86 research outputs found

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    Visualization of program performance on concurrent computers

    Get PDF
    A distributed memory concurrent computer (such as a hypercube computer) is inherently a complex system involving the collective and simultaneous interaction of many entities engaged in computation and communication activities. Program performance evaluation in concurrent computer systems requires methods and tools for observing, analyzing, and displaying system performance. This dissertation describes a methodology for collecting and displaying, via a unique graphical approach, performance measurement information from (possibly large) concurrent computer systems. Performance data are generated and collected via instrumentation. The data are then reduced via conventional cluster analysis techniques and converted into a pictorial form to highlight important aspects of program states during execution. Local and summary statistics are calculated. Included in the suite of defined metrics are measures for quantifying and comparing amounts of computation and communication. A novel kind of data plot is introduced to visually display both temporal and spatial information describing system activity. Phenomena such as hot spots of activity are easily observed, and in some cases, patterns inherent in the application algorithms being studied are highly visible. The approach also provides a framework for a visual solution to the problem of mapping a given parallel algorithm to an underlying parallel machine. A prototype implementation applied to several case studies is presented to demonstrate the feasibility and power of the approach

    Image-space decomposition algorithms for sort-first parallel volume rendering of unstructured grids

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references leaves 96-100.Kutluca, HüseyinM.S

    Parallel rendering algorithms for distributed-memory multicomputers

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1997.Thesis (Ph. D.) -- Bilkent University, 1997.Includes bibliographical references leaves 166-176.Kurç, Tahsin MertefePh.D

    Programming a Distributed System Using Shared Objects

    Get PDF
    Building the hardware for a high-performance distributed computer system is a lot easier than building its software. The authors describe a model for programming distributed systems based on abstract data types that can be replicated on all machines that need them. Read operations are done locally, without requiring network traffic. Writes can be done using a reliable broadcast algorithm if the hardware supports broadcasting; otherwise, a point-to-point protocol is used. The authors have built such a system based on the Amoeba microkernel, and implemented a language, Orca, on top of it. For Orca applications that have a high ratio of reads to writes, they measure good speedups on a system with 16 processors

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    Programming Languages for Distributed Computing Systems

    Get PDF
    When distributed systems first appeared, they were programmed in traditional sequential languages, usually with the addition of a few library procedures for sending and receiving messages. As distributed applications became more commonplace and more sophisticated, this ad hoc approach became less satisfactory. Researchers all over the world began designing new programming languages specifically for implementing distributed applications. These languages and their history, their underlying principles, their design, and their use are the subject of this paper. We begin by giving our view of what a distributed system is, illustrating with examples to avoid confusion on this important and controversial point. We then describe the three main characteristics that distinguish distributed programming languages from traditional sequential languages, namely, how they deal with parallelism, communication, and partial failures. Finally, we discuss 15 representative distributed languages to give the flavor of each. These examples include languages based on message passing, rendezvous, remote procedure call, objects, and atomic transactions, as well as functional languages, logic languages, and distributed data structure languages. The paper concludes with a comprehensive bibliography listing over 200 papers on nearly 100 distributed programming languages
    corecore