
A Statistical Approach to Performance
Evaluation of Parallel Systems with Reference

to Chemical Engineering

Neil S killing

'

Ph.D.

University of Edinburgh

Ii!11

Abstract

Distributed memory multicomputers appear to offer a cost effective general pur-

pose parallel computing resource. Unfortunately these multicomputers have not

always delivered the processing performance promised from a summation of indi-

vidual processor speeds. A lot of time and effort can be expended trying to close

this performance gap. -

Detailed dynamic simulations of chemical processing equipment can be naturally

and robustly modelled as a set of communicating sequential processes where

the information flow accurately mirrors the material flow in the real equipment.

These programs have a static, time invariant process graph which is suited to

execution on a distributed memory MIMD machine.

There are many factors that affect the performance of a parallel program. The

programmer, usually with the aid of profiling tools, is faced with a trial and error

tuning up process. This thesis addresses the issue of performance evaluation of

parallel systems by presenting a methodology that enables rapid identification of

performance limiting factors. In particular the study of static placement strate-

gies as performance factors can be readily investigated for a range of programs.

Through the use of standard statistical design of experiments, synthetic pro-

gram graphs and a general purpose multiprocessor simulation system, placement

strategies and other performance factors can easily be identified and their precise

effect quantified. Through statistical analysis predictive performance models can

also be constructed.

The approach presented is general and can be applied to an arbitrary parallel

program. Results are presented for a common class of parallel programs called

structured spatial decomposition and for process systems simulations.

Acknowledgments

I would like to thanksmy two supervisors Rosemary Candlin and Jack Ponton for

their guidance, particularly to Rosemary for her enthusiasm and encouragement

Thanks also go to all the sensitive people around me who mostly knew when and

when not to ask - "How is the thesis coming along?". Thanks to Jennifer for

being extra patient and for agreeing to marry me. Mother, it may be time to get

your hat on

I would like to thank Jane Hillston for giving me the idea of an experiment

generator and even a language to describe the experiments. Also Joe Phillips

who was brave enough to try my software and not be too critical when it crashed.

Peter Fisk for his invaluable help and advice with the statistics. All the people I

have met through the Edinburgh Parallel Computing Centre who have inspired

and argued with me and latterly tried to kick me around the football field. To

all the people in Chemical Engineering who have been good friends.

Paul Hewson - I couldn't have done it without you.

I"

Statement

I declare that this thesis was composed by myself, and that the work described

within is my own except where explicitly stated in the text.

Neil Skilling

iv

Publications

Some of the material presented in this thesis has already appeared in the following

publications:

• Rosemary Candlin, Qiangyi Luo, and Neil Skilling. The investigation of

communication patterns in occam programs. In John Wexler, editor, Devel-

oping Transputer Applications, Proceedings of the 11th Occam User Group

Technical Meeting, pages 99-108. lOS Press, ISBN: 90 5199 020 0, Septem-

ber 1989.

• Rosemary Candlin, Thomas Guilfoy, and Neil Skilling. A modelling system

for process-based programs. In Proceedings of the 3rd European Simulation

Congress, pages 251-255. Edinburgh, September 1989.

• Rosemary Candlin, Thomas Guilfoy, and Neil Skilling. A modelling system

for process based programs. Fifth UK Computer and Telecommunications

Performance Engineering Workshop, June 1990.

• Rosemary Candlin and Neil Skilling. A modelling system for the inves-

tigation of parallel program performance. Fifth International Conference

on Modelling Techniques and Tools for Computer Performance Evaluation,

ISBN 0-4-88989-2, February 1991.

Ut

vi

. J W Ponton, E S Fraga, R C McKinnel, and N Skilling. Parallelisation

strategies for process modelling on mimd computers. IChernE Research

Event, February 1991.

• J W Ponton, E S Fraga, R C McKinnel, and N Skilling. Simulation of

nonlinear chemical processes and control systems using transputers. In

Fleming Irwin, editor, Transputer Control. Research Studies Press, March

1991.

• Rosemary Candlin, Peter Fisk, Joe Phillips, and Neil Skilling. A statistical

approach to finding performance models of parallel programs. In J Hill-

ston R Pooley P King, editor, Proceedings of the Seventh UK Computer

and Telecommunications Performance Engineering Workshop, page 180.

Springer Verlag, ISBN: 3-540-19733-8, Edinburgh, July 1991.

• Rosemary Candlin, Peter Fisk, Joe Phillips, and Neil Skilling. A mod-

elling environment for studying the performance of parallel programs. In

J Hillston R Pooley P King, editor, Proceedings of the Seventh UK Com-

puter and Telecommunications Performance Engineering Workshop, page

180. Springer Verlag, ISBN: 3-540-19733-8, Edinburgh, July 1991.

• Rosemary Candlin, Peter Fisk, Joe Phillips, and Neil Skilling. Studying

the performance properties of concurrent programs by simulation exper-

iments on synthetic programs. Performance Evaluation Review, Special

Issue, 1992 ACM Sigmetrics and Performance 92 International Conference

on Measurement and Modelling of Computer Systems, 20(1), June 1992.

• Rosemary Candlin, Peter Fisk, Joe Phillips, and Neil Skilling. A statistical

approach to predicting the performance of concurrent programs. Proceed-

ings of EWPC'92, the European Workshops on Parallel Computing, page

616, March 1992.

• Rosemary Candlin, Peter Fisk, Joe Phillips, and Neil Skilling. Studying the

performance properties of concurrent programs by simulation experiments

on synthetic programs. EPCC Technical Report, EPCC—TR91-24, 1992.

vii

Contents

Abstract 	 1

Acknowledgments 	 111

Statement
	

iv

S

Publications

Table of Contents

List of Figures

List of Tables

1 Introduction

UT

xvi

xx

xxiii

1

vii'

lx

1.1 Contributions of Thesis 	 . 	3

1.2 	Chapter Outline4

2 Parallel Computing - Providing Solutions and Problems 	6

2.1 	Precis 6

2.2 	Problem Statement 7

2.3 Introduction to Parallel Computing9

2.4 Parallel Computing Terminology10

2.5 Multiple Processor Computer Systems12

2.6 Parallel Programming Paradigms15

2.6.1 Conventional Programming Languages17

2.6.2 Languages -with Low-Level Parallel Constructs18

2.6.3 Languages with Higher-Level Constructs20

2.6.4 Architecture Independent Programming Languages 21

2.7 Modelling Parallel Computers and Programs 22

x

2.7.1 	Representation of Parallel Programs23

2.7.2 Task Based Model of Parallel Computation23

2.7.3 The Task Scheduling Problem24

2.7.4 The Process Based Model of Parallel Computation 26

2.7.5 The Process Placement Problem27

2.7.6 Modelling Parallel Programs - Summary33

2.8 Performance Analysis Tools33

2.9 Process Systems Parallel Programs37

2.10 Design of Approach38

2.11 Summary 39

3 Performance Analysis and Statistical Techniques 	 40

3.1 	Precis 40

3.2 	Performance Analysis 41

3.2.1 A Systematic Approach to Performance Evaluation 43

xi

3.2.2 Performance Evaluation of Parallel Systems46

3.3 The Statistical Design of Experiments48

3.3.1 	Experimental Designs48

3.3.2 	Full Factorial Designs 49

3.3.3 	Analysis of Variance50

3.3.4 	Worked Example55

3.4 Estimation of Modelling Parameters59

3.4.1 Analysis of Variance - Assumptions63

	

3.5 	Summary 64

4 A Methodology for Parallel Program Performance Evaluation 66

	

4.1 	Precis 66

	

4.2 	Methodology 67

4.2.1 	Goals68

4.2.2 Define the System - Synthetic Programs68

xii

4.2.3 	Example Synthetic Program70

4.2.4 	Performance Metrics71

4.2.5 	Factors and Their Values72

4.2.6 	Evaluation Technique73

4.2.7 	Select the Workload 73

4.2.8 	Experimental Design74

	

4.3 The Experiment Generator 75

4.3.1 An Example Experiment using the Experiment Generator 77

4.3.2 Experiment Design Language83

4.3.3 Random Graph Generation Strategies84

4.3.4 Experiment Generator - Summary91

4.3.5 The Modelling Engine91

4.4 The MIMD Modeling System92

4.4.1 	MIMD - A Brief History93

xl"

4.4.2 The DEMOS system 	 . 95

4.4.3 	MIMD - Summary103

4.5 Conducting an Experiment 104

4.6 	Summary 105

5 Validation of the MIMD Modelling System and Program Model 106

5.1 Precis106

5.2 Validation of the MIMD Modelling System107

5.2.1 	Distillation Simulation107

5.2.2 	Creating a Simulation Model110

5.2.3 	Results and Conclusions111

5.3 Program Model Justification and Validation113

5.3.1 	Program Model114

5.3.2 	Parameter Settings117

5.3.3 	Results 119

xlv

5.3.4 Constructing a Model 	 . 126

5.3.5 	Conclusions128

5.4 	Summary 128

	

6 Results 	 130

6.1 	Precis 130

6.2 Placement Strategy Evaluation using Synthetic Program Graphs 131

6.2.1 	Cost Function 132

6.2.2 Example use of Cost Function135

6.3 	Strategies 138

6.3.1 	Random Process Allocation138

6.3.2 Round Robin Process Allocation138

	

6.3.3 	Genetic Algorithm139

	

6.3.4 	Node Swapping141

6.4 Evaluation of Four Placement Strategies141

xv

6.5 Placement Strategy Experiment Summary150

6.6 Evaluation of Placement Strategies on Process Systems Example 151

6.7 Process Systems Placement Strategy Experiment Summary 154

6.8 Summary155

7 Conclusions and Future Work
	

156

	

7.1 	Precis 156

7.2 Contributions of Thesis and Discussion156

	

7.3 	Future Work158

7.3.1 	Modelling System159

7.3.2 	Software Engineering159

7.3.3 	Experimental Design161

7.3.4 	Subsidiary Points161

Glossary 	 165

XV]

References 	 173

A Experiment Generator Reference 	 174

A.1 Syntax Diagrams for the Experiment Design Language175

A.2 Syntax Diagrams for the Experiment Instance File184

List of Figures

2.1 Classification of Multicomputers 	 . 13

2.2 A Sample Task Graph24

2.3 A Sample Task Graph with Weights25

2.4 Simple Process Graph and Three Placements28

2.5 Task/Process Scheduling Characteristics30

3.1 Good and bad regression models60

4.1 A Simple Synthetic Program 71

4.2 The Experimental Framework Provided by eg78

4.3 Example Experimental Design 82

4.4 Example Regular Graphs, 8 Nodes, Degree 3, implies 12 Edges . 85

xvii

xviii

4.5 Algorithm for Generation of k-regular Graph due to Jerrum and

Sinclair87

4.6 Algorithm for Generation of Irregular Graph88

4.7 Process template in the Experiment Design Language89

4.8 Example of Class-Based Inheritance94

4.9 The Demonstration Program100

5.1 Process Graph for the Occam Distillation Simulation Program . . 109

5.2 Detail of a Stage Model and its Channels110

5.3 Pseudo Program for Geometric Decomposition 115

5.4 Experiment Number vs Computation Achieved121

5.5 Residuals versus Predicted Response - Replicate 1125

5.6 Residuals versus Predicted Response - Replicate 2125

5.7 Residuals versus Predicted Response - Replicate 3126

5.8 Normal Quantile-Quantile Plot of Residuals - Replicate 1 127

xix

6.1 Simple Process Graph, Placements and Costs135

6.2 The Genetic Algorithm139

6.3 Processor Loading Frequencies Strategy 1 - Random143

6.4 Processor Loading Frequencies Strategy 2 - Round Robin 144

6.5 Processor Loading Frequencies Strategy 3 - Genetic Algorithm . . 145

6.6 Processor Loading Frequencies Strategy 4 - Node Swapping . . . 146

6.7 Processor Loading Frequencies Strategy 1 - Random152

6.8 Processor Loading Frequencies Strategy 2 - Round Robin152

6.9 Processor Loading Frequencies Strategy 3 - Genetic153

6.10 Processor Loading 'Frequencies Strategy 4 - Node Swapping . . . 153

A.1 Top level components of an experiment description175

A.2 Simulation Parameters176

A.3 Graph Parameters 176

A.4 Process and Channel Definition Syntax179

xx

A.5 Process and Channel Allocation Syntax180

A.6 Placement Syntax180

A.7 Range Syntax181

A.8 Basic Token Syntax 182

A.9 Basic Token Syntax Continued183

A.10 Output Format for Experiment Instance185

List of Tables

2.1 Two Possible Schedules for the Task Graph of Figure 2.224

2.2 Two Possible Schedules for the Task Graph of Figure 2.325

3.1 Steps for a Performance Evaluation Study43

3.2 One Way Analysis of Variance Summary Table55

3.3 Execution Times (seconds) for our Sample Program55

3.4 Execution Times with Interaction56

3.5 Sample Program Data for Analysis of Variance (Execution Times) 57

3.6 Analysis of Variance of Three Placement Strategies58

3.7 Analysis of Variance Summary Table Showing Effect of Replicates 59

4.1 	Built-in Hardware Types 88

xxi

xxii

5.1 Average Communication Time on Each Occam Channel (MicroSec-

onds) 112

5.2 Simple Program Model Parameters116

5.3 Parameter Settings for Initial Experiment118

5.4 Total Computation Achieved (Divided by 1e8)119

5.5 Percentage Utilization of Processing Available119

5.6 Analysis of Variance Table122

5.7 Parameter Contributions123

6.1 Parameters for the Genetic Algorithm140

6.2 Parameter Settings for Placement Strategy Experiment142

6.3 Computation Cycles Achieved (Divided by 1e8)148

6.4 Percentage Utilization of Computation Cycles148

6.5 Costs of Placements149

6.6 Inverse Normalised Placement Costs149

6.7 Analysis of Variance Table - Placement Strategy Experiment . . 149

xxiii

6.8 Execution Times for Programs under Strategies (seconds).....153

6.9 Normalised Execution Times . 154

6.10 Costs for Placements154

6.11 Normalised Costs for Placements154

Chapter 1

Introduction

One friend in life is much; two are many; three are hardly possible. Friendship

needs a certain parallelism of life, a community of thought, a rivalry of aim

- Henry Brooks Adams,

The Education of Henry Adams

This thesis is concerned with parallel computing, the process of solving problems

on parallel computers. Parallel computing is a relatively young field, the Illiac IV,

a processor array came into operation in 1968 [BBK68]. Very large-scale integra-

tion (VLSI) made personal computing possible and it also made the development

of large scale computing devices containing hundreds or even thousands of pro-

cessors feasible. General purpose distributed memory MIMD machines began to

become available in the early 1980's.

1

Chapter 1. Introduction 	 2

Programming general purpose machines became the next topic of serious interest.

At first it was very difficult, with few software engineering tools compared with

those available on uniprocessor systems. Early parallel computers did not sup-

port common programming languages, often requiring to be programmed in their

unique language. Added to that was the fact that good algorithms for sequential

computers are not necessarily good algorithms for parallel computers. Parallel

computers demand a new way of thinking and programming if the full power of

the machine is to be realised.

Chemical Engineering and in particular process systems have a lot of compu-

tationally intensive applications. Process systems practitioners were quick to

realise and exploit the opportunities that parallel computers presented. In par-

ticular process systems simulation of a process plant can be naturally parallelised

through the use of a process based programming approach where parallel pro-

cesses are used to represent plant equipment and information flow corresponds to

material flow through the real equipment. Such a parallel programming approach

is possible with a communicating sequential process (CSP) programming system.

There is a major problem presented by CSP programs [Hoa84] and distributed

memory multicomputers: the mapping problem is how best to place the processes

of the program onto the processors of the machine. Usually the programmer

would like to minimise the execution time of the program by choosing a good

mapping.

The need to investigate good mappings for process systems programs led to the

investigation of mapping strategies in more general terms. During this investiga-

tion it was noted that there was no rigorous or convenient way that a mapping

strategy could be tested against a program in general. Allied with this was the

fact that there was no convenient way of analysing the performance characteris-

Chapter 1. Introduction 	 3

tics and performance limiting factors of a parallel program.

This thesis presents a methodology for performing performance evaluation re-

views of arbitrary parallel programs. It allows the user of the system to iden-

tify performance limiting factors quickly for an arbitrary parallel program. The

methodology uses statistical experiments. The particular interest of mapping

strategies as performance factors is investigated and it is shown that the method-

ology is adequate for such an investigation.

It is also shown that synthetic programs can be used to describe parallel compu-

tations rather than having to use real parallel programs. This allows the investi-

gator to study a far larger range of programs than would be ordinarily possible.

From the point of view of deriving performance estimates it is shown that care-

fully validated simulation and real execution of synthetic programs can be equally

useful.

1.1 Contributions of Thesis

• The application of the methodology of statistical design of experiments to

study arbitrary parallel programs.

• The use of synthetic programs to give a wider study of parallel programs.

• The employment of these techniques in a systematic investigation of static

placement strategies.

e A demonstration of the utility of these techniques in producing performance

models for both synthetic and real programs.

Chapter 1. Introduction 	 4

1.2 Chapter Outline

Chapter 2 gives an introduction to parallel computing through the literature

available. The possible hardware classifications of a parallel computer are pre-

sented and the different ways that it is possible to program parallel machines.

The two major models of parallel computing are described which are sufficiently

detailed for performance evaluation studies to be performed. The task scheduling

and process placement problems are introduced.

Chapter 3 gives a background to the art of computer systems performance anal-

ysis and presents a systematic approach to this due to Jam [Jai9la]. The two

most important statistical tools necessary for the performance evaluation are also

introduced.

Chapter 4 describes the methodology for evaluating parallel program performance

in full. The performance metrics, the use of synthetic programs and the need for

tools to aid the programmers are demonstrated. The experiment generator is

presented and is shown to fulfill some of the requirements. The MIMD modelling

system is also presented as it is also used in the performance evaluation studies.

Chapter 5 presents an experiment that was used to validate the MIMD modelling

system against a process systems program. Following this is a complete experi-

ment using the methodology that investigates the parameters used to describe a

synthetic program and validates the program model used.

The final chapter of results, Chapter 6 presents a complete example experiment

conducted on a set of placement strategies. This demonstrates how the method-

ology can be used to investigate this particular performance factor over a wide

range of programs. The use of the predictive capabilities of models produced

Chapter 1. Introduction 	 5

from the statistical experiments is also shown. Following this is a case study of

a set of placement strategies being applied to a process systems program.

Chapter 7 summarises and presents the conclusions from the study and presents

proposals for future work.

A glossary of terms used throughout the thesis is provided after the final chapter

and before the bibliography.

Chapter 2

Parallel Computing - Providing

Solutions and Problems

Many hands make light work.

Too many cooks spoil the broth.

- Proverbs

2.1 Precis

Parallel computing is a very wide field and there are many active research ar-

eas within it. These range from the design and construction of novel computer

architectures, through network and language design to parallelism applied to an

Chapter 2. Parallel Computing - Solutions and Problems 	 7

individual problem. This introduction to parallel computing is not complete; it

is tailored towards the work presented in this thesis, though not exclusively so.

The structure of the chapter is as follows: first a general problem statement is

given (2.2); then an introduction to parallel computing is given (2.3), including

the terminology commonly used (2.4) and the classifications of different parallel

hardware (2.5). Following this is a major section on the different ways in which

parallel computers can be programmed (2.6). In order to reason about parallel

computations it is necessary to create models to represent those computations.

The two major representations for parallel computations are described in Section

2.7 along with two of the common problems associated with these models. A

survey of some profiling and performance evaluation tools is given in Section 2.8.

The chapter finishes with a description of the approach taken in this work.

2.2 Problem Statement

Distributed memory multicomputers appear to offer a cheap and powerful com-

puting resource. Unfortunately these multicomputers have not always delivered

the processing performance promised from a summation of individual proces-

sor speeds. It is this performance gap that programmers spend long periods of

time trying to bridge. This can be done in all the normal ways available to pro-

grammers of sequential computing (code optimization or reordering), but parallel

computing also offers the choice of rearranging the program on the machine. The

work described in this thesis is concerned with reducing the performance gap by

providing more information about good placements to the programmer so as to

avoid a lengthy tuning process. The intent is to find placement strategies and

evaluate them to give an idea of their applicability to certain distributed program

Chapter 2. Parallel Computing - Solutions and Problems 	 8

types. If the best strategy can be applied automatically to a distributed program

then it should save the program developer a period of costly program tuning.

The application programs of particular interest are those from Chemical Engi-

neering. Some of these programs have a very regular geometric parallelism and

regular communication patterns. Examples of this are the dynamic simulation of

items of chemical processing equipment or even a complete chemical plant. Faster

than real time detailed dynamic simulation is possible [McK94], but demands a

lot of computing resource.

There is one major caveat emptor with parallel computing, exemplified as follows.

In "The Design and Analysis of Parallel Computing" [Smi92] Smith states

Certain applications of computers require much more processing power

than can be provided by today's machines.

This statement is true and has been true since the start of the computer age. Like

motorways and the motor car, the provided capacity lags behind the requirement.

So today's computers will never be able to provide all the processing power asked

of them, because they are today's computers. Parallel processing is seen as a

promising way of providing large amounts of computing power to a processing

hungry community.

The idea of performing tasks in parallel is not new. It can easily be traced back

to Victorian times where large banks of "computers" were used to calculate tide

and other mathematical tables. In this instance the computer just happened to

be a desk clerk.

Chapter 2. Parallel Computing - Solutions and Problems 	 9

2.3 Introduction to Parallel Computing

A parallel computer is a machine with more than one processing unit working

together to produce some final computation. The important aspect is that the

processors work together in some sense, and thus have to be coordinated, either

by hardware or by software.

There is no need for the processors of a parallel computer to be physically close

together. A parallel computer could be a group of processor boards connected

by a very high bandwidth back plane; alternatively you could describe all the

machines connected to the Internet as the largest loosely connected parallel com-

puter in this Solar system. There is certainly a lot of computing power in these

machines though in general they are all working on different problems.

Even before the practical realization of multicomputer systems there was a lot

of interest in predicting the performance of and potential speedups from parallel

computers. As Casavant puts it "The notion that a loosely coupled collection of

processors could function as a more powerful general-purpose computing facility

has existed for quite some time" [CK88}.

In the early 1980's the advances in semiconductor manufacturing technology made

the realization of affordable parallel computers possible. Cheap, relatively pow-

erful processing chips became available in high volumes, turning the notion into

reality. This renewed the interest of theoretical performance modellers, and prac-

tical systems people in the field.

Another consideration is that it is getting increasingly difficult to manufacture

faster semiconductors with more transistors in the same space, and we are rapidly

approaching the physical limits of semiconductor technology. It is relatively ex-

Chapter 2. Parallel Computing - Solutions and Problems 	 10

pensive to manufacture a very large scale integration chip to run at high speeds,

whereas a set of lower scale integration chips can be manufactured much more

quickly and efficiently and turned into a parallel machine.

This availability of cheap processors has meant the development of a whole range

of parallel computing architectures and a complementary range of parallel pro-

gramming models and languages. Often the machine and language designs existed

long before their physical realization was possible. This was the case with the par-

allel programming language Occam and the Inmos transputer [1nm84, Inm89a].

Occam was an implementation of Hare's Communicating Sequential Process sys-

tem [Hoa84] and was only available in a simulation system before the advent of

the transputer made a parallel implementation possible. In fact the transputer

was almost purpose built for the Occam programming language.

2.4 Parallel Computing Terminology

Parallel computers are designed to make computations proceed more quickly. So

we must first define what we mean by "more quickly". A number of definitions

have been proposed in the literature. We can take as our first principle from

Smith the Principle of Unitary Speedup [Smi92].

Definition 1 Unitary Speedup

Suppose that the fastest sequential algorithm for performing a parallel compu-
tation with parameter n has execution time of T(n). Then the fastest parallel
algorithm with rn processors (each comparable to that of the sequential computer)
has execution time > T(n)/m

Chapter 2. Parallel Computing - Solutions and Problems 	 11

It is important to note that we must compare the fastest sequential algorithm

against the fastest parallel algorithm. This definition tells us that it is impossible

to get a parallel program that achieves a greater than unitary speedup. If this is

the case then it is unlikely that you are comparing like with like. A faster than

unitary speedup is not possible because you could then take the parallel algo-

rithm and simulate it on the uni-processor and get a faster sequential algorithm.

This would contradict the fact that the given sequential algorithm is the fastest

possible.

Hatcher and Quinn [HQ91] define Speedup to be

Definition 2 Speedup

Speedup is the ratio between the time needed for the most efficient sequential
program to perform a computation and the time needed for a parallel program
to perform the same computation.

In this case we assume that the sequential program executes the complete com-

putation on a single processor of a parallel computer and the parallel version

executes on one or more processors. The difference is subtle but important.

They restrict the sequential program to the memory of one node of the parallel

machine so that large, unrealistic problems that could not fit comfortably in a

uniprocessor memory are not used when calculating speedup. Instead they define

another quantity Scaled Speedup

Definition 3 Scaled Speedup

Scaled Speedup is the ratio between how long a given optimal sequential program
would have taken, had it been able to run on a single processor of a parallel com-

Chapter 2. Parallel Computing - Solutions and Problems 	 12

puter, and the length of time that the parallel program requires, when executing
on multiple processors of the same computer.

Another measure of the performance of a parallel program indicates the reduction

in execution time achieved as processors are added. Parallelizability is the ratio

between the execution time of a parallel program on one processor and its execu-

tion time on multiple processors [HQ91]. Quite often Parallelizability is confused

with speedup.

Hatcher and Quinn go on to say that perhaps the least confusing and controversial

measure of program performance is the wall clock speed of the program. This is

the most relevant measure from the point of view of a programmer who wants

to improve the performance of a parallel program. This is of course a machine

dependent measurement, unlike the other measures discussed.

2.5 Multiple Processor Computer Systems

There are many classifications of multiple processor computer systems. The most

popular is due to Flynn [Fly66]. This compares the different types of instruction

stream and data stream that a multicomputer could use. There are the two types

of instruction stream, a single stream SI and a multiple instruction stream MI.

There are two different data streams, SD a single data stream and MD a multiple

data stream. This leads to four different processor architectures shown in Figure

2.1 and detailed below.

SISD This is the classic Von Neumann model. A single stream of instructions

operate on a single stream of data. This type of machine is also referred to

Chapter 2. Parallel Computing - Solutions and Problems 	 13

L1

LLJL P n

LJ
S

S12 Fj
SISD SIMD

A A
N N

ns l Fs 21 Sn rs]
MIMD MISD

C = Control Unit. P = Processor, N = Network. S = Storage

Figure 2.1: Classification of Multicomputers

as a uniprocessor. Examples include almost any computer up to the early

nineteen eighties including almost all microcomputers and workstations.

SIMD All the processors execute the same instructions on different data simul-

taneously. Examples include Thinking Machines' Connection Machine CM1

and CM2, the latter having between 16384 and 65536 processing elements.

All the processors are under the control of a single control unit.

MIMD This is an extension of SIMD where each processor can have indepen-

dent programs that are read from common or local storage. The processors

usually do not operate in lock step. These machines can range from tightly

coupled asynchronous elements such as a multiprocessor workstation, using

shared memory, to a less tightly coupled Meiko Computing surface using

distributed memory [Mei92], through to a loosely coupled workstation net-

work. MIMD machines have the possibility to be heterogeneous processing

environments.

Chapter 2. Parallel Computing - Solutions and Problems 	 14

MISD This case is often compared. to computation that uses Systolic Arrays'.

These are arrays of processors that are developed to solve specific problems

- usually on a single VLSI chip. A clock coordinates the data movement

between processors and output from some processors is pipelined into oth-

ers. For a discussion of systolic computers see Schreiber [Sch80] or Kung

[Kun82].

All but the first classification are deemed parallel or multiple processor computers.

Distributed memory MIMD and shared memory SIMD are the two most popular

classes of machines for parallel computation.

Flynn's classification scheme was refined by Handler in 1977 [Han77]. This scheme

is much more detailed than Flynn's but it still leaves much to be desired. For ex-

ample there is a new important class of parallel computer that are SIMD-MIMD

hybrids that the scheme is unable to describe. The first announced commer-

cial machine was the Connection Machine CM-5 [Cor9l]. This is essentially a

MIMD machine that has hardware features that allow precise synchronization of

processes and processors.

The different classes of parallel machines are best suited to different applica-

tion areas. SIMD machines are most useful for highly data centric applications

in which some regular computations have to be performed. MIMD distributed

memory machines are proving to be the most scalable and general purpose par-

allel computers.

'systole noun, contraction of the heart during which blood is pumped into the aorta and
the arteries that lead to the lungs - systolic.

Chapter 2. Parallel Computing - Solutions and Problems 	 15

2.6 Parallel Programming Paradigms

Many different parallel programming models or paradigms have been proposed in

the literature. I will use the word paradigm to describe programming models to

avoid the over use of the word model throughout this thesis.

The clear classifications of parallel computing hardware are muddied by the par-

allel programming paradigms that are presented to the programmer and user.

SIMD and MIMD machines are both capable of supporting programming paradigms

that are at odds with their physical construction. Performance penalties are usu-

ally paid if a SIMD programming paradigm is implemented on a distributed

memory MIMD system.

In the programming of parallel computers there are different programming paradigms.

The way in which a parallel machine is programmed may require the programmer

to have a full knowledge of the underlying machine but there have also been at-

tempts to insulate the programmer from the hardware of the machine to a greater

or lesser extent.

In the early days of parallel computing it was common for the programming

language to be very tightly linked to the underlying hardware. An example of

this is Connection Machine Lisp [Cor87]. This was a result of the fact that

some of these initial machines had no "real" operating system and also to the

lack of an available language with any useful parallel constructs. This led to

a host of vendor specific languages often very different from those languages

being used on traditional sequential machines. These languages were inherently

non-portable and had all the compatibility and portability problems equivalent to

those that existed on sequential computers before standards like Fortran emerged.

Programming early parallel computers often involved taking a step backwards in

Chapter 2. Parallel Computing - Solutions and Problems 	 16

software engineering technology.

Since the late nineteen eighties these problems have diminished quickly. Standard

operating systems and (augmented) programming languages have become avail-

able on many parallel systems. This has made the software engineering task easier

as standard development tools can be used to speed the software development

cycle.

Claims are now made for genuinely portable programming languages. The prob-

lem of portability of the program is taken away from the programmer and given to

the compiler writer and run-time communications library. Consider the difference

in support software that is necessary to provide simple communication between

two processes in a parallel program in the different cases of a shared memory and

distributed memory machine. Totally different communications strategies must

be used - but must appear identical to the programmer.

Proposals for genuinely portable parallel programming languages include Fortran-

90 and Seymour [Ame92, MS89]. Hatcher and Quinn have also proposed the

Data Parallel Programming language [HQ91] which gives the programmer a sim-

ple model of computation which can be used on several architectures. A similar

claim of portability could now also be made for programs written with the Par-

allel Virtual Machine (PVM) software [GBD93]. The PVM software provides a

library of message passing primitives. These primitives and those in the emerging

Message Passing Initiative (MPI) [Mes94] have been ported to many machines.

The main disadvantage of these approaches is that the programs will run more

efficiently on some machines rather than others.

In the next sections we look at common approaches to software development

for parallel computers. This starts with conventional programming languages

Chapter 2. Parallel Computing - Solutions and Problems 	 17

and then moves on to languages with low and high level parallel constructs and

concludes with architecture independent languages.

2.6.1 Conventional Programming Languages

This is the simple solution as far as the programmer is concerned, but the most

difficult way from the compiler writers point of view. Take a standard imperative

programming language, such as FORTRAN or C, and let a parallelizing compiler

detect and exploit the parallelism in the program. This presents the programmer

with a simple Von Neumann SISD model of computation. This is easy from the

programmer's point of view because it shifts all the work onto the parallelizing

compiler. It also has one very large benefit that existing programs (the well

known "dusty decks") can take advantage of the machines.

Whilst writing a sequential program, the programmer will have sequentialized

sections of the program which were inherently parallel. The programmers may

not notice that some parts of the program are computationally independent.

Parallel programmers have to be taught to look again at the way they create

algorithms to release the inherent parallelism.

Any parallelism in an existing program will be hidden in a set of DO loops and

control structures. The job of the compiler would then be to discover which can

be performed in parallel and this is a difficult task which is probably why not

many parallelizing compilers exist [ZBG88]. It may be possible when a vector

or array processor is used and the compiler looks purely at the loop constructs.

Loop constructs are the easiest to analyse and vectorize as has been shown by

Scarborough and Kolsky [SK86]. A parallelizing compiler may only be suitable

Chapter 2. Parallel Computing - Solutions and Problems 	 18

for certain types of programs and may fail completely to detect any parallelism.

2.6.2 Languages with Low-Level Parallel Constructs

This is the most common and historically developed way of programming parallel

computers. An imperative language is taken and augmented with constructs

to permit parallel programming. Traditionally there have been two approaches

based on what type of hardware the language has been aimed at. These are for

multiprocessor or shared memory machines and multicomputers.

Multiprocessor Programming Languages

This set of programming languages provides the programmer with a shared mem-

ory programming model and so has traditionally been provided on multiprocessor

machines. The language should have the ability to spawn and terminate parallel

processes, manage synchronization between processes and distinguish between

private and shared data.

An example of this is Sequent's Parallel C [0st89] for their Sequent Symmetry

machines [Seq87]. In this language the m..±ork function forks off a set of parallel

processes to execute a function. The processes suspend execution when they reach

the end of the called function. Data is passed between cooperating processes by

implicit access to shared variables.

These are very low level constructs for the programmer. They can be difficult to

debug and it is difficult to eliminate timing errors. It has been shown by several

Chapter 2. Parallel Computing - Solutions and Problems 	 19

people that even short programs can have troublesome bugs [A085, Sto88].

Multicomputer Programming Languages and Tools

These programming languages augment a traditional language with a set of mes-

sage passing primitives. This may be done by extending the language itself and

providing a new compiler for that language or by providing a set of library routines

that can be called from a standard programming language. Data is transferred

between processes by explicit communication statements. This requires the pro-

grammer to keep the state of each separate process in mind when writing the

program.

An example of an extended language is Intel's nCUBE C and an example of the

use of a library of message passing routines is Meiko's CS-TOOLS or the MPI

proposal [Mei92, Mes94]. Each of these systems provides a set of message passing

primitives which allow direct process to process communication. They provide

send and receive operations, often with blocking and nonblocking variants. This

provides asynchronous communication between multiple processes. Less common

is support for broadcast or scatter and gather operations.

The most common programming problem with these types of languages is that

of deadlock. Deadlock occurs when a cycle of communications is waiting to occur

with each process in the cycle waiting on the next one. None of these program-

ming environments can detect deadlock. Detecting deadlock before running a

program is as difficult as running the whole program.

The major advantage of these programming languages is that you can write a

program consisting of multiple processes which behave differently, but this is

Chapter 2. Parallel Computing - Solutions and Problems 	 20

also one of the problems. The programmer has to be able to keep different

multiple states in their head whilst constructing the program. It is easiest, if

it is possible, to implement SPMD (Single Program Multiple Data) or scattered

spatial decomposition algorithms where the data is distributed over the memories

of individual processors each executing the same program. This approach is

useful for problems where the same operation is performed on different pieces

of data independently with little boundary swapping such as for example image

processing.

2.6.3 Languages with Higher-Level Constructs

Parallel computing provides the programmer with a wide variety of architec-

tures. Software portability has been a problem with the earlier proposed par-

allel programming languages, with the languages being tied to one vendor's

hardware/ software combination. Parallel languages with higher-level constructs

present the programmer with models of computation that can encompass a wide

variety of architectures.

In these languages the compiler and programmer work together as a team to

provide an efficient translation of the program. In this respect these languages

lie somewhere between programming languages with low-level parallel constructs

and the use of a traditional programming language with a parallelizing compiler.

There are many examples of this type of language in the literature. For exam-

ple, Thinking Machines Corporations C* [RJ87] for their Connection Machine,

Coherent Parallel C [F088]. Both these languages augment the C programming

language with vector operations. Linda [CG89b, CG89c, CG89a] provides the

Chapter 2. Parallel Computing - Solutions and Problems 	 21

programmer with a virtual tuple space into which data can be inserted. Tuples

are retrieved from the tuple space, usually in a blocking fashion. This is just a

different way to view a message passing system. Occam [1nm84] is the original

communicating sequential process programming language. Channels are used as

communication conduits. The major concept of sequential (SEQ) and parallel

(PAR) statements identified by their level of indentation originate with this lan-

guage. Parallel Pascal is a simple extension to Pascal with vector operations

[RB84, RB87]. Poker [Sny84, GS87] is a visual programming system that has

been parallelized.

2.6.4 Architecture Independent Programming Languages

A new set of parallel programming languages are emerging which provide the pro-

grammer with a consistent programming model and are aimed at a wide range

of parallel architectures. Again at one end we have the sequential program-

ming language and the parallelizing compiler. Other approaches have been the

DataParallel C language from Hatcher and Quinn [HQ91]. This provides the pro-

grammer with a SIMD virtual parallel machine, the virtual parallel processors

are simulated on as many processors as are available at run time.

Another approach is that of functional and logic programming languages, which

take a traditional functional or logic programming language and provide a par-

allel implementation of this. Parallel implementations of Prolog [Cam87, FT88]

and new languages such as SISAL [A085, LSF88] and Strand [FT90] have been

developed.

With all these programming languages the parallelism of the machine is hidden

Chapter 2. Parallel Computing - Solutions and Problems 	 22

from the programmer and so the efficiency of the program is entirely reliant on

the implementation of the compiler and the run time communications system.

The compiler and the run time system are responsible for the placement of the

processes onto the available processors. The number of processors available to

the program are given at run time and the run time system determines how the

processes will be divided. Hatcher and Quinn claim speedups approaching 50

percent of the processors available when compiling the same programs on Intel

iPSC/2, nCUBE 3200 and a Sequent Symmetry S81 [HQ91]. There are also

programs for which speedup is a lot worse. Good speedups are achieved for

programs that are close to the architecture of the machines.

2.7 Modelling Parallel Computers and Programs

In performance studies of parallel computations it is convenient and efficient to

work with a model of a program rather than the real program. The model should

be a realistic representation of the parallel program for the purposes of the study;

in that it abstracts out those features which are relevant for performance mea-

surement. This is in comparison to performing a study by direct measurement.

Performance models of parallel computations can be used to predict which imple-

mentation and which configuration of software elements for a certain computer

are best in some sense. Performance models can involve hardware and software

elements, though it is unusual for people to investigate both at the same time.

Hardware designers like to have models that predict the performance of their ma-

chine designs and consider different network interconnects, for example [BDQ86].

Software engineers like to be able to find the best configuration of a particular

Chapter 2. Parallel Computing - Solutions and Problems 	 23

piece of software - they do not usually consider changing the hardware in some

fundamental way, although they may be able to alter the topology of the ma-

chine. The software engineer may need to consider how the hardware is connected

together and the design of interconnects is a large topic on its own. A complete

description of computer performance methodologies can be found in [H184].

2.7.1 Representation of Parallel Programs

In the modelling and analysis of parallel programs there are two common for-

malisms for representing the programs. These are the task based model and the

process based model of computation. Each of these formalisms has a set of per-

formance problems associated with it, but in each case the main requirement is

to minimise the execution time of the program.

2.7.2 Task Based Model of Parallel Computation

The task based model represents a parallel computation as a directed acyclic

graph (otherwise known as a DAG) called the task graph, C = (V, E), where V

is a set of vertices and E a set of edges. Each vertex and edge has an associated

weight. The weight of an edge usually represents the size of the communication

packet which is sent between the two vertices. The weight of the vertex is the

amount of computation that has to be performed. A vertex v has a set of pre-

decessor vertices and a set of successor vertices. The vertex v cannot proceed

with its computation until all of its predecessor vertices have finished their com-

putation and have sent a message down the edge which links the vertices. This

produces a temporal precedence relation on the task graph. An introduction is

Chapter 2. Parallel Computing - Solutions and Problems 	 24

Figure 2.2: A Sample Task Graph

__1Mt!1U
MOMMM

Time -

q1iau
1aUj1j

Schedule 1, Makespan = 4

Schedule 2, Makespan = 3

Table 2.1: Two Possible Schedules for the Task Graph of Figure 2.2

given by El-Rewini or Sarkar, [ERL90, Sar87].

It is quite common for the edges to have zero weights in which case they request

a synchronization rather than a communication event.

2.7.3 The Task Scheduling Problem

The main performance problem associated with the task graph is that of finding a

schedule for the tasks in the graph. The schedule gives for any task the time when

it will start execution and on which processor. This takes a multiple processor

system consisting of P processors and tries to find an assignment of the tasks to

the processors in P such that the temporal precedence relation is not invalidated

and that the total execution time for the DAG is a minimum. This is known as

the makespan for the given task graph.

Chapter 2. Parallel Computing - Solutions and Problems 	 25

1

1

Figure 2.3: A Sample Task Graph with Weights

MWO 	Schedule 1, Makespan = 4

Time -

MMMMMI

Schedule 2, Makespan = 4

Table 2.2: Two Possible Schedules for the Task Graph of Figure 2.3

Figure 2.2 shows a simple task graph. Each task is assumed to have an equal

weight. Two possible schedules for the graph when two processing elements

(PE1 and PE2) are available are shown in Table 2.1. The second schedule has a

makespan of 3 compared to the first of 4, the first schedule leaves the processing

elements idle for a quarter of the time. The second schedule is one of the optimal

schedules on two processors for the task graph shown.

If the weight of the vertex B is doubled to produce a task graph as shown in

Figure 2.3 then the makespans become identical. The makespans for the same

schedules are shown in Table 2.2. The two schedules are now optimal for the task

graph.

Finding the minimum makespan is an NP-complete problem and is analogous to

the Graph Isomorphism problem, though particular solutions for certain classes

of problem have been found [Bok8lb].

The task graph usually represents fine grained parallel computation. For example

Chapter 2. Parallel Computing - Solutions and Problems 	 26

each vertex could represent a handful of instructions in a program. This means

that the task graph is a very detailed model and has problems in representing

large programs, particularly those with iterative loops. Much work has been done

in the area of DAGs and their properties [ERL90, Sin87].

A lot of the work in this field ignores communication costs or assumes a fixed

cost communication irrespective of the size of the packet or the bandwidth of

the associated communications network. This simplification may be appropriate

for certain types of problem but it is not adequate for programs where signifi-

cant amounts of communication are performed between distant processes. More

detailed and realistic models are being investigated [Lo88, ML82, NCTI92].

2.7.4 The Process Based Model of Parallel Computation

The process based model of parallel computation again represents the program as

a weighted graph (usually called the process graph). This graph is not necessarily

either directed or acyclic. Each node represents a communicating sequential

process and each edge represents the fact that there is at least one communication

event between the two associated processes during the computation. This model

was best described in a seminal paper by Bokhari [Bok8la]

The process graph weights represents the time averaged properties of the pro-

gram. For example, edge weights could represent the average packet size sent

along the particular communication channel. The vertex weights may have sev-

eral interpretations: they could for example represent the size of the process in

terms of memory required for storage, or the size of the main loop of the process.

Chapter 2. Parallel Computing - Solutions and Problems 	 27

It is common for process graphs to have a set of weights associated with each

edge and vertex.

The process graph therefore gives a less detailed view of the computation than

the task graph but allows much larger and coarse grained program structures to

be modelled. The task graph can be thought of as a detailed description of some

temporal part of the process graph. The task graph details the communication

and computation events in detail, including the order in which events occur,

whereas the process graph gives time-averaged properties.

2.7.5 The Process Placement Problem

Associated with the process based model of parallel computation is the proc&ss

placement or process mapping problem. As with the task allocation problem

this is a NP-complete problem and is computationally equivalent to the graph

partitioning and multiprocessor scheduling problem [Bok8la].

'The problem is to find a mapping between the processes and the processors such

that some optimality function (criterion) is satisfied. Usually this criterion is

to minimise the execution time of the program, though other alternative crite-

ria could be the maximal utilization of the processor resources or the network

bandwidth.

A sample process graph is shown in Figure 2.4 with three possible placements.

Assume that the process graph has equal computational weights at each node

and the weights on the arcs represent the size of the messages that have to be

sent frequently between the nodes in a long running program. There are four

Chapter 2. Parallel Computing - Solutions and Problems 	 28

Placement 1 	Placement 2 	Placement 3

Figure 2.4: Simple Process Graph and Three Placements

Chapter 2. Parallel Computing - Solutions and Problems 	 29

processors available each is connected to two neighbours. Placement 1 is an

obvious way to allocate the processes onto the processors; this may be obvious

because there are four processes and four processors. The problem with this

mapping is that the large communications between processes B and C have to

traverse across two links, hence loading two links when one could suffice and

probably disrupting the computation on A's processor to forward the messages.

The second placement corrects this problem by swapping processes D and C so

that B and C only have to send messages across one link. If it were possible to load

both processes B and C onto the same processor then an even better placement

might be Placement 3. Communication costs have been severely reduced in this

placement at the cost of slowing the computation of processes B and C since

they now have to share the same processor. This is just a small illustration of

the complexities of process placement.

A complete taxonomy of scheduling mechanisms in general purpose distributed

computing systems is given by Casavant and Kohl [CK88]. This provides a hier-

archical naming scheme of task and process scheduling techniques. The structure

of this hierarchy is shown in Figure 2.5. Their classification is firstly based on the

way that the mechanism collects its data (local/global), whether the mechanism

itself is distributed and then subdivides into different algorithmic approaches.

A static process placement strategy is exercised once before execution of the pro-

gram. This computes an initial placement which may remain unchanged through-

out the lifetime of that program. The initial placement is calculated from the

process or task graph. Dynamic placement strategies make initial static place-

ments and then periodically reevaluate the performance of the placement and

make changes if necessary. The data required for these decisions has to come

from some system on each processor. These are often referred to as dynamic load

balancing techniques, and require complex decision making at run time.

Chapter 2. Parallel Computing - Solutions and Problems 	 30

	

local 	 global

static 	 dynamic

/

	

optimal 	sub-optimal 	physically 	 physically
distributed 	non-distributed

approximate 	heuristic 	non cooperative 	cooperative

optimal 	sub-optimal

graph enumerative mathematical queueing
theory 	 programming theory 	approximate 	heuristic

Figure 2.5: Task/Process Scheduling Characteristics

Dynamic placement algorithms collect their information in different ways and

vary in effectiveness accordingly [AJ88]. Global system status information is usu-

ally difficult or costly to obtain in a multiprocessor system and so most dynamic

placement strategies rely on local optimization procedures to effect a balanced

load. As would be expected there is also an extensive literature on the subject

of dynamic load balancing, for example [CC87, FB89, MTM88, PD89] and pro-

cess migration [Can88,. Gai90]. Phillips has investigated different dynamic load

balancing/migration strategies on a range of program types [Phi94].

Dynamic load balancing is necessary for time variant programs where the compu-

tational load of processes varies over time or the structure of the program graph

changes dynamically.

Chapter 2. Parallel Computing - Solutions and Problems 	 31

Static Placement Strategies

Unlike the task graph analysis which is usually far too detailed to be more than a

theoretical tool the process placement strategy field has seen much experimental

work and evaluation. The use of heuristic placement strategies for process based

programs usually breaks down into two approaches: those that are static based

strategies and those that are dynamic strategies. A more complete formalism

has been suggested by [AJ88] in which the data collection of the strategy is also

taken into account.

The whole area of task graph scheduling and process placement strategies is

reviewed by Thanisch and Norman [Tha90].

Many placement strategies have been suggested by various authors. We can take

as a sample set those presented by Donnet and Skillicorn [DS88]. They describe

the problem as a graph partitioning problem and present several algorithms which

they compare against a simulated annealing algorithm. The algorithms presented

include Random Partitioning and Heaviest Edge First which attempts to reduce

the communication costs by allocating processes with the heaviest edges to the

same processor. Both of these algorithms are used later in Chapter 6.

The algorithm Find Local Communication Minima tries to minimize the total

weight of edges radiating from each processor. This is essentially the dual of

Heaviest Edge first. Donnet and Skillicorn then go on to develop an algorithm

based on the technique of simulated annealing. They compare all the algorithms

only by the estimated cost of the mapping or partitioning produced. These are

mostly graph based algorithms and a lot of work is devoted to graph techniques.

In particular complex branch and bound tree search techniques have been used

by Sinclair to produce mappings for small programs and processor setups [Sin87].

Chapter 2. Parallel Computing - Solutions and Problems 	 32

Other standard graph techniques have been proposed by Fernandez-Baca amongst

others [FB89J.

More esoteric graph partitioning based approaches have been proposed for ex-

ample by Muhlenbeim et al. [MGSK87] in which techniques from the natural

sciences such as competition for resources and evolution are applied to the prob-

lem. This is-based on the reasoning that nature has performed some of the best

speciation 2 that is available so why not copy the techniques. This of course is

taken a lot further by algorithms which ignore the structure of the problem al-

together and rely purely on the genes or parts of the solution. This means that

Genetic Algorithms can and have been applied to this problem. See for example

a parallel genetic algorithm for process placement by Pettey and Leuze [PL88].

Summaries of several techniques can be found in for example [HK72] and [KM88]

Placement for Real Programs

Of specific interest is the work by the author and colleagues detailed in [PFMS91].

This addresses the particular problems and simplifications that occur with Chem-

ical Engineering parallel computations. These range from the simple geometric

and obvious decomposition of a distillation column simulation program to the

large exponential and computationally intense search space required for synthe-

sis procedures for chemical plants.

The distillation column example is simple because each tray can be modelled in

detail by a process connected in a chain of similar processes. Information flow is

2 speciation noun, the evolutionary development of a biological species [C20: from SPECIES
+ ATION J.

Chapter 2. Parallel Computing - Solutions and Problems 	 33

closely related to physical material flow in the real distillation column. This is

described in more detail by McKinnel in his thesis [McK94].

2.7.6 Modelling Parallel Programs - Summary

The two approaches to the modelling of parallel programs described above offer

two distinct and complementary views of parallel computation. Whilst the task

graph offers a very fine grained instruction level view, the process graph can be

used to provide a higher level, time-averaged view of the parallel computation.

These two representations are also commonly used as paradigms at the program-

ming level, and are appropriate for different types of language. These describe

two different programming models which are also complementary. The task graph

parallel program model is best used to describe the shared memory programming

model. Here tasks represent computation and the precedence of tasks implies

a synchronization or barrier point. The process based representation describes

best the communicating sequential process model of computation. This is more

usually described as a message passing system.

2.8 Performance Analysis Tools

Performance analysis or profiling tools for parallel programming are often incor-

porated within more extensive software engineering support environments. A

clear example of this is the Crystal system supplied with Thinking Machines

CM-2 machine [CCL88]. This system allows users to interactively debug their

program, which may be executing on up to 16,535 processors, viewing the values

Chapter 2. Parallel Computing - Solutions and Problems 	 34

and most commonly accessed parts of data structures as well as being able to see

the percentage of time spent on each individual line of code. This is an excep-

tional example of such a tool and unfortunately is restricted to this one particular

platform.

Other profiling tools with good visualization facilities enable programmers to

study the performance properties of particular programs and to detect unde-

sirable features such as load-imbalance and communications bottlenecks. Mea-

surements may be made directly on the running program using a hardware or

software monitor, or a performance model of the program may be constructed

and executed on a simulation model of the machine. Examples of these three ap-

proaches are respectively: INCAS [NHM+87], IPS [MY87], and TRANSIM [Har89b]

in conjunction with GECKO [Har89a]. GECKO shows the processors and links of a

transputer array and uses colour to show the hot spots. A simulated system has

many advantages from the point of view of flexibility and ease of use, whereas

hardware monitors are specific to a particular type of machine and are expensive

to implement. Software monitors consume machine resources and may distort

the behaviour of the program under investigation.

Yang and Miller [YM89] suggest that there should be an underlying program

model with which to interpret the performance metrics measured. They suggest

that a program activity graph, representing the duration of activities and their

precedence relationships. Support is provided to help the programmer find the

critical path of the program activity graph. A reduction in the critical path will

lead to a performance increase.

Examples of analysis systems based on task graphs are given by Task Grapher

[ERL90] and ADAS [FF185]. Task Grapher is a high-level tool which allows a

user to set up a dataflow model and investigate performance under a number

Chapter 2. Parallel Computing - Solutions and Problems 	 35

of different scheduling heuristics and machine topologies. ADAS is particularly

targeted at early performance evaluation of hierarchical, integrated hardware and

software systems. The designer works in terms of a dataflow model from which a

Petri net [Pet8l] is then derived. Performance metrics can then be obtained by

simulation or, if the net is not too big, analytically.

Kitajima and Plateau [KP94] have used process-based program skeletons to per-

form performance analysis on a distributed memory parallel computer with the

ANDES system. This system also used the MIMD simulator described in Chapter

4.

The systems described above are only a subset of those that have been reported

in the literature, though they are typical in mostly being based on precedence

graphs, in providing comprehensive statistics and in leaving the decisions about

what should be tuned up to the programmer.

When it comes to dynamic scheduling strategies a typical system for the study is

described by Hemery and Geib [HG94]. This combines a simulator and a graphical

front end in which to compare different scheduling strategies on a hypercube

system. A program is written in the event generation language GENESE and

interpreted by the system. There are a limited number of strategies that can be

employed based on different information distribution patterns.

Traditionally computer systems have been modelled analytically using queueing

networks. It is not feasible to model the complex interactions in parallel systems

by queueing networks. On the other hand, Petri Nets can be used to model

parallelism accurately. Petri nets were developed by C A Petri in 1962 to define

the coordination of asynchronous events (see [Pet62] and [Pet8l] or [Brä93]).

Petri nets allow the modeller to clearly describe interdependence between and

Chapter 2. Parallel Computing - Solutions and Problems 	 36

synchronization of parallel processes. A petri net is a directed, bipartite graph

with tokens (markings). Nodes are either a place or a transition. The place

is often called a state and can be empty or occupied with a token: marked. A

transition is often called an action. Edges are arcs which are directed connections

between places and transitions. By associating a time delay with a transition it

is possible to estimate the times required for a system to move from one state to

another.

The size and complexity of many parallel systems precludes the complete use

of analytical modelling techniques, though hybrid models where the hardware

resources are modelled as queueing networks embedded within a generalised

stochastic Petri Net or Markov process representing the control structure of the

program have been created [BBC86] and [KME89]. In this way, the size of the

state space is reduced compared to what it would be if the entire system were

modelled as a Petri Net. It is not clear whether realistically large systems can be

handled by this approach, which suffers also from the disadvantage that changes

to program or hardware may require substantial redesign of the model.

All of the above systems aim at providing quantitative performance predictions

for specific programs. None of the systems allows the user to evaluate a set of

related programs easily. Neither do they show how performance factors may

interact. The programmer must proceed on- a trial and error basis to tune up the

program.

Chapter 2. Parallel Computing - Solutions and Problems 	 37

2.9 Process Systems Parallel Programs

In the introduction to this thesis it was explained that the impetus for this work

came from parallel computations being performed in process systems. Detailed,

dynamic simulation of chemical processes requires significant amounts of com-

puter resource. Uniprocessor machines do not have the power to provide this so

the need for parallel processing arose.

Simulations of physically connected chemical processing equipment are achieved

naturally in parallel processing by representing each unit by a program process.

This gives a robust solution structure because any calculation errors are localised

to the unit and allows individual components to be changed easily. The shape

of the program graph is fixed and the process loads are relatively time invariant.

This means that the amount of computation to be performed at time t is roughly

equivalent to that to be performed at time t + 1. There are situations when

this is not the case, such as when there are large disturbances within the system

due to, for example, feed stock changes. These changes may remain localised,

giving an unbalanced computational load or the effects may spread throughout

the system, balancing the computation once more. In general though, these

periods of disturbance will be small compared to the complete processing time.

With this type of program in mind, I have limited my study to process based

programs that have a fixed structure and which are mostly time invariant. I

have also concentrated on static placement strategies, because the type of pro-

gram described above does not require dynamic load balancing strategies to be

employed. The work has also been limited to using general purpose distributed

memory MIMD machines. This was partly based on the general availability and

popularity of these machines and the specific availability of such machines in

Edinburgh.

Chapter 2. Parallel Computing - Solutions and Problems 	 38

2.10 Design of Approach

Though many placement strategies have appeared in the literature there has been

little work (with a few exceptions [DS88, HP92]) to rigorously quantify the effi-

ciency of a set of placement strategies for a set of parallel programs. Most work

either describes a single placement strategy applied to a small set of (similar) test

programs or shows the application of different strategies to the same program.

The research described in this thesis, on the other hand is directed towards the

improvement of parallel applications by any appropriate method, rather than a

specific interest in the placement strategies themselves. This requires an abstrac-

tion of the parallel program into certain core characteristics so that the behaviour

of a class of parallel programs under various placement strategies can be investi-

gated.

A methodology for screening for appropriate program characteristics in a system-

atic way was needed. This led to the decision to build such a special purpose

software system that would make use of standard statistical methods in order

to quantify the merits of the various strategies. It was expected that different

strategies would perform better for different types of programs. For example the

strategy called Heaviest Edge First (described above) would have little effect on

a program with small communications costs.

The decision for a rigorous comparison of the strategies was advocated by the

work of Nance and Moose [NMF87] in the field of network evaluation. This en-

tails taking the view that the program or system to be investigated is a black

box. Known parameter settings are fed to the black box and responses are re-

ceived. The parameters of a distributed computer system could be the hardware,

software and placement strategy. Through the analysis of these parameters the

performance of a particular placement strategy in relation to the program can be

Chapter 2. Parallel Computing - Solutions and Problems 	 39

investigated.

This kind of parameter analysis necessitates the ability to create programs which

have desired characteristics. This has led to the use of synthetic or automati-

cally generated programs. This gives much more flexibility and control in model

analysis

2.11 Summary

This chapter has given a general introduction to parallel computing. It has shown

the different classifications for parallel computing hardware and the different par-

allel programming paradigms that exist. The two major models of parallel com-

putations, the task graph and process graph were introduced and the associated

problems of scheduling and mapping.

This chapter concluded with the restrictions that have been placed on the study

due to the particular interests of the author and to the particular approach to

performance evaluation that is presented in this work.

Chapter 3

Performance Analysis and

Statistical Techniques

I keep six honest serving men. They taught me all I knew. Their names are

What and Why and When and How and Where and Who

- Rudyard Kipling

3.1 Precis

This chapter is in two distinct parts. Firstly computer systems performance

analysis is introduced (3.2) and a systematic approach is presented in Section

3.2.1.

40

Chapter 3. Performance Analysis and Statistics 	 41

Performance analysis is discussed in the particular context of parallel computing

and any special problems are outlined in Section 3.2.2. The novel way in which

this systematic approach to performance analysis is applied to parallel systems

forms the basis of the methodology described in this thesis. The particular details

of this are outlined in Chapter 4.

The important statistical tools and techniques that form a necessary part of the

performance analysis are presented in Section 3.3.

3.2 Performance Analysis

Jain describes computer performance analysis as an art rather than a science

[Jai9la]. Like a work of art a successful performance evaluation can not be

produced automatically. Every evaluation requires an intimate knowledge of the

system being modelled and a careful selection of the methodology, workload and

tools.

Performance evaluation has always been a distinct part of Computer Science.

Historically performance evaluation studies have centered on large multi-user

systems. A common study would be aimed at identifying the performance bot-

tleneck of the system and factors considered could be the disk subsystem, memory

paging or scheduling algorithm. The interest in performance evaluations of paral-

lel systems has grown alongside the development of the systems themselves. The

driving force, again, is to identify bottlenecks in certain areas of the system to

close the performance gap between power and execution time.

All computer users are interested in performance evaluation. Usually this is

Chapter 3. Performance Analysis and Statistics 	 42

phrased in the statement "I would like my computer to go faster" or in the

question "Why is my computer not as fast as I thought it would be?". Like any

consumer the user wants to get the highest value (performance) possible at the

lowest cost. Computer performance evaluation can be applied at every stage of

production and use of a machine, from a logic simulation of a processor board

at the design stage through to final performance testing of a disk drive on a

standalone system. Commonly though, it is the performance of the whole system

in terms of job execution speeds that the user is most interested in.

In this thesis, I am particularly interested in making performance improvements

from a programmers point of view. Changing hardware is not an every day deci-

sion taken by programmers, whereas software provides many more opportunities

for change. For instance the way data is distributed, synchronous or asynchronous

computations and more traditional code optimization can all be factors affecting

performance.

Parallel systems pose performance analysis questions which do not arise in unipro-

cessor systems. The most common performance criterion associated with parallel

computers is the concept of speedup, which was introduced in Section 2.4. It

was sometimes naively assumed that linear speedup of software should always

be achievable. This was not always practically achievable due to poor process

placement, slow communications software and slow networks as well as to the

inherent structure of the computation in some cases.

Chapter 3. Performance Analysis and Statistics 	 43

• State the goals of the study and define the system boundaries
• List system services and possible outcomes
• Select performance metrics
• List system and workload parameters
• Select factors and their values
• Select evaluation techniques
• Select the workload
• Design the experiments
• Analyze and interpret the data
• Present the results. Start again, if necessary.

Table 3.1: Steps for a Performance Evaluation Study

3.2.1 A Systematic Approach to Performance Evalua-

tion

Jam [Jai9lb] has outlined a systematic approach to performance evaluation. His

points are general and can be applied to any performance evaluation study. They

are shown in Table 3.1 and are outlined below. Following on from this, I take

these points and show how they may be applied to the performance evaluation

of parallel computer systems.

State Goals and Define the System The first step in any performance eval-

uation review is to state the goals of the review and to define the system

within which the review is to be performed. This is an exercise in defining

the boundaries of the review.

The goal is usually to review the performance of the system with the idea of

improving the performance of that system in some way or just identifying

the performance limiting factors.

List Services and Outcome Every computer system provides a set of services.

For example a database system responds to queries, a processor performs a

sequence of instructions. It is useful to list these services and possible out-

Chapter 3. Performance Analysis and Statistics 	 44

comes as a means of identifying useful performance metrics and workloads.

Select Metrics The metrics are the criteria on which performance is compared.

The criteria usually measure the speed, accuracy and availability of ser-

vices. For example in a database processing system a common metric is the

number of transactions performed (queries answered) per second.

List Parameters The next step is to list all those parameters that are believed

to affect performance. These parameters can be broken into two sets, sys-

tem and workload parameters. System parameters include hardware and

software parameters. Workload parameters summarize characteristics of

users' requests.

Select Factors to Study From the parameters identified above a subset must

be identified as factors. These are the parameters which will be investigated

during the review and they will take values at different levels. To have a

manageable review the number of factors is usually smaller than the number

of parameters.

It may not always be possible to use the desired metrics. This may be

because it is not possible to instrument some part of the system under

study. In this case a related metric would have to be chosen. Factors

should obviously include the parameters which the investigator believes

have an impact on performance. The choice of factors is also restrained by

reality. For example, it is no good if the investigator chooses as a factor to

be studied the number of processors in a system if the number of processors

can not be increased either due to financial or technical reasons.

Select Evaluation Technique There are three broad techniques for computer

performance evaluation. These are analytical modelling, simulation and

measuring a real system. The selection of the right technique is based on

the time and resources available to solve the problem and also the degree

of accuracy required.

Chapter 3. Performance Analysis and Statistics 	 45

Select Workload The workload consists of a set of service requests to the sys-

tem under investigation. For example the workload to a database system

may consist of a mixed set of queries. The workload takes different formats

depending on the evaluation technique chosen. For example with analytical

modelling, the workload could be expressed as the probabilities of certain

requests. In simulation, it could be a trace from a real system. On a real

system, it would most likely be a series of test programs that characterize

a typical user.

Design Experiments Once the factors and levels have been decided, a sequence

of experiments can be performed to provide the maximum information with

minimal effort. This can best be achieved through the use of the statistical

design of experiments described later in Section 3.3.

Analyze and Interpret Data Interpreting the results of an analysis is a key

part of the analyst's art. The results provide the basis on which the analysts

can draw their conclusions. It is of course possible to draw more than one

conclusion from the same results. It is important that the analysis of the

data is considered when the experiment is constructed. The results must be

easy to collect in a form that is acceptable to any data analysis tools. The

experiment and the analysis should go hand in hand. Statistical techniques

used to analyze the results are also presented later in this chapter (3.3).

Present Results The last step of all performance reviews is to present the re-

sults to those people who are involved in making a decision based on the

results. At this stage it may become apparent that a more detailed review

needs to be performed, and so the analyst may have to go back to an earlier

point in this process.

Chapter 3. Performance Analysis and Statistics 	 46

3.2.2 Performance Evaluation of Parallel Systems

The systematic approach to performance evaluation outlined in the previous sec-

tion can be applied to parallel systems. The points above will now be reviewed

in the context of parallel computing systems and will demonstrate the particu-

lar problems raised by parallel systems. The points of the systematic approach

should be kept in mind again when the methodology proposed by this thesis is

presented in Chapter 4.

In single processor performance reviews, the system to be studied may be the

computer system as a whole or some component part like the CPU or disk sub-

system. This situation is more complicated in parallel systems where there are

multiple CPU's and other hardware components such as specialized network in-

terconnect. The system itself may cover a large geographic area and so care must

be taken in clearly defining the system boundaries.

From a macroscopic point of view, a parallel system provides the same services

as a uniprocessor system. This point is a very salient one. If it were possible to

provide exactly the same services to the user without their having to change their

programming model then parallel computing would be completely integrated into

mainstream computing. Unfortunately, as described previously, the sequential

programming model has already hidden the natural parallelism in the problem.

So while it is correct to say that the parallel system provides the same services

and outcomes, i.e. job execution and results, the way in which this happens is

completely different.

Parallel systems provide similar metrics to uniprocessor systems, though some of

them are more difficult to obtain. Average job throughput on a multi-user parallel

system can easily be compared against the same uniprocessor measurement.

Chapter 3. Performance Analysis and Statistics 	 47

Some metrics specific to parallel systems are also required. For example in a

multi-user system it is desirable to maximize the utilization of the processors.

This measures how effectively the parallel programs are using the processing

resources. The utilization also becomes more and more important as the relative

costs of the interconnect to the processor increases. This has been a general

trend over the last few years, with an increase in both the speed and bandwidth

of the interconnect. The importance of network bandwidth became more obvious

in distributed systems when for certain applications the communication costs

started to dominate performance [Cla90].

In parallel computing the workload parameters are not as well understood as

they are on uniprocessor multitasking systems, where standard benchmarks are

commonly known and available. Distributed systems research is still at the stage

of working with innovative hardware and software designs and common workloads

that are appropriate for all machines are relatively unknown.

One of the main problems in parallel computing is that there are a large num-

ber of parameters, arising from the fact that there are several processors and a

interconnection network. These two components have many parameters hidden

inside such as the speed of individual processors and network.

Parallel processing poses a particular problem in that the resources under inves-

tigation are very expensive to use. Sometimes, they lack the instrumentation

facilities in either hardware or software which would facilitate any sort of perfor-

mance evaluation other than execution speed of the program. This has meant

that a lot of performance evaluation of parallel systems has been performed either

using analytical modelling techniques or simulation (2.8).

Chapter 3. Performance Analysis and Statistics 	 48

3.3 The Statistical Design of Experiments

One of the major contributions of this thesis is the application of the standard

techniques of experimental design to performance analysis of parallel programs.

The relevant techniques are described in this section. At the start of this investi-

gation the only relevant work on the application of these techniques was that by

Nance and Moose [NMF87]. They had used the techniques to evaluate capacity

assignment strategies in computer network design.

Phillips [Phi94] used the techniques and much of the software developed for this

thesis to study process migration strategies for time varying parallel programs.

Lyon, Snelick and Kacker [LSK94] used statistical techniques to identify bot-

tlenecks in MIMD programs. They did this by adding artificial delays or time

perturbations to parts of the program to see if this affected the performance.

In the context of this investigation it is apparent that there are many parameters

of a parallel system which may affect performance. A systematic way to construct

performance evaluation studies and to rapidly evaluate which parameters have

significant effect is necessary. The factorial design of experiments and analysis of

variance satisfy these needs.

3.3.1 Experimental Designs

There are other types of experimental design, but the most commonly used are

the simple design, the factorial design and the fractional factorial design.

Chapter 3. Performance Analysis and Statistics 	 49

Simple Designs

In simple design, we start with a typical configuration and vary one factor at a

time to see how that factor affects performance. Given k factors, with the ith

factor having n 2 levels, a simple design requires n experiments, where

n=l+(n-1) 	 (3.1)

However, this design does not make the best use of the effort spent. It is not

statistically efficient because only one parameter is investigated at a time. Also,

if the factors interact, this design may lead to incorrect conclusions. This design

is not recommended by serious practitioners.

3.3.2 Full Factorial Designs

The analysis of factorial experiments was proposed by Fisher in 1935 [Fis58]

with the introduction of his Analysis of Variance technique. This permitted the

devising of experimental designs which can handle the simultaneous testing of

large numbers of different factors efficiently to see what effect they have on the

value of one or more output variables, otherwise known as the response variables.

The term factorial designs is used because they evaluate the effect of different

combinations of experimental factors. In any experiment, each component part

that can be varied is a factor. For example, an experiment to make a cake has

many factors such as the amounts of each ingredient, the oven temperature and

Chapter 3. Performance Analysis and Statistics 	 50

the baking time.

Factorial experiments are designed to test two or more factors at the same time,

economically in the number of experiments and to evaluate the effects of inter-

actions between factors. This is done by comparing the results obtained with

different levels of each factor; The experiment for baking the cake, may for ex-

ample, be repeated at different temperature levels. It is important to note that

these levels may in fact be the presence or absence of the particular factor.

The key aspect of these designs is that the factors are varied simultaneously rather

than one at a time in order to facilitate estimating the effects of interactions

between factors.

A full factorial design utilizes every possible combination at all levels of all factors.

A performance study with k factors, with the ith factor taking n2 levels, requires

n experiments, where

k

=
Hni
	

(3.2)

3.3.3 Analysis of Variance

In the analysis of experiments, we want to decide whether observed differences

are attributable to chance or if there are real differences among the means of the

populations of the sampled values. To make this decision, we can not just rely

on visual tests, an automatic technique is necessary. This technique is called the

analysis of variance, usually abbreviated to ANOVA.

Chapter 3. Performance Analysis and Statistics 	 51

An ANOVA attempts to partition the variation into an explained and unexplained

part and provides a guide to how much of the explained variation is genuine. The

variation under investigation is that which is inherent in the data produced from

an experiment. We need to know whether this variation is due to real differences

in the measured data values, whether it is due to not measuring the same thing

twice on different replications or whether it can be attributed to chance.

In general, we have k independent random samples of size n from k populations.

The jth value from the ith population is the denoted x, that is

Populationl : x11 , x 12 ,

Population2 	X21,X22.... ,X2n 	

(3.3)

Populationk: Xkl, Xk2,. .. , Xkn

and we shall assume that the corresponding random variables x, which are

all independent have normal distributions with the respective means yj and the

common variance a 2•

Stating this differently, we could say that the model is given 'by

Xij - fli + e13 	 (3.4)

for i = 1, 2,. . . , k and j = 1, 2,... , n where the eij values are values of nk

independent random variables having normal distributions with zero means and

the common variance 0,2 • The term e 3 can be attributed to experimental error,

or to the effects of parameters which have not been included in the model. This

Chapter 3. Performance Analysis and Statistics 	 52

is usually written in the form

xii = ,LL + f3 + e 3 	 (3.5)

for i = 1,2,... , k and j = 1,2,... , n, where IL is referred to as the grand mean

and the Pi are called the treatment effects such that 	= 0.

The term treatment for referring to the different populations comes about from

the origin of the analysis of variance techniques. They were commonly used

in agricultural experiments to compare the effectiveness of different fertilisers.

In this work, for example, a process placement strategy could be analogous to

different fertilisers. The opportunity to repeat experiments on computer systems

is obviously easier than in the agricultural "field", but these powerful statistical

techniques are still thoroughly appropriate.

We must now test the Null Hypothesis that the population means are all equal,

namely, that ,11 = 1L2 = ... = ILk or equivalently that

Ho :/3=O for i=1,2,...,k 	 (3.6)

Correspondingly, the alternative hypothesis is that the population means are not

all equal, namely, that

H1 : /32 0 0 for at least one value of 1 	 (3.7)

	

Chapter 3. Performance Analysis and Statistics 	 53

The test, itself, is based upon an analysis of the total variability of the combined

data (as might have been expected from its name). The total variability of the

combined data is given by

-)2 	
(3.8)

i=1 j=1

where

•• 	.x i3 	 (3.9) nk 1=1 j=1

If the null hypothesis is true all the variability is due to chance, but if it is not true

then part of the above sum of squares is due to differences among the population

means.

It can be shown (in any statistics text book e.g. [FW80]) that the above sum of

squares can be rewritten so that

k n 	 k 	 k n

	

(x - ±) 2 = n((± -) 2) + 	(x -)2 	(3.10)
i=1 j=1 	 i=1 	 i=1 j=1

where 	is the mean of the observations from the ith population and t.. is the

mean of all nk observations.

It is usual to refer to the expression on the left hand of the identity in Equation

3.10 as the Total Sum of Squares, the first term of the expression on the right

hand side as the Treatment Sum of Squares and to the second term as the Error

Sum of Squares. Here "error" denotes the experimental error, or chance. If we

	

Chapter 3. Performance Analysis and Statistics 	 54

denote these three sums of squares by SST, SS(Tr) and SSE we can then write

SST = SS(Tr) + SSE 	 (3.11)

This has split the measure of the total variation SST into two components. The

second component SSE measures chance variation. The first component SS(Tr)

measures chance variation when the null hypothesis is true, but it also reflects

the variation among the population means when the null hypothesis is false.

It can be further shown that we can bring the decision for rejecting the null

hypothesis down quite simply to the following. We reject the null hypothesis

that the population means are all equal if the value we obtain for

F -- k(n - 1)SS(Tr)

	

 (k - 1)SSE 	 (3.12)

exceeds the value Fa,k_1,k(n_1). The ratio of the sums of squares follows an F

distribution with k—i and k(n —1) degrees of freedom. c is the level of significance

that we wish. c is the probability of rejecting H0 when it is really true. The

assumptions underlying this analysis are described in Section 3.4.1

The procedure described above is called the one-way analysis of variance and the

details of this technique are usually summarised in a table of the kind shown in

Table 3.2 - known as an analysis of variance table.

Chapter 3. Performance Analysis and Statistics 	 55

Source of Variation -Degrees of Freedom Sum of Squares Mean Square F
Treatments k - 1 SS(Tr) MS(Tr) 	SS(Tr)

- 	 k-i
MS(Tr)
MSE

Error k(n - 1) SSE MSE = k(n- 1)

Total kn-1 SST I _I
Table 3.2: One Way Analysis of Variance Summary Table

Combination j Response

A 300
B 400

AB 200
ci 500

Table 3.3: Execution Times (seconds) for our Sample Program

3.3.4 Worked Example

A short example from a simple computer performance experiment will illustrate

the techniques described above. Suppose we have a single program and have

identified two parts of the program where we believe we can make performance

increases. We do not know whether the two supposed performance enhancing

factors will work against one another.

We can call these two factors A and B and we want to evaluate their separate

and combined effects on the execution time. To do this we run the program for

every combination of levels of the two factors. Each factor is taken at one of

the two levels, "present" or "not present". This gives us the four combinations

A l B, AB and the control program ci which has both factors absent (i.e. our

original unaltered program). This will require four experiments.

Suppose that we get the execution times shown in Table 3.3 for each combination

of factors.

The program runs must be repeated at each factor combination to get an average

Chapter 3. Performance Analysis and Statistics 	 56

Combination] Response]

A 300
B 400

AB 150
Il 500

Table 3.4: Execution Times with Interaction

for each value above, and to find the variation due to experimental error. The

experimental errors can only be quantified if the measurements are repeated under

the same factor-level combination.

The difference in execution times with A compared with the control program, i.e.

A - , tells us just what effect A has had. In the present case A has decreased

the execution time by 500 - 300 = 200 seconds. By the same reasoning, B has

decreased the execution time by 500-400 = 100 seconds. Now we must also look

to see if there has been an interaction between A and B. An interaction is the

phenomenon where two or more factors interact so that their combined effect is

different from the simple addition of their separate effects.

If there were no interaction between A and B, the result of AB should just be a

summation of the execution time of the control program plus the effect of A (-200

seconds), plus the effect of B (-100 seconds), which gives a total of 200 seconds.

This is, in fact, just what occurred, so we conclude that there was no interaction

between A and B. This will not always be the case. For example Table 3.4 shows

that the response from the AB combination is not a simple summation of their

individual effects. There is an interaction between the factors.

In this simple example no replications of the experiment have been shown. Now

let us consider a more realistic example where the experiments are replicated at

each factor level.

Chapter 3. Performance Analysis and Statistics 	 57

Samples Mean
Strategy A 77, 81, 71, 76, 80 77
Strategy B 72, 58, 74, 66, 70 68
Strategy C 76, 85, 82, 80, 77 80

Table 3.5: Sample Program Data for Analysis of Variance (Execution Times)

Assume that we have a parallel program consisting of communicating sequential

elements. We have 3 placement strategies that we wish to compare to see which

if any has an effect on the performance of the program. The program is run with

its processes placed by each of the three strategies 5 times. The execution times

for all these runs are shown in Table 3.5. The means of the samples are shown

alongside the data.

What we want to know is whether the difference among the mean values is sig-

nificant or whether 'it can be attributed to chance.

We will perform an ANOVA on the data in Table 3.5. We will test the data at a

99 percent confidence or a significance level of 0.01 (c = 0.01). So our null and

alternative hypotheses are:

H0 : #i = 0 for i = 1 1 2,3

H1 : /3, 34 0 for at least one value of i

Critical Regions: F > F.01 , 2 ,12 = 6.93

Computations: By performing the necessary calculations (there are easy

ways to calculate SST and SS(Tr)) we get the analysis of variance table

shown in Table 3.6.

Decision: Since F = 8.48 exceeds F.01 , 2 , 12 = 6.93, the null hypothesis H0

must be rejected at the 1 % significance level, and we conclude that the

three placement strategies are not all equally effective.

Chapter 3. Performance Analysis and Statistics 	 58

Source of Variation Degrees 	of
Freedom

Sum 	of
Squares

Mean Square F

Treatments 2 390 = 195 = 8.48
Error 12 276 = 23

Total [14 [666

Table 3.6: Analysis of Variance of Three Placement Strategies

In the worked example 3.3.4 shown above it may have seemed reasonable to con-

dude that the three placement strategies are not all equally effective. There could

be many reasons why this was not a reasonable conclusion. What if the programs

using strategy A or C were run at a time when another user was on the system

and was using some of the available processors? Of course it is possible that the

differences amongst the three sets of results are due to the effectiveness of the

strategies, but as we have noted above other factors could be held responsible.

The point is that a significance test can only show if differences amongst sam-

ple means are too large to be attributed to chance, but it cannot say why the

differences occurred.

What if there were some bias introduced by the replicates or by the order in

which the experiments were performed? This can be analysed by showing the

analysis of variance table in a slightly different form which separates the effects

into three separate components. Those due to the errors, the treatments and

the replications. We can then see easily where the variation is coming from,

whether it really is due to the treatments or just variability or bias between the

replications. The new structure of the analysis of variance table is shown in

Table 3.7. This new structure of the table requires two calculations for the F

distribution test. For the treatments

(3.13)

Chapter 3. Performance Analysis and Statistics

Source of Variation Degrees 	of
Freedom

Sum 	of
Squares

Mean Square F

Treatments k - 1 SS(Tr) MS(Tr)
-

- SS(Tr)
 k-i

MS(Tr)
MSE

Replicates n - 1 SSR MSR =
n-i MSE

Error (k-1)(n-1) SSE MSE= (k-1)(n-1)

Total [kn_1 SST

Table 3.7: Analysis of Variance Summary Table Showing Effect of Replicates

and for the replicates:

F,k_i,(_1)(k_1) 	 (3.14)

3.4 Estimation of Modelling Parameters

Once we have performed the ANOVA it is possible to use the values calculated

during the process to create a linear mathematical model. This model allows

one to estimate or predict the random variable as a function of several variables.

The estimated variable is called the response variable and the variables used to

predict the response are called predictor variables, predictors or factors.

It is useful to know what is meant by a good or bad model. Figure 3.1 shows

three examples of measured data and attempted linear models. The measured

data is shown by scattered points whilst the model is shown by a straight line.

Most people would agree that the first two models are good because the straight

line is relatively close to all the data points. Linear regression uses this approach

to produce a good model.

A regression model attempts to reduce the distance measured vertically between

an observation point and the model line (or curve). The motivation for this is that

Chapter 3. Performance Analysis and Statistics 	 M.

(a) A good model
	

(b) A good model

x

(C) A bad model

Er ror

Measure 	Estimated y

x

Figure 3.1: Good and bad regression models

Chapter 3. Performance Analysis and Statistics 	 61

given any value of the predictor variable x, we can estimate the corresponding

response variable simply reading the y-value on the model line at the given x-

value.

The difference in height is called the residual, modelling error, or simple error.

The terms residual and error are used interchangeably. Some of the errors are

positive and some are negative. One obvious requirement of a good regression

model would be to have zero overall error. Unfortunately, there are many lines

that will satisfy this criterion. Additional criteria are needed. One such criterion

is to choose the line that minimises the sum of squares of the errors. This criterion

is called the least squares criterion and is the criterion used to define the best

linear regression model.

Mathematically, suppose that the linear model is

= b + b1 x 	 (3.15)

where is the predicted response when the predictor variable is x. The pa-

rameters b0 and b1 are fixed regression parameters to be determined from the

data (via the steps in the analysis of variance). Given n observation pairs

(xi,y1),.... (Xn,yn), the estimated response for the ith observation is

= b0 + b1 x 1 	 (3.16)

The error is

(3.17)

	

Chapter 3. Performance Analysis and Statistics 	 62

The best linear model is given by the regression parameter values, which min-

imises the Sum of Squared Errors (SSE):

 bo
= 1=1 	

- - 	 (3.18)

subject to the constraint that the mean error is zero:

(3.19)

It can be shown that this constrained minimisation problem is equivalent to min-

imising the variance of the errors. The regression parameters that give minimum

error variance, are

b 	(> 1 i Xjyj) -
1 -
-

(fl x) - 	
(3.20)

and

(3.21)

where ± is the mean of the values of the predictor variables and p is the mean

response.

Chapter 3. Performance Analysis and Statistics 	 63

3.4.1 Analysis of Variance - Assumptions

There are several assumptions underlying an analysis of variance which must be

satisfied in order for the analysis to be valid. These assumptions are listed below:

• Errors must have constant variance over the entire range of the response.

• Errors must be Independent and Identically Distributed (lID) normal van-

ates with zero mean.

• The effects of factors and errors must be additive. In other words the

underlying model must be structurally adequate.

These assumptions should always be tested before proceeding with an analysis.

There are a set of visual tests for verifying the above assumptions. The, first

assumption can be tested by constructing a scatter plot of the residuals versus

the predicted response. If a trend is visible in such a plot then one can conclude

that the errors do not have constant variance.

The second assumption can be tested by producing a normal quantile-quantile

plot of the residuals. A quantile-quantile plot allows one to test whether a set of

observations comes from a particular distribution by plotting the observed quan-

tile versus the theoretical quantile. An approximate straight line in such a plot

indicates the observed data does indeed come from the theoretical distribution.

In the case of an analysis of variance, if the points plotted do not form an ap-

proximate straight line passing through the origin, then the errors can not be

described by a normal distribution with zero mean.

Several situations could lead to the third assumption not being satisfied. Amongst

these are if the residuals are of the same order as the response or if the response

Chapter 3. Performance Analysis and Statistics 	 64

covered more than a single order of magnitude.

If any of the above assumptions are discovered to have been violated then a

transformation of the data may need to be considered, see for example [Jai9la].

The modelling described here can readily be extended to any number of param-

eters, though full factorial experiments may become too time-consuming to be

feasible as the number of parameters increases, in which case we may use frac-

tional factorial experiments which presuppose that some high order interactions

are negligible. The advantage of either approach is that it allows flexibility to

explore the relative merits of alternative models as predictors of performance

quickly, as a great deal of information can be obtained with a limited input of

resources. The approach can be extended to non-linear models by using factorials

at three or more levels of some or all parameters.

Due to the amount of effort involved in a full factorial experiment, usually if a

series of experiments is to be conducted, the number of factors is decreased from

one experiment to the next if it becomes apparent that a factor is having no

influence on the outcome.

3.5 Summary

This chapter has described the general technique of computer systems perfor-

mance analysis and the particular problems presented by parallel systems. It

has also described the statistical techniques that are necessary for conducting a

proper performance evaluation study.

Chapter 3. Performance Analysis and Statistics 	 65

The performance analysis described here is taken forward in this work by the con-

cept of an experiment and software that allows such experiments to be described

succinctly and executed without further user intervention. This "experiment"

software is described in the next chapter. Examples of the use of the software to

describe experiments and the application of the statistical techniques are given

in Chapters 5 and 6.

Chapter 4

A Methodology for Parallel

Program Performance

Evaluation

4.1 Precis

This chapter describes the main body of work of this thesis. It describes a

methodology for conducting performance experiments on arbitrary parallel pro-

grams. Many interesting experiments can be conducted but the primary interest

is with the identification of factors that affect performance and with their relation

to placement strategies.

Chapter 4. Methodology for Performance Evaluation 	 67

The problems particular to performance evaluation of parallel systems have al-

ready been discussed (3.2.2). In the first section of this chapter (4.2) I suggest

how these problems can be solved through a systematic approach to parallel per-

formance evaluation. There then follow two specific sections on tools that have

been constructed specifically to solve these problems. The experiment generator

is presented in Section 4.3 and a multiprocessor simulation system, MIMD is pre-

sented in Section 4.4. A short summary of the details of how an experiment is

conducted is given in Section 4.5

4.2 Methodology

The methodology is outlined in terms of the Systematic Performance analysis

approach described in Section 3.2.1.

The methodology described in this chapter can be stated very quickly. It is the

application of designed experiments to a parallel computer system to identify

important performance parameters. A byproduct of this is the ability to predict

the performance of parallel programs through the use of statistical models.

Parallel programs on parallel machines are complex systems which have a re-

sponse based on a large set of factors. The response is usually the execution

time - but can be other metrics, such as the processor utilization. The approach

taken here is to view the parallel system as a black box, and assume that we

have the ability to control the factors (or variables) which enter the black box,

read the responses from the black box and construct an empirical relationship

from these observations. This is very similar to the approach taken in chemical

process control and other physical systems where the systems are too complex to

Chapter 4. Methodology for Performance Evaluation 	 68

model in their entirety and so they are modelled empirically as a black box with

a set of inputs and outputs.

4.2.1 Goals

The goals of the experiment are to analyse the performance of a parallel system to

see which factors are responsible for good or bad performance. The methodology

allows for the investigation of an arbitrary number of parameters and an arbitrary

system, although in practice there are limits imposed by the time required to carry

out a large number of experiments.

4.2.2 Define the System - Synthetic Programs

At the outset of this study it was necessary to define the parallel system under

study and identify workloads. It became apparent that there were not sufficient

existing suitable parallel programs to permit a systematic performance study.

The decision was taken to use artificial workloads, which I have termed synthetic

programs. Stated simply such a synthetic program is a representation of a process

based program that is intended to capture the essential qualities of a computation.

There were other compelling reasons that made the choice of synthetic programs

sensible. Firstly, though some real programs did exist, it is always difficult to

understand a program fully if you have not been involved with its construction.

But if the program is to be run in an instrumented fashion then an understanding

of the program is necessary. At the start of this investigation it was also very

Chapter 4. Methodology for Performance Evaluation 	 69

difficult to instrument a program and run it with different parameter settings

automatically. This was particularly true on the machine and operating system

combination that was available.

The author felt that if program performance parameters were to be seriously

investigated then a system was necessary to create programs of specific types on

demand. This must have the ability to create programs with factors at specified

parameter levels.

If only existing programs were used then there would be a degree of uncertainty

about how representative those programs were of the more general class from

which they were taken since they were in general tailored to a given machine

environment. A synthetic program, and the ability to create programs on demand

at particular factor levels, gives the investigator the ability to fully explore classes

of programs through designed experiments.

When considering the creation of the artificial workloads or synthetic programs

it is necessary to identify what is necessary and sufficient to describe a parallel

program. From a programmer's point of view the most important factors may

be the number of processes in the program and how they are connected together.

This is expressed in the size, shape and regularity of the program graph. For each

process in the program - the ratio of the amount of computation to communication

is important as well as the relative sizes of processes. Considering these points

led to the following definition of synthetic programs.

A synthetic program is made up of two parts, a weighted graph similar to that

described in Section 2.7.4 and one or more process templates. The process graph

gives the shape and connection of the processes in the program along with a

set of weights for the processes and edges. The weights of the process graph are

Chapter 4. Methodology for Performance Evaluation 	 70

meaningless until a process template is added. The process template describes the

behaviour of the processes in the program. Each process template is responsible

for bringing to life the weights associated with the graph.

Each node must be given a process template, but the same process template need

not be given to each node in the graph. The weights associated with the edges

radiating from a node are interpreted by the process templates associated with

that node in appropriate ways.

This weighted process graph provides a way of describing a program indepen-

dently of how the program is to be executed. This is an important point in

the design of the methodology. The process templates are usually dependent on

the experimental domain. For example, a process template could be part of a

simulation program or it could describe a process in a real program.

4.2.3 Example Synthetic Program

A complete synthetic program is shown in Figure 4.1. This shows a simple

program graph with just two nodes and a process template written in pseudo code.

Each process in the program computes for a period specified by the weight of the

node and then exchanges data with its neighbour. Note that the send and receive

of the messages is performed in parallel and so the program will not deadlock.

This is signified by the indentation of the statements beneath the PAR statement

in a notation that is reminiscent of the Occam programming language [Inm89a].

The SEQ statement means that all lines with the same indentation below this

statement are executed sequentially like a normal programming language.

Chapter 4. Methodology for Performance Evaluation 	 71

OO
Weighted
Program
Graph

SEQ
Compute (Wi)
PAR

Send (W2)
Receive

Process
Template

Figure 4.1: A Simple Synthetic Program

This synthetic program describes a program where one process, P2, will spend

a large majority of its time waiting on process P1 to finish its computation and

communicate. This process graph and the same process template could be exe-

cuted in a simulation system or as a real program running on a real machine.

4.2.4 Performance Metrics

The choice of metrics for parallel systems has already been discussed in Section

3.2.2. All metrics are suitable as long as they can be measured accurately, and

provide useful feedback to the programmer. The most useful metric is usually

wall clock time of program execution. This gives the speed of the system. The

second most common metric is processor utilization. This gives a measure of how

well the parallel processing resource has been used. The two metrics are obviously

related, for example, if for a fixed number of processors and a sample program,

the execution time can be decreased by better utilizing the processing resource

available. This is usually achieved by a better placement of the processes or a

reordering of communication events.

Using synthetic programs does lead to a difficult choice of performance metric.

The use of synthetic programs (possibly randomly generated) means that the

Chapter 4. Methodology for Performance Evaluation 	 72

process templates have to be constructed in such a way that the program will

not deadlock. This also produces programs that do not terminate as the process

templates have a repeating - nature. With programs that do not terminate there

is no concept of wall clock time. To get around this problem I will use the total

number of clock cycles computed by the program in the fixed simulation time

as the metric. Where appropriate I will show this as a percentage of the total

amount of time available. The total amount of computation time possible is the

product of the simulation time and the number of processors.

4.2.5 Factors and Their Values

The methodology allows for an arbitrary number of parameters to be specified to

the experiment generator. These parameters are then combined in a full factorial

experiment. If each factor is taken at two levels the number of experiments is

given by

Number of Experiments = 2cr 	 (4.1)

where k is the number of factors and r is the number of replicates of each exper-

iment.

The particular factors to be investigated are chosen by the user. Simple obvious

factors have been chosen for the initial experiments, e.g. the number of processes

in the program, the average connectivity of the processes, the average weight of

the processes and the weight of communication.

Chapter 4. Methodology for Performance Evaluation 	 73

4.2.6 Evaluation Technique

The evaluation technique for the methodology can be chosen by the user. All that

is required is that the evaluation process takes a description of a parallel system,

program graph, hardware description and mapping, and executes the program,

returning the requested metrics.

As previously discussed, the evaluation technique can be analytical modelling,

simulation or measurement on a real system. The methodology will work with

any of these evaluation techniques. It has been successfully used with simulation

and real systems.

The actual execution of parallel programs on real parallel systems is sometimes

a long and tedious process and it is not always possible to measure the desired

metrics. To get around this problem most of the evaluation techniques used were

simulation based and real programs were only used for validation purposes.

4.2.7 Select the Workload

Finding standard workloads for parallel systems is not an easy task. This is be-

cause of the diversity of the systems and the diversity of programming languages

used. It is difficult to get a representative sample of programs and for this reason,

as well as those previously described I chose to generate synthetic programs. This

meant that a large range of programs that were easily available and were simple

to understand were accessible to me. Other reasons for this decision have also

been outlined in Section 4.2.2.

Chapter 4. Methodology for Performance Evaluation 	 74

The actual generation of the synthetic programs graphs is dealt with in more

detail in Section 4.3.3. There is one peculiarity with using synthetic parallel

programs. It is necessary to ensure that the programs are deadlock free. This is

based on the assumption that the programs under investigation from a real system

would be deadlock free so any synthetic programs should also be deadlock free.

The assumption is made because this work is aimed at performance enhancement

of "correct" programs not debugging of developing programs. Fortunately the

class of programs described as loosely synchronous in Section 2.6.2 are most

easily written in a deadlock free manner. This is achieved by having two main

phases, one of computation and one of communication. The communications

occur in parallel, much like the simple process template shown in Figure 4.1

4.2.8 Experimental Design

The experimental design is based on a full factorial statistical experiment. To

help the user of the methodology an experiment generation tool called eg was

created (described in Section 4.3). This allows the user to clearly specify the

parameters under investigation and what levels they would take. The output from

the experiment generator is a set of experiment trials (or experiment instances)

which can then be evaluated within an experimental domain. The experimental

domain can be a simulation environment or a real parallel processing system.

The second tool that has been developed is a simulation environment called MIMD

for simulating arbitrary parallel programs on distributed memory MIMD com-

puters. I will now describe these two tools in more detail.

Chapter 4. Methodology for Performance Evaluation 	 75

4.3 The Experiment Generator

Before describing the experiment generator we must first make some definitions

clear.

Experiment An experiment is the task of investigating the effects of certain

parameters characterizing a parallel program or its hardware environment

on the system performance. The experiment designer must have a clear idea

exactly what it is they want to investigate before starting the experiment.

It should also be noted that nothing can be inferred about any parameter

which does not vary during an experiment. One experiment consists of one

or more execution instances (or experimental trials).

Experiment Design The experiment design states in a formal manner what

parameters are to be varied in the experiment. The experiment design is

given in a language which is interpreted by the Experiment Generator Tool

(eg).

Experiment Design Language This language is used to articulate the experi-

mental design in a way that is intelligible to a human being and is also input

to the experiment generator program eg. This language is fully defined in

the program documentation for eg [Ski92] and the syntax for the language

is described in Appendix A.

Execution Instance An execution instance is one particular setting of the van-

able parameters described in the experimental design. An experiment in-

stance is the input for the modelling engine and corresponds to one execu-

tion of a parallel program.

Modelling Engine The modelling engine takes one experiment instance and

interprets it in a meaningful manner. It will produce results that can be

Chapter 4. Methodology for Performance Evaluation 	 76

processed and combined as part of the results of the whole experiment.

An experiment design describes a set of program graphs, a set of processes and

communication channels connected with this graph, and a set of mapping strate-

gies that will be used to map the programs to the hardware.

From this description of the experiment a set of individual experiment instances

are created. An experiment instance consists of a particular program graph, a

particular hardware graph, and a process mapping.

The program is described by a weighted graph as previously discussed. The

meaning for these weights is provided by the modelling engine. The weighted

graph can be generated by the experiment generator or it can be a user defined

graph.

A hardware graph is described by a set of nodes and links. This can be one of

the types of hardware configuration provided by eg (e.g. hypercube, mesh) or a

user defined type. These must of course be supported by the particular modelling

engine which is being used.

The process mapping is just a simple onto map from the set of processes to the

set of processors. This mapping is generated by one of the mapping strategies

provided by the experiment generator. The user can add their own mapping

strategies to the system.

An experiment instance is domain independent because it is just a description of

a parallel program through the use of a weighted graph and other values - it does

not specify how these weights are interpreted, as there is no program code in an

execution instance.

Chapter 4. Methodology for Performance Evaluation 	 77

The execution instance is designed so that it can be taken by a modelling engine

which will execute that particular instance in a particular modelling domain. This

gives the user a certain amount of flexibility. Different process models can be used

for the nodes of the weighted graph. The weights can be interpreted in different

ways by different process models. It also allows for similar experiments to be

conducted in different domains. For example it is possible to write a modelling

engine in the MIMD simulation language (several have been written) but it

would also be possible to write a C or Fortran program using Meiko's CSBuild

environment [Mei92] (or similar multiprocessor programming system) to do the

same thing.

The steps of this experiment are shown graphically in Figure 4.2. eg provides

the left hand side of the diagram by generating the set of execution instances.

The modelling can be provided by a variety of systems, though mostly it has

been provided by MIMD and the statistical analysis is performed either by using

standard statistical packages or by use of a tool developed by the author for this

specific purpose.

4.3.1 An Example Experiment using the Experiment Gen-

erator

Imagine that we have a parallel program and would like to investigate what would

happen to the program if we made some changes to it. Our program is a regular

grid decomposition program with boundary swapping. Each process computes

for a fixed time step and then swaps values with its four neighbours. We want

to investigate what will happen if instead of swapping data at the end of every

time step we swap data at the end of every other time step. This requires us to

Execution
Instances

Results 1

Results n

oq

H
(b

T1

cD
'-1

(b

0

0

0

oq

Modelling

Engine

MODELLING

- Lk`

S

CONSTRUCTION ANALYSIS

00

Chapter 4. Methodology for Performance Evaluation 	 79

send larger packets at the end of two time steps. Let us say for simplicity that

these packets have to be twice as large.

That is our experiment design. Now we need to write this down in a formal

manner that the experiment generator can understand. First of all we need to

define a process. This process will have one parameter which will define the

amount of computation that the process performs before swapping boundary

values. Our experiment design says that this parameter is to take two values, one

being twice as large as the other.

This can be written in the experiment design language through the use of a

process template, as follows:

Begin Define Processes
Processi { mt compute-time [1000, 2000] }

End Define Processes

This states that we have defined a process called Processl which has one integer

valued parameter called compute-time. This parameter is to take two distinct

values over the experiment. These values are 1000 and 2000 units. The units are

meaningless at this stage. They only have significance to the modelling engine.

This process definition has shown one of the major features of the experiment

generator, namely the varying of parameters over the experiment. If no other

parameters were varied in this experiment, then this would create exactly two

experiment instances. These would be identical except for the value of the pa-

rameter compute-time.

Following the process definition we need to give communication channel defini-

Chapter 4. Methodology for Performance Evaluation 	 80

tions with which to link together these processes. In a similar manner we can

define a channel with one parameter. This parameter will specify the size of the

data packet to be sent down this channel. Our experiment design requires this

to take two values, one double the value of the other. This could be written as:

Begin Define Channels
Channell { mt pkt-size t 50, 100 J }

End Define Channels

That describes all the process and channel types that are necessary for this ex-

ample experiment. Obviously, more than one process or channel type could be

defined if necessary.

It is now necessary to specify the shape of the program graph. The program is a

regular graph of degree four. The experiment generator will randomly generate

such a graph'. Random graphs can be generated in a variety of ways. See Section

4.3.2. We also need to describe the hardware on which we want our program

to be modelled (simulated). We can use one of the topologies provided by the

experiment generator for this. We want to run our program on a ring with twenty

nodes. This would lead to the following description:

Begin Graph Parameters
Graph Type Redfield
Degree 4
Number Nodes 40
Hardware Ring 20

End Graph Parameters

Now all that is left to describe is how to map the program graph onto the hardware

Chapter 4. Methodology for Performance Evaluation 	 81

graph. To do this one or more placement strategies provided by the experiment

generator is specified. These strategies are given integer identifiers. A full list

of these strategies can be found in documentation for eg [Sk192]. In this case

placement strategy number one, a round robin process allocation is used. This is

described as follows:

Begin Placement
Algorithm 1

End Placement

Figure 4.3 shows all the separate parts of the design combined together to make

the complete experimental design for our example investigation.

Three extra sections have been added to complete the design. The section enti-

tled Allocate Processes tells the experiment generator that all the processes

in our random generated graph are to be identical and they are to be of type

Processl. A similar specification is done for the channels. There is also a sec-

tion entitled Modelling Parameters. These are parameters which are important

to the modelling engine, such as the total simulation time, and do not affect the

generation of the experiment instances.

Now that a full experiment design is complete, it can be presented in a computer

file to the experiment generator program. This would then generate all our

experiment instances. It does this by creating random experiment instances for

a full factorial experiment based on all the parameters which are varying. In our

case, only two parameters are varying, at two levels. This gives four experiment

instances to be passed to the modelling engine.

Chapter 4. Methodology for Performance Evaluation 	 82

Begin Experiment
Begin Define Processes

Processl { mt compute-time [1000, 2000 J }
End Define Processes
Begin Define Channels

Channell { mt pkt-size [50, 100] }
End Define Channels
Begin Graph Parameters

Graph Type Redfield
Degree 4
Number Nodes 40
Hardware Ring 20

End Graph Parameters
Begin Allocate Processes
Map Processi to 100 percent

End Allocate Processes
Begin Allocate Channels

Map Channell to 100 percent
End Allocate Channels
Begin Placement

Algorithm 1
End Placement
Begin Modelling Parameters

End Modelling Parameters
End Experiment

Figure 4.3: Example Experimental Design

Chapter 4. Methodology for Performance Evaluation 	 83

4.3.2 Experiment Design Language

Some of the experiment design language has been described in the previous ex-

ample. This section describes the language and the interpretation of it in more

detail. The experiment design can be split into two parts - there is the part

concerned with the experiment instances and there is the part concerned with

the modelling engine. The modelling parameters tend to be domain dependent

and usually do not vary.

Experiment Instance Parameters

Varying Parameters It is through the varying of parameters in the experi-

ment design that the user generates a set of execution instances. If parameters

are not varied then just one execution instance is generated. This is useful if you

want to test your modelling engine on a single execution instance or if you want

to make observations on a specific known program

Parameters are varied by specifying more than one value for them in the exper-

iment design. A parameter can either be a fixed value, a range of values with a

constant difference or a list of disjoint values. A parameter which takes a con-

stant value or a list which contains only one element are essentially the same

thing. A parameter which only takes one value is not strictly speaking a varying

parameter.

Note that it is easy to generate a lot of experiment instances, but the instances

are never generated until you need them. The experiment generator will therefore

inform the user of how many experiment instances it intends to create and will

ask if it should go ahead.

Chapter 4. Methodology for Performance Evaluation 	 84

Program Graph This can either be a user defined graph or it can be generated

for the user by a random graph generation technique. After the graph has been

generated the weights are added to the graph.

If the graph is entered by the user then that graph size and shape is fixed for the

set of experiments. If the graph is to be generated randomly, then the degree (the

number of edges per node) and the number of nodes can be one of the parameters

for the experiment.

4.3.3 Random Graph Generation Strategies

For the creation of synthetic programs, introduced in Section 4.2.2, it is necessary

to have some graph generation algorithms. The experiment generator contains

three example graph generation strategies; two regular graph generation strate-

gies and an irregular random graph generation strategy. The graphs produced by

these strategies give the shape for the synthetic program into which the program

parameters are laid. Two regular graph generation strategies were provided be-

cause though one was quicker: it was limited in the degree of the graphs that it

could create.

The strategies are now introduced in turn. Some sample graphs generated by the

three strategies are shown in Figure 4.4

Chapter 4. Methodology for Performance Evaluation 	 85

Redfield Regular 	Random Regular
	

Random Irregular

Figure 4.4: Example Regular Graphs, 8 Nodes, Degree 3, implies 12 Edges

Chapter 4. Methodology for Performance Evaluation 	 86

Random Regular Graphs

A k-regular graph is a graph where each vertex has the same number of edges.

There are some simple properties that follow from this definition.

• For a n-vertex k-regular graph the number of edges is nk

• For a n-vertex k-regular graph, both n and k can not both be odd.

• The degree k must be less than the number of nodes n.

Random Regular Graph Generation due to Redfield This algorithm due

to Redfield [Pa185] can be used to generate a k regular graph for any k, 3 < k < 5.

This is a straightforward approach which makes connections randomly between

the nodes, ensuring that the specified degree of the graph is not exceeded.

A free list of nodes that have a degree less than the desired degree must be

maintained to ensure that the graph is generated in a reasonable time. The

algorithm is not given here in detail as it is fairly straightforward.

Random Regular Graph Generation due to Jerrum and Sinclair This

algorithm due to Jerrum and Sinclair [JS88] creates a k-regular graph of any de-

gree. The algorithm first creates a graph of the required degree deterministically

and then manipulates it randomly for a number of steps. To ensure that the

graph has reached uniformity the number of steps usually chosen is n 2 k 2 . This

also gives the timing characteristics for the algorithm. The algorithm is given in

more detail in Figure 4.5

Chapter 4. Methodology for Performance Evaluation 	 87

Input n, k and Number of Steps

Generate Deterministic k-regular graph

/* Manipulate Graph Randomly *1
steps = 0.
finished = FALSE
while not finished

if graph is k-regular then
remove edge selected at random

else if one vertex has degree k-2 then
find non-adjacent vertex and remove edge
connect vertex to non-adjacent vertex

else 1* Graph has two vertices of degree k-i *1
if random(0:1) > 0.5 then
connect the two vertices to non-adjacent nodes
disconnect an edge from the two newly connected nodes

else
connect the two vertices together
if (steps > Number of Steps)

finished = TRUE
end if

end if
end if
steps = steps + 1

end while

Figure 4.5: Algorithm for Generation of k-regular Graph due to Jerrum and
Sinclair

Chapter 4. Methodology for Performance Evaluation 	 88

Input n,and k

Number of Edges = nk/2

for i1; ± <= Number Edges; i++
X = random(1:n); y = random(1:n)
Define edge connecting x and y

Figure 4.6: Algorithm for Generation of Irregular Graph

Name]_Parameter(s)
Mesh Length 	Width
Hypercube Dimension
Pipeline Length
Ring Size
Star Size
Tree Depth 	Arity
Random Size 	Links

Table 4.1: Built-in Hardware Types

Random Irregular Graph Generation This algorithm was devised by the

author to create a random irregularly connected graph that has a specified average

degree. The algorithm is outlined in Figure 4.6. The number of nodes is specified

and a degree is given which is taken to be the average degree of the graph. From

this the number of edges is calculated and then these edges are connected to

nodes at random. The nodes are selected with replacement so it is possible to

have an edge connecting a node to itself. This is not permitted in the previous

two algorithms.

Hardware Graph Only one hardware graph is allowed per experiment at the

moment. This restriction is based on the author's interests and could be changed.

The user can ask for one of the built-in hardware types or can enter a particu-

lar wiring configuration by using a user defined graph. The available hardware

topologies are shown in Table 4.1.

Chapter 4. Methodology for Performance Evaluation 	 89

Begin Define Processes
Fred { mt Parameterl 10

double Parameter2 20 to 30 step 0.5

}

End Define Processes

Figure 4.7: Process template in the Experiment Design Language

Placement Algorithm A number of placement algorithms have been imple-

mented. At least one of these placement algorithms must be chosen by the user

for each experiment. The current placement algorithms are those used in the

experiment described in Section 6.3. These placement algorithms have all been

coded in the 'C' programming language and more can be added to by users of

the experiment generator. This is described in the documentation [Ski92] where

the placement strategies are also described in more detail. A description and

investigation of several placement strategies is given in Section 6.2.

Process and Channel Weights The user is allowed to define a number of

process templates in the experiment design. The user also controls how these

processes are actually allocated to the program graph specified above. A process

template has a name and a set of named numeric parameters. The numeric

parameters can be of type integer or double. An example process template in

the experiment design language is shown in Figure 4.7. This shows a process

which takes two parameters one of which is varied by the use of a lower and

upper bound and a step size. It has already been shown how a fixed set of levels

can be used instead. The other is constant. This process definition alone would

generate twenty experiment instances. The channel weights are described in a

similar fashion.

Chapter 4. Methodology for Performance Evaluation 	 90

This process template is interpreted by the modelling engine. This is described

in Section 4.3.5.

Assigning Templates to the Software Graph Process and channel tem-

plates are randomly assigned to the software graph through the use of a percent-

age specification. Say, for example, that we wanted to assign the process defined

in Figure 4.7 to half of the process nodes, then the following would do that:

Begin Allocate Processes
Map fred to 50.0 percent
Map bert to 50.0 %

End Allocate Processes

This also allocates a process called bert to the other half of the nodes in the

graph. The word "percent" or the symbol '%' are equally valid.

Modelling Parameters

The other parameters are all fixed value parameters. These are used to control

the execution of the experiment instances and are usually domain related. For

instance, for modelling through the MIMD simulation environment a total simula-

tion time, the name of the modelling engine executable and the amount of swap

space to be used are all given.

Chapter 4. Methodology for Performance Evaluation 	 91

4.3.4 Experiment Generator - Summary

To summarise the functionality of the experiment generator: it allows the in-

vestigator to construct experiments to investigate the effect of parameters on

performance. In particular, it allows the investigator to study the performance

of randomly generated programs from a given class of parallel programs. The

class of programs is defined by the process templates and the random selection

of particular instances from that class is performed by the experiment generator.

The parameters can be varied to include real programs within that range.

It will be shown that the randomly generated programs behave in a similar way

to real programs (5.3.1) and so the results for this random selection imply that

the results will be valid for all programs of this class. This would not necessarily

be the case if a fixed set of test programs were used. It would be difficult to

justify an inference about any other programs except those in the test set.

The experiment generator allows the investigator to choose parameter levels and

conduct experiments and then apply standard statistical tools to the results. This

would not be possible with a single fixed existing program in the same way.

4.3.5 The Modelling Engine

A modelling engine must be able to take an experiment instance as input, generate

an executable program, execute the program and then report its results.

The modelling engine can be a real parallel program which is able to emulate the

parallel computation specified in the execution instance or it can be a simula-

Chapter 4. Methodology for Performance Evaluation 	 92

tion engine which takes the instance and simulates the activities of the program

executing in the particular environment specified in a statistical sense.

The modelling engine also provides the process definitions for the nodes on the

graph. An execution instance just defines the shape of the graph and a set of

weights associated with the nodes and edges. The modelling engine describes

how each of these weights is to be interpreted. In this way the same execution

instances can be used in different domains as well as in the same domain by

different modelling engines.

The modelling engine must be constructed when the experiment is designed. The

experiment design language allows different types of processes to be defined and

this information is passed through to the modelling engine in a format described

in Appendix A.

4.4 The MIMD Modeling System

MIMD is a discrete event simulation package tailored specifically towards the

modelling of process based computations on distributed processor systems. It

is built on top of the DEMOS (Discrete Event Modeling on Simula) package

[Bir86] and hence on top of the Simula programming language [Com87]. MIMD

runs on workstations for which a Simula compiler is available.

MIMD is not itself a parallel program. This allows the simulation system to have

global system knowledge about the simulated parallel system. This is difficult

to achieve for a parallel simulation system. Simulation of individual experiment

instances can take advantage of multiple workstations as each instance is inde-

Chapter 4. Methodology for Performance Evaluation 	 93

pendent.

MIMD is the usual acronym for Multiple Instruction Multiple Data stream parallel

computers and hence was the obvious name for a simulator of those type of

machines.

The investigation of performance factors affecting parallel programs requires a

general purpose simulation environment. When the investigation was started, it

was unknown which parameters were to be investigated, or in what detail, and

so the flexibility and power of a programming language was needed.

4.4.1 MIMD - A Brief History

At the time this project started, the University of Edinburgh had just installed

its first distributed memory multicomputer. This was an Inmos T800 Computing

Surface from Meiko which grew to house 400 processors and came to be known

as the Edinburgh Concurrent Supercomputer (ECS) 1•

The ECS had no operating system as such. All programming had to be done in

Occam 2 [1nm84, 1nm88] which was based on the work of Hoare and his Commu-

nicating Sequential Processes or CSP [Hoa84]. All programming, compiling, and

running of programs was performed in the Transputer Development System.

A CSP based simulator package already existed [Gui88]. The author inherited

this package on his arrival at Edinburgh and decided to use it as part of the

project. Major changes were made to the message passing, routing and topology

'Sadly, this machine was withdrawn from service in July 1994.

Chapter 4. Methodology for Performance Evaluation 	 94

Cl

/N
C2 	 C5

/N
C3 	 C4

Figure 4.8: Example of Class-Based Inheritance

code for both "real" and "simulated" message passing. The process and subpro-

cess models were completely rewritten. Most of the three and a half thousand

lines of Simula code have been rewritten at some point in the last five years.

The Simula programming language

Simula is a general purpose programming language with concurrency imple-

mented by co-routines. It was the original language to introduce the class con-

struct, which made it the first object-oriented language. The class construct is

an extension of the abstract data type that allows procedures and variables to be

held in a single module.

Classes can be declared in a hierarchy where classes lower in the hierarchy inherit

all the procedures and variables of the classes above them. For example in Figure

4.8, C3 inherits from C 2 which inherits C 1 's procedures and variables.

A class object is created by the statement

new <class name> (<parameters>)

Chapter 4. Methodology for Performance Evaluation 	 95

Pointers are used to access the values and procedures in the class structure. A

pointer in Simula is known as a reference. So for example

ref (my-class) my_ptr;

means that my_ptr is a pointer or reference to a class of type my-class. Simula

also provides the ability for a class to detach or suspend itself and then resume it-

self later. This ability makes Simula far more applicable than most programming

languages for simulation.

Simula also provides the ability to write packages that can be separately compiled,

then prefixed in a Simula program. Then the program inherits all the concepts

defined in the package. This was the technique used to create the MIMD package.

For a detailed description of the Simula programming language see Pooley [Poo85]

or Birtwistle [Bir86].

4.4.2 The DEMOS system

DEMOS is an acronym for Discrete Event Modeling on Simula. It is implemented

as a Simula prefix block and can be separately compiled to the user's program.

To use DEMOS the user simply prefixes their main program with DEMOS and

then the program inherits all the procedures and classes defined in DEMOS. The

user's program may declare new classes as being sub-classes of a DEMOS class

and they will inherit the attributes of that DEMOS class.

Some classes provided by DEMOS are: entity which is a basic modelling pro-

Chapter 4. Methodology for Performance Evaluation 	 96

cess, res or bin which are finite resources, and waitq which is an entity-entity

synchronization device. Together with these, DEMOS provides a set of data

collecting classes like histograms and tally tables.

DEMOS provides an internal event list and software to maintain it. Users' pro-

grams can schedule entities and have them compete for resources. DEMOS also

provides a queuing mechanism for holding entities outside the event list. As

well as this, DEMOS provides random number generators for various statistical

distributions.

DEMOS keeps a reference table of all the jobs it creates and at the end of the

simulation provides an automatic reporting mechanism for all these objects. Since

DEMOS is completely written in Simula, all DEMOS programs inherit all Simula

properties. For an introduction to DEMOS see Birtwistle [Bir86].

The Structure of MIMD

The implementation of the MIMD model has been directed towards providing an

application package that extends the DEMOS modelling system into the special-

ized area of modelling distributed computation.

The prefix classes DEMOS and MIMD are separately compiled and the MIMD class

is used as a context just as the DEMOS class is used as a context. To use the

system, the user's program must be prefixed by the MIMD block. A template for a

typical user's program is given in Section 4.4.2 where a demonstration program

is analysed in detail.

Note that the user's program only requires to prefix the MIMD class since the

Chapter 4. Methodology for Performance Evaluation 	 97

MIMD context inherits all the attributes of the DEMOS system. The MIMD class

contains all the tools which the user's program may need to simulate a distributed

computation.

MIMD provides the performance modeller with a set of high level class definitions

with which to model process based computations. These are the process and

channel entities, hardware components (processor and link resources) and the

means to combine, manipulate and refine these components through the use of

the Simula language.

Within the process construct four main primitives are provided for the perfor-

mance analyst. These are: compute, sleep, send and receive. These are based

on the CSP model of computation [Hoa84]. Though MIMD does not follow this

model of computation exactly, it simulates the main features i.e. there can only

ever be one message outstanding on a communication channel and messages use

blocking send calls for message passing. MIMD also provides the modeller with

a process to process communications harness. This was provided in software on

the ECS by several message passing harnesses, and MIMD can be programmed to

simulate their operation. The modeller does not have to explicitly place process

channels onto hard wire links. The use of the link resources is performed by the

(simulated) communications harness. The communications harness is a straight-

forward table look up routing strategy. This is possible within MIMD because it is

a sequential simulation environment and so global knowledge of the states of all

entities within the simulation can be known. This opportunity for global knowl-

edge is not open to real parallel systems and is difficult to obtain for distributed

simulation systems.

The performance modeller constructs a Simula program using the MIMD classes.

The performance of any real parallel program can be represented within the MIMD

Chapter 4. Methodology for Performance Evaluation 	 98

system using the above constructs. The program can be a complete model of a

real program - even including branching and looping due to the fact that it is

coded in the Simula programming language.

The MIMD system provides a simple hardware model similar to the Inmos Trans-

puter family [Inm89a]. This assumes that there is a hardware scheduler and so

usually there is no operating system overhead to be built into the model although

it has been extended to support process migration [Phi94].

Performance characteristics are available from within the MIMD system by using

the DEMOS data collection devices (histograms, charts) or by using user-defined

collection routines. The performance of any part of the simulated program or

hardware is open to scrutiny and subsequent analysis.

An Example MIMD Program

The easiest way to get an impression of the MIMD language is to look at an

example program in some detail.

Program Description

This section describes an example program which can he used to demonstrate

the package. The simple program has two communicating processes. The first

process continually sends and receives a message. The second process continually

receives a message, computes and then sends back a reply. This is a simple

deadlock free program.

Chapter 4. Methodology for Performance Evaluation 	 99

The example program is shown in Figure 4.9. The line numbers have been added

for descriptive reasons and would not usually be present.

The whole of the program is wrapped in a block of code like this

Begin
External Class MIMD;
MIMD
Begin

...User's Program Here
End;
End;

This wrapper is used for every MIMD program.

Lines 8-11 are standard declarations that are used for most MIMD programs.

These declare pointers to objects that are necessary to build a simulation model.

These pointers are filled in further on in the program with objects of suitable

types. Here we are declaring a pointer to a Domain, a Program, a Pattern and a

Hardware -des cript ion object. Line 12 declares a pointer to one Channel object.

Now we need to describe some subprocesses. We have two types of subprocess

in our example program. One is called SendFirst, the other RecvFirst. They

continually send a packet of size 512 bytes backwards and forwards along a chan-

nel. RecvFirst computes for 100 time units in between receiving the packet and

sending it back. SendFirst is declared in lines 14-21. The While TRUE construct

ensures that this process will never terminate. Note the passing of the channel as

a parameter to this subprocess. This shows the flexibility of using a programming

language to describe these models.

Chapter 4. Methodology for Performance Evaluation 	 100

1 Begin
2
3 External class MIND;
4
5 MIND
6 Begin
7

	

8 	ref (Domain) Seat;
9 ref (Program) Prog;

	

10 	ref(Pattern) Wiring-structure;

	

11 	ref (Hardware_Description) ECS;
12 ref(Channel) Comm-Chan;
13
14 Modell-Subprocess Class SendFirst(Cj);

	

15 	ref (Channel) Cl;
16 Begin
17 While TRUE do

	

18 	Begin 	Send(C1,512);

	

19 	 Receive(C1);
20 End;

	

21 	End;
22
23 Modell-Subprocess Class RecvFirst(C1);

	

24 	ref (Channel) Cl;
25 Begin
26 While TRUE do

	

27 	Begin Receive(C1);

	

28 	Compute(100);

	

29 	Send(C1,512);

	

30 	End;

	

31 	End;
32
33 Ref(SendFirst) Send;
34 Ref(RecvFirst) Recv;
35

36 ECS :- New Hardware_Description(ECS,5000,0,3/40,o);
37

	

38 	Wiring-structure :- NewPatternflesh("Meiko,2,2);
39

	

40 	Seat :- New Domain(Wiring_Structure,ECs);
41

	

42 	Prog :- new Program('Nessage", 2);
43
44 Comm-Chan :-Prog.DeclareChannel(1,2);

	

45 	Send:- New SendFirst('SendFirst,Conim_Chan);
46 Recv:- New RecvFirst(RecyFjrgt" ,Coii_Chan);
47
48 Prog.DeclareSubprocess(1 ,Send);
49 Prog.DeclareSubprocess(2Recy);
50

	

51 	Seat.Load(1,Prog,1);

	

52 	Seat.Load(2,Prog,2);
53

	

54 	Start (Seat ,Prog,30000,FALSE);

	

55 	Reporting(Seat,Prog);
66
57 End;
58 End;

Figure 4.9: The Demonstration Program

Chapter 4. Methodology for Performance Evaluation 	 101

RecvFirst is described in lines 23-31. Note the difference between the two sub-

processes. RecvFirst has a Compute statement in it. It should also be noted that

this period of computation does not have to be a fixed period. It could be a

sample from a distribution. For example the lines

Ref (RDist) S;

S 	New Normal ('N,5,1);

declare a normal distribution of mean 5 and variance 1. To compute for a period

selected from this distribution then the code is

Compute(S .Sample);

It should also be noted that the subprocesses are not limited to infinite repeat

loops. Any Simula programming structure can be used to characterize the sub-

process. Lines 33 and 34 declare two pointers one to each of the new subprocesses

just defined.

The next task is to describe the objects for the simulation. Line 36 describes the

hardware on which the program will run. It says that processor type will be ECS.

These processors will have a timeslice period of 5000 units, a soft channel transfer

time of zero, a hard channel transfer ratio of 3/40 and a strategy computation

time of zero. These numbers are examples chosen to be close to that for an Inmos

T800 Transputer. See The Transputer Data Book for more details [Inm89aJ.

Line 38 says that the processors will be connected in a two by two mesh. Note

that the word New is juxtaposed to PatternNesh, this is because it is an MIMD

Chapter 4. Methodology for Performance Evaluation 	 102

procedure and not just a Simula New statement. MIMD provides several built in

patterns of processor connectivity. The programmer is also able to describe any

arbitrary connectivity.

Next the seat is declared, this is a set of processors linked together in a certain

fashion. The term seat is a historical term relating to the fact that you used to

have to physically sit at the computer in front of the processors you were using.

So to declare this you need say what processor type (ECS) and what pattern

is being used (i.e. Wiring_Structure). This is done on line 40. This concludes

the description of the hardware. Next comes the software.

A modelling entity program called Message is created on line 42 which is to

have two separate processes. There is a communication channel which is to link

processes 1 and 2 declared on line 44.

Lines 45 and 46 declare two subprocesses one of type RecvFirst and one of type

SendFirst. They both take Coirun_chan as a parameter. All that now remains is

to declare these processes to the program. Lines 48 and 49 do this.

The hardware and software specifications for the simulation are now complete.

All that remains to do is to load the software up onto the hardware and run it.

The loading is achieved by lines 51 and 52. This says load process 1 which is to

be found in Prog onto processor 1. The same for process 2 and processor 2. Note

we are only using two out of our four processors. To start the simulation the

subroutine Start is used. This starts Prog executing on Seat for a simulation

time of 30000 time units with tracing turned off.

After the simulation, reports on the hardware and software are printed out. This

gives a lot of data and it is not envisaged that the user would use this procedure

Chapter 4. Methodology for Performance Evaluation 	 103

all the time, but would be more selective in using report procedures. Most objects

in MIMD have reporting procedures.

The reporting is verbose and statistics about all entities and resources in the

system are available. Usually some subset of the available statistics are used.

The most popular statistics for performance analysis are the processor utilization

and the number of computation cycles performed.

4.4.3 MIMD - Summary

The MIMD modelling system provides the performance modeller with a general

purpose tool for creating performance models of parallel computations and ma-

chines. The performance model is created in the Simula programming language.

This gives great flexibility to the system. It is straightforward to extend the

system, thanks to the object oriented nature of Simula, to provide a different

processor description or a different message routing strategy.

MIMD models a lot of detail. Each message transfer and computation cycle is

measured and collated. Unfortunately this level of detail and flexibility leads to

long simulation runs. This can be on the order of several hours for a complex sim-

ulation (up to 200 processes on a 64 processor domain) of 1 minute of simulation

time. This could be overcome by using a faster processor of course, recoding in

a faster language without garbage collection (e.g. C++) or even reimplementing

MIMD as a parallel simulation system.

Chapter 4. Methodology for Performance Evaluation 	 104

4.5 Conducting an Experiment

Once an experiment and the modelling domain are decided upon the experiment

can be conducted. I have created a set of shell scripts that help this process. These

scripts are combined with the tools already described to allow the experiment to

proceed almost automatically. The necessary steps and how they are performed

are outlined below. These steps allow one to progress from the left to the right

of Figure 4.2.

The experiment generator will create a directory named after the experiment

description file. This directory contains a set of numbered files that are the

individual experiment instances. It also creates a shell script that can be used

to execute the modelling engine for each individual experiment instance. This

script can be split into separate portions if the user plans to run the simulations

on separate workstations at the same time.

The modelling engine produces a separate result file for each experiment instance

and for each replication of that instance. Each result file has the desired metrics

in it. Once all the experiments have completed another shell script can be used

to create a table of data which lists each combination of factor level against the

results for each replication. This file can then be used as input to a standard

statistical package or to a tool that the author developed for producing statis-

tical tables and other output in the form of JTEX or ASCII text. This includes

the Analysis of Variance table presented in Section 3.3.3. Examples of tables

produced by this program can be seen in Chapters 5 and 6.

Chapter 4. Methodology for Performance Evaluation 	 105

4.6 Summary

This chapter described a methodology for conducting performance experiments

on arbitrary parallel programs. Two tools that enable a systematic investigation

of the performance factors have also been introduced.

Synthetic programs were presented as a way of describing a class of parallel pro-

grams. The construction of a synthetic program from a program graph and a set

of process templates was described and it was shown how the experiment gener-

ator could be used to achieve this. The metric total number of compute cycles

executed was selected. This metric is necessary as an alternative to execution

time because synthetic programs do not terminate.

A small example which showed how the experiment generator could be used to

vary a set of factors at different levels to conduct a factorial experiment was

presented. The different graph generation techniques used by the experiment

generator to create synthetic programs were also presented.

The MIMD modelling system was presented as a convenient way of conducting

parallel program performance evaluation that allows many difficult metrics to be

measured. In the next. chapter a validation of the MIMD modelling system will

be presented as it plays a crucial role in the performance analysis.

Chapter 5

Validation of the MIMD

Modelling System and Program

Model

5.1 Precis

This chapter describes the validation of two important parts of the work of this

thesis. In Section 5.2 the MIMD simulation system is validated against a process

systems program. The second section in this chapter gives a complete experiment

on a simple program model. This demonstrates the way in which the methodol-

ogy is applied and demonstrates that the simplified program model behaves as

expected.

106

Chapter 5. Validation 	 107

5.2 Validation of the MIMD Modelling System

This section describes one of the more interesting experiments used to validate

the MIMD modelling system. These results were presented at the 111I Occam

User Group Technical Meeting [CLS89].

5.2.1 Distillation Simulation

The validation used an early version of a distillation simulation program de-

veloped by McKinnell as part of his Ph.D. thesis [McK94]. The version of the

program that was used to perform the validation was an early version written

in Occam [1nm84] for the Meiko Computing Surface at Edinburgh University.

Occam provides a simple communicating sequential process (message-passing)

system to the programmer. This gives a simple process based approach.

The program modelled a distillation column by providing an Occam process for

each physical plate in the column. This is a very natural approach to parallelism,

sometimes called functional parallelism, which breaks the, problem into parallel

processes based on the, physical geometry of the problem. The functional par-

allelism approach has several benefits. The data or information flow within the

program closely follows the material flow within the real system. It was also found

that the separate processes working independently gave a more robust simulation

system because errors were localised in individual processes. These themes are

expanded on in the paper by Ponton et al. [PFMS91] and by McKinnel in his

thesis [McK94].

As well as the processes to represent the physical plates of the distillation column

Chapter 5. Validation 	 108

extra processes were needed for the reboiler and reflux units. Two more processes

were needed to control the whole simulation, the master, and another to collect

and display results on a graphics screen. The process graph for this program is

shown in Figure 5.1.

Each distillation plate or stage model has four communication arcs connecting it

to the plate above and below. These communication arcs are used to transmit

the data representing the real flow of liquid and vapour between the plates. In

Occam communication arcs are called channels - channels can be thought of as

conduits of information. Looking at one plate in detail, Figure 5.2 the naming

scheme for the array of communication channels is shown.

The communications capabilities for the first version of Occam for the Meiko

Computing Surface were not very flexible - they did not allow true process to

process communication. Because of this the distillation simulation program was

written using a special communications harness called Tiny [Cla90] which allowed

for direct process to process communication. Tiny was also much faster than the

communications system provided with the system.

The communications harness was specially instrumented to collect statistics by

Candlin and Luo [CL89]. The harness could collect statistics about the size,

frequency and timing of message transfers. Because the instrumentation could

only collect data concerned with communications a metric had to be chosen to

compare the real program with the simulation from the set of statistics available

to the instrumented harness. For this reason the average communication delay

between sending messages up and down the Occam channels was decided upon

as a valid metric. It was felt that this was a valid metric because it would relate

to the amount of computation that was being performed on the processes above

and below an individual process.

Chapter 5. Validation 	 109

Graphics

Master

Ref lux Unit

Plate N

Plate 2

Plate 1

Reboiler Unit

Figure 5.1: Process Graph for the Occam Distillation Simulation Program

Chapter 5. Validation 	 110

Vapour[N] 	Liquid [N]

Vapour[N-1] 	Liquid[N-11

Figure 5.2: Detail of a Stage Model and its Channels

Each stage model had a two phase cycle. The first phase in the cycle was to swap

data values with the stages above and below. The second phase was to compute

new results for this stage. The stage model would proceed in this fashion until

it received a message telling it to stop or to send a packet containing results to

the graphics process. This was done by sending a packet through the processes

in the program. Each stage would add its own results to the packet.

5.2.2 Creating a Simulation Model

A simulation model of the distillation simulation program was constructed with

the aid of a tool developed by the author for this purpose. The tool was called

Occula and it attempted to convert an Occam 2 source code file into a MIMD

Chapter 5. Validation 	 111

simulation model [Ski89]. It did this by inspecting the source code of the Occam

program and replacing all continuous computational statements by a single MIMD

compute statement. The number of cycles to compute for was calculated by inter-

preting the Occam instructions and calculating suitable values based on timings

found in the Transputer Compiler Writers Guide and the Transputer Data Book

[Inm89a, Inm89b].

This translation was not completely automatic because the control structure of

the program presented a problem. A DO loop which depended on the value of

a variable could not be translated, nor the path taken at an if statement that

also depended on the value for a variable. In these cases the user was asked to

give an average number for the number of iterations and a probability for loop

branches respectively. This meant that it was possible to make a data indepen-

dent non-deterministic simulation model quickly. This did of course have major

drawbacks. The translation phase could turn a deterministic non-deadlocking

program into just the opposite. For this reason alone the work on Occula did not

go any further. Occula was most useful for getting the large grained computation

and communications structure (i.e. the weighted process graph) quickly from

the Occam program into a simulation model. This model could then be hand

corrected to create a satisfactory simulation model.

5.2.3 Results and Conclusions

A set of results comparing the average communication time on all the channels in

the real and simulated program are shown in Table 5.1. This was for 23 seconds

of the running of the distillation program - which simulated 2 minutes of real

distillation in the column.

Chapter 5. Validation 	 112

Channel]_Real 	Simulated % Difference]
Liquid[1] 40491 	38937 -4.0
Vapour[1] 321 	330 +2.8
Liquid[2] 39984 	37672 -6.1
Vapour[2] 40316 	38754 -4.0
Liquid[3] 393 	362 -8.5
Vapour[3] 40239 	37632 -6.9
Liquid[4] 399 	362 -10.2
Vapour[4] 40322 	38911 -3.6
Liquid[5] 461 	426 -8.2
Vapour[5] 330 	362 +9.6
Liquid[6] 40217 	38405 -4.7
Vapour[6] 338 	362 +7.1
Liquid[7] 40241 	38405 -4.8
Vapour[7] 323 	362 +12.0
Liquid[8] 40229 	38405 -4.7
Vapour[8] 347 	362 +4.3
Liquid[9] 40216 	38405 -4.7
Vapour[9J 39418 	36297 -8.5
Liquid[10] 1117 	924 -20.8
Vapour[10] 39539 	36184 -9.2
Liquid[II] 387 	362 -6.9
Vapour[11] 40079 	38112 -5.1
Liquid[12] 389 	362 -7.4
Vapour[12] 40153 	38820 -3.4
Liquid[13] 410 	362 -13.2
Vapour[13] 40232 	39105 -2.9
Average Absolute % Difference 7.30

Table 5.1: Average Communication Time on Each Occam Channel (MicroSec-
onds)

Chapter 5. Validation 	 113

In general there is sufficiently good agreement between the simulated and real

values. There is a tendency for the simulated results to be too low. This may

be due to a scaling error in translating the simulated time into real time or it

may be a genuine effect from the extra load placed on the processors due to the

instrumentation of the communications harness.

With an average absolute difference of around seven percent it was felt that

this was a good validation test for the MIMD modelling system. Other simpler

programs such as pipelines and trees of communicating processes were also used

for validation purposes. This rather complicated example was presented here

as evidence because the same program is used later (6.6) to test placement

strategies. MIMD was also tested with several hand crafted programs written

both in Occam and using the CS-Tools package [Mei92]. The tests gave an overall

agreement between MIMD and the real programs of around ten percent. This is

felt to be an acceptable error for such a system where the timings of individual

instructions are replaced by one amalgamated instruction. There is little point

aiming for a greater accuracy than this when assumptions such as the instruction

amalgamation have already been made.

5.3 Program Model Justification and Valida-

tion

This section demonstrates a use of the methodology to investigate program per-

formance parameters for the time-invariant program model. This was one of a set

of experiments that were used to validate the program model that is proposed.

The validation consisted of seeing whether the synthetic programs behaved in a

consistent and reasonable way compared to a real program and that the parame-

Chapter 5. Validation 	 114

terization was at a suitable level of detail. This demonstrates that a certain class

of real programs can be described by a simple program model.

5.3.1 Program Model

In this example a simple, but important, class of parallel program will be simu-

lated at a range of parameter values. The results obtained from the simulations

will be used to produce a predictive model which will then be applied to other

programs in the same class.

In this experiment the machine and connection topology remain fixed. The inten-

tion is to explore the effects of changing program parameters only. The hardware

selected was a grid based machine with four links on each processor. This repre-

sents a simple low connectivity topology machine similar to the Inmos transputer.

As previously discussed (Section 4.2.2) simple program models can be produced

which may be representative of a larger class of parallel programs. The particular

model used for these experiments and the parameters chosen are described below.

Program Model - Parallel Geometric Decomposition

This class of parallel program is very common, and forms one of the simplest

types of parallel computation. It is known by several names the most common

being structured spatial decomposition. It is suitable to application areas which

are data-centric and the data can be fragmented into independent blocks. Often

data has to be exchanged with neighbouring processes which contain the relevant

Chapter 5. Validation 	 115

While true Begin
SEQ
Compute
PAR
Exchange Messages with Program Neighbours

End

Figure 5.3: Pseudo Program for Geometric Decomposition

boundary data. A common example of this is an image processing program or a

geographical information system.

The program is made up of a set of identical processes, each communicating with

a fixed set of neighbours, which, depending on the mapping, may be situated

anywhere on the machine.

The dynamic behaviour is iterative, each process computes some new results,

and then synchronizes with its neighbours to exchange data, before beginning

the next iteration. In programs like this, the graph structure is fixed and regular,

and the behaviour of each process can be summarized by the pseudo-program

shown in Figure 5.3.

All programs in this class have regular graphs and a dynamic behaviour according

to the pseudo code. It is important to note that the communications with the

neighbour(s) occurs in parallel. This means that the order of the communication

is unimportant but the next compute period will not commence until all the

communications for this process have completed. Also, if the communication is

in parallel there will be no deadlock in the system.

Programs in this class may differ in the following respects: in the size and con-

nectivity of the program graph, the amount and variability of computation per-

Chapter 5. Validation 	 116

Parameter] Description

N Number of nodes in the graph
c Connectivity of the graph

PC Mean number of instructions between synchronizations
arc Standard deviation of the number of instructions

ILM Mean message length
am Standard deviation of the message length

Table 5.2: Simple Program Model Parameters

formed by each process and the size and variability of each message that has to

be exchanged with the neighbours.

Therefore within this class a program can be represented by the set of parameters

shown in Table 5.2. Two important assumptions have been made in this program

model. Firstly it is assumed that the size of each message sent to the neighbours

has the same probability distribution. The second assumption is that the prob-

ability distributions for the amount of computation and size of messages can be

described by the mean and standard deviation of a truncated normal distribution.

It is unlikely that this is the correct probability distribution for all programs in

this class, but it does represent a reasonable approximation, since preliminary

experiments indicated that results were not very sensitive to the distribution

used.

The y and cr values are averages over the graph, so there are many programs

which have the same parameter set but which may differ substantially in their

patterns of node and edge weights. Also, the parameters represent time-averages

over the whole execution time, so many differences in dynamic behaviour are

compatible with a given parameter set. Early experiments showed that there

was very little difference between instances of programs with the same parameter

values. This is encouraging because it shows that it is possible to use statistical

distributions to characterize a program.

Chapter 5. Validation 	 117

As has been described earlier, due to the construction of the synthetic programs

described by this parameter set, it is not possible to measure the execution time

of these programs and so the metric which is used is defined as the total number

of computation cycles carried out in a fixed simulation time.

5.3.2 Parameter Settings

The experiment instances are generated from an experiment definition script

through the Experiment Generator eg. This is a two level, full factorial exper-

iment varying the six parameters identified in the previous section. The values

chosen are shown in Table 5.3. These parameters deserve some explanation for

the choice of their values.

Apart from the program parameters, all other factors were held constant through-

out the experiment. A 4x4 connected mesh of processors was used with a round

robin placement strategy (6.3.2).

The number of nodes N and the connectivity c were chosen to be at the lower

and upper bounds of the size of a reasonable process graph for a 16 processor

system. A 32 node graph of connectivity 4 fits easily onto the system, but a 64

node graph with a connectivity of 6 is a medium load for such a system.

The amount of computation time at each node was assumed to follow a Normal

distribution truncated at zero. The mean at each node was allowed to take one

of two values, and so was the standard deviation. The lower value for the compu

tation mean, 500 clock cycles, represents 25 microseconds on a T800 Transputer

Chapter 5. Validation 	 118

Program Parameters
Parameter Value(s)

N {32,64}
c {4,6}

PC f500,500000}
{5,50}

lA m {1,10000
}

am {O.01,O.1}
Other Parameters

Parameter Value(s)
Hardware 4x4 Mesh
Placement Round Robin

Trial Length 200,000,000 (10 seconds)
Replications 3

Table 5.3: Parameter Settings for Initial Experiment

at a clock speed of 20 MHz 1 . 500 clock cycles is enough time to perform several

floating point operations. The larger value is one thousand times that value and

hence represents 25 milliseconds of computation.

In a similar way, the message lengths on each edge were assumed to follow a

Normal distribution with one of two values for the mean and standard deviation.

The two message lengths chosen were a single byte message and a ten thousand

byte message. Hopefully it is clear that these program parameters represent

upper and lower bounds of reasonable programs for a 16 processor machine.

The values for the parameters are summarised in Table 5.3. Those values shown

within curly braces are the parameters that are varied and the different levels are

shown.

'A clock speed of 20 MHz implies that one clock cycle = 1/20e6 = 5e-8 = 50 nanoseconds.

Chapter 5. Validation 	 119

a=5 OcSO
= 1 /2fl = 10000 1 = I = 10000

7,n=0.01 I O=0.1 CmO.OI I orm=O.l am=O.O1 1 am=0.1 OTfl=0.01 1 	7m=0.1
4
4
6
6

32
64
32
64

17.45
16.72
11.25

1 	12.23

15.41
15.75
11.67
13.76

7.94
19.04
9.59

12.49

11.71
16.63
8.68

12.92

15.29
16.84
12.01
15.03

13.70
17.00
12.33
13.91

9.32
17.47
9.54

12.80

11.38
16.54
8.46

10.51

PC = 500000
ac =S 1 a=5O

= 1 Lm = 10000 1 	Am Am = 10000
T1W a,=O.Ol I a,=0.1 Cm=0.01 1 a=O.l 1 am=0.01 	am=0.I Um=O.Ol I a=0.1
4
4
6
6

32
64
32
64

29.97
31.97
31.96

1 	31.96

27.97
31.97
27.96
29.96

27.88
31.96
29.83
31.91

25.90
31.94
25.81
31.93

29.97
31.97
23.97
31.95

27.97
31.97
29.96
31.96

27.85
31.92
29.77
29.90

27.89
31.92
29.78
31.92

Table 5.4: Total Computation Achieved (Divided by 1e8)

11c = 500
ac =5 ac 	50

= 1 = 10000 Im = 1 Am = 10000
C N am0.01 	am=O.l Um=0.01 Iam=O.l Um=0.01 {Um=0.1 am=0.01 F am=0.1
4
4
6
6

32
64
32
64 1

54.24
52.24
35.15
38.22

48.17
49.21
36.46
43.02

24.83
59.49
29.96
39.02

36.60
51.98
27.13
40.37

47.78
52.62
37.54
46.95

42.81
53.13
38.54
43.47

29.13
54.58
29.83
39.99

35.57
51.69
26.42
32.85

= 500000
Oc=S ac 	50

= 1 gm = 10000 1 	ILM Am = 10000
C N am -=-0-.01--Form = 0.1 Cm =0.01 1 Cm =0.1 1 Cm =0.01 I or m =0.1 am = 0.01 I Or m =0.1
4
4
6
6

32
64
32
64 1

93.66
99.89
99.86 .
99.87

87.42
99.90
87.39
93.61

87.13
99.87
93.21
99.71

80.94
99.80
80.95
99.80

93.66
99.90
74.91
99.85

87.41
99.91
93.61
99.87

87.02
99.76
93.03
93.43

87.17
99.75
93.08
99.73

Table 5.5: Percentage Utilization of Processing Available

5.3.3 Results

From Section 3.3.2 if six parameters are varied at two levels this gives a total

of 64 experiments. Each experiment was replicated three times. The raw aver-

aged values from the simulation are shown in Table 5.4. This table shows the

total number of computation cycles achieved by the program. The percentage

utilization of the total number of cycles used by all the processes from the maxi-

mum number of available cycles, is shown in Table 5.5. The maximum number of

available cycles is calculated by multiplying the simulation time by the number

of processors.

Chapter 5. Validation 	 120

The top and bottom halves of the Table 5.4 are markedly different. The set

of experiments where the average computation block was 500 units have much

smaller total computation values than those in the lower half of the table.

This can be explained by the fact that correspondingly more messages are being

sent by the programs in the top half of the table. The interruptions to the

computation happen more frequently, also there are a lot more communications

to be made in general. Each communication that travels across the network uses

some processor resource to work out where to go next. With the program blocks

being smaller, this means that it is more likely that a communication event will

be scheduled rather than the next computation cycle. Hence more interruptions

to the computation.

Looking at the bottom part of the table the computation achieved is dominated

by the factor p and all the processors are nearly saturated, so the results are very

similar. There is still some slackness within the system as more computation is

achieved by the sixty four process system than the thirty two even for the large

computation mean.

This becomes even more obvious if we look at the number of cycles performed

plotted against experiment number to see how diverse the results are. This is

shown in Figure 5.4 where the three replicates have been overlaid. The actual

ordering of the experiments is not important and is just a consequence of the

factorial experiment generation software. The top half of Table 5.4 can clearly

be seen at the bottom of the graph as the smaller bars.

From Table 5.4 and Figure 5.4 it is clear that the amount of computation achieved

is determined to a large extent by the mean computation time p. This is to be

expected from the format of the program, with the lower value of y, each process

	

Chapter 5. Validation 	 121

3.5e+09

3e+09

2.5e+09

C
0

CL

2e+09

0

1.5e+09

1 e+09

5e+08

	

10 	 20 	 30 	 40 	 50 	 60
Experiment Number

Figure 5.4: Experiment Number vs Computation Achieved

communicates one thousand times more often than the process with the larger

value of p,. So the amount of communication that is performed is important in

this respect.

There is also a secondary effect visible in Table 5.4. Irrespective of the size of the

computation mean, more computation is performed where the message size has

a mean of one. This effect is small and may not be significant. To see whether

this is significant we have to perform the analysis of variance.

Analysis of Variance

The analysis of variance table for this experiment is shown in Table 5.6. Re-

ferring to equations 3.13 and 3.14, the null hypothesis is that all the programs

are the same, to test this at a 5% level of significance the critical regions F >
F0 . 05 , 2 , 126 = 3.07 for the treatments and F > F0 . 05 , 63 , 126 = 5.43 for the replicates.

Chapter 5. Validation 	 122

Source D o F Sum of Squares Mean Squares F
Between Replicates 2 2.47867e+16 1.23934e+16 4.47667
Between Treatments 63 1.47999e+20 2.34919e+18 848.561
Residual 126 3.48823e+ 17 2.76844e+ 15
Iota! 	 191 	1.43'12e+2U

Table 5.6: Analysis of Variance Table

Hence we can reject the null hypothesis for the treatments and accept it for the

replicates. The differences between the replicates are small relative to the esti-

mate of the variability between program instances for the same parameter values

(the error mean square). By contrast the differences between parameter settings

(the "treatment" mean square) are very marked.

This implies that the model itself is self consistent. Different replications of

the experiment at the same parameter setting do not contribute greatly to the

variance of the results.

Estimates of the effects of individual parameters and their interactions can be

derived from a transformation of the 64 means at each combination of the pa-

rameter settings. These values are presented in the second column of each part

of Table 5.7 and correspond to the terms present in the model underlying the

analysis (see Equation 3.16 in Section 3.4). Where a factor name appears that

means that the estimate is for that factor or the interaction of the factors if there

is more than one. The first entry in the table labelled gm is the overall mean

value of the number of computation cycles, referred to as y in Equation 3.5. The

estimates are the fli values in the same equation.

Each estimate in Table 5.7, apart from that for the constant term gm, has the

same standard error which is given at the foot of the table. The t-values given in

this table are the ratio of estimates to standard error. Values of t less than 10 can

be taken as a guide to those terms in the model which are of little importance.

Chapter 5. Validation 	 123

Effects] 	Estimates t % Var 11 Effects } 	Estimates

gin 2167057601.00 570.69 Urn -19603662.33 -5.16 0.087
c -80530703.67 -21.21 0.839 co, 5056155.67 1.33 0.050
N 166440889.00 43.83 3.585 NUrn 2279117.67 0.60 0.003
cN -33442934.33 -8.81 0.145 cNorn 3591129.00 0.95 0.001
/1c 837757036.33 220.62 90.821 LcCrn -5131940.33 -1.35 0.002
CJI C 78921250.33 20.78 0.806 C/.O1n 7415703.00 1.95 0.003
NA r -1953814.33 -0.51 0.000 Nicurn 22629962.33 5.96 0.007

9216137.00 2.43 0.011 cNtcurn -15631377.00 -4.12 0.066
Or c -2049401.00 -0.54 0.001 a c am 24621631.67 6.48 0.032
ca c 1742627.67 0.46 0.000 CUcurn 13998324.33 3.69 0.078
Nac 3535869.67 0.93 0.002 Nacrn -20678181.67 -5.45 0.025
cNorc 1861131.67 0.49 0.000 cNoo,, -26503397.00 -6.98 0.055
LcUc 1424310.33 0.38 0.000 1LUcCrn 38052712.33 10.02 0.091

cAcac 14277345.00 -3.76 0.026 C/LcUcUrn 35855097.00 9.44 0.187
Nzc 3413675.00 -0.90 0.002 Nicucorn -16887666.33 4.45 0.166
cNAc or c 10794284.33 2.84 0.015 cNjiuc arn 1480519.67 0.39 0.037

63514260.33 46.73 0.522 jim orm 3126980.33 0.82 0.000
C/.Lm 13414800.33 3.53 0.023 CIrnUm -24881607.00 -6.55 0.001
Nim 53691662.33 14.14 0.373 NimCrn -5598437.00 -1.47 0.080
cNrn -43496886.33 -11.45 0.245 cNim um 38399110.33 10.11 0.004
/.LciLrn 46880972.33 12.35 0.284 JicLrnUrn -2874689.67 -0.76 0.191
CcLrn 10550007.67 2.78 0.014 CLrnUrn 12436719.00 3.28 0.001
N c jim -38953089.00 -10.26 0.196 N c j rn Crn 30416039.67 8.01 0.020
cN jacm 19302707.67 5.08 0.048 CN c im Um -482046.33 -0.13 0.120
Cc/.rn 4586263.00 1.21 0.003 UcLmUm -9168616.33 -241 0.000
CUCLrn -7254588.33 -1.91 0.007 cccmcrn -9938745.00 -2.62 0.011
Naczrn -42566642.33 -11.21 0.234 Nac rnUrn 10062498.33 2.65 0.013
cNorn -11386004.33 -3.00 0.017 cNuczrnorn 8516221.67 2.24 0.013
PcUcLm 19761745.00 5.20 0.051 /CCcrnUm -3059738.33 -0.81 0.009
CLcUc/4rn 19691817.67 5.19 0.050 czcccrnUrn -15103812.33 -3.98 0.001
NAc ac jAm 7267461.67 -1.91 0.007 NtcUcMrnurn 2201552.33 0.58 0.030
cNzcacrn -25869417.00 -6.81 0.087 cNcacrnUrn 16264773.00 1 4.28 	1 0.001

Standard Error = 3.79723e+06

Table 5.7: Parameter Contributions

Chapter 5. Validation 	 124

The fourth column of each part of the table gives the percentage of variation that

can be attributed to the factor or combination of factors.

Of the six parameters, the t-values for the terms involving the standard deviations

for both the computation mean (o) and message length (am) distributions are

all markedly small relative to the rest. Only two t-values greater than 10 include

either of these parameters. This would lead the investigator to consider leaving

these factors out of future experiments as they appear to have little effect at the

chosen levels. Alternatively it could be that the levels chosen were too small to

have an effect and large values may be necessary for differences to show up.

Table 5.7 attributes 90 percent of the variation in the model due to i the size

of the computation mean. We had suspected this by looking at the raw results

(Table 5.4) and the plot of computation cycles versus the experiment number

(Figure 5.4). There is also a significant effect from N the number of processes as

would be expected and one from /-m. There is a second level interaction between

c and jC that looks signifcant. All of these interactions could be studied further

in a separate experiment.

It is necessary to test the assumptions outlined in Section 3.4.1 before we proceed

any further with the analysis. A scatter plot of the residuals versus the predicted

response for each replicate are shown in Figures 5.5 through 5.7. From the scatter

plots it is clear that there is no visible trend apart from some of the higher values

which are very far from the rest. There is clearly a non-constant error variance

over the response range. The residuals are an order of magnitude smaller than

the predicted response but vary widely.

A normal quantile-quantile plot of the residuals from the first replicate is shown

in Figure 5.8. This tests whether the errors are independently and identically

Chapter 5. Validation 	 125

1 e+08

5e+07

0

ca

-5e+07
ID
cc

-1 e+08

-1.5e+08

-2e+08
5e+08 	le+09 	1.5e+09 	2e+09 	2.5e+09 	3e+09 	3.5e+09

Predicted Response (T)

Figure 5.5: Residuals versus Predicted Response - Replicate 1

1.5e+08

1 e+08

12
5e+07

cc

V

ir 	
0

•5e+07

-le-i-08

-1.5e+08
5e+08 	1 e+09 	1.5e+09 	2e+09 	2.5e+09 	3e+09 	3.5e+09

Predicted Response (1)

Figure 5.6: Residuals versus Predicted Response - Replicate 2

Chapter 5. Validation 	 126

2.5e+08

2e+O8

1.5e+08

le+08

cc

V

a,

5e+07

0

-5e+07

-le+08
5e+08 	1e+09 	1.5e4-09 	2e+09 	2.5e+09 	3e+09 	3.5e+09

Predicted Response (T)

Figure 5.7: Residuals versus Predicted Response - Replicate 3

distributed. If they are then a straight line passing through the origin would

be present. A least squares straight line fit has also been plotted. There is a

significant deviation from a straight line passing through the origin, this is mostly

due to the large residual values which are created by having one dominant factor

within the experiment. It is important that the plot does not show the degenerate

case of a distinct 'U' shaped curve.

5.3.4 Constructing a Model

These visual tests lead us to believe that the model underlying the system is not

linear. This doubt was investigated by Phillips [Phi94] who analysed the model

in terms of a transformed response variable using a Box-Cox transformation.

Phillips was using processor utilisation U as his metric. He found it necessary to

use a Box-Cox transformation U' defined in Equation 5.1 in order for his results to

Chapter 5. Validation 	 127

le+08

5e+07

0

C
Ca

cc
-5e+07

-le+08

-1.5e+08

-2e-+-08

0
0

0000

_----------------

0
0

0

0

0

0
I 	 I 	 I

-2.5 	-2 	-1.5 	-1 	-0.5 	0 	0.5 	1 	1.5 	2 	2.5
Normal Ouantile

Figure 5.8: Normal Quantile-Quantile Plot of Residuals - Replicate 1

pass all the visual tests. U is the unmodified utilization value. He also found that

this reduced the dependence on the higher order interactions, which is desirable

for reducing the number of factors to be investigated. The transformation did

not however change the importance of the factors.

- 7000000 	2.41

{sinh 	
1000000) +

iso} 	 (5.1)

Unfortunately using the transformed response did not provide a significant im-

provement in the screening and selecting of factors. Lyon et al. have also found

this to be the case [LSK94]. So it is still useful to look at the linear model.

With reference to the response, it is expected that as more load is added to the

processors in our system the processing speed will slow faster than linearly. This

is due to the fact that we have a round robin scheduler in each processor and more

Chapter 5. Validation 	 128

context switches and other process overheads must be taken into account. So our

model is behaving as expected and in some joint work with Candlin, Fisk and

Phillips [CFPS92] some other models are explored and found to be useful. This

example is designed to show the system as a whole fitting a model to transformed

data is the same operation as using the linear model. Notwithstanding this a

linear model can be used to predict performance of other programs in this class.

We have found the linear model sufficient for predicting relative performance and

it is easier to understand. This is important because simple models can be easily

derived by a programmer even at early stages of program development.

5.3.5 Conclusions

This section has shown that a simple synthetic program model can be used to

represent a real program in a statistical experiment. The synthetic program

behaves in an expected way. This section has also demonstrated that the program

model is self consistent, that it does not vary widely between individual instances.

From the statistical analysis it is easy to draw conclusions about which factors

under investigation have had a significant effect on the performance. The general

approach of applying statistical techniques to synthetic programs seems correct.

5.4 Summary

This chapter has shown the validation of two important parts of the proposed

performance investigation environment. The MIMD system was described and

Chapter 5. Validation 	 129

shown to be a useful tool for modelling arbitrary communicating sequential pro-

cess programs.

The use of a synthetic program to represent a program was described and an

experiment was performed on an important subclass of such programs. This

demonstrated the correctness of the program model within the limitations of the

simplifications made and that it behaved as expected. This also demonstrated the

use of the whole experimental framework and showed the results and conclusions

that can be drawn.

Chapter 6

Results

6.1 Precis

This chapter displays the use of the methodology on two examples. The first

is an experiment, Section 6.4, to study a range of process placement strategies

and is performed on a similar type of program as that used in the experiment

described in Chapter 5.

The second experiment in Section 6.6 shows the application of the placement

strategies on a process engineering program similar to that used for validation of

the MIMD system (5.2).

In each experiment the analysis of the results requires use of the statistical tech-

130

Chapter 6. Results 	 131

niques described in Chapter 3. The experiments described here were performed

using the tools developed specifically for this purpose, namely the experiment gen-

erator (eg) and the multiprocessor simulation package MIMD. Each uses synthetic

programs which are representative of the class of parallel algorithms previously

discussed.

6.2 Placement Strategy Evaluation using Syn-

thetic Program Graphs

This section describes an experiment to investigate the effectiveness of four differ-

ent placement strategies. Previous work in this area has usually been performed in

a non-systematic manner. This often involved the use of one placement strategy

on several programs or several strategies on the same program. This experiment

will take a set of process placement strategies and will apply them to a range of

related programs. This will then allow the following questions to be answered:

Did any of the strategies have an effect on performance?

Which is the best strategy overall?

Is one strategy better for certain types of programs?

The actual outcome from the experiment can be an ordered ranking of strategies

in terms of their effectiveness.

In devising this experiment a diverse set of placement strategies has been used.

The strategies have been chosen so as to be representative of different approaches

Chapter 6. Results 	 132

presented in the literature, not necessarily because of their claimed effectiveness.

The process placement problem is essentially an optimization problem. In general

terms the problem can be posed as follows:

Minimizef = f(G,H) 	 (6.1)

where G is the program graph H is the hardware and f is the execution of that

program graph on that hardware. Each placement strategy takes a different

approach to this optimization problem.

6.2.1 Cost Function

For various of these strategies a cost function has to be used to give a quick

approximation of how good the mapping is. Ideally of course this cost function

would give the exact cost of the particular mapping chosen. However, we have no

way of deriving this accurately. So a short cut method is used to approximate the

cost of the mapping. This is based on an intuitive basis that a good mapping is one

that distributes the load of the processes but does not make the communications

paths too long. These two opposing forces drive the random search strategies

until they have found suitable solutions. The higher the cost of the mapping, the

worse the mapping is considered to be. This is given in arbitrary cost units.

This cost function was used as the function to be minimised by the genetic al

gorithm and also as a way of comparing results from other strategies. For place-

ments produced by any strategy a cost can be calculated. The cost function is a

Chapter 6. Results 	 133

modified version of that proposed by Sinclair [Sin87] and is described below.

Problem Representation for Cost Function Evaluation

A program consists of m modules. A module i can in general be executed on any

of the p processors in the system. An assignment A of the program is a complete

specification of the processors on which the modules are executed. A is an onto

mapping from the set of modules to the set of processors; A(i) = s if and only if

module i is assigned to processor s by A.

If module i is executed on processor s, it incurs an execution cost es (s). When

any module i must be assigned to one particular processor t, e(s) = oc for all s,

1 < s < p and .s 54 t. If two modules i and j are executed on the same processor,

the cost of communication between them is assumed to be zero. If they are on

different processors s and t, the cost of communication is c,3 (s, t).

The cost C(A) of an assignment is the sum of all the module execution costs and

intermodule communication costs given the assignment A.

C(A) 	e(A(i)) + 	c1,(A(i), A(j)) 	 (6.2)
i=1 	 i=1 j=i+1

A(i)A(j)

The cost function for execution cost is as follows:

(6.3)

Chapter 6. Results 	 134

Where mw 1 is the weight of the module i and

bjj= { 1 A(i) A(j)
 (6.4)

0 A(i)A(j)

This effectively means that if a more than one module is assigned to the same

processor then the execution cost of that module is multiplied by the number of

modules assigned to that processor.

And for communication costs

cij = cwdist(A(i), A())) 	 (6.5)

Where cw 2 ,, is the weight of the communication channel linking modules i and

J, and di.st(A(i), A(j)) is the number of hops between processors. This distance

can be zero and hence the cost for an on processor communication is zero.

This cost function assumes that the weight of processes affects the cost in a

multiplicative manner- with the addition of modules to a processor. Evidence

from our earlier experiment (5.3.3) suggests that this is the case. Also there

must be a balance between the size of the weights of the computation and the

cost of the communication. This is merely a problem of the units involved in

specifying the weight of the process.

Chapter 6. Results 	 135

nj

Placement 1 	Placement 2 	Placement 3

Cost = 6030 	Cost = 5050 	Cost = 6030

Figure 6.1: Simple Process Graph, Placements and Costs

6.2.2 Example use of Cost Function

To demonstrate the use of the cost function it will be applied to the process

and the three placements shown in Figure 6.1. Imagine that the four nodes in

the program have a computational weight of 1000 units each. Then the weights

for each placement are shown under the placement in the diagram. The two

components are the computation and the communication weights as calculated

by Equation 6.2.

Chapter 6. Results 	 136

Cost of Placement 1

If we let the left part of Equation 6.2 be called Compute and the right part

Communication then we have the following calculations:

Compute 	= (1000 + 1000 + 1000 + 1000)

= 4000

Communication = (10 x dist(A(B), A(A)) + 10 x dist(A(B), A(D))

+10 x dist(A(C), A(A)) + 1000 x dist(A(C), A(B)))

= (10x1+10xl+10x1+1000x2)

= 2030

Total 	 = 6030

(6.6)

Cost of Placement 2

Compute 	= (1000 + 1000 + 1000 + 1000)

= 4000

Communication = (10 x dist(A(B), A(A)) + 10 x dist(A(B), A(D))

+10 x dist(A(C), A(A)) + 1000 x dist(A(C), A(B)))

= (10 x.1 + 10 x 2 + 10 2+1000 x 1)

= 1050

Total 	 = 5050

(6.7)

Chapter 6. Results 	 137

Cost of Placement 3

Compute 	= (1000+1000+2000+2000)

= 6000

Communicate = (10 x dist(A(B), A(A)) + 10 x dist(A(B), A(D))

+10 x dist(A(C), A(A)) + 1000 x dist(A(C), A(B)))

= (lOxl+lOxl+lOxl+Oxl)

=30

Total 	= 6030

(6.8)

Placement 2 reduces the communication costs by swapping processes C and D.

Placement 3 tries to reduce the costs further by placing B and C on the same

processor, unfortunately this has given an extra cost as B and C will now run

more slowly. In the examples above Placement 1 and Placement 3 have the same

cost. In practice they are unlikely to have the same execution time as this will

depend on whether how costly communication is compared to computation and

how quick the processor can context switch between several processes. This a

limitation of the current cost function which can only be remedied by having

more realistic models of the communication and computation.

If the values of the communication and computation weights are not of the same

order then we require an additional constant to describe their relative weightings.

This can be used as a multiplicative factor on either part of Equation 6.2.

Chapter 6. Results 	 138

6.3 Strategies

Each strategy is introduced and given a short description, followed by an outline

of the algorithm and then a timing analysis.

6.3.1 Random Process Allocation

Each process is allocated to a processor selected at random. The selection of the

processors is performed with replacement so highly unbalanced placements can

result. This strategy takes a time that is linear in the number of nodes.

This is intended to be the baseline strategy against which all other algorithms

can be measured. It can be expected that other strategies will perform better

than this strategy.

6.3.2 Round Robin Process Allocation

Each process is allocated to a processor in turn until all the processes have been

allocated. This strategy shares the processes as evenly as possible over the pro-

cessors, not accounting for the relative weights of the processes. This strategy

takes a time that is linear in the number of nodes.

Chapter 6. Results 	 139

Initialise a population of chromosomes.

Evaluate each chromosome in the population

Create new chromosomes by mating current chromosomes; Apply mutation
and recombination as the parent chromosomes mate.

Delete members of the population to make room for the new chromosomes.

Evaluate the new chromosomes and insert them into the population.

If time is up, stop and return the best chromosome; if not go to 3.

Figure 6.2: The Genetic Algorithm

6.3.3 Genetic Algorithm

Genetic algorithms provide a framework for optimization based on genetic search

techniques. Genetic algorithms are task independent optimizers. They have

no inherent knowledge of the task that they are optimizing, and so represent

a very different approach than the other strategies employed here. The task

independence is such that the user of a genetic algorithm only has to supply

an evaluation function which returns a value when given a particular point in

the search space. The evaluation (or in this case the cost function described in

Section 6.2.1) gives the fitness value for any member of the population.

Genetic algorithms were invented to mimic some of the processes observed in

natural evolution by John Holland in the early 1970's [Ho1751. The main things

that make genetic algorithms different from other optimization routines are the

mutation and crossover operators.

The steps involved in a genetic algorithm, due to Davis, are shown in Figure 6.2

[Dav91]. A generation in genetic algorithm terms consists of the steps: selection,

mutation, crossover and evaluation.

Chapter 6. Results 	 140

Parameter Value
Crossover Rate 0.6
Mutation Rate 0.001
Population Size 100
Total Trials 10000

Table 6.1: Parameters for the Genetic Algorithm

In order to use a genetic algorithm you have to have a set of chromosomes which

are the population. Each chromosome is made up of a set of genes. It is these

genes that encode possible problem solutions. I chose to have each process as a

gene where the value of the gene represents the processor it is to be placed onto.

The genetic algorithm then had to find a set of values for the genes such that the

cost function was a minimum. The cost function employed was that described in

Section 6.2.1.

I employed the Genesis genetic algorithm system which was freely available and

easy to use [Gre90]. In terms of the genetic algorithm the important characteris-

tics are shown in Table 6.1. Most of these are built into the system though I did

have to modify the code to perform placements automatically.

This genetic algorithm uses the roulette wheel parent selection algorithm due to

James Baker [Bak87]. The idea is to allocate to each chromosome a portion of a

spinning wheel proportional to the chromosome's relative fitness. A single spin of

the wheel determines the number of offspring assigned to every chromosome. The

mutation and crossover rate were set experimentally as these produced a decent

set of strategies within the time span. The execution of the genetic algorithm

takes around thirty seconds of CPU time on a SparcStation ELC.

Chapter 6. Results 	 141

6.3.4 Node Swapping

Given any random configuration, it is usually possible to perturb it so as to

reduce the total cost. This algorithm swaps processes between processors if doing

so results in a reduced total sum of the edge weights radiating from a processor.

It proceeds in this way for all the processes in the system. The steps of the

algorithm can be outlined as follows

Allocate processes to processors randomly as an initial configuration.

For all possible pairs of processes swap them and evaluate cost.

If cost is lower then keep change otherwise reverse change.

All possible pairs are tried, so this represents a large number of combinations. A

different approach to this algorithm would have been to evaluate the effect that

each swap would have had and then only perform the swap that reduces the cost

by the largest amount.

6.4 Evaluation of Four Placement Strategies

This experiment demonstrates how, using the methodology proposed in this thesis

we can evaluate the four different process placement strategies. The strategies

that are to be used were outlined in Section 6.3.

The parameters in this experiment are different from the previous experiment,

obviously, because we wish to look at placement strategies. The program graph

Chapter 6. Results 	 142

Program Parameters
Parameter Value(s)

N 70
c {4,7}

fL c {5000, 5000001
ac 0
am 0
Ym {1,1000}

Other Parameters
Parameter Value(s)
Hardware 8x8 Mesh
Placement Random (1)

Round Robin (2)
Genetic Algorithm (3)
Node Swapping (4)

Trial Length 20,000,000 (1 second)
Replications 2

Table 6.2: Parameter Settings for Placement Strategy Experiment

will have a fixed number of nodes (70) and the program will run on a 64 processor

machine. This was felt to be a reasonably large processor system with a medium

program load. The process model described in Section 5.3.1 is used again, though

this time only the process calculation mean and message length mean are varied.

The parameters for the experiment are summarised in Table 6.2.

It is instructive to look at the placements produced by the different strategies.

The distribution of processor load (the number of processes allocated to a proces-

sor) generated by eachstrategy for each different experiment is shown in Figures

6.3 through 6.6. If we consider the top left graph in Figure 6.4, this shows that

the strategy decided to allocate one process to each of 58 processors and to allo-

cate two processes to each of six processors. This makes the respective totals of

seventy processes and sixty four processors. The cost of each placement is also

shown in arbitrary cost units. The higher the cost, the worse the placement.

The raw results from this experiment are shown in Table 6.3. The corresponding

Chapter 6. Results 	 143

oi.01 Cost = 1.031840.07 - I

0 	1 	2 	3 	4 	5 	6
Proccasoor Load

6.03 Cost = 1.10002e.09 -

0 	1 	2 	3 	4 	5 	6
Proccessor Load

1 	 I 	 I

eu17:006t=1.19317e.07 -

I 	 I 	 I

01.02 Cost 2820.07 -

0 	1 	2 	3 	4 	5 	6
Proccesw Load

ei.04 Cost 1.168680.09 -

0 	1 	2 	3 	4 	5 	6
Proosessor Load

I 	 I

0.18: Cost - 4.4880.07 -

60

50

40

j30

20

10

0

60

50

40

j 30

20

10

0

60

50

40

60

50

40

30

20

10

0

60

50

40

30

20

10

0

60

50

40

30

20

10

0

60

50

40

j30

20

10

0

0 	1 	2 	3 	4 	5 	6
Procceasor Load

ailS: Cost - 1.140030.09 -

30

20

10

0

60

50

40

30

20

10

0

0 	I 	2 	3 	4 	5 	6
Proccessor Load

e.20 Coal 1.05964.09 -

0 	1 	2 	3 	4 	5 	6
	

0 	1 	2 	3 	4 	5 	6
Procceasor Load
	

Proccesw Load

Figure 6.3: Processor Loading Frequencies Strategy 1 - Random

Chapter 6. Results 	 144

60

50

40

j30

20

10

0

60

50

40

30

20

10

0

60

50

40

j30

20

10

0

60

50

40

20

10

0

o05: Cost 7.6184e.06-

0 	1 	2 	3 	4 	5 	6
P,ccc.sw Load

ei.07 : Cost -7.60018e.08 -

0 	1 	2 	3 	4 	5 	6
Procc.ssor Load

I 	 I 	 I

.121 Cost - 7.63290.06 -

0 	1 	2 	3 	4 	5 	6
Pmocesw Load

.123 Cost • 7.63..08 - I

60

50

40

30

20

601

so

40

30

20

10

0

60

50

40

20

so

so

40

j30

20

10

0

006: Cost 2.60.07

0 	1 	2 	3 	4 	5 	6
Pmcc.sw Load

.128 Cost 7.7840.08 —1

0 	1 	2 	3 	4 	5 	6
Pmccosw Load

.122: Coot -4050.07 -

0 	1 	2 	3 	4 	5 	6
Procoossor Load

.124: Cost - 7.929.+061

0 	I 	2 	3 	4 	5 	6
Pmccesw Load

0 	1 	2 	3 	4 	5 	6
Pmccessor Load

Figure 6.4: Processor Loading Frequencies Strategy 2 - Round Robin

Chapter 6. Results 	 145

.1.09 Cost • 7.71 80.06 -

0 	1 	2 	3 	4 	5 	6
P,oesao(Load

.1.11 : Cost -7.70019...08 -

0 	1 	2 	3 	4 	5 	6
Pmccessor Load

.1.25 Cost- 7.73004..0611

0 	I 	2 	3 	4 	5 	6
Proccesw Load

ai.27 Coat • 7.72o.08 -

01.10: Coat - 1.864..07 -

0 	1 	2 	3 	4 	5 	6
PrOOCOUor Load

.1.12 Coat - 7.6768..08 - I

0 	I 	2 	3 	4 	5 	6
Prooc.aw Load

1 	I 	I 	I
.i26:Cast.2S98..07 -

0 	1 	2 	3 	4 	5 	6
Pmcc.aw Load

à28 : Cost. 8.00729+08 -

60

50

40

j 30

20

10

0

60

50

40

30

20

10

0

60

50

40

30

20

10

60

so

40

30

20

60

50

40

30

20

10

0

60

50

40

30

20

10

0

60

50

40

30

20

10

0

60

50

40

30

20

to

0
0 	1 	2 	3 	4 	5 	6

Proccosw Load
0 	1 	2 	3 	4 	5 	6

P,occeasot Load

Figure 6.5: Processor Loading Frequencies Strategy 3 - Genetic Algorithm

30

20

10

0

60

50

40

j30

20

10

0

60

50

40

30

20

0 	1 	2 	3 	4 	5 	6
Proccessor Load

ei.29 Cost- 1.12219e.07 -

0 	1 	2 	3 	4 	5 	6
Proccesso, Load

e131 Cost • I.25002e.09 -

0 	1 	2 	3 	4 	5 	6
Proccesso, Load

O$30:Cost.3.128e.07 -

0 	1 	2 	3 	4 	5 	6
Pmocesso, Load

eL32 Cost- 1.06194..09 -

30

20

10

0

60

50

40

30

20

10

0

60

50

40

30

Chapter 6. Results 	 146

60 	 - T 	 I 	 I
	 60 	

I 	 I 	 I
ei.13 Cost 1.03092e.07 - 	 ei.14 Cost • 2.092..01 -

50
	

50

40

j 30

20

10

0

60

50

40

0 	I 	2 	3 	4 	5 	6
Proccessoq Load

e,15 Cost 1.081Gs09 - I

40

20

10

0

60

50

40

0 	1 	2 	3 	4 	5 	6
Proccesso, Load

eul6 Cost • I .079445.09

10
	

10

0
	

0
0 	1 	2 	3 	4 	5 	6 	 0 	1 	2 	3 	4 	5 	6

Proccesso, Load 	 Proccesaor Load

Figure 66: Processor Loading Frequencies Strategy 4 - Node Swapping

Chapter 6. Results 	 147

utilization figures are given in Table 6.4. From these tables we can see that the

round robin and the genetic algorithm perform best, but that the round robin

algorithm is more consistent.

The round robin algorithm performs well in this instance due to the nature of the

program graph. The connections of the process graph are fairly random and so

the random placement strategy and the round robin strategy have both benefited

from this - using very little knowledge.

The genetic algorithm does not perform as well as the round robin algorithm

and in one instance performs worse than the random algorithm. This is the case

where we have a graph of high degree, a low computation mean and a large

communication mean. This could suggest that the genetic algorithm was not

sensitive enough to the communication needs of the program. The fault with this

would be in the cost function. The cost function assumes that the cost of sending

a message is linear with the size of the message. It has been shown by Clarke

[C1a90] amongst others that this is not in fact the case and the communication

time has a large setup period followed by a linear relationship on the size of the

message. The MIMD modelling system follows this relationship accurately, but

the cost function does not.

The node swapping algorithm performs worse than the random placement strat-

egy in more than half of the cases. This is not a very good performance but the

algorithm is not very complicated.

It should be noted that the genetic and the node swapping algorithms use a start-

ing position generated by the random method. Unfortunately this is not the same

initial placement that is used for the random placement method in that same ex-

perimental batch. This means that it is not possible to compare the performance

Chapter 6. Results 	 148

c4 c=7
lLc = 5000 Ic = 500000 = 5000 = 500000

Am = 1 = 1000 .Um = 1 1 jL M = 1000 Lm = 1 gm = 1000 Im = 1 = 1000
Random 8.46 8.54 8.60 8.20 7.99 8.27 7.80 9.00
Round Robin 12.54 12.26 12.79 12.79 12.38 12.07 12.79 12.79
Genetic 12.34 9.32 12.60 12.59 12.20 7.16 12.59 12.59
Node Swop 8.69 7.80 8.40 8.60 8.59 7.90 7.00 8.60

Table 6.3: Computation Cycles Achieved (Divided by 1e8)

c4 c=7
tLc = 5000 = 500000 = 5000 = 500000

All, = 1 = 1000 All, = 1 = 1000 /L 	= 1 Arn = 1000 /L 	= 1 pm = 1000
66.68 67.18 64.04 62.41 64.57 60.92 70.28

bin 97.96 95.79 99.94 99.91 96.73 94.31 99.89 99.89 L
66.10

96.44 72.85 98.40 98.36 95.33 55.95 98.33 98.33
p 1 	67.86 60.97 65.62 67.16 67.10 61.75 54.67 67.15

Table 6.4: Percentage Utilization of Computation Cycles

of, say for example, the random and node swapping within the same experiment

as they are starting from different random positions. A further investigation of

these strategies would use the random output as the starting point for both of

these strategies. This would then allow a true comparison of the strategies and

you could see whether the node swapping and genetic algorithm were actually

improving the placement or making matters worse. The strategies themselves

were not the main part of the investigation so the individual performance is not

crucial, it was instead the ability to compare arbitrary strategies.

Using the raw data we can already rank our strategies for the class of programs

that we are investigating. The most consistent strategy is the round robin strat-

egy in this case. This may not be the case if the process weights were highly

skewed because then the round robin strategy would produce many bad place-

ments. The genetic algorithm may perform better on some of these unbalanced

programs.

It is interesting to compare the costs as calculated by the cost function for all

the placements against the responses observed. The calculated costs are shown

on each individual processor loading frequency graph and in Table 6.5. These

Chapter 6. Results 	 149

c=4 1 c=7
ju c = 5000 gc = 500000 Ac = 5000 /.LC = 500000

1000 14m = 1 Mm = 1000 Mm_= 1 JAM _=_1000 Im_=_I =_1000
Random
Round Robin
Geentic
Node Swap 	I

1.19e+07
7.63e+06
7.73e+06
1.12e+07

4.48e+07
4.05e+07
2.60e+07
3.13e+07

1.03e+07
7.61e+06
7.72e+06
1.03e+07

2.92e+07
2.60e+07
1.86e+07
2.10e+07

1.14e+09
7.60e+08
7.70e+08
1.25e+09

1.06e+09
7.93e+08
8.01e+08
1.06e+09

1.10e+09
7.60e+08
7.70e+08
I.08e+09

1.17e+09
7.78e+08
7.88e+08
1.08e+09

Table 6.5: Costs of Placements

c=4 c=7
Mc = 5000 Mc = 500000 I.Lc = 5000 Mc = 500000

Mm = 1 Mm = 1000 Mm = 1 Mm = 1000M m = 1 _Mm 	1000Mm_=_1 _= _Mm_=_1000
Random 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Round Robin 2.530 1.108 1.353 1.124 1.499 1.337 1.447 1.501
Genetic 2.500 1.730 1.336 1.567 1.481 1.322 1.428 1.484
Node Swap 	1 1.063 1.435 1.001 1.397 0.912 0.998 1.018 1.083

Table 6.6: Inverse Normalised Placement Costs

figures show a higher value for a worse placement and so the normalised inverse

costs are shown in Table 6.6. These figures show a high degree of correlation

with the figures in Table 6.4. This suggests that the cost function is a reasonable

measure of program performance. Though it appears that the cost function is over

estimating the relative performance improvement from the different placements.

This is particularly true for the first two costs given for the Round Robin and

the Genetic algorithm.

We can now perform an ANOVA on the data in Table 6.3. The data will be

tested at a 5 percent level of significance (a = 0.05). The null hypothesis is that

the strategies are all equally effective. The analysis of variance table is shown in

Table 6.7.

Referring to equations 3.13 and 3.14 the critical regions are F > F0 .05 , 1 , 15 = 245.9

Source D o F Sum of Squares Mean Squares F
Between Replicates 1 1.36224e+10 1.36224e+10 10.3515
Between Treatments 15 1.55815e+18 1.03877e+17 7.89347e+07
Residual 15 1.97398e+10 1.31599e+09

bal 	 0I 	1.1e±1S

Table 6.7: Analysis of Variance Table - Placement Strategy Experiment

Chapter 6. Results 	 150

for the treatments and F > F0 . 05 , 15 , 15 = 12.3 for the replicates. Hence we can

reject the null hypothesis for the treatments and accept it for the replicates. So all

the placement strategies are not equally effective. Once this conclusion has been

reached further investigation can be made into the effectiveness of the individual

strategies.

6.5 Placement Strategy Experiment Summary

This section has shown that the experimental framework can be used to investi-

gate process placement strategies and allows the user of the system to answer the

questions posed in Section 6.2. Namely, that the placement strategies do indeed

have an effect, that we can rank the strategies and that some strategies are only

effective for some programs.

It appears that the round robin algorithm performs just as well for this range of

programs as does the more complicated genetic algorithm. This may not be true

for more unbalanced programs.

It is important to note that from our point of view, it is less interesting that a

strategy be, or not be effective. What is important is the fact that the experi-

mentation system combined with the statistical techniques can be used evaluate

these strategies and other performance parameters. It has been shown that the

placement strategies did have an effect on the outcome of the experiment.

Chapter 6. Results 	 151

6.6 Evaluation of Placement Strategies on Pro-

cess Systems Example

This experiment takes a real process systems program and applies the four place-

ment strategies described in the previous section. It uses the experiment gen-

eration software to describe the program model so that the placements can be

constructed automatically.

The program under investigation is a newer version of the dynamic distilla-

tion simulation program described in Section 5.2. This program is essentially

a pipeline of processes, where each process represents a tray in the distillation

column. Each process computes for a certain period of time until it converges to

a new solution this data is then passed to the trays/processes above and below

in the pipeline. This is essentially the same program model that was used in the

previous experiment, though in this instance the actual program model is not

necessary.

The program was written in C and Fortran using the CS-Tools library by R C

McKinnel [McK94]. It is designed to run on a network of workstations or on a

Meiko computing surface.

In order for the placement strategies to operate they need a weighted process

graph. Luckily, the simulation program was already instrumented and so the

time that each process spent calculating, the size of messages and the delay in

sending and receiving those messages was already available. This data was used

to specify some weights that could be passed to the experiment generator. The

experiment generator can produce a weighted pipeline graph and other standard

topologies for the placement strategies to operate on. Once the placements were

Chapter 6. Results 	 152

16

14

12

10

2

0

ei.1 Cost = 1.6844.08 —7
16

14

12

10

1:
4

2

0

I 	 I 	 I

es5:CosI.3,4888e.08 -

0 	1 	2 	3 	4 	5 	6
Proccessor Load

0 	1 	2 	3 	4 	5 	6
Proccessor Load

Figure 6.7: Processor Loading Frequencies Strategy 1 - Random

16

14

12

10

0
0 	1 	2 	3 	4 	5 	6

Proocesw Load

Figure 6.8: Processor Loading Frequencies Strategy 2 - Round Robin

generated they were converted into the necessary CS-Tools configuration file so

that the processes could be loaded onto the correct processor.

The actual machine used was a 16 processor Meiko computing surface. Two

versions of the program were used, one modelling ten distillation plates and the

other modelling twenty. The simulation program was to execute for one thousand

seconds of simulated time. The four placement strategies introduced in Section

6.2 were used. This gave eight different experiment instances. The loading fre-

quencies created by each of the strategies are shown in Figures 6.7 through Figure

6.10. The ten process system is shown on the left of each figure.

Several runs were made and the average execution times are shown in Table 6.8.

As these are real execution times in seconds the smaller the value the better the

result. These values can be normalised by dividing the numbers in each column

16

14

12

10

j6

0
0 	1 	2 	3 	4 	5 	6

Proccessor Load

Chapter 6. Results 	 153

16

14

12

10

4

2

0

I 	 I 	 I 	 I

ei.3 Cost = 1 .2023e.08 -
16

14

12

10

8

6

4

2

0

IT 	 I

ai.7 CosI = 2.8863a.08 -

0 	1 	2 	3 	4 	5 	6
Proccesso, Load

II 	 1 	 2 	 3 	 4 	5 	6
Proccesso, Load

Figure 6.9: Processor Loading Frequencies Strategy 3 - Genetic

10

14

12

10

8

6

4

2

0

10

14

12

10

1 8
4

0 	1 	.2 	3 	4 	5 	6 	
0

Procceasor Load
0 	1 	2 	3 	4 	5 	6

Proccesso, Load

Figure 6.10: Processor Loading Frequencies Strategy 4 - Node Swapping

by the head number to produce Table 6.9. Again the smaller the number the

better. The Round Robin and the Genetic algorithm both produce improvements

between forty seven and twenty seven percent.

Tables 6.10 and 6.11 show the costs produced by the placement strategies and

the normalised costs respectively. In this case because a high cost implies a poor

placement, hence a high execution time the costs can be normalised in the same

way as the execution times.

Strategy 10 Nodes 20 Nodes
Random 190.68 308.82
Round Robin 100.98 225.09
Genetic 100.98 225.11
Node Swapping 250.48 329.75

Table 6.8: Execution Times for Programs under Strategies (seconds).

Chapter 6. Results 	 154

Strategy 10 Nodes 20 Nodes
Random 1.00 1.00
Round Robin 0.53 0.73
Genetic 0.53 0.72
Node Swapping 1.31 1.07

Table 6.9: Normalised Execution Times.

Strategy 10 Nodes 20 Nodes
Random 1.6844e8 3.4888e8
Round Robin 1.2029e8 2.8865e8
Genetic 1.2023e8 2.8863e8
Node Swapping 1.9216e8 3.7257e8

Table 6.10: Costs for Placements

6.7 Process Systems Placement Strategy Ex-

periment Summary

This section has shown that the placement strategies are effective on a real pro-

gram. It has also shown that the experiment generation software can be used to

generate an experiment for a real program provided some timing data is available

for that program.

It has also confirmed our suspicions about the effectiveness of the placement

strategies under investigation. The same ranking is achieved as in the simulation

experiment. It is obvious by now that the Node Swapping strategy is very poor.

This is also reconfirmation that the program model is realistic as we have similar

behaviour under the strategies.

Strategy 10 Nodes 20 Nodes
Random 1.00 1.00
Round Robin 0.71 0.83
Genetic 0.71 0.83
Node Swapping 1.14 1.07

Table 6.11: Normalised Costs for Placements

Chapter 6. Results 	 155

The cost function has proved to be a good guide to the effectiveness of a placement

throughout these experiments.

6.8 Summary

This chapter has shown how the experimental framework can be used to investi-

gate process placement strategies both for real and simulated programs. There

are advantages gained by having relatively automatic experimentation directly

from the experimental design through to the statistical analysis.

Through the use of the experimental framework the systematic investigation of

the interaction between different placement strategies and program types becomes

possible.

Chapter 7

Conclusions and Future Work

7.1 Precis

This chapter begins with a restatement of the contribution of the thesis and then

these points are discussed in more detail and conclusions drawn. The last section

describes possible futuEe work that could be performed.

7.2 Contributions of Thesis and Discussion

• The application of the methodology of statistical design of experiments to

study the performance of arbitrary parallel programs.

156

Chapter 7. Conclusions and Future Work
	

157

• The use of synthetic programs. to study a wide range of parallel programs.

• The employment of these techniques in a systematic investigation of static

placement strategies.

• A demonstration of the utility of these techniques in producing performance

models for both synthetic and real programs.

When this work began the application of statistical techniques to parallel program

performance evaluation had not previously been applied in a systematic fashion.

This work has shown that serious performance analysis can be conducted on an

arbitrary parallel program where it is possible to specify values for parameters or

even where the parameters can only be measured. The identification of perfor-

mance limiting factors is possible using these techniques on any parallel program.

Using a synthetic program model this can be done largely automatically with the

experimentation software demonstrated here.

This work has demonstrated that synthetic programs can be used to adequately

represent a communicating sequential process program. The behaviour of the

synthetic program was demonstrated to be similar to that of a real program.

This implies that the general structure and time averaged communications and

computation behaviour is more important than the individual instructions, con-

trol flow and synchronization for performance analysis at this level. Simplified

program models are adequate for performance evaluation and early large scale

tuning of applications. Simplified program models also allow rapid performance

evaluation as opposed to the real program.

It has also been demonstrated that the application of statistical techniques com-

bined with synthetic programs and the rest of the framework developed here is a

sufficient system for investigating the performance of process placement strate-

Chapter 7. Conclusions and Future Work 	 158

gies. This systematic evaluation of placement strategies had not been performed

before. It is also proposed that by using synthetic programs more information is

gained about the placement strategies effect on a range of programs rather than

just individual programs. The use of an artificially generated program allows the

parameter levels to be specified, whereas an off the shelf program may not be

very representative.

The original motivation for this work was to study different placement strategies,

but this was soon extended into a study of the ways of performing quantitative

evaluations of the effects of relevant factors on parallel program performance.

The system that has been constructed is capable of performing a wide range of

performance studies.

The system can also be used to predict the performance of parallel programs. I

have shown that for the simple program models described here linear regression

models can be used with acceptable results. More complicated models are pos-

sible and necessary for more complicated programs. More complicated models

are not necessarily needed as useful predictions can be obtained from the regres-

sion equations derived from the synthetic programs for programs whose control

structure does not conform exactly to the loosely synchronized model assumed.

7.3 Future Work

There are three main areas in which this work can continue: the modelling system

itself, the software engineering tools and extension of the experimental designs.

The following sections deal with each of these areas, followed by a section with

some subsidiary points.

Chapter 7. Conclusions and Future Work
	

159

7.3.1 Modelling System

Modelling and simulation will always be part of performance analysis. The con-

cept of Schrödinger's cat tells us that we can not know if we are interfering with

the system by monitoring it. My proposal was that the best approach was to

simulate rather than monitor the system. As parallel machines become faster and

faster the simulation of those machines can also speed up. One obvious area of

future work would be in the modification of a general purpose parallel simulation

system to be able to model parallel computations as MIMD does.

The models of parallel programs can be expanded to take in different and more

complex program behaviour. It would be useful to extend the modelling system

to be aware of new hardware and software such as networks of workstations or

the Transputer T9000 chip.

7.3.2 Software Engineering

The rapid development of proper operating systems and software engineering

tools has caught up with the fast development of parallel hardware. It is now

common practice for supercomputers to be hosted by a Unix workstation or run

Unix on its processors rather than a proprietary operating system. This means

that standard and familiar software engineering tools can be used to develop

programs and conduct performance studies. A performance study now could

probably use a meta-modeller or modelling engine that was a real program that

modified its behaviour based on the experiment instance. This would give results

which could be measured in the terms of execution time rather than computation

achieved. An early version of this type of meta-modeller was produced for use

Chapter 7. Conclusions and Future Work 	 160

with the CS-Tools environment but it was cumbersome. A meta-modeller of this

nature could now be built using the PVM software.

Message passing systems seem to be very much in vogue at the moment. This

is largely due to the popularity and robustness of the Parallel Virtual Machine

(PVM) software and also the proposal for the Message Passing Initiative (MPI)

[GBD93, Mes94]. PVM is now provided as standard on several parallel ma-

chines. This type of message passing software has also encouraged cluster comput-

ing and the use of networks of workstations as loosely coupled parallel machines.

A program written using PVM can, in theory, be taken from a development en-

vironment of a single workstation through to a network of workstations and on

to a high performance machine such as the Cray T31) with little effort. This

means that is likely that more productive use can be made of the most expensive

machines as bugs can be ironed out on standard workstations.

Perhaps the development of a single placement module that could be built into

the operating system of our new distributed memory multicomputers is still some

way away. It would take the set of modules that needed to be run and execute that

monitoring it could then run the program again in a better configuration using

the most appropriate placement strategy. A set of rules for choosing between

placement strategies based on the calculated parameters for the program and

the applicability of different strategies to different programs. The parameter

levels for a program could be estimated with normal sequential profiling tools

and by building a database of program performance during the development of

an application. Then the placement of the program could be developed alongside

the program code. This cooperative development should lead to a much better

placement.

Chapter 7. Conclusions and Future Work
	

161

7.3.3 Experimental Design

Phillips has used the framework developed in this thesis to investigate dynamic

placement strategies [Phi94]. Dynamic placement strategies are necessary if the

programs have a time variant nature. This means that the initial static placement

strategy is invalidated by the behaviour of the program and a change needs

to be made. Phillips also developed a more complicated program model for

describing time variant programs. There is work here that is necessary to see how

important a good initial placement is when a migration strategy is to be used. The

combination of a static strategy, which has time to analyse a program in detail

and then pass on these details to the migration strategy may be productive.

It may also be suggested that as well as the placement strategy being developed

alongside the program the use of statistical performance analysis becomes part

of the standard software engineering tools for parallel programming. This is an

increasing interest in systematic experimentation for programmers, as can be seen

through the work of Lyon and coworkers on time perturbation tuning [LSK94].

7.3.4 Subsidiary Points

Other placement strategies that were not covered here may have better per-

formance. The technique of simulated annealing could be investigated in more

detail. Some initial work was undertaken for this study but the results were fairly

inconclusive. The analogy of a physical system cooling to a stable state seems

quite similar to the arrangement of processes across processors with their links

being equivalent to chemical bonds or nearest neighbour interactions. I do not

think that I gave Genetic Algorithms enough study and I may not have used

Chapter 7. Conclusions and Future Work 	 162

them to their best potential. I am convinced, based on evidence of other uses

of genetic algorithms that they could produce better results. They were used as

an example strategy of a different approach and in that way they fulfilled their

role. There are a lot of parameters which can be manipulated with the genetic

algorithm itself and I did not want to start a whole new parameter study on that

algorithm. Once the system was producing a good stable population the levels

of the factors affecting the genetic algorithm were left intact.

It may also be feasible to do a full state search of all possible placement combi-

nations using a branch and bound technique. This would need a cost function

that was quick to evaluate so that decisions could be made between different

placements. The difficulty in this approach would be in ordering the possible

combinations in such a way that pruning of the search tree is possible.

The most important future work is to carry on with the application of the sta

tistical techniques to the performance evaluation of parallel systems. There is

much to do in the study of placement strategies and their interaction with the

programs.

And Finally

Large parallel machines are very expensive things to use and anything that aids

the productive use of these machines is a benefit.

Glossary 	 [tell

Glossary

Asynchronous/ Synchronous Programs Shu and Wu suggest that applica-
tion programs can be classified into three categories: synchronous, loosely
synchronous and asynchronous [SW95].

Synchronous programs have a uniform structure. In each time step every
processor executes the same operation over different data, resulting in
a naturally balanced computational load.

Loosely Synchronous programs can be structured iteratively with two
phases: the computation phase and the synchronisation phase. In the
synchronisation phase, processors exchange information and synchro-
nise with each other. In a system that supports dynamic migration
some process migration may occur at this phase boundary. In the
computation phase, different processors can operate independently.

Asynchronous programs have no synchronous structure. Processes may
communicate with each other at any time. The computation structure
can be very irregular and the load imbalanced.

Domain Used in the context of the "experimental or modelling domain" - this
means the system or systems that constitute the parallel program and ma-
chine under study. This could be a program written in the MIMD modelling
system or it could be a distributed memory computer and software.

Fractional Factorial Design For the description of a Full Factorial Design see
Section 3.3.2. Sometimes the number of experiments required for a full
factorial design is too large. This may happen if the number of factors or
their levels is large. It may not be possible to use a full factorial design
due to the expense or the time required. In such cases a fraction of the full
factorial design can be used. A fractional factorial design chooses some of
the combinations of the factors. These designs save time and expense but
the information gained from such an experiment is less than that from a full
experiment. It may not be possible to get interactions from all factors due
to confounding. On the other hand, if some of the interactions are known
to be negligible, this may not be considered a problem.

Granularity The size of a process chosen for parallelism is called the granularity
or grain size. Krishnamurthy defines granularity with the following three
levels [Kri89]:

Data Level Here the parallelism results in effecting the same operation on
multiple data items simultaneously, for example vector addition. This
is called "fine granularity".

Glossary 	 164

Operation Level Here the parallelism arises by the execution of indepen-
dent instructions simultaneously. For example consider (a + b) x (c/d)
here we can execute the addition and division simultaneously. This is
called medium granularity.

Task Level Here the parallelism is at a specific task level or program level,
for example simultaneous reading from a database. This is called
coarse granularity.

For task based programs the grain size problem occurs. This problem is
how to determine the best clustering of tasks in the task graph such that
the task graph execution is minimized. For more details see Kruatrachue
[Kru87].

Hot spot A hot spot is a place where a resource is placed under a large de-
mand relative to other resources. This can be a physical resource such as
a network link or a disk, or a software resource such as a process or even a
memory location. The Gecko software system showed hot spots on trans-
puter systems through the use of colours, red being hot [SB89, Har89a].

Process Template This is a parameterised piece of program code. The param-
eters to the program define the functional and temporal behaviour of the
process. A simple process template which loops continually computing and
sending messages may take two parameters; the number of times to loop
and the size of messages to send. More complex process templates can be
constructed whose behaviour varies with time. The code for the process is
written in the domain of the meta-modeller.

Scatter and gather This is a term describing a master/slave parallel compu-
tation where the master scatters data amongst many slaves and then waits
to gather the results. This operation is usually repeated. It is also common
for all processes to perform scatter/gather operations with their nearest
neighbours.

Simulation Time This is the logical time within the simulation. This is speci-
fied in logical time units.

Bibliography

[AJ88] Rakesh Agrawal and H V Jagadish. Partitioning techniques for
large-grained parallelism. IEEE Transactions on Computers, C-
37(12):1627-1634, December 1988.

[Ame92] American National Standards Institute (ANSI), 1430 Broadway, New
York, NY 10018. Fortran 90, ANSI x3.198-1992 edition, September
1992.

[A085] S J Allan and R R Oldehoeft. HEP SISAL: Parallel functional pro-
gramming. In Parallel MIMD Computation: REP Supercomputer
and its applications, pages 123-150. The MIT Press, Cambridge, MA,
1985.

[Bak87] James E Baker. Reducing bias and inefficiency in the selection algo-
rithm. In J J Grefenstette, editor, Proceedings of the 2nd International
Conference, Genetic Algorithms and their Applications, pages 14-21,
LEA, Cambridge, MA, July 1987.

[BBC86] G Balbo, S Bruell, and S Chanta. Combining queueing networks and
generalized stochastic petri net models for the analysis of some soft-
ware blocking problems. IEEE Transactions on Software Engineering,
12:561-576, April 1986.

[BBK68] G Barnes, R Brown, and M Kato. The ILLIAC IV computer. IEEE
Transactions on Computers, 17(8):746-757, 1968.

[BDQ86] J C Bermond, C Delorme, and J J Quisquater. Strategies for inter-
connection networks : Some methods from graph theory. Journal of
Parallel and Distributed Computing, 3:433-449, 1986.

[Bir86] G B Birtwistle. Discrete Event Modelling on Simula. Macmillan,
London, 1986.

[Bok8la] Shahid H Bokhari. On the mapping problem. IEEE Transactions on
Computers, C-30:207-214, March 1981.

165

References 	 166

[Bok8lb] Shahid H Bokhari. A shortest tree algorithm for optimal assign-
ments across space and time in a distributed processor system. IEEE
Transactions on Software Engineering, SE-7 No. 6:583-589, Novem-
ber 1981.

[Brä93] T Bräunl. Parallel Programming: an Introduction, chapter 3, pages
17-29. Prentice Hall International, 1993.

[Cam87] C W Campbell. POOPS : A prolog object oriented programming
system. Department of Computer Science University of Aberdeen In-
ternal Report, AUCS/TR8703, 1987.

[Can88] R Candlin. Process migration in parallel computations, computer
science report csr-284--88. Technical report, Department of Computer
Science, Edinburgh University, October 1988.

[CC87] B Ciciani and C Ciofli. A proposal for autonomous and dynamic
cooperating processes. 1987 IFIP Distributed Processing Conference,
pages 339-353, 1987.

[CCL88] Marina Chen, Young-il Choo, and Jingke Li. Crystal : From func-
tional description to efficient parallel code. The Third Conference on
Hypercube Concurrent Computers and Applications, Volume 1 - Ar-
chitecture, Software, Computer Systems and General Issues:417-433 1
January 1988.

[CFPS92] R Candlin, P Fisk, J Phillips, and N Skilling. Studying the perfor-
mance properties of concurrent programs by simulation experiments
on synthetic programs. Performance Evaluation Review, Special Is-
sue, 1992 ACM Sigmetrics and Performance 92 International Con-
ference on Measurement and Modelling of Computer Systems, 20(1),
June 1992.

[CG89a] N Carriero and D Gelertner. How to write parallel programs: A first
course. The MIT Press, Cambridge, MA, 1989.

[CG89b] N Carriero and D Gelertner. How to write parallel programs: A
guide to the perplexed. ACM Computing Surveys, 21(3):323-357,
September 1989.

[CG89c] N Carriero and D Gelertner. Linda in context. Communications of
the ACM, 32(4):444-458, April 1989.

[CK88] T L Casavant and Jon C Kuhl. A taxonomy of scheduling in general-
purpose distributed computing systems. IEEE Transactions on Soft-
ware Engineering, 14(2):141-154, February 1988.

References 	 167

CL89] R Candlin and Q Luo. Communications performance in occam pro-
grams on the meiiko computing surface. Proceedings of Parallel Com-
puting 1989, 1989.

[Cla90] Lyndon J Clarke. Achieving Parallel Performance in Scientific Com-
putations. PhD thesis, University of Edinburgh, September 1990.

[CLS89] R Candlin, Q Luo, and N Skilling. The investigation of communica-
tion patterns in occam programs. In John Wexler, editor, Developing
Transputer Applications, Proceedings of the 11th Occam User Group
Technical Meeting, pages 99-108. lOS Press, ISBN: 90 5199 020 0,
September 1989.

[Com87] Simula Standard Committee. Simula Programming Language. Simula
Standard Committee, 63 6114 SIS, Box 3295, Stockholm, Sweden,
1987.

{Cor87} Thinking Machines Corporation. *Lisp Programming Language, 1987.

[Cor9l] Thinking Machines Corporation. Connection Machine CM-200 Series
Technical Summary. Thinking Machines Corporation, Cambridge,
Massachusetts, June 1991.

[Dav9l] Lawrence Davis. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, 1991.

[DS88] J G Donnet and D B Skillicorn. Simulated annealing and code
partitioning for distributed multimicroprocessors. Technical report,
Queens University, Department of Computing and Information Sci-
ence Technical Report, 1988.

[ERL90] Hesham El-Rewini and T G Lewis. Scheduling parallel program tasks
onto arbitrary target machines. Journal of Parallel and Distributed
Computing, 9:138-153, June 1990.

[FB89] David Fernandez-Baca. Allocating modules to processors in a dis-
tributed system. IEEE Transactions on Software Engineering, 15
No. 11:1427-1436, November 1989.

[FF185] G A Frank, D I Franke, and W F Ingogly. An architectural design
and assessment system. VLSI Design, 6:30-50, August 1985.

[Fis58] Ronald A Fisher. Statistical Methods for Research Workers. Number 5
in Biological monographs and manuals. Edinburgh London : Oliver
& Boyd, 13th ed. edition, 1958.

[F1y66] Michael J Flynn. Very high-speed computing systems. Proceedings
of the IEEE, 54(12), December 1966.

References 	 ItIM

[F088] Edward W Felton and Steve W Otto. Coherent parallel C. The Third
Conference on Hypercube Concurrent Computers and Applications,
Volume 1 - Architecture, Software, Computer Systems and General
Issues:440-450, January 1988.

[FT88] I T Foster and S Taylor. Flat parlog: A basis for comparison. Inter-
national Journal of Parallel Programming, 16(2), 1988.

[FT90] I T Foster and S Taylor. Strand: New concepts in parallel program-
ming. Prentice Hall, 1990.

[FW80] John E Freund and Ronald E Walpole. Mathematical Statistics, chap-
ter 15. Prentice Hall, 1980.

[Ga190] Jason Gait. Scheduling and process migration in partitioned multi-
processors. Journal of Parallel and Distributed Computing, 8:274-279,
1990.

[GBD93] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert
Manchek, and Vaidy Sunderam. PVM 3.0 Users Guide and Reference
Manual. Oak Ridge National Laboratory, Tenessee, Technical Report
ORNL/TM-12 187 edition, February 1993.

[Gre90] John J Grefenstette. A User's Guide to GENESIS - Version 5.0.
University of Colorado, 1990.

[GS87] K Gates and D Socha. Programming NCUBE's with a graphical par-
allel programming environment versus an extended sequential lan-
guage. In M T Heath, editor, Hypercube Multiprocessors 1987, pages
17-27, Philadelphia, PA, 1987. SIAM.

[Gui88] T Guilfoy. The simulation of parallel programs. Master's thesis, De-
partment of Computer Science, University of Edinburgh, September
1988.

[Han77} W Handler. The impact of classification schemes on computer ar-
chitecture. In Proceedings of the 1977 International Conference on
Parallel Processing (New York), pages 7-15. IEEE, 1977.

[Har89a] E Hart. Gecko User Manual Version 1. Polytechnic of Central Lon-
don, March 1989.

[Har89b] E Hart. Transim User Manual Version 2. Polytechnic of Central
London, March 1989.

[HG94] Fred Hemery and Jean-Marc Geib. A platform to study dynamic
scheduling strategies. In Monique Becker, Luc Litzler, and Michel
Trebel, editors, Transputers '94 Advanced Reserach and Industrial
Applications, pages 179-190. lOS Press, 1994.

References 	 Ir

[HK72] Maurice Hanan and Jerome M Kurtzberg. A review of the placement
and quadratic assignment problems. SIAM Review, 14(2):324-342,
April 1972.

[H184] P Heidelberger and S S lavenberg. Computer performance evaluation
methodology. lEE Transactions on Computers, 33(12):1195-1220,
1984.

[Hoa84] A Hoare. Communicating Sequential Processes. Ellis Horwood, 1984.

[Ho175] John H Holland. Adaptation in Natural and Artificial Systems. Ann
Arbor : The University of Michigan Press, 1975.

[HP92] Hans-Ulrich Heiss and Achim Payer. PASTE: A tool for evaluation
of processor allocation strategies. Computer Performance Evaluation
'92: Modelling Techniques and Tools, 1992.

[HQ91] Philip J Hatcher and Michael J Quinn. Data Parallel Programming on
MIMD Computers. Scientific and Engineering Computation Series.
The MIT Press, 1991.

[1nm84] Inmos: The Occam Programming Manual. Prentice Hall International
Series in Computer Science. Inmos Limited, 1984.

[Inm88] Inmos. Occam 2 Reference Manual. Prentice Hall International Series
in Computer Science. Inmos Limited ISBN 0-13-629312-3, 1988.

[Inm89a] Inmos. The Transputer DataBook. Inmos Limited, 1000 Aztec West,
Almondsbury Bristol, BS12 4SQ, 1989.

[Inm89b] Inmos. The transputer instruction set - a compiler writers' guide.
100 Aztec West, Almondbury, Bristol, BS12 4SQ, 1989.

[Jai9la] Raj Jam. The Art of Computer Systems Performance Analysis. Wiley
Professional Computing. John Wiley & Sons Inc., 1991.

[Jai9lb] Raj Jam. The Art of Computer Systems Performance Analysis, chap-
ter 2, pages 22-25. Wiley Professional Computing. John Wiley & Sons
Inc., 1991.

[JS88] M R Jerrum and A J Sinclair. Fast uniform generation of regular
graphs. Technical report, Department of Computer Science, Edin-
burgh University, 1988.

[KM88] 0 Kramer and H Muhienbeim. Mapping strategies in message-based
multiprocessor systems. Parallel Computing, 9:213-225, 1988.

References 	 170

[KME89] Alex Kapelnikov, Richard R Muntz, and Milos D Ercegovac. A mod-
eling methodology for the analysis of concurrent systems and compu-
tations. Journal of Parallel and Distributed Computing, 6:568-597,
1989.

[KP941 J P Kitajima and B Plateau. Modelling parallel program behaviour in
ALPES. Journal of Information and Software Technology, 36(7):457-
464, 1994.

[Kri89] E V Krishnamurthy. Parallel processing principles and practice. In-
ternational Computer Science Series. Sydney Wokingham Addison-
Wesley, 1989.

[Kru87] B Kruatrachue. Static Task Scheduling and Grain Packing in Parallel
Systems. PhD thesis, Department of Computer Science, Oregon State
University, 1987.

[Kun82] H T Kung. Why systolic architectures? Computer, 15:37-45, 1982.

[Lo88] Virginia Mary Lo. Heuristic algorithms for task assignments in dis-
tributed, systems. IEEE Transactions on Computers, 37:1384-1397,
November 1988.

[LSF88] C C Lee, S Skedzielewski, and J Feo. On the implementation of ap-
plicative languages on shared memory, MIMD multiprocessors. SIC-
PLAN Notices, 23(9):161-172, September 1988.

[LSK94] Gordon Lyon, Robert Snelick, and Raghu Kacker. Synthetic-
perturbation tuning of MIMD programs. The Journal of Supercom-
puting, 8(1):5-27, 1994.

[McK94] R C McKinnel. An Investigation Into the Application of Parallel
Computers for the Dynamic Simulation of Chemical Processes. PhD
thesis, Edinburgh University, 1994.

[Mei92] Meiko Limited, 1000 Aztec West, Bristol. Meiko CS-Tools Reference
Manual, 1992.

[Mes94] The Message Passing Interface Forum (MPI), Argonne National
Laborotory. Message Passing Interface Forum, Version 1.0, 1994.

[MGSK87] H Muhienbeim, M Gorges-Schleuter, and 0 Kramer. New solutions
to the mapping problem of parallel systems: The evolution approach.
Parallel Computing, 4:269-279, 1987.

[ML82] Perng-Yi Richard Ma and Edward Y S Lee. A task allocation model
for distributed computing systems. IEEE Transactions on Comput-
ers, C-31 No 1:246-252, January 1982.

References 	 171

[MS89] R Miller and Q Stout. An introduction to the portable parallel pro-
gramming language SEYMOUR. In Thirteenth Annual International
Computer Software and Applications Conference. IEEE Computer So-
ciety Press, 1989.

[MTM88] Richard P Ma, Fu-Sheng Tsung, and Mae-Hwa Ma. A dynamic
load balancer for a parallel branch and bound algorithm. The
Third Conference on Hypercube Computers and Applications, 2 -
Applications: 1505-1513, January 1988.

[MY87] B P Miller and C Q Yang. An interactive and automatic performance
measurement tool for parallel and distributed systems. In Proceed-
ings of the 7th International Conference on Distributed Computing
Systems. IEEE Press, New York, 1987.

[NCTI92] M G Norman, G Chochia, P Thanisch, and E Issman. Predicting the
performance of the Diamond DAG computation. Technical report,
Department of Computer Science, University of Edinburgh, 1992.

[NHM87] J Nehmer, D Haban, F Mattern, D Wybranietz, and H D Rombach.
Key concepts of the INCAS project. IEEE Transactions on Software
Engineering, 13:913-923, August 1987.

[NMF87] Richard E Nance, Robert L Moose, and Robert V Foutz. A statis-
tical technique for comparing heuristics : An example from capacity
assignment strategies in computer network design. Communications
of the ACM, 30(5):430-442, May 1987.

[0st89] A Osterhaug. Guide to Parallel Programming on Sequent Computer
Systems. Prentice Hall, Englewood Cliffs, New Jersey, Second edition,
1989.

[Pa185] Edgar M Palmer. Graphical Evolution: An Introduction to the Theory
of Random Graphs. Wiley- Interscience Series in Discrete Mathemat-
ics. John Wiley & Sons ISBN 0-471-81577-2, New York, 1985.

[PD89] Kee-Hyun Park and Lawrence W Dowdy. Dynamic partitioning of
multiprocessor systems. International Journal of Parallel Program-
ming, 18 No 2:91-120, 1989.

[Pet62] C A Petri. Kommunikation mit Automation. PhD thesis, University
Bonn, Germany, 1962.

[Pet8lJ J Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall, Englewood Cliffs, NJ, 1981.

[PFMS91] J W Ponton, E S Fraga, R C McKinnel, and N Skilling. Parallelisa-
tion strategies for process modelling on MIMD computers. The 1991

References 	 172

IChemE Research and Technology Symposium and Recruitment Af-
fair, pages 143-146, February 1991.

[Phi94] J Phillips. A Statistical Investigation of the Factors Influencing the
Performance of Parallel Programs, with Application to a Study of
Process Migration Strategies. PhD thesis, Department of Computer
Science, University of Edinburgh, 1994.

[PL88] Chrisila C Pettey and Michael R Leuze. Parallel placement of parallel
processes. The Third Conference on Hypercube Concurrent Comput-
ers and Applications, Volume 1 - Architecture, Software, Computer
Systems and General Issues:232-238, January 1988.

[Poo85] R J Pooley. Introduction to Programming in Simula. Blackwell, 1985.

[RB84] Anthony P Reeves and D Bergmark. Parallel Pascal: An extended
Pascal for parallel computing. Journal of Parallel and Distributed
Computing, 1:64-80, January 1984.

[RB87] Anthony P Reeves and D Bergmark. Parallel Pascal and the FPS
hypercube supercomputer. In Proceedings of the 1987 International
Conference on Parallel Processing, pages 385-388, 1987.

[RJ87] J R Rose and G L Steel Jr. C*: An extended C language for data
parallel programming. Technical Report PL 87-5, Thinking Machines
Corporation, 1987.

[Sar87] Vivek Sarkar. Partitioning and scheduling parallel programs for ex-
ecution on multiprocessors. Stanford University Technical Report,
CSL-TR-87-328, 1987.

[SB89] Marc Stephenson and Oliver Boudillet. Gecko: A graphical tool for
the modeling and manipulation of Occam software and transputer
hardware topologies. Occam User Group Technical Meeting, 9, 1989.

[Sch80] Robert Schreiber. Systolic arrays for eigenvalue computation. Tech-
nical report, Department of Computer Science, Stanford University,
California, 1980.

[Seq87] Sequent Computer Systems, Inc. Symmetry Technical Summary,
1003-44447 Revision A edition, 1987.

[Sin87] J B Sinclair. Efficient computation of optimal assignments for dis-
tributed tasks. Journal of Parallel and Distributed Computing, 4:342-
362, 1987.

[SK86] R G Scarborough and H G Kolsky. A vectorizing FORTRAN compiler.
IBM Journal of Research and Development, 30(2), March 1986.

Appendix A 	 173

[Sk189] N Skilling. Occula - An Occam 2 to MIMD translator, 1989.

[Ski92] N Skilling. eg - The Experiment Generator, 1992.

[Smi92] Justin R Smith. The Design and Analysis of Parallel Algorithms.
Prentice Hall, 1992.

[5ny84] L Snyder. Parallel programming and the Poker programming envi-
ronment. Computer, 17(7):27-36, July 1984.

[Sto88] L Storc. Sequent balance series. In R G Babb, editor, Programming
Parallel Processors, pages 143-154. Addison-Wesley, MA, 1988.

[SW95] Wei Shu and Mm-You Wu. Asynchronous problems on SIMD parallel
computers. IEEE Transactions on Parallel and Distributed Systems,
6(7):704-713, July 1995.

[Tha90] P Thanisch. A review of mapping strategies for parallel programs.
Technical report, Department of Computer Science, University of Ed-
inburgh, July 1990.

[YM89] C Q Yang and B P Miller. Performance measurement for parallel and
distributed programs: a structured and automatic approach. IEEE
Transactions on Software Engineering, 15:1615-1629, December 1989.

[ZBG88] Hans P Zima, Heinz-J Bast, and Michael Gerndt. SUPERB : A tool
for semi-automatic MIM D /SIMD parallelization. Parallel Computing,
6:1-18, 1988.

Appendix A

Experiment Generator

Reference

This appendix includes the complete syntax diagrams for the Experiment Defi-

nition language used by the Experiment Generator eg.

174

Appendix A
	

175

A.1 Syntax Diagrams for the Experiment De-

sign Language

experiment

Begin Experiment __1 expfIle I__end Experiment

expfile

ifiesection

T~ comment

fi lesection

Begin Simulation Paramet 	simulationparams —(Exiimulat ion Parameters

Begin Graph Parameters —EnaPhParter}-

Begin Define Processes_ 	pro, : !;!;d I 	(End Define PrICACC1101:11:11s

Begin Define Channels 	chaj: Ili iii e1l 1:11 efEndDefjneChne1

Begin Allocate Processes 	process :iii: 	End Allo cat e Pro case es

Begin Allocate Channel

Begin Placement)—] placement —.(End Placement

Figure A. 1: Top level components of an experiment description

Appendix A

szmzlaionparams

simgenericvalue

dom ainn am e

MIND

Heiko ~:v
Figure A.2: Simulation Parameters

graph params

Graph Type)— gtype

integerrange

Number Node ')__l integerrange

h1ype

Figure A.3: Graph Parameters

176

Appendix A 	 177

hwjpe

gype

Redfield

User 	swgraph

Appendix A 	 178

swgraph

proces1js

ff
louble double

_—In
glisi

integer H integer }.— double J—J double 	double —J double

hwgraph

integer 	integer 	integer 	hwglist

hwglisi 	 -

c integer 	integer

Appendix A

processdef

process

process

name H '"' H parameterlist H rcurl

channeldef

Cl th1 9
channel

name H icurl H parameterlist H rcurl

paramcerlisi

genericvalue

genericvalue

Int 	name 	integerrange

Double 	name

simyenericvalue 	 -

179

Figure A.4: Process and Channel Definition Syntax

Appendix A 	 IM

processalloc

Nap)-1 name H To)— double F - - percent

Percent

channelalloc

Nap)—J name H To)-1 double F- - 	percent

Percent

Figure A.5: Process and Channel Allocation Syntax

placement

Figure A.6: Placement Syntax

Appendix A

iniegerrange

I integerrangera?nge T-

integerrangelist

2ne9errangeranye

iniegcrranyelis

integer

dotLblerange

era doublerangnge

erjelis

dotLblerangerange

double

double I—(To —1 double

double H To H double F-C Step)-J double

doublerangelisi

double

181

Figure A.7: Range Syntax

Appendix A
	

182

double

—Clfloat I

integer

integer

-C
digit

float

exponent

string

Figure A.8: Basic Token Syntax

Appendix A

name

(Z aZAZ9 I
digit

comment

whitespace

Z 7
newline

E<NEW

183

Figure A.9: Basic Token Syntax Continued

Appendix A 	 184

A.2 Syntax Diagrams for the Experiment In-

stance File

Appendix A
	

185

experimentinstance

simulationparasns 	ranges 	hardware 	software 	placement

simulatsonparams

ranges

rangecount _[] (nevalue J.._.[]

hardware

software

placement

T
processid 	processorid I-LEI1

Figure A.10: Output Format for Experiment Instance

