging UAS programs. Fig. 6.3 is a logical
design of the overall system, which illustrates examples of data processing modules.
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Figure 6.3: Logical architecture of the UAS distributed model and middleware platform
to communicate with server applications.

In this research, ROS forms the basis of the middleware that connects directly to
the control unit’s gateway interface. This interface is kept independent from the software
technology and operating system, such that other sub-systems can easily send and receive
data. The overall system consists of two communication gateways: one on the client
side and another at the control unit. These gateways are the main components of this
distributed system with following functionalities:

• To act as a ‘dummy’ client that communicate with the MAV and bridges the con-
nection to the control unit, making use of standard protocols and technologies;
and

• To provide a standard set of service interfaces of raw MAVs data and control com-
mands to the control unit.

Designing the communication gateways requires an understanding of the possible com-
munication technologies and frameworks. The following section addresses this concern
by describing the communication technology utilised in this research.

6.4.1 Distributed communication framework selection

The choice of communication framework depends on the type of Command, Control, and
Communication: the C3. As illustrated in the survey published by [26], the following
factors can influence choice of the communication mechanism:
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• LOS (Line-of-sight) v/s BVLOS (Beyond-visual-line-of-sight) missions;

• Wireless network type, reliability, and bandwidth;

• Data encoding, security, and protocol;

• Standards and regulations; and

• M2M, M2G co-ordination requirements.

For commercial off-the-shelf (COTS) MAV platforms, the MAV specifications deter-
mine how much access does a developer has to the avionic components, payload data,
and actuators. Furthermore, autopilots and smart equipment need to be accompanied
with the proper library and MAV device driver SDK to enable the capability of receiving
and sending data in the MAVs. This helps to develop software based on smart autopilots
to solve real-life problems. For example, the Parrot drones uses the MAVLink protocol
to transmit telemetry and image streams. MAVLink [96], which stands for Micro Air
Vehicle Communication Protocol, is very lightweight, header-only message marshalling
library for micro air vehicles. Initially released in 2009, MAVLink currently supports ten
autopilots and can be used under the LGPL license. This protocol is primarily designed
to facilitate integration with mission planning software like QGroundControl??, and it
acts as a message marshalling library. Hence, it is not considered to be appropriate for
distributed communication of data.

Another consideration to select the right framework is the nature of the communica-
tion between the distributed agents. For multiple-MAV scenarios, the MAV platform
need to transfer specific data, e.g. its location, motion commands, tasks assignments, or
basically just acts as a relay of sensor data, for example to form star and mesh networks.
Formation of a distributed network depends on the communication links and application
protocols. Two prevailing approaches are the use of Service-Oriented-Architecture (SOA)
technologies such as CORBA and Remote Procedure Call (RPC). Both technologies were
used in the work published in [60,61]. SOA approaches like CORBA, REST, and SOAP
use the pull model for inter-system communication, whereas modern systems essentially
leverage the message-oriented-middleware (MOM) pattern based on asynchronous push
mechanism that trigger event listeners.

The most recent studies that successfully used specifically designed middleware and
protocols for UAV communication were presented in [13, 97]. These studies offer several
benefits such as fully decoupled client/server configuration, asynchronous modes, and
full duplex capabilities among others. However, in these architectures, the autopilot
and other on-board avionics, as well as ground control station software were abstracted
through a service bus. The communication gateways enable both M2M (mav-to-mav)
or M2G (mav-to-ground) scenarios, showing a fully decentralised network of cooperating
hardware and software. Similar approaches were found beneficial to distribute tasks, to
communicate, and to perform collaborative missions using the multi-UAVs configuration.
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6.4.2 TCPROS, MQTT and DDS protocols

TCPROS was introduced in section 4.4.2 as the underlying transport protocol between
ROS distributed nodes. The navigation testbed used in this dissertation is built on ROS
platform, but was developed to run on a single computer. With some simple configura-
tions, it is easy to separate the MAV driver and core navigation system components on
two computers. As discussed, TCPROS supports TCP/IP, which as result benefits from
the TCP retry mechanism if packets are lost. This in turn ensures reliability on Ether-
net network; however, UDP would be a better choice for wireless networks. One of the
drawbacks mentioned is how to establish the connection, as an RPC synchronous call has
to be made to the ROS master. Subsequently, TCPROS publish/subscribe asynchronous
calls are direct between nodes. Besides, there are no additional QoS parameters that can
be set. Finally, the obvious drawback of TCPROS is that ROS is needed on both sender
and receiver.

This study looks at recent message-oriented-middleware (MOM) frameworks MQTT
and DDS as alternatives. These service-based communication models emerged recently
and they address the needs of IoT applications. Furthermore, this study explores benefits
of these frameworks such as easier configuration of mission and lower cost of UAS opera-
tion. It is important to highlight that the communication gateway acts as a lightweight
bridge and transmits bi-directional data. It can run from a laptop, a smart phone, or a
MAV on-board computer, such as a raspberry-pi.

As explained in section 4.4.2, MQTT and DDS are standard-based protocols, imple-
menting the distributed architecture pattern. They also offer the possibility to implement
more robust communication failure mechanisms. In addition, they enable interoperability
between the heterogeneous agents through standard implementation at the application
and protocol level. Since MQTT and DDS have a smaller footprint, they have bet-
ter bandwidth usage than competing protocols. They also maintain the session open
whenever required by the process, thus greatly minimising resource requirements for IoT
devices. These characteristics are essential for remote sensing missions, where sensor data
arrives at a high rate and volume.

The level of QoS features ensure some level of reliability and assurance of delivery
when required. Once again, a compromise is made based on the overhead that higher
QoS levels will bring to the sending/receiving data rate and performance. A final aspect of
designing the communication components of the system is the availability and scalability
of services at the control unit; these are two major factors to enabling safe operation of
UASs in real-life scenarios.

6.4.3 The communication gateways

The communication gateway should adhere to the following criteria:

1. It should be a lightweight component that bridges the communication to and from
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the MAV.

2. It must efficiently handle high rate and volume of data in both unicast or broadcast
transmission modes.

There is no significant processing and logic at the gateway; however, it is meant to fulfil
multiple purposes as listed below:

• Address and route data;

• Enhance efficiency of computation and minimise its cost;

• Provide proper redundancy mechanisms if ever a link is down;

• Synchronise the time-series data;

• Time-stamp the data; and

• Encrypt/decrepit or compress information.

The system developed in this research was based on two options for the gateways,
namely the MQTT and DDS communication gateways. Hereafter, we describe the gate-
way implementations for each option in more detail.

MQTT communication gateways

As defined in section 4.4.2, the MQTT broker centralise data processing between the
publisher and subscriber agents. For the MQTT implementation of the gateway, the
following MQTT brokers have been considered to provide for the CPU performance,
scalability, and lowest latency possible:

1. Mosquitto [98].

2. HiveMQ [99].

3. JoramMQ [100].

A brief literature review indicates that Mosquitto broker is better than HiveMQ and
JoramMQ to manage the high load of messages. A benchmark study was conducted by
Scalagent [101], a software vendor of distributed technologies, where Mosquitto is shown
to have gradual increase for a constant CPU usage with a high number of connected clients
(100,000). The same benchmark study shows that the message latency for high number
of publishers was better compared to other message brokers. Although our tests showed
better latency for JoramMQ, with high number of messages (300 messages/s), JoramMQ
frequently experienced out-of-memory after short intervals. On the other hand, results
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from our experiment indicates that the Mosquitto broker could handle 1000 messages per
second (from 2 MAVs).

MQTT brokers like Mosquitto can connect multiple brokers together with the bridge
feature to increase scalability of overall system and allow separate systems to operate on
the same data. In this configuration, messages are synchronised across all the brokers.
This bridge also has a round robin option that defines the behaviour of the bridge on a
connection failure and provides a list of alternative IP addresses.

Some MQTT brokers like HiveMQ [99] also support clustering of MQTT brokers. The
brokers can be connected in a setup as described in Fig. 6.4 through a TCP ‘load balancer’
to provide a scaled environment. In this scenario, if one MQTT broker or the control
unit is not available, the available brokers can reroute the traffic to another available
processing unit.

Figure 6.4: MAVs connecting to a load balancer, forwarding all connections to two MQTT
brokers and control units.

The MQTT pub/sub protocol addresses data according to topics rather than physical
network location. A topic consists of multiple levels separated by a forward slash at
each level. Wildcards are used to allow the subscribers to subscribe to more than one
topic by using ’+’ for a single-level wildcards or ’#’ for multi-level wildcards. Hereafter,
we present a few examples of topic nomenclatures for transmitting data streams in the
proposed UAS:
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• uas/mav2/imagedata and uas/mav2/navdata - Topics published from a GCS

• uas/mav2/+ - Subscriber subscribes to all topics one level higher than uas/mav2

• uas/# - Subscriber subscribes to all topics at any level higher than uas

MQTT uses Transport Layer Security (TLS) and Secure Sockets Layer (SSL) to provide
a secure communication channel among the distributed agents. A broker helps establish
a hand-shake at connection and authentication of the client. There is certainly a cost
involved to enable security for a constrained resource messaging client, which in turn
requires additional CPU usage. Hence, this additional overhead does impact the rate of
data transfer in a high frequency real-time system.

Fig. 6.5 illustrates the high level system architecture based on the MQTT implemen-
tation. The distributed communication is based on the communication gateway, message
broker, and MQTT pub/sub mechanism. The communication software components ab-
stract the network topology and address contents by data semantics, instead of physical
network addresses.

Figure 6.5: System architecture for the communication gateways based on MQTT.

DDS communication gateways

As previously mentioned, DDS is a high-performance pub/sub communication protocol
which implements a fully distributed peer-to-peer communication. It is data-centric,
meaning routing of data between publishers and subscribers are based on a distributed
data model and does not rely on an external Database Management System (DBMS). All
communication happens within a domain. Topics can be segmented based on data, hence
the middleware provides DDS partitions within the domain. The high-level message
routing and system components for the DDS communication gateways are the same as
in Fig. 6.5, except there is no need for a message broker in DDS.

Fig. 6.6 shows a a scaled architecture with multiple MAV agents. DDS participants
and data processing systems can be organised in a certain layout to minimise failure
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points, and also to prevent communication bottlenecks. While M2M messaging is possible
with DDS, this project implements only the M2G communication. In this case, the control
unit is used to centralise processing of information.

Figure 6.6: UAS and control units as DDS participants in a scaled, high-availability
scenario.

6.4.4 The autonomous navigation testbed

So far, this chapter described the characteristics and motivation behind the sub-systems
and communication pattern. To benchmark the communication architecture, this work
uses the autonomous MAV EKF-based SLAM navigation system described in [9]. This
section uses the system model described in section 5.4 and outlines the data processing
components of the architecture. This navigation system has the capability to locate a
flying robot in an environment deprived of a reliable and precise GPS. To achieve this,
the MAV uses its on-board sensors for odometry and localisation using distinguishable
landmarks. The autonomous quadcopter navigation testbed helps to evaluate the sys-
tem performance, and more specifically accuracy of the SLAM system in a distributed
computational environment.

Many navigation systems are camera-based or hybrid, i.e. uses a combination of other
sensors. The work presented in [9] uses the on-board front-facing 320 × 240 resolution
camera of the Parrot ARDrone2, the ultrasound altimeter and IMU data to predict pose
of the quadcopter. Fig. 6.7 shows the components of the system, as well as the frequencies
of transferring streaming data.
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Figure 6.7: Camera-based navigation system components of the testbed and delays in
data communications.

The quadcopters front camera captures images which are then converted to keyframes.
Then, the absolute pose of the drone is estimated by using the visual tracking methods
of PTAM. This tracking method is a monocular SLAM algorithm from [7] explained
previously throughout section 5.4.1. The system also aims to cater for various delays
present due to network communication, and temporary loss of visual tracking. With the
help of visual and inertial sensors on the drone, the testbed uses the monocular SLAM
tracking, an extended Kalman filter, and a PID controller for autonomous navigation in
unknown environment. The purpose of each software component are described below:

• Parallel Tracking and Mapping:
The PTAM algorithm receives image frames at 30 Hz. The Kalman filter calculates
predication-based states for the MAV, and this information is subsequently fed into
the monocular SLAM for initial camera tracking and recovery upon loss of tracking.
The IMU Kalman filter predictions also allows the SLAM to discard tracked frames
when it measures high deviation in the pitch or roll angle. This prevents corruption
of the map.

• Extended Kalman Filter:
The EKF computes an estimate of drone’s state variables, i.e. the pose and speeds.
This estimation is based on the measurements provided by the sensors of the PTAM
and IMU. The estimation is also useful to compensate for delays due to off-board
processing through buffering of navigation and visual data.

• PID controller:
The controller is used to direct the drone to set value by generating a set of control
signals. The control signal is the weighted sum of the three terms, i.e. proportional,
integral, and derivative gains.
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6.5 Data collection and analysis

The previous section described the navigation sub-systems, which are used as a testbed
to evaluate the algorithm robustness in a distributed, constrained, and/or multi-robot
environment. In this respect, this work exposes the system to the following test scenarios
illustrated in Fig. 6.8:

(a) Non-distributed navigation
system

(b) Distributed navigation system with ROS only

(c) Distributed navigation system with MQTT and DDS gateways

Figure 6.8: Overview of the three approaches for data collection, involving the navigation
system from [9] and the communication agents.

• First, the sub-system is evaluated in a non-distributed mode and directly uses the
ROS autonomous navigation sub-system as described in Fig. 6.8 (a). Each node
runs specific software component on the same GCS computer;

• Second, the sub-system is tested in distributed setup with ROS nodes communicat-

71



ing using TCPROS. The data exchange takes place via ROS nodes and ROS topics
on the GCS and control unit. This is depicted in Fig. 6.8 (b); and

• In the third scenario, the navigation system is executed with two added commu-
nication gateways and the UAS control unit is executed on a distributed server,
implementing a bi-directional communication mechanism using MQTT and DDS
protocols as shown in Fig. 6.8 (c).

The SLAM-EKF-PID parameters are calibrated and extended with additional param-
eters to account for the different delays induced by the distributed communication. This
tuning helps in monitoring the system performance, accuracy of the state variables predic-
tion model, and most importantly, allows to deduce both quantitatively and qualitatively
the operability of the navigation system under the given constraints.

The research methods in this study were split into the following steps:

1. The navigation system was executed in a non-distributed setup. In other words,
the processing was done on a GCS laptop directly connected to the quadcopter.

This step involves data collection for estimating the state prediction accuracy using
the monocular SLAM algorithm.

The next chapter describes the experimental setup and software components of the
system as implemented in [9].

2. The system architecture was designed and implemented for the distributed UAS
with a special emphasis on the communication protocols and gateways.

The frequency of the TCPROS, MQTT and DDS frame rate were used for indicating
and measuring the performance and throughput of the communication links.

3. Furthermore, the latencies associated with the pub/sub LAN communication and
WiFi communication were computed and used by the Kalman filter for computing
time-synchronised control commands.

4. This research also compared the TCPROS, DDS and MQTT Round Trip Time
communication for the distributed system, and assessed the factors influencing per-
formance of the communication.

5. Finally, the behaviour and accuracy of the autonomous navigation system were
analysed and compared with respect to the additional delays and slight adaptations
to the EKF-based SLAM system.

6.6 Summary

This chapter summarised the methods associated with this research work. In this respect,
first this chapter defined the key requirements of a distributed MAV architecture and

72



proposed a design involving publish/subscribe protocols MQTT and DDS. Then, the
chapter assessed the main features and attributes of these two protocols with a particular
focus on its relevance to low-latency navigation algorithms running on a distributed server
(referred to as the control unit).

Then, the mathematical models for the ROS implementation of a camera-based quad-
copter navigation as in [9] are presented: the extended Kalman filter, Parallel Tracking
and Mapping, and PID controller.

The last section of this discussion presented the overall approach and methods for
data collection and analysis using ROSTCP, MQTT and DDS.
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Chapter 7

System Implementation and
Experiments

This chapter describes the software components and implementation of the architecture
proposed. The focus is on the ROS driver for the MAV, messaging communication gate-
ways, and EKF-PTAM-PID navigation testbed.

7.1 AR Drone MAV platform

Many off-the-shelf MAVs are available with open System Development Kits (SDKs).
These MAV systems can be used to experiment and simulate real-life scenarios. This
research work used the Parrot AR Drone 2.0 for conducting the experiments and simu-
lations. (Fig. 7.1 (a)) shows various components of the Parrot AR Drone 2.0. It runs a
Linux operating system with USB, WiFi interfaces and multiple sensors; e.g. pressure,
ultrasound, and gyroscope. These features and functionality of the drone makes it pos-
sible to maintain stability and precise control. The drone has an optional GPS device
for executing semi-autonomous flight. Additionally, the drone is equipped with a front
and bottom facing camera, which streams video over WiFi to iPhone or Android mobile
devices. Other MAV platforms may consist of a pair of radio for telemetry and video
data analogue receiver, making decoding of signals more complex. Fig. 7.1 (b) shows
three Parrot drones used during the practical experiments of this dissertation.

The AR Drone Autonomy ROS driver from [102] provides communication interface
abstraction to and from the MAV as illustrated in Fig. 7.2. Appendix A.1 outlines the
specific sensor values and format of the data accessible from the AR Drone 2.0 platform.
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(a) Parrot AR Drone2 specifications and on-
board sensors.

(b) Parrot AR Drones used for experiments.

Figure 7.1: Parrot AR Drone2 MAV platform

Figure 7.2: Parrot AR Drone2 MAV platform sending and receiving data using the ROS
‘ardrone autonomy’ driver.

7.2 System overview

This section describes the architecture and implementation of the end-to-end systems:
the UAS and the control unit. Fig. 7.3 shows all the components, software, and different
parts of the proposed architecture. Subsequently, the implementation approach of the ar-
chitecture and interacting components are outlined; namely the communication gateways
and navigation system.
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Figure 7.3: Implementation of the software components and outline of SLAM algorithm.
Here, the extended Kalman filter computes an accurate estimate of the drone’s pose and
speed at each video frame.

The overall software platform illustrated in Fig. 7.3 consists of the following system
components and sub-components:

1. Ground Unit: The ground unit comprises of a C/C++ implementation of the AR
Drone2 ROS driver. This implementation enables communication and control of
the drone. This part also consists of the client communication gateway, built on
top of MQTT mosquitto broker package and DDS RTI Connext library from [103].
The client adapter publishes payload (camera images) and telemetry (IMU, sonar
navigation data) to the interested data subscribers. This part of the system also
monitors the WiFi delay and transmits this information to the control unit; thus,
helping to keep account of the latency in the wireless network.

2. Control unit: The UAS control unit comprises of the following sub-components:

(a) The MQTT broker which runs as a background process and uses TCP port to
accept messages. Mosquitto works as a messaging middleware and handles the
communication to the UAS and exposes a set of standard UAV communication
API interfaces in the form of topics. For the DDS implementation option, the
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control unit does not need a broker and communicates as a domain participant
subscribing and publishing data.

(b) The communication gateway of the control unit is a service API that exposes
data to other systems internally (or externally). The internal system in this
case is the ROS connecting to the messaging gateway. This setup provides a
clean interface for sending image/IMU data and receiving control commands.
Hence, the service API across topics makes data available within the same
co-located data centre.

(c) Another part of the UAS control unit is the ROS platform itself, which is
often considered middleware. This is due to the nature of services the ROS
provides, that is in other words, the ROS helps in inter-nodal communication.
Furthermore, the ROS provides the building blocks for the EKF-SLAM-PID
to exchange information over ROS topics, see Section 5.4 for further details.

3. Testbed: The testbed for the architecture, i.e. the monocular SLAM camera-based
navigation system running on the ROS middleware. The ROS nodes communicates
with the service interface of the UAS control unit in 2(a). The software of the whole
system is referenced in more details within Appendix A.5 for interested readers.

7.3 Communication gateways

7.3.1 MQTT sender and receiver

Most message-oriented-middleware hub and spoke protocols have client libraries available
for various programming languages. For example, MQTT client implementations exist for
Java, JavaScript, Python, C, C++, Lua, and C#. This work experimented with several
client implementations. In Appendix A.4, we give a brief description about the findings
and issues encountered for each. The MQTT C++ communication gateway uses a better
serialisation method than the python implementation, and the JAVA implementation had
a rather mediocre performance.

C++ libmosquitto from [104] library has been the preferred MQTT client implemen-
tation. It is compatible with the ardrone autonomy [102] ROS package and provides the
right object-oriented and thread mechanism to handle high rate and volume of data over
the TCP connections. As discussed in the previous section, the ROS Driver is responsible
for exchanging and interpreting MAV data. At the GCS, the libmosquitto acts as a bridge
between ROS driver and other MQTT subscribers.

The QoS configuration for the MQTT sessions can be set to 0 (the minimal level)
and guarantees best effort delivery; it is often called fire-and-forget. The messages are
time-stamped at the sender-end to help communication latency computation among the
distributed computers. Appendix A.4 outlines the source code and implementation details
of the MQTT gateway.
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7.3.2 DDS sender and receiver

The DDS implementation uses the RTI Connext DDS messaging library (see [103]) and
corresponding academic licence. RTI DDS is an implementation of the OMG DDS stan-
dard to “foster interoperability and an open architecture” which meets the robust re-
quirements of the Industrial Internet of Things (IIoTs). The DDS implementation also
guarantees low-latency and real-time QoS distributed data-oriented communication. In
addition, the Connext DDS framework provides tools to accelerate system integration,
testing, and debugging.

For DDS, the processor architecture needs specification for compiling and generating
data types. The following two code building architectures were tested:

• i86Linux2.6gcc4.1.1

• x64Linux2.6gcc4.1.1

Additionally, an Interface Definition Language (IDL) file need to be defined when
the public data structures are described. The IDL file help generates project stubs for
facilitating the messaging between publishers and subscribers. The Navdata and Im-
age frames types are marshalled and un-marshalled automatically. QoS allows to use
convenient pre-made profiles such as BestEffort and Streaming.

In general, the DDS implementation has a steeper learning curve than MQTT which
consists of simpler verbs to communicate. However, the DDS configuration was seamless
as no broker was involved, and the services were auto-discovered while interacting within
the same Domain. Appendix A.4 describes the source code and licence details of the
DDS gateway.

7.4 The navigation testbed

7.4.1 ROS platform and software components

The software components of the ROS platform were developed using the ROS catkin
package builder on Ubuntu 14.04 OS. Fig. 7.4 shows that ROS architecture. The software
details of the navigation system were derived from [9], which was extended and used as
the test platform. Appendix A.5 gives more details on the software components of the
navigation system.
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Figure 7.4: ROS software components.

ROS defines topic names and a ‘namespace’ for the communication among the ROS
nodes. The following points give a description of each ROS node as depicted in Fig. 7.4:

1. The MQTT or DDS gateway bridging the MQTT and DDS messages across topics
to the ROS messages.

2. The state-estimation node, which also includes the PTAM. There are three key
inputs to this node: a) IMU sensor measurements, b) Optical pose estimates from
PTAM, and c) Previously sent control commands. Key outputs are the PID con-
troller signals for the x, y, z position and the yaw angle.

3. The drone-autopilot node is used for controlling, simple route planning, and sending
control commands. The node also sends commands to toggle the emergency, flat-
trim (after a crash), and reset the state.

4. The Graphical User Interface (GUI) for status information and user actions.
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7.4.2 EKF data fusion and time delays

In summary the following models are inherent to the inner workings of the EKF state
estimation process:

1. State transition model: This was previously defined in section 5.4.2 and (5.31). The
state transition model defines the complete state transition for each time interval,
propagating the state xt to xt+δt.

2. Observation model: There are two sources of information namely the PTAM track-
ing module and the IMU sensor measurements. Consequently, the algorithm utilises
two observation functions as described in section 5.4.2. The observation model cal-
culates the expected measurement based on the estimated state variables of the
MAV.

3. Control model: The PID controller for all the four parameters of the drone state
variables i.e. the position in x, y, z, and the yaw orientation Ψ.

The delay compensation in the distributed system is another key aspect underlying
the functioning of the Kalman filter; it takes into consideration dynamic time-spans for
the wireless LAN and pub/sub communication mechanism. The total Round Trip Time
(RTT) latency for the communication is given by 7.1. The values of the WiFi RTT, DDS
RTT and MQTT RTT latencies are re-established after each time interval.

RTTtotal = RTTwifi +RTTpubsub (7.1)

Two measures for the RTT were calculated based on two packet sizes of 0.5 Kb and
20 Kb respectively, as shown in (7.2) and (7.3). This is done at one second interval within
the course of the SLAM-EKF iterations. These values are then used by the Kalman filter
for delay compensation, and for synchronising data inputs and outputs:

RTTtotal,0.5Kb = RTTwifi,0.5Kb +RTTpubsub,0.5Kb (7.2)

RTTtotal,20Kb = RTTwifi,20Kb +RTTpubsub,20Kb (7.3)

The indicative delays of the measured and experimentally determined time-spans of
each packet were on average between 20 ms to 50 ms for DDS and MQTT. The next
chapter presents the detailed results of the DDS delays and MQTT delays for actual data
packets; in addition, the following chapter illustrates how DDS and MQTT compare for
navdata and image packets.

Fig. 7.5 shows an end-to-end iteration of the Kalman filter when one image frame is
received, and incorporation of the IMU data from a buffer. The delays computed in (7.2)
and (7.3) are continuously fed back to the filter. Then the delay values help to determine
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the approximate time taken to apply the generated commands (tcontrol applied). This is
done after every 10 ms (approximately) upon receiving an image frame; similar process
is carried out until it receives the next image frame.

Figure 7.5: The Kalman filter takes values from a buffer and must be rolled forward to
compensate for delays at which a video frame was received.

The following points provide a brief description of each time interval utilised in
Fig. 7.5:

• tcam encoded: The time stamp of one image frame was encoded from the MAV. txyz e
and trpy e are the estimated time, the velocities, and roll, pitch, and yaw values were
encoded;

• tmsges pc: The time stamp IMU and image frame are received at the ground station;

• tcam: The time stamp an image gets incorporated into the EKF;

• txyz: The delay for the MAV velocities values, from the time it is computed by the
IMU to the time it reaches the EKF-PTAM system;

• trpy: The direct roll, pitch, and yaw measurements from the MAV gyroscope. These
values in principle require very little processing. So, delay is assumed to be less
than velocities and image frames;

• tslam: The time required for image feature tracking and EKF-SLAM pose estimates;

• tcontrol sent, tcontrol pc, and tcontrol applied: The time spans for a control command to
be generated at the control unit from the EKF, in order to reach the ground station
and the time the control takes effect on the MAV, respectively.
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7.5 Experiments design

All the experiments conducted in this work are based on the system architecture illus-
trated in Fig. 7.6. The network layout consists of a single or multi-MAV connected to
one GCS. The MAV connects to the GCS through a WiFi router, which is bridged to a
LAN network consisting of the GCS and the control unit.

Figure 7.6: System architecture for an experiment setup with 3 MAVs.

The specifications of the GCS and control unit standard computers were as follows:

• Control unit: Intel i7 3.40 GHz with 4 CPU cores and 12 GB RAM.

• GCS: Intel core i5 3.20 GHz with 2 CPU cores and 8GB of RAM.

The MAV WiFi network becomes highly unstable when other nearby WiFi networks
interferes with it. Appendices A.2 and A.3 describe the issues and solutions of the MAV
WiFi networks. The resulting network layout and setup in Fig. 7.7 was the one which
provided the best WiFi performance and hence enabled a multi-MAV setup. This is
primarily due to the powerful Netgear 1 GHz dual-core processor WiFi router.

82



Figure 7.7: Network layout and setup for an experiment with 3 MAVs and the Netgear
WiFi router.

The following videos show some experiments carried out for evaluation or data col-
lection:

• https://youtu.be/n5JWWjqPFl0

• https://youtu.be/-3RH47MQn-c

In the first video, the experiments were conducted with one MAV, the GCS client and
the control unit server. These essentially focused on the frame rate and performance of
the pub/sub mechanism, as well as the navigation system parameters.

The second video shows experiments with only one GCS computer serving as client for
two and three MAVs. The navigation system is hosted on the control unit and consists of
a GUI which broadcasts control information to subscribers for each MAV at the GCS. For
instance, a ‘take-off’ command will start all the drones. Similarly, in the other direction,
the control unit subscribes to data from all the MAVs. However, the autonomous SLAM
system was executed for only one MAV, i.e. it only considered the video and IMU input
data from one MAV. Another SLAM process can be started, but this will depend on
the number of available processing cores. The experiments essentially show that with
multiple MAVs, the video feeds for each MAV is successfully received at the control unit
with no visible loss in quality or loss in frame frequency.
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Chapter 8

Experimental Results

8.1 MQTT, DDS and TCPROS message transmis-

sion performance.

As discussed in the previous chapter, the EKF-PTAM navigation system compensates
for the delays in the system by using the Round-trip time (RTT) latency of the pub/sub
messaging. The performance in terms of network latency was measured between the
source and destination nodes. The EKF computes the latency for explicit MQTT/DDS
messages of different sizes (0.5 kb and 20 kb) sent from the control unit to the GCS, as
described in Section 7.4.2. In the aforementioned case, the time from the source was used
for initiating a ‘Request’ message, and the ‘Response’ message time was computed using
the same clock. As discussed earlier, the RTT values vary between 20 ms and 50 ms.

8.1.1 Results - MQTT communication latencies

In addition to the aforementioned, this research computed the unidirectional delay of ac-
tual MAV data packets in order to obtain a realistic latency for the communication from
the GCS to the control unit. This end-to-end latency computation takes into account the
duration between the time stamp (at the ground station before processing) and delivery
(at the control unit) of IMU data and video frame packets. Unlike RTT ‘ping’ messages
described, these latency values give the real-time duration that includes marshalling/un-
marshalling, transmission, and ROS processing. To obtain an accurate time duration in
milliseconds between the sending and receiving nodes, it is important to synchronise the
computer clocks of each communicating node with the time of a common server. The
nodes are accurately synced using the Linux Network Time Protocol (NTP) Linux server
and client configuration. This setting provides a minimum offset, between 10 to 30 ms,
of the clocks.

Fig. 8.1 shows a screenshot from one of the experiment carried out during this research
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work. It shows two visualisation nodes at the control unit and the ground station with
MQTT senders and receivers.

Figure 8.1: Packaging and transmission of video frames (sent at 30 Hz) and IMU sen-
sor data (sent at 200 Hz) published in real-time, with no loss in sending and receiving
frequency.

The experimental data to compute the communication latencies were collected from
a quadrotor which was allowed to hover for one minute. Fig. 8.2 depicts an example of
the PTAM map for such an experiment. The following points describe the experimental
setup conditions:

• IMU packet size = 0.3 kb, sent at 200 Hz;

• Image packet size = 691 kb, sent at 30 Hz;

• Average latencies for 20 experiments;

• Average latency of last 200 messages for navdata, and last 30 messages for images;
and

• Ethernet LAN of 1 Gbps.
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Figure 8.2: PTAM map of coordinate frames for each drone pose while holding position
for 60s.

Fig. 8.3 shows the experimental results for MQTT latency. Each box-and-whisker
plot represents spread of the average latency for samples of 200 navigation data messages
during one experiment. The median value for one plot was obtained using (8.1).

1

n

n∑
i=1

µimu,i (8.1)

where,

• i is the sample interval for each set of 200 IMU message packets;

• µimu,i is the mean IMU message latency for set i; and

• n is the total number of sample during a 60 s experiment.
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Figure 8.3: IMU data messages latencies for MQTT protocol averaged for each experiment
with the drone hovering for 60 s.

Fig. 8.4 shows the message transmission latencies for camera image frames.

Figure 8.4: Image packets latencies for MQTT protocol averaged for each experiment
with the drone hovering for 60 s.

The results show that over a distributed network, the gateway operations experience
low delays (40 ± 20 ms) and smooth communication for messages involving image and
navigation data transfers. Figures 8.3 and 8.4 show that the MQTT frame transmission
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latencies contain few outliers and peaks, but these were much less than the WiFi delays.
The results show that there were no bottlenecks encountered in the end-to-end data
transfer. The proposed configuration guarantees smooth transmission rate for large size
image packets sent at high frequencies with moderate computation and memory usage.

8.1.2 Results - DDS communication latencies

The DDS transmission latencies were computed in a similar way as calculated for MQTT.
The DDS implementation of the communication gateways consists of Data-Writers and
Data-Readers for image, IMU, and control commands message packets. Figures 8.5 and
8.6 show the average latencies of 20 experiments for IMU and image data respectively.

Figure 8.5: IMU data packets latencies for DDS protocol averaged for each experiment
with the drone hovering for 60s.

Figure 8.6: Video frames packets latencies for DDS protocol averaged for each experiment
with the drone hovering for 60s.

The results show that compared to MQTT, DDS has much less outliers and high
peaks with message latencies lying in the range of 25 ± 10 ms for IMU messages and
35± 10 ms for images. The decrease in latency over a series of experiments can probably
be attributed to the CPU clock steadily drifting by a few ms.
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8.1.3 Results - Network latencies averaged over 10 mins exper-
iments for MQTT and DDS

Longer experiments of 10 mins intervals were conducted to assess the stability and per-
formance of the communication infrastructure. The communication infrastructure com-
prised of the sender and receiver communication gateways. The results were obtained by
computing an average for 10 experiments of the message transmission latencies for both
MQTT and DDS. This work compared the average latency values of the last 200 navdata
and 30 images received for each experiment throughout a 10 mins flight duration. These
experiments were conducted within close range indoor environment. Fig. 8.7 shows the
plot of average latencies of navdata packets. It clearly shows that the DDS implementa-
tion performs slightly better than MQTT. Fig. 8.8 depicts the transmission latencies for
larger image packets. There is less difference in terms of average time; however, MQTT
shows higher peaks.

Figure 8.7: Navadata frames packets latencies for MQTT and DDS protocol over 10
minutes experiment.

Figure 8.8: Video frames packets latencies for MQTT and DDS protocol over 10 minutes
experiment.

A very interesting finding during the experiments comes from a particular situation
where the sending PC experienced reduction in its processing power. Subsequently, the
MQTT client at the ground station was unable to send messages at a constant delay
and suffered from a considerably low sending rate for both navdata and image. This
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can be attributed to reduced processing power due to increase in the CPU temperature.
In such a situation, the latencies of the messages increased indefinitely by 1 second for
each frame. This heavily delayed sending of messages, creating a bottleneck. The images
arrived with a clear gradual delay and appeared much later at the control unit receiver.

A major finding from this research shows that the gateway performed much better with
DDS in such a situation. While the delay of sending navdata and image did increase due to
the lower processing power at times (from 40 to around 60 ms); this delay did not keep on
increasing (no bottleneck) and the sending rate lowered, but remained constant. Hence,
a constant higher delay but smooth rate makes the video stream fluid. In this situation,
even if an excessive higher delay can cause failure of the EKF-SLAM; a constant rate is
important if the delay is within acceptable range for tractable computable solutions.

8.1.4 Results - Network latencies of MQTT, DDS and TCPROS
in a multi-MAV and constrained bandwidth scenario

The primary focus of this work is to evaluate MQTT and DDS with a high frequency and
high bandwidth robotics system. Hence, it is very interesting to investigate how both
of these protocols compares to TCPROS. In addition, while the aforementioned results
showed promising results in terms of functionality in a high bandwidth network for one
MAV, it would be much more interesting to observe the behaviour of each protocol in
the following two scenarios:

• Multi-MAV setup of up to three drones; and

• Bandwidth constrained environment of 100 Mbps LAN setup compared to a Gigabit
(1 Gbps) network setup.

The results illustrated in Fig. 8.9 show how each protocol performs for a 100 Mbps and
Gigabit Ethernet connection, with one to three MAVs. We discuss the implications of
these results on the system in more detail in the next section. The major findings from the
experiments is the fact that the latencies are much higher– between 400 and 700 ms– for
DDS and TCPROS, over a 100 Mbps LAN network. MQTT version of the communication
gateway suffered from bottlenecks over a 100 Mbps LAN network, causing latencies to
increase from few 100 milliseconds to over 45 s. Also, it kept rising by approximately 1 s
for every few packets. It can also be observed that DDS showed smaller average latencies
than TCPROS.
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(a) Video frames latencies for DDS and TCPROS on a
100 Mbps LAN

(b) Video frames latencies for
MQTT on a 100 Mbps LAN

(c) Video frames latencies for DDS, TCPROS and MQTT on a 1 Gbps LAN

Figure 8.9: Communication latencies for video frames under multiple scenarios.

8.1.5 Results - Frequency and bandwidth utilisation of MQTT,
DDS and TCPROS in a multi-MAV scenario and con-
strained bandwidth

Any of the following factors: 1) having more MAVs, or 2) less bandwidth in the network,
eventually creates a communication bottleneck. Therefore, the latency of communicating
each data packet under either a multi-MAV or constrained bandwidth logically has a
direct impact on the frequency of the data communication, as well as the bandwidth
consumed by each message topic.

The experimental results in Fig. 8.10 and Fig. 8.11 are hereby presented to investigate
the aforementioned challenge. The first graph describes how the frequency varies under
different scenarios, while the second one investigates the bandwidth utilisation under
the same constraints. Further details on the measurements, number of experiments and
data collection can be found in Appendix A.8. Surprisingly, DDS performed better than
TCPROS in a scenario considering constrained bandwidth of 100 Mbps LAN. The system
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for TCPROS doesn’t consist of additional communication gateway components and hence
it was expected to perform better than both other protocols, but it wasn’t the case as
shown from the performed experiment. DDS also performed slightly better than MQTT
in a low bandwidth network. On the other hand, in the situation with high bandwidth
of a Gigabit network, all the protocols seem to perform fairly well. A slightly better
performance of TCPROS is noted in this case. MQTT communication system failed for
two and three MAVs; this can be attributed either to the protocol limitations, bottleneck
at the broker or inefficient buffering mechanism of the gateway code implementation.

Figure 8.10: Frequencies of images received from the master MAV, based on following
scenarios: 1) MQTT, DDS, or TCPROS protocol, 2) in a system of one, two or three
MAVs, and 3) over a 100 Mbps or Gigabit Ethernet LAN.

Figure 8.11: Bandwidth utilisation of video frames received from the master MAV,
based on following scenarios: 1) MQTT, DDS, or TCPROS protocol, 2) in a system of
one, two or three MAVs, 3) over a 100 Mbps or Gigabit Ethernet LAN.

The overall efficiency with respect to the sending rate is described in table 8.1.
The same data from Appendix A.8 is utilised for each protocol under the conditions
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described above. The efficiency value for each cell is the percentage of successful video
frames transferred. A decrease in efficiency is either due to lost, dropped or delayed frames
resulting from a communication bottleneck. The data were collected within a few seconds
interval between the sender and receiver, then averaged over multiple experiments. This
explains why some of the percentages are slightly above 100%. The latter can just be
interpreted as no losses in frequency occurred between the sending and receiving end.
In general, the conclusion is similar to the first graph where only receiving frequencies
were evaluated; i.e. DDS is better than TCPROS and MQTT for constrained network,
whereas MQTT performed rather poorly in multi-MAV and under low bandwidth.

Table 8.1: Efficiency of the communication protocols transfer rates.

As the number of MAV increase, the number of packets transmitted also increase on
the network, as illustrated in Fig. 8.12. Hence, the throughput, i.e. rate of successful
message delivery in a network, is decreased. If more data is transmitted than the avail-
able bandwidth, loss or delay of the packets will occur. As shown, the messaging solution
utilised and overheads of the message packet headers is a main factor impacting data
transmission performance in a crowded network. There are however other possible solu-
tions to this problem: 1) decreasing the frequency of the data transfer, or 2) decreasing
the quality of the stream, e.g. by compression. Network configurations like Maximum
Transmission Unit (MTU) can also affect the rate of data transfer.

Figure 8.12: Video streams transmission frequencies in a distributed system with 3 MAVs.

The data transport frequency and latencies have a significant impact on the EKF-
PTAM navigation testbed. Recall from section 7.4.2, the Kalman filter accounts for delays
and predicts ahead of time what is the expected position of the drone. A prediction is done
every 10 ms based on the IMU measurements and as soon as a video frame is received,
at approximately every 55 ms, a better estimate is obtained based on the SLAM. As
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described in the distributed setup, the difference between the point in time at which the
image is taken and the time at which the corresponding control need to be applied (based
on the SLAM-EKF prediction) ranges between 200 and 450 ms. Hence, it is important
for the EKF to receive a constant supply, in other words frequency, of video frames at
a minimal delay. This helps to preventing this gap from becoming too large, as the
prediction will be invalidated by the time the control reaches the drone. The system
architecture described from [9] was not meant to handle large delays and low frequencies.
If either the frequency drops from 30 Hz to less than 20 Hz or the delays exceed one
second, the system experienced serious failures. This situation occurred for MQTT when
the system consisted of more than one MAVs. The communication system failed; the
frequency (frames per second) was almost zero for these experiments, which in turn led
consequently to the failure of SLAM.

8.2 EKF-PTAM prediction model accuracy

This section assesses the state prediction accuracy of the autonomous control system.
In the first experiment, the control objective was to hold the position of the quadcopter
after takeoff. The steps of the hovering experiment are depicted in Fig. 8.13 and the
overall duration of flight was 60 s. Figures 8.13(a) and 8.13(e) show the initialisation
step. Within the time interval τ = [10 s, 15 s], the drone was pushed from its hovering
position to test the prediction model(Figures 8.13(c), 8.13(d), 8.13(g) and 8.13(h)).

(a) Camera image
frame at t1.

(b) Camera image
frame at t2.

(c) Camera image
frame at t3.

(d) Camera image
frame at t4.

(e) PTAM 3D map at
t1.

(f) PTAM 3D map at
t2.

(g) PTAM 3D map at
t3.

(h) PTAM 3D map at
t4.

Figure 8.13: Camera images and PTAM maps for 60 s experiment with the MAV hovering.

The first experiment was done using a non-distributed MAV and navigation system
setup, using default TCPROS as the messaging mechanism between the MAV driver and
the navigation system components. Fig. 8.14 represents the Kalman filter measurements
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for the experiment where the drone was expected to hold a position after being forcefully
pushed away. The plot shows accuracy of the prediction model with respect to the
horizontal position x.

Figure 8.14: Estimated positions of the MAV in non-distributed setup. Communication
between MAV driver and navigation system, both running on the same computer (i.e.
non-distributed mode).

Fig. 8.14 consists of the following two sets of data collected from the same Kalman
filter for one experiment with the GCS and the navigation system running on a local
computer:

• The state of the filter without predicting ahead which is based on all available IMU
information. The data is represented in blue. This is considered the ground truth
and is obtained without predicting ahead; hence, approximating the direct IMU
reading, referred to as filterData.

• The Kalman filter predictions of the drone pose based on the PTAM tracking is
represented in red. These measurements are referred to as ptamData. It should
be noted that a major purpose of the state prediction model is to compensate for
the delays in the system and send control command signals based on the predicted
position.

In Fig. 8.14, when the push actually happens, the Kalman filter could not predict
the next state accurately, which is clearly noticeable in the delay between the red and
blue lines. The Kalman filter predicts the state based on the best available information
i.e. IMU sensors measurements, tracked keyframe and previous control signals. The
predication happens within a 10 ms interval, while a new keyframe (used for PTAM pose
estimation) is incorporated into the Kalman filter at each interval occurring at 55 ms.
Hence, the first experiment above is used to show the ‘best-case’ of the navigation system
allowing to establish a baseline of a working system to compare against a distributed
setup.

In a distributed mode, the delays for messaging transmission (including packaging,
transmission, marshalling/unmarshalling, protocol hand-shakes, etc.) will add up and
influence the ability to estimate the current state and consequently predict the next
one. Additionally, the time taken for the control signals to be applied to the MAV is
also affected. The other aspects that influence the delays are: 1) the bandwidth of the
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network, 2) throughput and processing power of the sender and receiver, as well as 3)
bandwidth/processing power of any routers within the network.

Fig. 8.15 shows a similar experiment of the MAV holding a specific position. This
time with the MQTT messaging components and delay compensation mechanism. It can
be observed that the time taken to recover the target position slightly increased due to
the added delays brought into by the messaging system. Nevertheless, the performance is
still acceptable for proper functioning of the EKF and ability to execute the SLAM. It can
be observed that the state prediction model is also jagged with MQTT. The noticeable
delay to recover the correct position (red and blue with larger gap) was still confined
within good range. This is an important feature to evaluate qualitatively the functioning
of the EKF-SLAM-PID system and assess the delay compensation.

Figure 8.15: Estimated positions of the MAV in a distributed setup. Both estimations
of the Kalman filter (filterData) and pose prediction based on PTAM (ptamData), are
done on the remote control unit.

The following set of experiments focused on the DDS version of the gateway. The DDS
gateways demonstrated high stability and performance. In the remaining experiments,
the control objective focused on servo control mechanism in which the MAV tracks a
reference trajectory, using way-points configured through the user interface. Fig. 8.16
outlines the inputs and outputs from one of these experiments. Fig. 8.16(a) shows the
EKF trajectory obtained using PTAM tracking. The target trajectory was a 50 cm ×
50 cm square. As illustrated in Fig. 8.16(a), it can be easily observed that the measured
trajectory from the EKF was within acceptable deviation from the target.

(a) PTAM map for flying
a square figure.

(b) Camera input. (c) GUI showing the
way-points commands
and navigation system log
messages.

Figure 8.16: MAV flying a square figure of 50 cm× 50 cm.
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Extending on the previous experiment of flying a specific path, the system was evalu-
ated using one, two, and three MAVs. Fig. 8.17 shows screenshots of the outputs for the
EKF trajectory and image frames at various time steps t1, t2, and t3. Fig. 8.17(g) and
Fig. 8.17(h) are plots of the measured DDS navigation data and image packets latencies
recorded during this experiment.

(a) PTAM map at t1. (b) PTAM map at t2. (c) PTAM map at t3

(d) Image frame at t1. (e) Image frame at t2. (f) Image frame at t3

(g) DDS navdata message laten-
cies.

(h) DDS image message laten-
cies.

Figure 8.17: Experiment results for one MAV flying a square figure.

The subsequent experiments also consisted of the square trajectory; however, they
used two and three MAVs this time, with each of the MAV sending/receiving data to/from
the control unit. In these experiments, the second and third MAVs were not flying, but
they were kept in the landing position, while the first MAV navigated along the set way-
points. Although tests have been conducted with more than one MAV flying along the
specific way-points, it was difficult for this experiment to orchestrate the precise motions
of two and three MAVs flying together. This difficultly arose due to environmental
constraints, associated with the limited space available in the lab.

Fig. 8.18 shows the outputs at different time steps for performing the same square
figure, but this time with two MAVs. The second row shows output from camera of MAV
1, whereas the third row shows output from the camera of MAV 2. It can be observed
that DDS delays were slightly larger (around 5 to 10 ms) than the previous experiment
with one MAV.
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(a) PTAM map at t1. (b) PTAM map at t2. (c) PTAM map at t3

(d) Image frame from
MAV 1 at t1.

(e) Image frame from
MAV 1 at t2.

(f) Image frame from
MAV 1 at t3

(g) Image frame from
MAV 2 at t1.

(h) Image frame from
MAV 2 at t2.

(i) Image frame from
MAV 2 at t3

(j) DDS navdata message laten-
cies.

(k) DDS image message laten-
cies.

Figure 8.18: Experiment results with two MAVs, and one of the MAV flying a square
figure.

Fig. 8.19 shows the outputs at different time steps for performing the same square
figure with three MAVs. The second, third, and fourth rows show outputs from the
camera of MAV 1, MAV 2 and MAV 3 respectively. The DDS delays were fairly similar
to the previous experiment with two MAVs; hence, there is no major bottleneck in the
communication. However, a small drop in the transmission rate –by around 10 frames/sec
for navdata– was observed for the configuration of 2 and 3 MAVs. The performance is
still within acceptable range for the Kalman filter requirements.

98



(a) PTAM map at t1. (b) PTAM map at t2.

(c) Image frame from
MAV 1 at t1.

(d) Image frame from
MAV 1 at t2.

(e) Image frame from
MAV 2 at t1.

(f) Image frame from
MAV 2 at t2.

(g) Image frame from
MAV 3 at t1.

(h) Image frame from
MAV 3 at t2.

(i) DDS navdata message laten-
cies.

(j) DDS image message laten-
cies.

Figure 8.19: Experiment results with three MAVs, and one of the MAV flying a square
figure.
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Chapter 9

Conclusion and Future Work

This study outlined the capabilities of existing communication technologies and their
limitations with regards to the implementation of UASs. This research motivates the need
for alternative communication technologies to meet performance, resiliency, scalability,
heterogeneity, and quality of service aspects of multi-MAV systems. The major findings
of this dissertation are based on insights from the practical system realisation and various
real-time experiments.

This research work proposed an architecture building blocks of a distributed UAS
with MQTT and DDS protocols. This architecture is motivated by the fact that MQTT
and DDS are strong options to facilitate hub-spoke model distributed communication.
For MQTT, a broker is needed at the data centre, whereas DDS has proven to be slightly
more efficient, and definitely proposed a richer set of QoS.

MQTT and DDS also provided very good abstraction at multiple layers of the net-
work OSI model, which can be used to enable larger remote sensing missions of more
complex MAVs. It is strongly believed that the implementation of the communication
using standard messaging frameworks makes it much easier to deploy and reconfigure
MAV missions. This is supported by the fact that both MQTT and DDS are based on
standards with multiple available libraries on different languages. Based on our experi-
mental setup, the DDS protocol in particular provided better performance and robustness
as compared to MQTT and TCPROS in network constrained environment. On the other
hand, MQTT implementation did not yield good results in environments with two and
three MAVs in both constrained and high bandwidth environments. So, based on our
experiments, DDS would be the recommended protocol for constrained environments. In
contrast, DDS and TCPROS were both very reliable within a high bandwidth network of
1 Gbps. To the best of our knowledge, this is the first study in literature that applies and
compares MQTT, DDS and TCPROS in the context of a vision-based MAV autonomous
navigation application. It is strongly believed that the findings from the experiments
of a distributed architecture would enable to implement and further explore single or
multi-MAV navigation with other state-of-the-art SLAM algorithms.
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Another reason to recommend DDS is because it provides self discovery of the services,
and supports both MAV-to-MAV (M2M) and MAV-to-Ground (M2G) communication
without the need for a broker. On the protocol side, instead of having to bridge different
protocols for M2G and Ground-to-Control Unit, it would be ideal if the communication
gateway is integral or being operated on an on-board CPU of the MAV. Under such a
situation, DDS would be the preferred option as this would enable M2M/M2G communi-
cation, depending on how the network is linked. On the other hand, DDS packets would
be able to flow across wireless and/or wired LAN networks, depending on the network
topology and set-up, simplifying to a large extent communication across heterogeneous
nodes. Long-range wireless networks are much more challenging, with the need to em-
ploying a model which defines how an increasing (or decreasing) range impacts the quality
and rate of data transmission, based on the facilities the wireless technology provides.
The design considerations of DDS shows that it can provide a better solution for the
aforementioned problem as well.

Another main contribution of this project is the evaluation of an implemented testbed
for an autonomous navigation system based on an extended Kalman Filter (EKF), Si-
multaneous Localisation and Mapping(SLAM) and a PID controller. The navigation
system consumes data and controls a quadcopter at high data transfer rates in real-time.
Through experimentation and insights collected during implementation of an aerial nav-
igation system, it became clear that the real-time constraints and the adopted SLAM
approach depend on a variety of factors, in addition to the types of applications. There
are of course various other forms of SLAM algorithms and alternative approaches that
have been presented by the research community and platforms like the OpenSlam [105].
The use of non-parametric filters such as the particle filter is another interesting SLAM
approach providing ability to process dense maps. SLAM has evolved to a more efficient
and larger scale mapping with higher-end sensors and ability to perform ‘loop-closure’ by
detecting the places which were previously visited. The Parallel tracking and Mapping
(PTAM) solution utilised is limited by the number of key frames added to the scene. The
map, composed of N key frames has a computation complexity of O(N3), and hence does
not scale efficiently for an increased size of the map.

A further contribution of this dissertation is assosicated with the findings related to
the rate and bandwidth of the communication for the time critical vision-based algorithm.
For an application using a frame-to-frame processing like SLAM, the data transfer rate
is dependent on several factors proven by this study. However, there are other factors
that would need to be considered, such as for example the type of environment, speed of
the vehicle, capability of sensors, among many others. The thesis contributions enable to
apply the architecture concepts and extend this work to alternative algorithms that can
run on super computers to meet the needs of newer aerial systems.

An obvious extension of this work could be to evaluate a multi-MAV distributed
architecture in a specific real-life scenario with a large scale SLAM, distributed SLAM
(DSLAM) or computer vision algorithm with real-time/near real-time data processing
needs. The concept of fusing multiple sensors using distributed SLAM for a swarm of
cooperating aerial robots is a relatively unexplored field. This situation gets much more
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complicated and interesting in a multi-MAV scenario as there is need to manage and
orchestrate actions concurrently based on the MAVs motions or possibly interactions
with the environment. The purpose of the distributed system proposed is primarily to
enable multi-MAV applications. While, a functioning multi-MAV distributed architecture
was implemented with three MAVs, managing the communication requirements in real-
life would present other major challenges. This study showed that the frequency and
bandwidth of the communication is crucial for an EKF-based SLAM system. However,
this study could be extended to a dynamic solution where the frequency of each MAV
is adapted to make optimal use of the available bandwidth supported by the network.
Alternatively, a solution could be built where the frequency is equally shared among all
the MAVs.

Another possible future direction could aim to look at an application framework based
on the functional programming paradigm for aerial robots communication. This would
focus on a different aspect rather than focusing on the lower levels of the OSI model for
robots and MAV communication. This direction is motivated based on the assumption
that technologies in machine communication will continue to evolve in a non-standard
way. Along the same lines, multi-robots need to bridge connections from unconventional
networks to conventional networks and control units. Therefore, focusing on a higher-
level application model with a basis of a scalable communication framework can lead to
state-of-the-art real life M2M - M2G MAV applications. Further work on the architecture
model, illustrated throughout this dissertation will focus on the development of fusing
data from multi-agent systems and implementation of a decentralised scalable cooperative
network of MAVs.

Finally, an interesting direction would be related to employing Artificial Intelligence
within the scope of scalable robot communication. For example, [106] compared, in terms
of scalability and reliability, two functional programming languages: ROS and Erlang.
The authors argue that an increase in the process scalability by a factor of 3.5 was
possible using Erlang. This improvement was owned to the lower memory consumption
associated with the face tracking experiment. Elixir is another interesting functional
programming language that can be used, with capabilities to enable Artificial Neural
Networks and multi-core parallel computing. Generally speaking, Elixir abstracts the
complexity of building fault-tolerant applications. Such capabilities are becoming the
de-facto requirements for future systems of intelligent single, few or swarm autonomous
MAVs. Therefore, this research area could be a possible extension to this dissertation.
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Appendix A

Technical Documentation

A.1 A.R. DRONE 2.0 PLATFORM

The AR Drone2 off-the-shelf platform coordinate system is described in Figure A.1. Some
technical specifications of the AR.Drone include:

• CPU: 468MHz ARM9 embedded micro-controller

• RAM: 128MB

• Interfaces: USB(For GPS module) and Wi-Fi 802.11b/g

• Front camera: VGA sensor with 93 lens Vertical camera: 64 lens, recording up to
60fps

Figure A.1: Parrot AR Drone2 IMU and camera coordinate system: red corresponds x,
green to y and blue to z coordinates respectively.
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Navdata is one of the most important data structure from the MAV. It consists of
Euler angles, linear velocities, accelerations and altitude values as described in Table A.1.

Table A.1: Parrot AR Drone2 navdata data structure.

A.2 AR-DRONE IP AND WIFI SETTINGS

The Parrot AR-Drone broadcasts an unsecured WiFi after starting up. The drone is
assigned the static IP of 192.168.1.1 and clients are given a DHCP address after connecting
to the drone’s in-built WiFi. However, this default mechanism has been modified to enable
multiple AR-Drones to connect to a network.

Note: This is not advised and can void the warranty of the Parrot AR Drone 2.0,
however was necessary for experiments involving multiple MAVs.

The following steps have been taken to change the drone’s IP and make it connect to
a self-managed WiFi network router:

1. The WiFi router is configured with IP 192.168.1.1 and its settings are modified to
broadcast an unsecured WiFi network (for e.g. witsdnet).

2. Telnet into the Parrot AR-Drone and a file named wifi.sh was created. The script
file should be made executable. The contents of the file are as follows:
killall udhcpd
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ifconfig ath0 down
iwconfig ath0 mode managed essid witsdnet
ifconfig ath0 192.168.1.11 netmask 255.255.255.0 up

3. The file need to be executed from the PC as follows:
echo “./wifi.sh” | telnet 192.168.1.1
After executing this script, the WiFI connection to PC will be dropped and the
drone will connect to the WiFi router instead.

A.3 NETWORK LAYOUT

The network configuration can be the source of biggest instability for experiments involv-
ing multiple MAVs using both Ethernet and wireless WiFi networks. Figure A.2 shows the
different network layouts that have been experimented throughout this project. The first
layout (Figure A.2(a)) involves a point-to-point connection between the client(Ground
Station) and server (Control Unit). The Ground station is connected through the WiFi
LAN to the MAV. This worked fine as the P2P Ethernet card link provided high band-
width, not involving any router.

Figure A.2(b) involved the use a Linksys Wireless-G Broadband Router. The parrot
AR Drone emits a WiFi signal for clients to connect to, so the router need to be configured
to act as the client using replacement firmware Tomato1). However with this setup, the
100Mb Wireless router caused a severe bottleneck of messages, due to limited bandwidth
to transmit video and navdata streams. A 1Gb wireless router would have worked fine,
but was not available.

All the project experiments and data collection were conducted using setup described
in Figure A.2(c). This involved a simple 1Gb switch able to cater for the high load of
data between the clients and server.

1http://www.polarcloud.com/tomato
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(a) Simple one MAV setup with peer-to-peer connection of PC
and Control Unit.

(b) Two MAVs connected via a Wireless router as bridge

(c) Two MAVs connected via an Ethernet switch

Figure A.2: Network setup layouts for a single and two MAVs.

A major source of instability is the quality of WiFi connection, which is heavily
influenced by other nearby WiFi networks and the bandwidth they use. This decreased
range and caused intermittent connection to the MAV. To alleviate the problem, the
WiFi channel of the parrot drone using a shell script2. Figure A.3 shows the outputs and
effect of changing the WiFi channels (a)-(c), as well as using a WiFi router in (d).

2https://www.drone-forum.com/forum/viewtopic.php?t=2291
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(a) Two Parrot AR Drones with origi-
nal WiFi channel settings.

(b) Both drones WiFi channels changed
to 11

(c) One drone with WiFi channel
changed to 9, and second drone with
WiFi channel changed to 11.

(d) Three drones connected to router’s
WiFi ’witsdnet’. No change to channels
required.

Figure A.3: WiFi channels analyser for two Parrot AR Drones in university lab.

A.4 MQTT AND DDS GATEWAYS

This part will give an overview of the MQTT and DDS libraries used by the gateway at
the ground station and control unit. It will describe the software libraries and techni-
cal designs for each publish/subscribe protocol. All software has been implemented on
Ubuntu 14.04 LTS (Trusty) release and ROS Indigo. A notable difference between the
two communication paradigm, is the fact that MQTT requires a broker, whereas, DDS
has a broker-less architecture and multicasts messages in M2M mode.

A few MQTT implementations were tested throughout this project. The following
describe the issues and findings for each one of them:

1. Java:
A simple MQTT client was implemented using the Java Paho library3 and the
YADrone4 open-source AR drone project. However, the implementation gave un-
satisfactory results and consumed high memory. This was just done as a proof-of-
concept, available here5.

3https://eclipse.org/paho/clients/java/
4https://vsis-www.informatik.uni-hamburg.de/oldServer/teaching//projects/yadrone/
5https://github.com/kamilsss/yadrone
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2. JavaScript:
The HiveMQ JavaScript client library6 is an interesting test to show how a web
browser client can send messages to a cloud hosted MQTT broker. In this test, a
simple web page with the MQTT JavaSript client was used to consume and render
telemetry and image being sent from the drone to the cloud server. The MAV data
could be visualised in real-time on the web dashboard implementation7. Note that
this proof-of-concept did not include bi-directional data transmission.

3. C:
An MQTT C client was tested based on the AR Drone SDK test client developed
by Parrot 8. This implementation gave better performance than the Java and
JavaScript client implementation results. Furthermore, it demonstrated a successful
transmission of high-rate and volume of MAV messages using MQTT.

4. Python:
The python implementation was forked from an existing ROS-MQTT bridge im-
plementation9. The project used the generic configurable MQTT and ROS topics,
which is easy to parametrise, however, it consisted of a limited number of data
types. This base was used to implement a version of the gateway for Navdata and
Image communication10.

5. C++:
C++ libmosquitto library11 has been the preferred MQTT implementation, com-
patible with the ardrone autonomy12 ROS package and provides the right object-
oriented and thread mechanism to handle high-rate and volume of data over the
TCP connections.

The implementation for the MQTT gateway can be found here with code documented:

https://github.com/kamilsss/mqtt gateway cpp

The implementation for the DDS gateway can be found here, with code documented:

https://github.com/kamilsss/dds gateway cpp

The DDS library used was RTI Connext DDS Professional. An academic licence was
obtained from ’REAL-TIME INNOVATIONS, INC’ with following details:

• LAC(LICENSE ACKNOWLEDGEMENT CERTIFICATE) #: 17-001250

• Date: May 8, 2017

6http://www.hivemq.com/blog/mqtt-client-library-mqtt-js
7https://github.com/kamilsss/unmandio
8Parrot AR Drone SDK: Hosted on https://github.com/kamilsss/ARDroneSDK2
9http://wiki.ros.org/mqtt bridge

10https://github.com/kamilsss/mqtt bridge python
11https://mosquitto.org/man/libmosquitto-3.html
12http://wiki.ros.org/ardrone autonomy
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• RTI Customer ID: WITS01-UP

• Customer: University of Witwatersrand

• Project: Drones Communication System

• Project Type: Research Project

• Site: South Africa

The MQTT implementation is based on open-source mosquitto v1.4.10 broker and
libmosquitto client library.

As discussed, the MQTT implementation consists of a buffering mechanism that al-
lowed the rate of reading and writing data to topics to be controlled using a parameter.
In the case of DDS, this was not required, however the implementation was not fully
tested with variable data rates.

A.5 EKF-SLAM-PID NAVIGATION SYSTEM

The ROS Indigo distribution has been used. The ROS nodes for the navigation algorithm
and communication gateways have been compiled under this version of ROS and might
need to be adapted for other ROS versions.

The TUM Ardrone project implemented on ROS in [9] was adapted for the purpose
of this research. The original version of the code implementation and documentation can
be found here:

http://wiki.ros.org/tum ardrone

A fork and update to the TUM implementation for the purpose of this project is
hosted on this repository:

https://github.com/kamilsss/tum ardrone

A.6 EKF CALIBRATION

Parameters c1 to c8 for the EKF can be calibrated using a recorded ROS Bag as a
simulator. The simulator can be run using the following command:

rosbag play -l simulatorFlight.bag

Two state-estimation nodes need to be started, one with control grains OFF and one
using PTAM. ROS dynamic reconfigure tool is able to show graphically and plot the time

109



series values during the simulation. The parameters of the system that can be changed
are editable. Each parameter c i need to be calibrated in order to have a best aligned
graph.

The following summarise the commands to be executed:
rosrun tum ardrone drone stateestimation name:=drone stateestimationn2 /ardrone/pre-
dictedPose:=/ardrone/predictedPose2 (Node with remapped topic names and output)
rosrun tum ardrone drone stateestimation (Node with PTAM ‘ON’)
rosrun rqt reconfigure rqt reconfigure (ROS Dynamic reconfigure GUI)
rqt plot /ardrone/predictedPose/dx,/ardrone/predictedPose2/dx (Plot to compare align-
ment of graphs based on parameter calibration)

A.7 DATA SET FOR COMMUNICATION GATE-

WAY AND SLAM NAVIGATION SYSTEM

The data sets for experiments can be found here:

https://github.com/kamilsss/data sets ros logs

A.8 DDS, TCPROS, MQTT MEASUREMENTS FOR

COMMUNICATION LATENCIES FOR ONE,

TWO AND THREE DRONES

The measurements below are for Image data only. Fig. A.2 list the values recorded and
are based on either 100 Mb LAN or 1Gigabit LAN setups, on one of the three protocols:
DDS, TCPROS or MQTT, and for one to three drones. ‘DDS1’ refers to DDS latency for
the master drone with one drone and DDS as communication mechanism. ‘DDS2’ refers
to DDS latency and bandwidth for the master drone, with two drones in the system.
‘DDS3’ is an experiment with three drones in the system. The same applies for the other
protocols.

The ‘Sent’ frequency or bandwidth is the rate at which data is sent from the GCS.
The ‘Received’ is the rate at which images are received over the topic at the control unit.

Each data point (cell) in the table is an average over five experiments of 60 seconds.
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Table A.2: Average throughput, frequencies and bandwidth measurements for set of
experiments.
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