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Abstract 

Distributed memory multicomputers appear to offer a cost effective general pur-

pose parallel computing resource. Unfortunately these multicomputers have not 

always delivered the processing performance promised from a summation of indi-

vidual processor speeds. A lot of time and effort can be expended trying to close 

this performance gap. - 

Detailed dynamic simulations of chemical processing equipment can be naturally 

and robustly modelled as a set of communicating sequential processes where 

the information flow accurately mirrors the material flow in the real equipment. 

These programs have a static, time invariant process graph which is suited to 

execution on a distributed memory MIMD machine. 

There are many factors that affect the performance of a parallel program. The 

programmer, usually with the aid of profiling tools, is faced with a trial and error 

tuning up process. This thesis addresses the issue of performance evaluation of 

parallel systems by presenting a methodology that enables rapid identification of 

performance limiting factors. In particular the study of static placement strate-

gies as performance factors can be readily investigated for a range of programs. 



Through the use of standard statistical design of experiments, synthetic pro-

gram graphs and a general purpose multiprocessor simulation system, placement 

strategies and other performance factors can easily be identified and their precise 

effect quantified. Through statistical analysis predictive performance models can 

also be constructed. 

The approach presented is general and can be applied to an arbitrary parallel 

program. Results are presented for a common class of parallel programs called 

structured spatial decomposition and for process systems simulations. 
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Chapter 1 

Introduction 

One friend in life is much; two are many; three are hardly possible. Friendship 

needs a certain parallelism of life, a community of thought, a rivalry of aim 

- Henry Brooks Adams, 

The Education of Henry Adams 

This thesis is concerned with parallel computing, the process of solving problems 

on parallel computers. Parallel computing is a relatively young field, the Illiac IV, 

a processor array came into operation in 1968 [BBK68]. Very large-scale integra-

tion (VLSI) made personal computing possible and it also made the development 

of large scale computing devices containing hundreds or even thousands of pro-

cessors feasible. General purpose distributed memory MIMD machines began to 

become available in the early 1980's. 

1 



Chapter 1. Introduction 	 2 

Programming general purpose machines became the next topic of serious interest. 

At first it was very difficult, with few software engineering tools compared with 

those available on uniprocessor systems. Early parallel computers did not sup-

port common programming languages, often requiring to be programmed in their 

unique language. Added to that was the fact that good algorithms for sequential 

computers are not necessarily good algorithms for parallel computers. Parallel 

computers demand a new way of thinking and programming if the full power of 

the machine is to be realised. 

Chemical Engineering and in particular process systems have a lot of compu-

tationally intensive applications. Process systems practitioners were quick to 

realise and exploit the opportunities that parallel computers presented. In par-

ticular process systems simulation of a process plant can be naturally parallelised 

through the use of a process based programming approach where parallel pro-

cesses are used to represent plant equipment and information flow corresponds to 

material flow through the real equipment. Such a parallel programming approach 

is possible with a communicating sequential process (CSP) programming system. 

There is a major problem presented by CSP programs [Hoa84] and distributed 

memory multicomputers: the mapping problem is how best to place the processes 

of the program onto the processors of the machine. Usually the programmer 

would like to minimise the execution time of the program by choosing a good 

mapping. 

The need to investigate good mappings for process systems programs led to the 

investigation of mapping strategies in more general terms. During this investiga-

tion it was noted that there was no rigorous or convenient way that a mapping 

strategy could be tested against a program in general. Allied with this was the 

fact that there was no convenient way of analysing the performance characteris- 
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tics and performance limiting factors of a parallel program. 

This thesis presents a methodology for performing performance evaluation re-

views of arbitrary parallel programs. It allows the user of the system to iden-

tify performance limiting factors quickly for an arbitrary parallel program. The 

methodology uses statistical experiments. The particular interest of mapping 

strategies as performance factors is investigated and it is shown that the method-

ology is adequate for such an investigation. 

It is also shown that synthetic programs can be used to describe parallel compu-

tations rather than having to use real parallel programs. This allows the investi-

gator to study a far larger range of programs than would be ordinarily possible. 

From the point of view of deriving performance estimates it is shown that care-

fully validated simulation and real execution of synthetic programs can be equally 

useful. 

1.1 Contributions of Thesis 

• The application of the methodology of statistical design of experiments to 

study arbitrary parallel programs. 

• The use of synthetic programs to give a wider study of parallel programs. 

• The employment of these techniques in a systematic investigation of static 

placement strategies. 

e A demonstration of the utility of these techniques in producing performance 

models for both synthetic and real programs. 
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1.2 Chapter Outline 

Chapter 2 gives an introduction to parallel computing through the literature 

available. The possible hardware classifications of a parallel computer are pre-

sented and the different ways that it is possible to program parallel machines. 

The two major models of parallel computing are described which are sufficiently 

detailed for performance evaluation studies to be performed. The task scheduling 

and process placement problems are introduced. 

Chapter 3 gives a background to the art of computer systems performance anal-

ysis and presents a systematic approach to this due to Jam [Jai9la]. The two 

most important statistical tools necessary for the performance evaluation are also 

introduced. 

Chapter 4 describes the methodology for evaluating parallel program performance 

in full. The performance metrics, the use of synthetic programs and the need for 

tools to aid the programmers are demonstrated. The experiment generator is 

presented and is shown to fulfill some of the requirements. The MIMD modelling 

system is also presented as it is also used in the performance evaluation studies. 

Chapter 5 presents an experiment that was used to validate the MIMD modelling 

system against a process systems program. Following this is a complete experi-

ment using the methodology that investigates the parameters used to describe a 

synthetic program and validates the program model used. 

The final chapter of results, Chapter 6 presents a complete example experiment 

conducted on a set of placement strategies. This demonstrates how the method-

ology can be used to investigate this particular performance factor over a wide 

range of programs. The use of the predictive capabilities of models produced 



Chapter 1. Introduction 	 5 

from the statistical experiments is also shown. Following this is a case study of 

a set of placement strategies being applied to a process systems program. 

Chapter 7 summarises and presents the conclusions from the study and presents 

proposals for future work. 

A glossary of terms used throughout the thesis is provided after the final chapter 

and before the bibliography. 



Chapter 2 

Parallel Computing - Providing 

Solutions and Problems 

Many hands make light work. 

Too many cooks spoil the broth. 

- Proverbs 

2.1 Precis 

Parallel computing is a very wide field and there are many active research ar- 

eas within it. These range from the design and construction of novel computer 

architectures, through network and language design to parallelism applied to an 
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individual problem. This introduction to parallel computing is not complete; it 

is tailored towards the work presented in this thesis, though not exclusively so. 

The structure of the chapter is as follows: first a general problem statement is 

given (2.2); then an introduction to parallel computing is given (2.3), including 

the terminology commonly used (2.4) and the classifications of different parallel 

hardware (2.5). Following this is a major section on the different ways in which 

parallel computers can be programmed (2.6). In order to reason about parallel 

computations it is necessary to create models to represent those computations. 

The two major representations for parallel computations are described in Section 

2.7 along with two of the common problems associated with these models. A 

survey of some profiling and performance evaluation tools is given in Section 2.8. 

The chapter finishes with a description of the approach taken in this work. 

2.2 Problem Statement 

Distributed memory multicomputers appear to offer a cheap and powerful com-

puting resource. Unfortunately these multicomputers have not always delivered 

the processing performance promised from a summation of individual proces-

sor speeds. It is this performance gap that programmers spend long periods of 

time trying to bridge. This can be done in all the normal ways available to pro-

grammers of sequential computing (code optimization or reordering), but parallel 

computing also offers the choice of rearranging the program on the machine. The 

work described in this thesis is concerned with reducing the performance gap by 

providing more information about good placements to the programmer so as to 

avoid a lengthy tuning process. The intent is to find placement strategies and 

evaluate them to give an idea of their applicability to certain distributed program 
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types. If the best strategy can be applied automatically to a distributed program 

then it should save the program developer a period of costly program tuning. 

The application programs of particular interest are those from Chemical Engi-

neering. Some of these programs have a very regular geometric parallelism and 

regular communication patterns. Examples of this are the dynamic simulation of 

items of chemical processing equipment or even a complete chemical plant. Faster 

than real time detailed dynamic simulation is possible [McK94], but demands a 

lot of computing resource. 

There is one major caveat emptor with parallel computing, exemplified as follows. 

In "The Design and Analysis of Parallel Computing" [Smi92] Smith states 

Certain applications of computers require much more processing power 

than can be provided by today's machines. 

This statement is true and has been true since the start of the computer age. Like 

motorways and the motor car, the provided capacity lags behind the requirement. 

So today's computers will never be able to provide all the processing power asked 

of them, because they are today's computers. Parallel processing is seen as a 

promising way of providing large amounts of computing power to a processing 

hungry community. 

The idea of performing tasks in parallel is not new. It can easily be traced back 

to Victorian times where large banks of "computers" were used to calculate tide 

and other mathematical tables. In this instance the computer just happened to 

be a desk clerk. 
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2.3 Introduction to Parallel Computing 

A parallel computer is a machine with more than one processing unit working 

together to produce some final computation. The important aspect is that the 

processors work together in some sense, and thus have to be coordinated, either 

by hardware or by software. 

There is no need for the processors of a parallel computer to be physically close 

together. A parallel computer could be a group of processor boards connected 

by a very high bandwidth back plane; alternatively you could describe all the 

machines connected to the Internet as the largest loosely connected parallel com-

puter in this Solar system. There is certainly a lot of computing power in these 

machines though in general they are all working on different problems. 

Even before the practical realization of multicomputer systems there was a lot 

of interest in predicting the performance of and potential speedups from parallel 

computers. As Casavant puts it "The notion that a loosely coupled collection of 

processors could function as a more powerful general-purpose computing facility 

has existed for quite some time" [CK88}. 

In the early 1980's the advances in semiconductor manufacturing technology made 

the realization of affordable parallel computers possible. Cheap, relatively pow-

erful processing chips became available in high volumes, turning the notion into 

reality. This renewed the interest of theoretical performance modellers, and prac-

tical systems people in the field. 

Another consideration is that it is getting increasingly difficult to manufacture 

faster semiconductors with more transistors in the same space, and we are rapidly 

approaching the physical limits of semiconductor technology. It is relatively ex- 
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pensive to manufacture a very large scale integration chip to run at high speeds, 

whereas a set of lower scale integration chips can be manufactured much more 

quickly and efficiently and turned into a parallel machine. 

This availability of cheap processors has meant the development of a whole range 

of parallel computing architectures and a complementary range of parallel pro-

gramming models and languages. Often the machine and language designs existed 

long before their physical realization was possible. This was the case with the par-

allel programming language Occam and the Inmos transputer [1nm84, Inm89a]. 

Occam was an implementation of Hare's Communicating Sequential Process sys-

tem [Hoa84] and was only available in a simulation system before the advent of 

the transputer made a parallel implementation possible. In fact the transputer 

was almost purpose built for the Occam programming language. 

2.4 Parallel Computing Terminology 

Parallel computers are designed to make computations proceed more quickly. So 

we must first define what we mean by "more quickly". A number of definitions 

have been proposed in the literature. We can take as our first principle from 

Smith the Principle of Unitary Speedup [Smi92]. 

Definition 1 Unitary Speedup 

Suppose that the fastest sequential algorithm for performing a parallel compu-
tation with parameter n has execution time of T(n). Then the fastest parallel 
algorithm with rn processors (each comparable to that of the sequential computer) 
has execution time > T(n)/m 
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It is important to note that we must compare the fastest sequential algorithm 

against the fastest parallel algorithm. This definition tells us that it is impossible 

to get a parallel program that achieves a greater than unitary speedup. If this is 

the case then it is unlikely that you are comparing like with like. A faster than 

unitary speedup is not possible because you could then take the parallel algo-

rithm and simulate it on the uni-processor and get a faster sequential algorithm. 

This would contradict the fact that the given sequential algorithm is the fastest 

possible. 

Hatcher and Quinn [HQ91] define Speedup to be 

Definition 2 Speedup 

Speedup is the ratio between the time needed for the most efficient sequential 
program to perform a computation and the time needed for a parallel program 
to perform the same computation. 

In this case we assume that the sequential program executes the complete com-

putation on a single processor of a parallel computer and the parallel version 

executes on one or more processors. The difference is subtle but important. 

They restrict the sequential program to the memory of one node of the parallel 

machine so that large, unrealistic problems that could not fit comfortably in a 

uniprocessor memory are not used when calculating speedup. Instead they define 

another quantity Scaled Speedup 

Definition 3 Scaled Speedup 

Scaled Speedup is the ratio between how long a given optimal sequential program 
would have taken, had it been able to run on a single processor of a parallel com- 
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puter, and the length of time that the parallel program requires, when executing 
on multiple processors of the same computer. 

Another measure of the performance of a parallel program indicates the reduction 

in execution time achieved as processors are added. Parallelizability is the ratio 

between the execution time of a parallel program on one processor and its execu-

tion time on multiple processors [HQ91]. Quite often Parallelizability is confused 

with speedup. 

Hatcher and Quinn go on to say that perhaps the least confusing and controversial 

measure of program performance is the wall clock speed of the program. This is 

the most relevant measure from the point of view of a programmer who wants 

to improve the performance of a parallel program. This is of course a machine 

dependent measurement, unlike the other measures discussed. 

2.5 Multiple Processor Computer Systems 

There are many classifications of multiple processor computer systems. The most 

popular is due to Flynn [Fly66]. This compares the different types of instruction 

stream and data stream that a multicomputer could use. There are the two types 

of instruction stream, a single stream SI and a multiple instruction stream MI. 

There are two different data streams, SD a single data stream and MD a multiple 

data stream. This leads to four different processor architectures shown in Figure 

2.1 and detailed below. 

SISD This is the classic Von Neumann model. A single stream of instructions 

operate on a single stream of data. This type of machine is also referred to 
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C = Control Unit. P = Processor, N = Network. S = Storage 

Figure 2.1: Classification of Multicomputers 

as a uniprocessor. Examples include almost any computer up to the early 

nineteen eighties including almost all microcomputers and workstations. 

SIMD All the processors execute the same instructions on different data simul-

taneously. Examples include Thinking Machines' Connection Machine CM1 

and CM2, the latter having between 16384 and 65536 processing elements. 

All the processors are under the control of a single control unit. 

MIMD This is an extension of SIMD where each processor can have indepen-

dent programs that are read from common or local storage. The processors 

usually do not operate in lock step. These machines can range from tightly 

coupled asynchronous elements such as a multiprocessor workstation, using 

shared memory, to a less tightly coupled Meiko Computing surface using 

distributed memory [Mei92], through to a loosely coupled workstation net-

work. MIMD machines have the possibility to be heterogeneous processing 

environments. 
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MISD This case is often compared. to computation that uses Systolic Arrays'. 

These are arrays of processors that are developed to solve specific problems 

- usually on a single VLSI chip. A clock coordinates the data movement 

between processors and output from some processors is pipelined into oth-

ers. For a discussion of systolic computers see Schreiber [Sch80] or Kung 

[Kun82]. 

All but the first classification are deemed parallel or multiple processor computers. 

Distributed memory MIMD and shared memory SIMD are the two most popular 

classes of machines for parallel computation. 

Flynn's classification scheme was refined by Handler in 1977 [Han77]. This scheme 

is much more detailed than Flynn's but it still leaves much to be desired. For ex-

ample there is a new important class of parallel computer that are SIMD-MIMD 

hybrids that the scheme is unable to describe. The first announced commer-

cial machine was the Connection Machine CM-5 [Cor9l]. This is essentially a 

MIMD machine that has hardware features that allow precise synchronization of 

processes and processors. 

The different classes of parallel machines are best suited to different applica-

tion areas. SIMD machines are most useful for highly data centric applications 

in which some regular computations have to be performed. MIMD distributed 

memory machines are proving to be the most scalable and general purpose par-

allel computers. 

'systole noun, contraction of the heart during which blood is pumped into the aorta and 
the arteries that lead to the lungs - systolic. 
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2.6 Parallel Programming Paradigms 

Many different parallel programming models or paradigms have been proposed in 

the literature. I will use the word paradigm to describe programming models to 

avoid the over use of the word model throughout this thesis. 

The clear classifications of parallel computing hardware are muddied by the par-

allel programming paradigms that are presented to the programmer and user. 

SIMD and MIMD machines are both capable of supporting programming paradigms 

that are at odds with their physical construction. Performance penalties are usu-

ally paid if a SIMD programming paradigm is implemented on a distributed 

memory MIMD system. 

In the programming of parallel computers there are different programming paradigms. 

The way in which a parallel machine is programmed may require the programmer 

to have a full knowledge of the underlying machine but there have also been at-

tempts to insulate the programmer from the hardware of the machine to a greater 

or lesser extent. 

In the early days of parallel computing it was common for the programming 

language to be very tightly linked to the underlying hardware. An example of 

this is Connection Machine Lisp [Cor87]. This was a result of the fact that 

some of these initial machines had no "real" operating system and also to the 

lack of an available language with any useful parallel constructs. This led to 

a host of vendor specific languages often very different from those languages 

being used on traditional sequential machines. These languages were inherently 

non-portable and had all the compatibility and portability problems equivalent to 

those that existed on sequential computers before standards like Fortran emerged. 

Programming early parallel computers often involved taking a step backwards in 
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software engineering technology. 

Since the late nineteen eighties these problems have diminished quickly. Standard 

operating systems and (augmented) programming languages have become avail-

able on many parallel systems. This has made the software engineering task easier 

as standard development tools can be used to speed the software development 

cycle. 

Claims are now made for genuinely portable programming languages. The prob-

lem of portability of the program is taken away from the programmer and given to 

the compiler writer and run-time communications library. Consider the difference 

in support software that is necessary to provide simple communication between 

two processes in a parallel program in the different cases of a shared memory and 

distributed memory machine. Totally different communications strategies must 

be used - but must appear identical to the programmer. 

Proposals for genuinely portable parallel programming languages include Fortran-

90 and Seymour [Ame92, MS89]. Hatcher and Quinn have also proposed the 

Data Parallel Programming language [HQ91] which gives the programmer a sim-

ple model of computation which can be used on several architectures. A similar 

claim of portability could now also be made for programs written with the Par-

allel Virtual Machine (PVM) software [GBD93]. The PVM software provides a 

library of message passing primitives. These primitives and those in the emerging 

Message Passing Initiative (MPI) [Mes94] have been ported to many machines. 

The main disadvantage of these approaches is that the programs will run more 

efficiently on some machines rather than others. 

In the next sections we look at common approaches to software development 

for parallel computers. This starts with conventional programming languages 
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and then moves on to languages with low and high level parallel constructs and 

concludes with architecture independent languages. 

2.6.1 Conventional Programming Languages 

This is the simple solution as far as the programmer is concerned, but the most 

difficult way from the compiler writers point of view. Take a standard imperative 

programming language, such as FORTRAN or C, and let a parallelizing compiler 

detect and exploit the parallelism in the program. This presents the programmer 

with a simple Von Neumann SISD model of computation. This is easy from the 

programmer's point of view because it shifts all the work onto the parallelizing 

compiler. It also has one very large benefit that existing programs (the well 

known "dusty decks") can take advantage of the machines. 

Whilst writing a sequential program, the programmer will have sequentialized 

sections of the program which were inherently parallel. The programmers may 

not notice that some parts of the program are computationally independent. 

Parallel programmers have to be taught to look again at the way they create 

algorithms to release the inherent parallelism. 

Any parallelism in an existing program will be hidden in a set of DO loops and 

control structures. The job of the compiler would then be to discover which can 

be performed in parallel and this is a difficult task which is probably why not 

many parallelizing compilers exist [ZBG88]. It may be possible when a vector 

or array processor is used and the compiler looks purely at the loop constructs. 

Loop constructs are the easiest to analyse and vectorize as has been shown by 

Scarborough and Kolsky [SK86]. A parallelizing compiler may only be suitable 
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for certain types of programs and may fail completely to detect any parallelism. 

2.6.2 Languages with Low-Level Parallel Constructs 

This is the most common and historically developed way of programming parallel 

computers. An imperative language is taken and augmented with constructs 

to permit parallel programming. Traditionally there have been two approaches 

based on what type of hardware the language has been aimed at. These are for 

multiprocessor or shared memory machines and multicomputers. 

Multiprocessor Programming Languages 

This set of programming languages provides the programmer with a shared mem-

ory programming model and so has traditionally been provided on multiprocessor 

machines. The language should have the ability to spawn and terminate parallel 

processes, manage synchronization between processes and distinguish between 

private and shared data. 

An example of this is Sequent's Parallel C [0st89] for their Sequent Symmetry 

machines [Seq87]. In this language the m..±ork function forks off a set of parallel 

processes to execute a function. The processes suspend execution when they reach 

the end of the called function. Data is passed between cooperating processes by 

implicit access to shared variables. 

These are very low level constructs for the programmer. They can be difficult to 

debug and it is difficult to eliminate timing errors. It has been shown by several 
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people that even short programs can have troublesome bugs [A085, Sto88]. 

Multicomputer Programming Languages and Tools 

These programming languages augment a traditional language with a set of mes-

sage passing primitives. This may be done by extending the language itself and 

providing a new compiler for that language or by providing a set of library routines 

that can be called from a standard programming language. Data is transferred 

between processes by explicit communication statements. This requires the pro-

grammer to keep the state of each separate process in mind when writing the 

program. 

An example of an extended language is Intel's nCUBE C and an example of the 

use of a library of message passing routines is Meiko's CS-TOOLS or the MPI 

proposal [Mei92, Mes94]. Each of these systems provides a set of message passing 

primitives which allow direct process to process communication. They provide 

send and receive operations, often with blocking and nonblocking variants. This 

provides asynchronous communication between multiple processes. Less common 

is support for broadcast or scatter and gather operations. 

The most common programming problem with these types of languages is that 

of deadlock. Deadlock occurs when a cycle of communications is waiting to occur 

with each process in the cycle waiting on the next one. None of these program-

ming environments can detect deadlock. Detecting deadlock before running a 

program is as difficult as running the whole program. 

The major advantage of these programming languages is that you can write a 

program consisting of multiple processes which behave differently, but this is 
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also one of the problems. The programmer has to be able to keep different 

multiple states in their head whilst constructing the program. It is easiest, if 

it is possible, to implement SPMD (Single Program Multiple Data) or scattered 

spatial decomposition algorithms where the data is distributed over the memories 

of individual processors each executing the same program. This approach is 

useful for problems where the same operation is performed on different pieces 

of data independently with little boundary swapping such as for example image 

processing. 

2.6.3 Languages with Higher-Level Constructs 

Parallel computing provides the programmer with a wide variety of architec-

tures. Software portability has been a problem with the earlier proposed par-

allel programming languages, with the languages being tied to one vendor's 

hardware/ software combination. Parallel languages with higher-level constructs 

present the programmer with models of computation that can encompass a wide 

variety of architectures. 

In these languages the compiler and programmer work together as a team to 

provide an efficient translation of the program. In this respect these languages 

lie somewhere between programming languages with low-level parallel constructs 

and the use of a traditional programming language with a parallelizing compiler. 

There are many examples of this type of language in the literature. For exam- 

ple, Thinking Machines Corporations C* [RJ87] for their Connection Machine, 

Coherent Parallel C [F088]. Both these languages augment the C programming 

language with vector operations. Linda [CG89b, CG89c, CG89a] provides the 
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programmer with a virtual tuple space into which data can be inserted. Tuples 

are retrieved from the tuple space, usually in a blocking fashion. This is just a 

different way to view a message passing system. Occam [1nm84] is the original 

communicating sequential process programming language. Channels are used as 

communication conduits. The major concept of sequential (SEQ) and parallel 

(PAR) statements identified by their level of indentation originate with this lan-

guage. Parallel Pascal is a simple extension to Pascal with vector operations 

[RB84, RB87]. Poker [Sny84, GS87] is a visual programming system that has 

been parallelized. 

2.6.4 Architecture Independent Programming Languages 

A new set of parallel programming languages are emerging which provide the pro-

grammer with a consistent programming model and are aimed at a wide range 

of parallel architectures. Again at one end we have the sequential program-

ming language and the parallelizing compiler. Other approaches have been the 

DataParallel C language from Hatcher and Quinn [HQ91]. This provides the pro-

grammer with a SIMD virtual parallel machine, the virtual parallel processors 

are simulated on as many processors as are available at run time. 

Another approach is that of functional and logic programming languages, which 

take a traditional functional or logic programming language and provide a par-

allel implementation of this. Parallel implementations of Prolog [Cam87, FT88] 

and new languages such as SISAL [A085, LSF88] and Strand [FT90] have been 

developed. 

With all these programming languages the parallelism of the machine is hidden 
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from the programmer and so the efficiency of the program is entirely reliant on 

the implementation of the compiler and the run time communications system. 

The compiler and the run time system are responsible for the placement of the 

processes onto the available processors. The number of processors available to 

the program are given at run time and the run time system determines how the 

processes will be divided. Hatcher and Quinn claim speedups approaching 50 

percent of the processors available when compiling the same programs on Intel 

iPSC/2, nCUBE 3200 and a Sequent Symmetry S81 [HQ91]. There are also 

programs for which speedup is a lot worse. Good speedups are achieved for 

programs that are close to the architecture of the machines. 

2.7 Modelling Parallel Computers and Programs 

In performance studies of parallel computations it is convenient and efficient to 

work with a model of a program rather than the real program. The model should 

be a realistic representation of the parallel program for the purposes of the study; 

in that it abstracts out those features which are relevant for performance mea-

surement. This is in comparison to performing a study by direct measurement. 

Performance models of parallel computations can be used to predict which imple-

mentation and which configuration of software elements for a certain computer 

are best in some sense. Performance models can involve hardware and software 

elements, though it is unusual for people to investigate both at the same time. 

Hardware designers like to have models that predict the performance of their ma-

chine designs and consider different network interconnects, for example [BDQ86]. 

Software engineers like to be able to find the best configuration of a particular 
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piece of software - they do not usually consider changing the hardware in some 

fundamental way, although they may be able to alter the topology of the ma-

chine. The software engineer may need to consider how the hardware is connected 

together and the design of interconnects is a large topic on its own. A complete 

description of computer performance methodologies can be found in [H184]. 

2.7.1 Representation of Parallel Programs 

In the modelling and analysis of parallel programs there are two common for-

malisms for representing the programs. These are the task based model and the 

process based model of computation. Each of these formalisms has a set of per-

formance problems associated with it, but in each case the main requirement is 

to minimise the execution time of the program. 

2.7.2 Task Based Model of Parallel Computation 

The task based model represents a parallel computation as a directed acyclic 

graph (otherwise known as a DAG) called the task graph, C = (V, E), where V 

is a set of vertices and E a set of edges. Each vertex and edge has an associated 

weight. The weight of an edge usually represents the size of the communication 

packet which is sent between the two vertices. The weight of the vertex is the 

amount of computation that has to be performed. A vertex v has a set of pre-

decessor vertices and a set of successor vertices. The vertex v cannot proceed 

with its computation until all of its predecessor vertices have finished their com-

putation and have sent a message down the edge which links the vertices. This 

produces a temporal precedence relation on the task graph. An introduction is 
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Figure 2.2: A Sample Task Graph 
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Schedule 1, Makespan = 4 

Schedule 2, Makespan = 3 

Table 2.1: Two Possible Schedules for the Task Graph of Figure 2.2 

given by El-Rewini or Sarkar, [ERL90, Sar87]. 

It is quite common for the edges to have zero weights in which case they request 

a synchronization rather than a communication event. 

2.7.3 The Task Scheduling Problem 

The main performance problem associated with the task graph is that of finding a 

schedule for the tasks in the graph. The schedule gives for any task the time when 

it will start execution and on which processor. This takes a multiple processor 

system consisting of P processors and tries to find an assignment of the tasks to 

the processors in P such that the temporal precedence relation is not invalidated 

and that the total execution time for the DAG is a minimum. This is known as 

the makespan for the given task graph. 
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Figure 2.3: A Sample Task Graph with Weights 
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Schedule 2, Makespan = 4 

Table 2.2: Two Possible Schedules for the Task Graph of Figure 2.3 

Figure 2.2 shows a simple task graph. Each task is assumed to have an equal 

weight. Two possible schedules for the graph when two processing elements 

(PE1 and PE2) are available are shown in Table 2.1. The second schedule has a 

makespan of 3 compared to the first of 4, the first schedule leaves the processing 

elements idle for a quarter of the time. The second schedule is one of the optimal 

schedules on two processors for the task graph shown. 

If the weight of the vertex B is doubled to produce a task graph as shown in 

Figure 2.3 then the makespans become identical. The makespans for the same 

schedules are shown in Table 2.2. The two schedules are now optimal for the task 

graph. 

Finding the minimum makespan is an NP-complete problem and is analogous to 

the Graph Isomorphism problem, though particular solutions for certain classes 

of problem have been found [Bok8lb]. 

The task graph usually represents fine grained parallel computation. For example 
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each vertex could represent a handful of instructions in a program. This means 

that the task graph is a very detailed model and has problems in representing 

large programs, particularly those with iterative loops. Much work has been done 

in the area of DAGs and their properties [ERL90, Sin87]. 

A lot of the work in this field ignores communication costs or assumes a fixed 

cost communication irrespective of the size of the packet or the bandwidth of 

the associated communications network. This simplification may be appropriate 

for certain types of problem but it is not adequate for programs where signifi-

cant amounts of communication are performed between distant processes. More 

detailed and realistic models are being investigated [Lo88, ML82, NCTI92]. 

2.7.4 The Process Based Model of Parallel Computation 

The process based model of parallel computation again represents the program as 

a weighted graph (usually called the process graph). This graph is not necessarily 

either directed or acyclic. Each node represents a communicating sequential 

process and each edge represents the fact that there is at least one communication 

event between the two associated processes during the computation. This model 

was best described in a seminal paper by Bokhari [Bok8la] 

The process graph weights represents the time averaged properties of the pro-

gram. For example, edge weights could represent the average packet size sent 

along the particular communication channel. The vertex weights may have sev-

eral interpretations: they could for example represent the size of the process in 

terms of memory required for storage, or the size of the main loop of the process. 
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It is common for process graphs to have a set of weights associated with each 

edge and vertex. 

The process graph therefore gives a less detailed view of the computation than 

the task graph but allows much larger and coarse grained program structures to 

be modelled. The task graph can be thought of as a detailed description of some 

temporal part of the process graph. The task graph details the communication 

and computation events in detail, including the order in which events occur, 

whereas the process graph gives time-averaged properties. 

2.7.5 The Process Placement Problem 

Associated with the process based model of parallel computation is the proc&ss 

placement or process mapping problem. As with the task allocation problem 

this is a NP-complete problem and is computationally equivalent to the graph 

partitioning and multiprocessor scheduling problem [Bok8la]. 

'The problem is to find a mapping between the processes and the processors such 

that some optimality function (criterion) is satisfied. Usually this criterion is 

to minimise the execution time of the program, though other alternative crite-

ria could be the maximal utilization of the processor resources or the network 

bandwidth. 

A sample process graph is shown in Figure 2.4 with three possible placements. 

Assume that the process graph has equal computational weights at each node 

and the weights on the arcs represent the size of the messages that have to be 

sent frequently between the nodes in a long running program. There are four 
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Placement 1 	Placement 2 	Placement 3 

Figure 2.4: Simple Process Graph and Three Placements 
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processors available each is connected to two neighbours. Placement 1 is an 

obvious way to allocate the processes onto the processors; this may be obvious 

because there are four processes and four processors. The problem with this 

mapping is that the large communications between processes B and C have to 

traverse across two links, hence loading two links when one could suffice and 

probably disrupting the computation on A's processor to forward the messages. 

The second placement corrects this problem by swapping processes D and C so 

that B and C only have to send messages across one link. If it were possible to load 

both processes B and C onto the same processor then an even better placement 

might be Placement 3. Communication costs have been severely reduced in this 

placement at the cost of slowing the computation of processes B and C since 

they now have to share the same processor. This is just a small illustration of 

the complexities of process placement. 

A complete taxonomy of scheduling mechanisms in general purpose distributed 

computing systems is given by Casavant and Kohl [CK88]. This provides a hier-

archical naming scheme of task and process scheduling techniques. The structure 

of this hierarchy is shown in Figure 2.5. Their classification is firstly based on the 

way that the mechanism collects its data (local/global), whether the mechanism 

itself is distributed and then subdivides into different algorithmic approaches. 

A static process placement strategy is exercised once before execution of the pro-

gram. This computes an initial placement which may remain unchanged through-

out the lifetime of that program. The initial placement is calculated from the 

process or task graph. Dynamic placement strategies make initial static place-

ments and then periodically reevaluate the performance of the placement and 

make changes if necessary. The data required for these decisions has to come 

from some system on each processor. These are often referred to as dynamic load 

balancing techniques, and require complex decision making at run time. 
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Figure 2.5: Task/Process Scheduling Characteristics 

Dynamic placement algorithms collect their information in different ways and 

vary in effectiveness accordingly [AJ88]. Global system status information is usu-

ally difficult or costly to obtain in a multiprocessor system and so most dynamic 

placement strategies rely on local optimization procedures to effect a balanced 

load. As would be expected there is also an extensive literature on the subject 

of dynamic load balancing, for example [CC87, FB89, MTM88, PD89] and pro-

cess migration [Can88,. Gai90]. Phillips has investigated different dynamic load 

balancing/migration strategies on a range of program types [Phi94]. 

Dynamic load balancing is necessary for time variant programs where the compu-

tational load of processes varies over time or the structure of the program graph 

changes dynamically. 
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Static Placement Strategies 

Unlike the task graph analysis which is usually far too detailed to be more than a 

theoretical tool the process placement strategy field has seen much experimental 

work and evaluation. The use of heuristic placement strategies for process based 

programs usually breaks down into two approaches: those that are static based 

strategies and those that are dynamic strategies. A more complete formalism 

has been suggested by [AJ88] in which the data collection of the strategy is also 

taken into account. 

The whole area of task graph scheduling and process placement strategies is 

reviewed by Thanisch and Norman [Tha90]. 

Many placement strategies have been suggested by various authors. We can take 

as a sample set those presented by Donnet and Skillicorn [DS88]. They describe 

the problem as a graph partitioning problem and present several algorithms which 

they compare against a simulated annealing algorithm. The algorithms presented 

include Random Partitioning and Heaviest Edge First which attempts to reduce 

the communication costs by allocating processes with the heaviest edges to the 

same processor. Both of these algorithms are used later in Chapter 6. 

The algorithm Find Local Communication Minima tries to minimize the total 

weight of edges radiating from each processor. This is essentially the dual of 

Heaviest Edge first. Donnet and Skillicorn then go on to develop an algorithm 

based on the technique of simulated annealing. They compare all the algorithms 

only by the estimated cost of the mapping or partitioning produced. These are 

mostly graph based algorithms and a lot of work is devoted to graph techniques. 

In particular complex branch and bound tree search techniques have been used 

by Sinclair to produce mappings for small programs and processor setups [Sin87]. 
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Other standard graph techniques have been proposed by Fernandez-Baca amongst 

others [FB89J. 

More esoteric graph partitioning based approaches have been proposed for ex-

ample by Muhlenbeim et al. [MGSK87] in which techniques from the natural 

sciences such as competition for resources and evolution are applied to the prob-

lem. This is-based on the reasoning that nature has performed some of the best 

speciation 2  that is available so why not copy the techniques. This of course is 

taken a lot further by algorithms which ignore the structure of the problem al-

together and rely purely on the genes or parts of the solution. This means that 

Genetic Algorithms can and have been applied to this problem. See for example 

a parallel genetic algorithm for process placement by Pettey and Leuze [PL88]. 

Summaries of several techniques can be found in for example [HK72] and [KM88] 

Placement for Real Programs 

Of specific interest is the work by the author and colleagues detailed in [PFMS91]. 

This addresses the particular problems and simplifications that occur with Chem-

ical Engineering parallel computations. These range from the simple geometric 

and obvious decomposition of a distillation column simulation program to the 

large exponential and computationally intense search space required for synthe-

sis procedures for chemical plants. 

The distillation column example is simple because each tray can be modelled in 

detail by a process connected in a chain of similar processes. Information flow is 

2 speciation noun, the evolutionary development of a biological species [C20: from SPECIES 
+ ATION J. 
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closely related to physical material flow in the real distillation column. This is 

described in more detail by McKinnel  in his thesis [McK94]. 

2.7.6 Modelling Parallel Programs - Summary 

The two approaches to the modelling of parallel programs described above offer 

two distinct and complementary views of parallel computation. Whilst the task 

graph offers a very fine grained instruction level view, the process graph can be 

used to provide a higher level, time-averaged view of the parallel computation. 

These two representations are also commonly used as paradigms at the program-

ming level, and are appropriate for different types of language. These describe 

two different programming models which are also complementary. The task graph 

parallel program model is best used to describe the shared memory programming 

model. Here tasks represent computation and the precedence of tasks implies 

a synchronization or barrier point. The process based representation describes 

best the communicating sequential process model of computation. This is more 

usually described as a message passing system. 

2.8 Performance Analysis Tools 

Performance analysis or profiling tools for parallel programming are often incor-

porated within more extensive software engineering support environments. A 

clear example of this is the Crystal system supplied with Thinking Machines 

CM-2 machine [CCL88]. This system allows users to interactively debug their 

program, which may be executing on up to 16,535 processors, viewing the values 
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and most commonly accessed parts of data structures as well as being able to see 

the percentage of time spent on each individual line of code. This is an excep-

tional example of such a tool and unfortunately is restricted to this one particular 

platform. 

Other profiling tools with good visualization facilities enable programmers to 

study the performance properties of particular programs and to detect unde-

sirable features such as load-imbalance and communications bottlenecks. Mea-

surements may be made directly on the running program using a hardware or 

software monitor, or a performance model of the program may be constructed 

and executed on a simulation model of the machine. Examples of these three ap-

proaches are respectively: INCAS [NHM+87], IPS [MY87], and TRANSIM [Har89b] 

in conjunction with GECKO [Har89a]. GECKO shows the processors and links of a 

transputer array and uses colour to show the hot spots. A simulated system has 

many advantages from the point of view of flexibility and ease of use, whereas 

hardware monitors are specific to a particular type of machine and are expensive 

to implement. Software monitors consume machine resources and may distort 

the behaviour of the program under investigation. 

Yang and Miller [YM89] suggest that there should be an underlying program 

model with which to interpret the performance metrics measured. They suggest 

that a program activity graph, representing the duration of activities and their 

precedence relationships. Support is provided to help the programmer find the 

critical path of the program activity graph. A reduction in the critical path will 

lead to a performance increase. 

Examples of analysis systems based on task graphs are given by Task Grapher 

[ERL90] and ADAS [FF185]. Task Grapher is a high-level tool which allows a 

user to set up a dataflow model and investigate performance under a number 
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of different scheduling heuristics and machine topologies. ADAS is particularly 

targeted at early performance evaluation of hierarchical, integrated hardware and 

software systems. The designer works in terms of a dataflow model from which a 

Petri net [Pet8l] is then derived. Performance metrics can then be obtained by 

simulation or, if the net is not too big, analytically. 

Kitajima and Plateau [KP94] have used process-based program skeletons to per-

form performance analysis on a distributed memory parallel computer with the 

ANDES system. This system also used the MIMD simulator described in Chapter 

4. 

The systems described above are only a subset of those that have been reported 

in the literature, though they are typical in mostly being based on precedence 

graphs, in providing comprehensive statistics and in leaving the decisions about 

what should be tuned up to the programmer. 

When it comes to dynamic scheduling strategies a typical system for the study is 

described by Hemery and Geib [HG94]. This combines a simulator and a graphical 

front end in which to compare different scheduling strategies on a hypercube 

system. A program is written in the event generation language GENESE and 

interpreted by the system. There are a limited number of strategies that can be 

employed based on different information distribution patterns. 

Traditionally computer systems have been modelled analytically using queueing 

networks. It is not feasible to model the complex interactions in parallel systems 

by queueing networks. On the other hand, Petri Nets can be used to model 

parallelism accurately. Petri nets were developed by C A Petri in 1962 to define 

the coordination of asynchronous events ( see [Pet62] and [Pet8l] or [Brä93]). 

Petri nets allow the modeller to clearly describe interdependence between and 
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synchronization of parallel processes. A petri net is a directed, bipartite graph 

with tokens (markings). Nodes are either a place or a transition. The place 

is often called a state and can be empty or occupied with a token: marked. A 

transition is often called an action. Edges are arcs which are directed connections 

between places and transitions. By associating a time delay with a transition it 

is possible to estimate the times required for a system to move from one state to 

another. 

The size and complexity of many parallel systems precludes the complete use 

of analytical modelling techniques, though hybrid models where the hardware 

resources are modelled as queueing networks embedded within a generalised 

stochastic Petri Net or Markov process representing the control structure of the 

program have been created [BBC86] and [KME89]. In this way, the size of the 

state space is reduced compared to what it would be if the entire system were 

modelled as a Petri Net. It is not clear whether realistically large systems can be 

handled by this approach, which suffers also from the disadvantage that changes 

to program or hardware may require substantial redesign of the model. 

All of the above systems aim at providing quantitative performance predictions 

for specific programs. None of the systems allows the user to evaluate a set of 

related programs easily. Neither do they show how performance factors may 

interact. The programmer must proceed on- a trial and error basis to tune up the 

program. 
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2.9 Process Systems Parallel Programs 

In the introduction to this thesis it was explained that the impetus for this work 

came from parallel computations being performed in process systems. Detailed, 

dynamic simulation of chemical processes requires significant amounts of com-

puter resource. Uniprocessor machines do not have the power to provide this so 

the need for parallel processing arose. 

Simulations of physically connected chemical processing equipment are achieved 

naturally in parallel processing by representing each unit by a program process. 

This gives a robust solution structure because any calculation errors are localised 

to the unit and allows individual components to be changed easily. The shape 

of the program graph is fixed and the process loads are relatively time invariant. 

This means that the amount of computation to be performed at time t is roughly 

equivalent to that to be performed at time t + 1. There are situations when 

this is not the case, such as when there are large disturbances within the system 

due to, for example, feed stock changes. These changes may remain localised, 

giving an unbalanced computational load or the effects may spread throughout 

the system, balancing the computation once more. In general though, these 

periods of disturbance will be small compared to the complete processing time. 

With this type of program in mind, I have limited my study to process based 

programs that have a fixed structure and which are mostly time invariant. I 

have also concentrated on static placement strategies, because the type of pro-

gram described above does not require dynamic load balancing strategies to be 

employed. The work has also been limited to using general purpose distributed 

memory MIMD machines. This was partly based on the general availability and 

popularity of these machines and the specific availability of such machines in 

Edinburgh. 
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2.10 Design of Approach 

Though many placement strategies have appeared in the literature there has been 

little work (with a few exceptions [DS88, HP92]) to rigorously quantify the effi-

ciency of a set of placement strategies for a set of parallel programs. Most work 

either describes a single placement strategy applied to a small set of (similar) test 

programs or shows the application of different strategies to the same program. 

The research described in this thesis, on the other hand is directed towards the 

improvement of parallel applications by any appropriate method, rather than a 

specific interest in the placement strategies themselves. This requires an abstrac-

tion of the parallel program into certain core characteristics so that the behaviour 

of a class of parallel programs under various placement strategies can be investi-

gated. 

A methodology for screening for appropriate program characteristics in a system-

atic way was needed. This led to the decision to build such a special purpose 

software system that would make use of standard statistical methods in order 

to quantify the merits of the various strategies. It was expected that different 

strategies would perform better for different types of programs. For example the 

strategy called Heaviest Edge First (described above) would have little effect on 

a program with small communications costs. 

The decision for a rigorous comparison of the strategies was advocated by the 

work of Nance and Moose [NMF87] in the field of network evaluation. This en-

tails taking the view that the program or system to be investigated is a black 

box. Known parameter settings are fed to the black box and responses are re-

ceived. The parameters of a distributed computer system could be the hardware, 

software and placement strategy. Through the analysis of these parameters the 

performance of a particular placement strategy in relation to the program can be 
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investigated. 

This kind of parameter analysis necessitates the ability to create programs which 

have desired characteristics. This has led to the use of synthetic or automati-

cally generated programs. This gives much more flexibility and control in model 

analysis 

2.11 Summary 

This chapter has given a general introduction to parallel computing. It has shown 

the different classifications for parallel computing hardware and the different par-

allel programming paradigms that exist. The two major models of parallel com-

putations, the task graph and process graph were introduced and the associated 

problems of scheduling and mapping. 

This chapter concluded with the restrictions that have been placed on the study 

due to the particular interests of the author and to the particular approach to 

performance evaluation that is presented in this work. 



Chapter 3 

Performance Analysis and 

Statistical Techniques 

I keep six honest serving men. They taught me all I knew. Their names are 

What and Why and When and How and Where and Who 

- Rudyard Kipling 

3.1 Precis 

This chapter is in two distinct parts. Firstly computer systems performance 

analysis is introduced (3.2) and a systematic approach is presented in Section 

3.2.1. 

40 
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Performance analysis is discussed in the particular context of parallel computing 

and any special problems are outlined in Section 3.2.2. The novel way in which 

this systematic approach to performance analysis is applied to parallel systems 

forms the basis of the methodology described in this thesis. The particular details 

of this are outlined in Chapter 4. 

The important statistical tools and techniques that form a necessary part of the 

performance analysis are presented in Section 3.3. 

3.2 Performance Analysis 

Jain describes computer performance analysis as an art rather than a science 

[Jai9la]. Like a work of art a successful performance evaluation can not be 

produced automatically. Every evaluation requires an intimate knowledge of the 

system being modelled and a careful selection of the methodology, workload and 

tools. 

Performance evaluation has always been a distinct part of Computer Science. 

Historically performance evaluation studies have centered on large multi-user 

systems. A common study would be aimed at identifying the performance bot-

tleneck of the system and factors considered could be the disk subsystem, memory 

paging or scheduling algorithm. The interest in performance evaluations of paral-

lel systems has grown alongside the development of the systems themselves. The 

driving force, again, is to identify bottlenecks in certain areas of the system to 

close the performance gap between power and execution time. 

All computer users are interested in performance evaluation. Usually this is 
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phrased in the statement "I would like my computer to go faster" or in the 

question "Why is my computer not as fast as I thought it would be?". Like any 

consumer the user wants to get the highest value (performance) possible at the 

lowest cost. Computer performance evaluation can be applied at every stage of 

production and use of a machine, from a logic simulation of a processor board 

at the design stage through to final performance testing of a disk drive on a 

standalone system. Commonly though, it is the performance of the whole system 

in terms of job execution speeds that the user is most interested in. 

In this thesis, I am particularly interested in making performance improvements 

from a programmers point of view. Changing hardware is not an every day deci-

sion taken by programmers, whereas software provides many more opportunities 

for change. For instance the way data is distributed, synchronous or asynchronous 

computations and more traditional code optimization can all be factors affecting 

performance. 

Parallel systems pose performance analysis questions which do not arise in unipro-

cessor systems. The most common performance criterion associated with parallel 

computers is the concept of speedup, which was introduced in Section 2.4. It 

was sometimes naively assumed that linear speedup of software should always 

be achievable. This was not always practically achievable due to poor process 

placement, slow communications software and slow networks as well as to the 

inherent structure of the computation in some cases. 
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• State the goals of the study and define the system boundaries 
• List system services and possible outcomes 
• Select performance metrics 
• List system and workload parameters 
• Select factors and their values 
• Select evaluation techniques 
• Select the workload 
• Design the experiments 
• Analyze and interpret the data 
• Present the results. Start again, if necessary. 

Table 3.1: Steps for a Performance Evaluation Study 

3.2.1 A Systematic Approach to Performance Evalua-

tion 

Jam [Jai9lb] has outlined a systematic approach to performance evaluation. His 

points are general and can be applied to any performance evaluation study. They 

are shown in Table 3.1 and are outlined below. Following on from this, I take 

these points and show how they may be applied to the performance evaluation 

of parallel computer systems. 

State Goals and Define the System The first step in any performance eval-

uation review is to state the goals of the review and to define the system 

within which the review is to be performed. This is an exercise in defining 

the boundaries of the review. 

The goal is usually to review the performance of the system with the idea of 

improving the performance of that system in some way or just identifying 

the performance limiting factors. 

List Services and Outcome Every computer system provides a set of services. 

For example a database system responds to queries, a processor performs a 

sequence of instructions. It is useful to list these services and possible out- 
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comes as a means of identifying useful performance metrics and workloads. 

Select Metrics The metrics are the criteria on which performance is compared. 

The criteria usually measure the speed, accuracy and availability of ser-

vices. For example in a database processing system a common metric is the 

number of transactions performed (queries answered) per second. 

List Parameters The next step is to list all those parameters that are believed 

to affect performance. These parameters can be broken into two sets, sys-

tem and workload parameters. System parameters include hardware and 

software parameters. Workload parameters summarize characteristics of 

users' requests. 

Select Factors to Study From the parameters identified above a subset must 

be identified as factors. These are the parameters which will be investigated 

during the review and they will take values at different levels. To have a 

manageable review the number of factors is usually smaller than the number 

of parameters. 

It may not always be possible to use the desired metrics. This may be 

because it is not possible to instrument some part of the system under 

study. In this case a related metric would have to be chosen. Factors 

should obviously include the parameters which the investigator believes 

have an impact on performance. The choice of factors is also restrained by 

reality. For example, it is no good if the investigator chooses as a factor to 

be studied the number of processors in a system if the number of processors 

can not be increased either due to financial or technical reasons. 

Select Evaluation Technique There are three broad techniques for computer 

performance evaluation. These are analytical modelling, simulation and 

measuring a real system. The selection of the right technique is based on 

the time and resources available to solve the problem and also the degree 

of accuracy required. 
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Select Workload The workload consists of a set of service requests to the sys-

tem under investigation. For example the workload to a database system 

may consist of a mixed set of queries. The workload takes different formats 

depending on the evaluation technique chosen. For example with analytical 

modelling, the workload could be expressed as the probabilities of certain 

requests. In simulation, it could be a trace from a real system. On a real 

system, it would most likely be a series of test programs that characterize 

a typical user. 

Design Experiments Once the factors and levels have been decided, a sequence 

of experiments can be performed to provide the maximum information with 

minimal effort. This can best be achieved through the use of the statistical 

design of experiments described later in Section 3.3. 

Analyze and Interpret Data Interpreting the results of an analysis is a key 

part of the analyst's art. The results provide the basis on which the analysts 

can draw their conclusions. It is of course possible to draw more than one 

conclusion from the same results. It is important that the analysis of the 

data is considered when the experiment is constructed. The results must be 

easy to collect in a form that is acceptable to any data analysis tools. The 

experiment and the analysis should go hand in hand. Statistical techniques 

used to analyze the results are also presented later in this chapter (3.3). 

Present Results The last step of all performance reviews is to present the re-

sults to those people who are involved in making a decision based on the 

results. At this stage it may become apparent that a more detailed review 

needs to be performed, and so the analyst may have to go back to an earlier 

point in this process. 
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3.2.2 Performance Evaluation of Parallel Systems 

The systematic approach to performance evaluation outlined in the previous sec-

tion can be applied to parallel systems. The points above will now be reviewed 

in the context of parallel computing systems and will demonstrate the particu-

lar problems raised by parallel systems. The points of the systematic approach 

should be kept in mind again when the methodology proposed by this thesis is 

presented in Chapter 4. 

In single processor performance reviews, the system to be studied may be the 

computer system as a whole or some component part like the CPU or disk sub-

system. This situation is more complicated in parallel systems where there are 

multiple CPU's and other hardware components such as specialized network in-

terconnect. The system itself may cover a large geographic area and so care must 

be taken in clearly defining the system boundaries. 

From a macroscopic point of view, a parallel system provides the same services 

as a uniprocessor system. This point is a very salient one. If it were possible to 

provide exactly the same services to the user without their having to change their 

programming model then parallel computing would be completely integrated into 

mainstream computing. Unfortunately, as described previously, the sequential 

programming model has already hidden the natural parallelism in the problem. 

So while it is correct to say that the parallel system provides the same services 

and outcomes, i.e. job execution and results, the way in which this happens is 

completely different. 

Parallel systems provide similar metrics to uniprocessor systems, though some of 

them are more difficult to obtain. Average job throughput on a multi-user parallel 

system can easily be compared against the same uniprocessor measurement. 
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Some metrics specific to parallel systems are also required. For example in a 

multi-user system it is desirable to maximize the utilization of the processors. 

This measures how effectively the parallel programs are using the processing 

resources. The utilization also becomes more and more important as the relative 

costs of the interconnect to the processor increases. This has been a general 

trend over the last few years, with an increase in both the speed and bandwidth 

of the interconnect. The importance of network bandwidth became more obvious 

in distributed systems when for certain applications the communication costs 

started to dominate performance [Cla90]. 

In parallel computing the workload parameters are not as well understood as 

they are on uniprocessor multitasking systems, where standard benchmarks are 

commonly known and available. Distributed systems research is still at the stage 

of working with innovative hardware and software designs and common workloads 

that are appropriate for all machines are relatively unknown. 

One of the main problems in parallel computing is that there are a large num-

ber of parameters, arising from the fact that there are several processors and a 

interconnection network. These two components have many parameters hidden 

inside such as the speed of individual processors and network. 

Parallel processing poses a particular problem in that the resources under inves-

tigation are very expensive to use. Sometimes, they lack the instrumentation 

facilities in either hardware or software which would facilitate any sort of perfor-

mance evaluation other than execution speed of the program. This has meant 

that a lot of performance evaluation of parallel systems has been performed either 

using analytical modelling techniques or simulation (2.8). 
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3.3 The Statistical Design of Experiments 

One of the major contributions of this thesis is the application of the standard 

techniques of experimental design to performance analysis of parallel programs. 

The relevant techniques are described in this section. At the start of this investi-

gation the only relevant work on the application of these techniques was that by 

Nance and Moose [NMF87]. They had used the techniques to evaluate capacity 

assignment strategies in computer network design. 

Phillips [Phi94] used the techniques and much of the software developed for this 

thesis to study process migration strategies for time varying parallel programs. 

Lyon, Snelick and Kacker [LSK94] used statistical techniques to identify bot-

tlenecks in MIMD programs. They did this by adding artificial delays or time 

perturbations to parts of the program to see if this affected the performance. 

In the context of this investigation it is apparent that there are many parameters 

of a parallel system which may affect performance. A systematic way to construct 

performance evaluation studies and to rapidly evaluate which parameters have 

significant effect is necessary. The factorial design of experiments and analysis of 

variance satisfy these needs. 

3.3.1 Experimental Designs 

There are other types of experimental design, but the most commonly used are 

the simple design, the factorial design and the fractional factorial design. 
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Simple Designs 

In simple design, we start with a typical configuration and vary one factor at a 

time to see how that factor affects performance. Given k factors, with the ith 

factor having n 2  levels, a simple design requires n experiments, where 

n=l+(n-1) 	 (3.1) 

However, this design does not make the best use of the effort spent. It is not 

statistically efficient because only one parameter is investigated at a time. Also, 

if the factors interact, this design may lead to incorrect conclusions. This design 

is not recommended by serious practitioners. 

3.3.2 Full Factorial Designs 

The analysis of factorial experiments was proposed by Fisher in 1935 [Fis58] 

with the introduction of his Analysis of Variance technique. This permitted the 

devising of experimental designs which can handle the simultaneous testing of 

large numbers of different factors efficiently to see what effect they have on the 

value of one or more output variables, otherwise known as the response variables. 

The term factorial designs is used because they evaluate the effect of different 

combinations of experimental factors. In any experiment, each component part 

that can be varied is a factor. For example, an experiment to make a cake has 

many factors such as the amounts of each ingredient, the oven temperature and 
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the baking time. 

Factorial experiments are designed to test two or more factors at the same time, 

economically in the number of experiments and to evaluate the effects of inter-

actions between factors. This is done by comparing the results obtained with 

different levels of each factor; The experiment for baking the cake, may for ex-

ample, be repeated at different temperature levels. It is important to note that 

these levels may in fact be the presence or absence of the particular factor. 

The key aspect of these designs is that the factors are varied simultaneously rather 

than one at a time in order to facilitate estimating the effects of interactions 

between factors. 

A full factorial design utilizes every possible combination at all levels of all factors. 

A performance study with k factors, with the ith factor taking n2  levels, requires 

n experiments, where 

k 

= 
Hni 
	

(3.2) 

3.3.3 Analysis of Variance 

In the analysis of experiments, we want to decide whether observed differences 

are attributable to chance or if there are real differences among the means of the 

populations of the sampled values. To make this decision, we can not just rely 

on visual tests, an automatic technique is necessary. This technique is called the 

analysis of variance, usually abbreviated to ANOVA. 
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An ANOVA attempts to partition the variation into an explained and unexplained 

part and provides a guide to how much of the explained variation is genuine. The 

variation under investigation is that which is inherent in the data produced from 

an experiment. We need to know whether this variation is due to real differences 

in the measured data values, whether it is due to not measuring the same thing 

twice on different replications or whether it can be attributed to chance. 

In general, we have k independent random samples of size n from k populations. 

The jth value from the ith population is the denoted x, that is 

Populationl : x11 , x 12 .. .. , 

Population2 	X21,X22.... ,X2n 	

(3.3) 

Populationk: Xkl, Xk2,. .. , Xkn 

and we shall assume that the corresponding random variables x, which are 

all independent have normal distributions with the respective means yj and the 

common variance a 2• 

Stating this differently, we could say that the model is given 'by 

Xij - fli + e13 	 (3.4) 

for i = 1, 2,. . . , k and j = 1, 2,... , n where the eij  values are values of nk 

independent random variables having normal distributions with zero means and 

the common variance 0,2 •  The term e 3  can be attributed to experimental error, 

or to the effects of parameters which have not been included in the model. This 
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is usually written in the form 

xii = ,LL + f3 + e 3 	 (3.5) 

for i = 1,2,... , k and j = 1,2,... , n, where IL is referred to as the grand mean 

and the Pi  are called the treatment effects such that 	= 0. 

The term treatment for referring to the different populations comes about from 

the origin of the analysis of variance techniques. They were commonly used 

in agricultural experiments to compare the effectiveness of different fertilisers. 

In this work, for example, a process placement strategy could be analogous to 

different fertilisers. The opportunity to repeat experiments on computer systems 

is obviously easier than in the agricultural "field", but these powerful statistical 

techniques are still thoroughly appropriate. 

We must now test the Null Hypothesis that the population means are all equal, 

namely, that ,11 = 1L2 = ... = ILk or equivalently that 

Ho :/3=O for i=1,2,...,k 	 (3.6) 

Correspondingly, the alternative hypothesis is that the population means are not 

all equal, namely, that 

H1  : /32 0 0 for at least one value of 1 	 (3.7) 
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The test, itself, is based upon an analysis of the total variability of the combined 

data (as might have been expected from its name). The total variability of the 

combined data is given by 

- 	)2 	
(3.8) 

i=1 j=1 

where 

•• 	.x i3 	 (3.9) nk 1=1 j=1 

If the null hypothesis is true all the variability is due to chance, but if it is not true 

then part of the above sum of squares is due to differences among the population 

means. 

It can be shown (in any statistics text book e.g. [FW80]) that the above sum of 

squares can be rewritten so that 

k n 	 k 	 k n 

	

(x - ±) 2 = n((± - ) 2)  + 	( x - )2 	(3.10) 
i=1 j=1 	 i=1 	 i=1 j=1 

where 	is the mean of the observations from the ith population and t..  is the 

mean of all nk observations. 

It is usual to refer to the expression on the left hand of the identity in Equation 

3.10 as the Total Sum of Squares, the first term of the expression on the right 

hand side as the Treatment Sum of Squares and to the second term as the Error 

Sum of Squares. Here "error" denotes the experimental error, or chance. If we 
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denote these three sums of squares by SST, SS(Tr) and SSE we can then write 

SST = SS(Tr) + SSE 	 (3.11) 

This has split the measure of the total variation SST into two components. The 

second component SSE measures chance variation. The first component SS(Tr) 

measures chance variation when the null hypothesis is true, but it also reflects 

the variation among the population means when the null hypothesis is false. 

It can be further shown that we can bring the decision for rejecting the null 

hypothesis down quite simply to the following. We reject the null hypothesis 

that the population means are all equal if the value we obtain for 

F -- k(n - 1)SS(Tr) 

	

 (k - 1)SSE 	 (3.12) 

exceeds the value Fa,k_1,k(n_1). The ratio of the sums of squares follows an F 

distribution with k—i and k(n —1) degrees of freedom. c is the level of significance 

that we wish. c is the probability of rejecting H0  when it is really true. The 

assumptions underlying this analysis are described in Section 3.4.1 

The procedure described above is called the one-way analysis of variance and the 

details of this technique are usually summarised in a table of the kind shown in 

Table 3.2 - known as an analysis of variance table. 
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Source of Variation -Degrees of Freedom Sum of Squares Mean Square F 
Treatments k - 1 SS(Tr) MS(Tr) 	SS(Tr) 

- 	 k-i 
MS(Tr) 
MSE 

Error k(n - 1) SSE MSE = k(n- 1)  

Total kn-1 SST I _I 
Table 3.2: One Way Analysis of Variance Summary Table 

Combination j Response 

A 300 
B 400 

AB 200 
ci 500 

Table 3.3: Execution Times (seconds) for our Sample Program 

3.3.4 Worked Example 

A short example from a simple computer performance experiment will illustrate 

the techniques described above. Suppose we have a single program and have 

identified two parts of the program where we believe we can make performance 

increases. We do not know whether the two supposed performance enhancing 

factors will work against one another. 

We can call these two factors A and B and we want to evaluate their separate 

and combined effects on the execution time. To do this we run the program for 

every combination of levels of the two factors. Each factor is taken at one of 

the two levels, "present" or "not present". This gives us the four combinations 

A l  B, AB and the control program ci which has both factors absent (i.e. our 

original unaltered program). This will require four experiments. 

Suppose that we get the execution times shown in Table 3.3 for each combination 

of factors. 

The program runs must be repeated at each factor combination to get an average 
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Combination] Response] 

A 300 
B 400 

AB 150 
Il 500 

Table 3.4: Execution Times with Interaction 

for each value above, and to find the variation due to experimental error. The 

experimental errors can only be quantified if the measurements are repeated under 

the same factor-level combination. 

The difference in execution times with A compared with the control program, i.e. 

A - , tells us just what effect A has had. In the present case A has decreased 

the execution time by 500 - 300 = 200 seconds. By the same reasoning, B has 

decreased the execution time by 500-400 = 100 seconds. Now we must also look 

to see if there has been an interaction between A and B. An interaction is the 

phenomenon where two or more factors interact so that their combined effect is 

different from the simple addition of their separate effects. 

If there were no interaction between A and B, the result of AB should just be a 

summation of the execution time of the control program plus the effect of A (-200 

seconds), plus the effect of B (-100 seconds), which gives a total of 200 seconds. 

This is, in fact, just what occurred, so we conclude that there was no interaction 

between A and B. This will not always be the case. For example Table 3.4 shows 

that the response from the AB combination is not a simple summation of their 

individual effects. There is an interaction between the factors. 

In this simple example no replications of the experiment have been shown. Now 

let us consider a more realistic example where the experiments are replicated at 

each factor level. 



Chapter 3. Performance Analysis and Statistics 	 57 

Samples Mean 
Strategy A 77, 81, 71, 76, 80 77 
Strategy B 72, 58, 74, 66, 70 68 
Strategy C 76, 85, 82, 80, 77 80 

Table 3.5: Sample Program Data for Analysis of Variance (Execution Times) 

Assume that we have a parallel program consisting of communicating sequential 

elements. We have 3 placement strategies that we wish to compare to see which 

if any has an effect on the performance of the program. The program is run with 

its processes placed by each of the three strategies 5 times. The execution times 

for all these runs are shown in Table 3.5. The means of the samples are shown 

alongside the data. 

What we want to know is whether the difference among the mean values is sig-

nificant or whether 'it can be attributed to chance. 

We will perform an ANOVA on the data in Table 3.5. We will test the data at a 

99 percent confidence or a significance level of 0.01 (c = 0.01). So our null and 

alternative hypotheses are: 

H0  : #i = 0 for i = 1 1 2,3 

H1  : /3, 34 0 for at least one value of i 

Critical Regions: F > F.01 , 2 ,12  = 6.93 

Computations: By performing the necessary calculations (there are easy 

ways to calculate SST and SS(Tr)) we get the analysis of variance table 

shown in Table 3.6. 

Decision: Since F = 8.48 exceeds F.01 , 2 , 12  = 6.93, the null hypothesis H0  

must be rejected at the 1 % significance level, and we conclude that the 

three placement strategies are not all equally effective. 
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Source of Variation Degrees 	of 
Freedom 

Sum 	of 
Squares  

Mean Square F 

Treatments 2 390 = 195 = 8.48 
Error 12 276 = 23  

Total [14 [666  

Table 3.6: Analysis of Variance of Three Placement Strategies 

In the worked example 3.3.4 shown above it may have seemed reasonable to con-

dude that the three placement strategies are not all equally effective. There could 

be many reasons why this was not a reasonable conclusion. What if the programs 

using strategy A or C were run at a time when another user was on the system 

and was using some of the available processors? Of course it is possible that the 

differences amongst the three sets of results are due to the effectiveness of the 

strategies, but as we have noted above other factors could be held responsible. 

The point is that a significance test can only show if differences amongst sam-

ple means are too large to be attributed to chance, but it cannot say why the 

differences occurred. 

What if there were some bias introduced by the replicates or by the order in 

which the experiments were performed? This can be analysed by showing the 

analysis of variance table in a slightly different form which separates the effects 

into three separate components. Those due to the errors, the treatments and 

the replications. We can then see easily where the variation is coming from, 

whether it really is due to the treatments or just variability or bias between the 

replications. The new structure of the analysis of variance table is shown in 

Table 3.7. This new structure of the table requires two calculations for the F 

distribution test. For the treatments 

(3.13) 
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Source of Variation Degrees 	of 
Freedom 

Sum 	of 
Squares  

Mean Square F 

Treatments k - 1 SS(Tr) MS(Tr) 
- 

- SS(Tr) 
 k-i 

MS(Tr) 
MSE 

Replicates n - 1 SSR MSR = 
n-i MSE 

Error (k-1)(n-1) SSE MSE= (k-1)(n-1)  

Total [kn_1 SST  

Table 3.7: Analysis of Variance Summary Table Showing Effect of Replicates 

and for the replicates: 

F,k_i,(_1)(k_1) 	 (3.14) 

3.4 Estimation of Modelling Parameters 

Once we have performed the ANOVA it is possible to use the values calculated 

during the process to create a linear mathematical model. This model allows 

one to estimate or predict the random variable as a function of several variables. 

The estimated variable is called the response variable and the variables used to 

predict the response are called predictor variables, predictors or factors. 

It is useful to know what is meant by a good or bad model. Figure 3.1 shows 

three examples of measured data and attempted linear models. The measured 

data is shown by scattered points whilst the model is shown by a straight line. 

Most people would agree that the first two models are good because the straight 

line is relatively close to all the data points. Linear regression uses this approach 

to produce a good model. 

A regression model attempts to reduce the distance measured vertically between 

an observation point and the model line (or curve). The motivation for this is that 
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(a) A good model 
	

(b) A good model 

x 

(C) A bad model 

Er ror 

Measure 	Estimated y 

x 

Figure 3.1: Good and bad regression models 
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given any value of the predictor variable x, we can estimate the corresponding 

response variable simply reading the y-value on the model line at the given x-

value. 

The difference in height is called the residual, modelling error, or simple error. 

The terms residual and error are used interchangeably. Some of the errors are 

positive and some are negative. One obvious requirement of a good regression 

model would be to have zero overall error. Unfortunately, there are many lines 

that will satisfy this criterion. Additional criteria are needed. One such criterion 

is to choose the line that minimises the sum of squares of the errors. This criterion 

is called the least squares criterion and is the criterion used to define the best 

linear regression model. 

Mathematically, suppose that the linear model is 

= b + b1 x 	 (3.15) 

where is the predicted response when the predictor variable is x. The pa-

rameters b0  and b1  are fixed regression parameters to be determined from the 

data (via the steps in the analysis of variance). Given n observation pairs 

(xi,y1),.... (Xn,yn), the estimated response for the ith observation is 

= b0  + b1 x 1 	 (3.16) 

The error is 

(3.17) 
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The best linear model is given by the regression parameter values, which min-

imises the Sum of Squared Errors (SSE): 

 bo  
= 1=1 	

- - 	 ( 3.18) 

subject to the constraint that the mean error is zero: 

(3.19) 

It can be shown that this constrained minimisation problem is equivalent to min-

imising the variance of the errors. The regression parameters that give minimum 

error variance, are 

b 	(> 1 i  Xjyj) - 
1 - 
- 

( fl x) - 	
(3.20) 

and 

(3.21) 

where ± is the mean of the values of the predictor variables and p is the mean 

response. 
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3.4.1 Analysis of Variance - Assumptions 

There are several assumptions underlying an analysis of variance which must be 

satisfied in order for the analysis to be valid. These assumptions are listed below: 

• Errors must have constant variance over the entire range of the response. 

• Errors must be Independent and Identically Distributed (lID) normal van-

ates with zero mean. 

• The effects of factors and errors must be additive. In other words the 

underlying model must be structurally adequate. 

These assumptions should always be tested before proceeding with an analysis. 

There are a set of visual tests for verifying the above assumptions. The, first 

assumption can be tested by constructing a scatter plot of the residuals versus 

the predicted response. If a trend is visible in such a plot then one can conclude 

that the errors do not have constant variance. 

The second assumption can be tested by producing a normal quantile-quantile 

plot of the residuals. A quantile-quantile plot allows one to test whether a set of 

observations comes from a particular distribution by plotting the observed quan-

tile versus the theoretical quantile. An approximate straight line in such a plot 

indicates the observed data does indeed come from the theoretical distribution. 

In the case of an analysis of variance, if the points plotted do not form an ap-

proximate straight line passing through the origin, then the errors can not be 

described by a normal distribution with zero mean. 

Several situations could lead to the third assumption not being satisfied. Amongst 

these are if the residuals are of the same order as the response or if the response 
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covered more than a single order of magnitude. 

If any of the above assumptions are discovered to have been violated then a 

transformation of the data may need to be considered, see for example [Jai9la]. 

The modelling described here can readily be extended to any number of param-

eters, though full factorial experiments may become too time-consuming to be 

feasible as the number of parameters increases, in which case we may use frac-

tional factorial experiments which presuppose that some high order interactions 

are negligible. The advantage of either approach is that it allows flexibility to 

explore the relative merits of alternative models as predictors of performance 

quickly, as a great deal of information can be obtained with a limited input of 

resources. The approach can be extended to non-linear models by using factorials 

at three or more levels of some or all parameters. 

Due to the amount of effort involved in a full factorial experiment, usually if a 

series of experiments is to be conducted, the number of factors is decreased from 

one experiment to the next if it becomes apparent that a factor is having no 

influence on the outcome. 

3.5 Summary 

This chapter has described the general technique of computer systems perfor- 

mance analysis and the particular problems presented by parallel systems. It 

has also described the statistical techniques that are necessary for conducting a 

proper performance evaluation study. 
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The performance analysis described here is taken forward in this work by the con-

cept of an experiment and software that allows such experiments to be described 

succinctly and executed without further user intervention. This "experiment" 

software is described in the next chapter. Examples of the use of the software to 

describe experiments and the application of the statistical techniques are given 

in Chapters 5 and 6. 



Chapter 4 

A Methodology for Parallel 

Program Performance 

Evaluation 

4.1 Precis 

This chapter describes the main body of work of this thesis. It describes a 

methodology for conducting performance experiments on arbitrary parallel pro-

grams. Many interesting experiments can be conducted but the primary interest 

is with the identification of factors that affect performance and with their relation 

to placement strategies. 
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The problems particular to performance evaluation of parallel systems have al-

ready been discussed (3.2.2). In the first section of this chapter (4.2) I suggest 

how these problems can be solved through a systematic approach to parallel per-

formance evaluation. There then follow two specific sections on tools that have 

been constructed specifically to solve these problems. The experiment generator 

is presented in Section 4.3 and a multiprocessor simulation system, MIMD is pre-

sented in Section 4.4. A short summary of the details of how an experiment is 

conducted is given in Section 4.5 

4.2 Methodology 

The methodology is outlined in terms of the Systematic Performance analysis 

approach described in Section 3.2.1. 

The methodology described in this chapter can be stated very quickly. It is the 

application of designed experiments to a parallel computer system to identify 

important performance parameters. A byproduct of this is the ability to predict 

the performance of parallel programs through the use of statistical models. 

Parallel programs on parallel machines are complex systems which have a re-

sponse based on a large set of factors. The response is usually the execution 

time - but can be other metrics, such as the processor utilization. The approach 

taken here is to view the parallel system as a black box, and assume that we 

have the ability to control the factors (or variables) which enter the black box, 

read the responses from the black box and construct an empirical relationship 

from these observations. This is very similar to the approach taken in chemical 

process control and other physical systems where the systems are too complex to 
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model in their entirety and so they are modelled empirically as a black box with 

a set of inputs and outputs. 

4.2.1 Goals 

The goals of the experiment are to analyse the performance of a parallel system to 

see which factors are responsible for good or bad performance. The methodology 

allows for the investigation of an arbitrary number of parameters and an arbitrary 

system, although in practice there are limits imposed by the time required to carry 

out a large number of experiments. 

4.2.2 Define the System - Synthetic Programs 

At the outset of this study it was necessary to define the parallel system under 

study and identify workloads. It became apparent that there were not sufficient 

existing suitable parallel programs to permit a systematic performance study. 

The decision was taken to use artificial workloads, which I have termed synthetic 

programs. Stated simply such a synthetic program is a representation of a process 

based program that is intended to capture the essential qualities of a computation. 

There were other compelling reasons that made the choice of synthetic programs 

sensible. Firstly, though some real programs did exist, it is always difficult to 

understand a program fully if you have not been involved with its construction. 

But if the program is to be run in an instrumented fashion then an understanding 

of the program is necessary. At the start of this investigation it was also very 
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difficult to instrument a program and run it with different parameter settings 

automatically. This was particularly true on the machine and operating system 

combination that was available. 

The author felt that if program performance parameters were to be seriously 

investigated then a system was necessary to create programs of specific types on 

demand. This must have the ability to create programs with factors at specified 

parameter levels. 

If only existing programs were used then there would be a degree of uncertainty 

about how representative those programs were of the more general class from 

which they were taken since they were in general tailored to a given machine 

environment. A synthetic program, and the ability to create programs on demand 

at particular factor levels, gives the investigator the ability to fully explore classes 

of programs through designed experiments. 

When considering the creation of the artificial workloads or synthetic programs 

it is necessary to identify what is necessary and sufficient to describe a parallel 

program. From a programmer's point of view the most important factors may 

be the number of processes in the program and how they are connected together. 

This is expressed in the size, shape and regularity of the program graph. For each 

process in the program - the ratio of the amount of computation to communication 

is important as well as the relative sizes of processes. Considering these points 

led to the following definition of synthetic programs. 

A synthetic program is made up of two parts, a weighted graph similar to that 

described in Section 2.7.4 and one or more process templates. The process graph 

gives the shape and connection of the processes in the program along with a 

set of weights for the processes and edges. The weights of the process graph are 
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meaningless until a process template is added. The process template describes the 

behaviour of the processes in the program. Each process template is responsible 

for bringing to life the weights associated with the graph. 

Each node must be given a process template, but the same process template need 

not be given to each node in the graph. The weights associated with the edges 

radiating from a node are interpreted by the process templates associated with 

that node in appropriate ways. 

This weighted process graph provides a way of describing a program indepen-

dently of how the program is to be executed. This is an important point in 

the design of the methodology. The process templates are usually dependent on 

the experimental domain. For example, a process template could be part of a 

simulation program or it could describe a process in a real program. 

4.2.3 Example Synthetic Program 

A complete synthetic program is shown in Figure 4.1. This shows a simple 

program graph with just two nodes and a process template written in pseudo code. 

Each process in the program computes for a period specified by the weight of the 

node and then exchanges data with its neighbour. Note that the send and receive 

of the messages is performed in parallel and so the program will not deadlock. 

This is signified by the indentation of the statements beneath the PAR statement 

in a notation that is reminiscent of the Occam programming language [Inm89a]. 

The SEQ statement means that all lines with the same indentation below this 

statement are executed sequentially like a normal programming language. 
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OO 
Weighted 
Program 
Graph 

SEQ 
Compute (Wi) 
PAR 

Send (W2) 
Receive 

Process 
Template 

Figure 4.1: A Simple Synthetic Program 

This synthetic program describes a program where one process, P2, will spend 

a large majority of its time waiting on process P1 to finish its computation and 

communicate. This process graph and the same process template could be exe-

cuted in a simulation system or as a real program running on a real machine. 

4.2.4 Performance Metrics 

The choice of metrics for parallel systems has already been discussed in Section 

3.2.2. All metrics are suitable as long as they can be measured accurately, and 

provide useful feedback to the programmer. The most useful metric is usually 

wall clock time of program execution. This gives the speed of the system. The 

second most common metric is processor utilization. This gives a measure of how 

well the parallel processing resource has been used. The two metrics are obviously 

related, for example, if for a fixed number of processors and a sample program, 

the execution time can be decreased by better utilizing the processing resource 

available. This is usually achieved by a better placement of the processes or a 

reordering of communication events. 

Using synthetic programs does lead to a difficult choice of performance metric. 

The use of synthetic programs (possibly randomly generated) means that the 
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process templates have to be constructed in such a way that the program will 

not deadlock. This also produces programs that do not terminate as the process 

templates have a repeating - nature. With programs that do not terminate there 

is no concept of wall clock time. To get around this problem I will use the total 

number of clock cycles computed by the program in the fixed simulation time 

as the metric. Where appropriate I will show this as a percentage of the total 

amount of time available. The total amount of computation time possible is the 

product of the simulation time and the number of processors. 

4.2.5 Factors and Their Values 

The methodology allows for an arbitrary number of parameters to be specified to 

the experiment generator. These parameters are then combined in a full factorial 

experiment. If each factor is taken at two levels the number of experiments is 

given by 

Number of Experiments = 2cr 	 (4.1) 

where k is the number of factors and r is the number of replicates of each exper-

iment. 

The particular factors to be investigated are chosen by the user. Simple obvious 

factors have been chosen for the initial experiments, e.g. the number of processes 

in the program, the average connectivity of the processes, the average weight of 

the processes and the weight of communication. 
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4.2.6 Evaluation Technique 

The evaluation technique for the methodology can be chosen by the user. All that 

is required is that the evaluation process takes a description of a parallel system, 

program graph, hardware description and mapping, and executes the program, 

returning the requested metrics. 

As previously discussed, the evaluation technique can be analytical modelling, 

simulation or measurement on a real system. The methodology will work with 

any of these evaluation techniques. It has been successfully used with simulation 

and real systems. 

The actual execution of parallel programs on real parallel systems is sometimes 

a long and tedious process and it is not always possible to measure the desired 

metrics. To get around this problem most of the evaluation techniques used were 

simulation based and real programs were only used for validation purposes. 

4.2.7 Select the Workload 

Finding standard workloads for parallel systems is not an easy task. This is be-

cause of the diversity of the systems and the diversity of programming languages 

used. It is difficult to get a representative sample of programs and for this reason, 

as well as those previously described I chose to generate synthetic programs. This 

meant that a large range of programs that were easily available and were simple 

to understand were accessible to me. Other reasons for this decision have also 

been outlined in Section 4.2.2. 



Chapter 4. Methodology for Performance Evaluation 	 74 

The actual generation of the synthetic programs graphs is dealt with in more 

detail in Section 4.3.3. There is one peculiarity with using synthetic parallel 

programs. It is necessary to ensure that the programs are deadlock free. This is 

based on the assumption that the programs under investigation from a real system 

would be deadlock free so any synthetic programs should also be deadlock free. 

The assumption is made because this work is aimed at performance enhancement 

of "correct" programs not debugging of developing programs. Fortunately the 

class of programs described as loosely synchronous in Section 2.6.2 are most 

easily written in a deadlock free manner. This is achieved by having two main 

phases, one of computation and one of communication. The communications 

occur in parallel, much like the simple process template shown in Figure 4.1 

4.2.8 Experimental Design 

The experimental design is based on a full factorial statistical experiment. To 

help the user of the methodology an experiment generation tool called eg was 

created (described in Section 4.3). This allows the user to clearly specify the 

parameters under investigation and what levels they would take. The output from 

the experiment generator is a set of experiment trials (or experiment instances) 

which can then be evaluated within an experimental domain. The experimental 

domain can be a simulation environment or a real parallel processing system. 

The second tool that has been developed is a simulation environment called MIMD 

for simulating arbitrary parallel programs on distributed memory MIMD com-

puters. I will now describe these two tools in more detail. 



Chapter 4. Methodology for Performance Evaluation 	 75 

4.3 The Experiment Generator 

Before describing the experiment generator we must first make some definitions 

clear. 

Experiment An experiment is the task of investigating the effects of certain 

parameters characterizing a parallel program or its hardware environment 

on the system performance. The experiment designer must have a clear idea 

exactly what it is they want to investigate before starting the experiment. 

It should also be noted that nothing can be inferred about any parameter 

which does not vary during an experiment. One experiment consists of one 

or more execution instances (or experimental trials). 

Experiment Design The experiment design states in a formal manner what 

parameters are to be varied in the experiment. The experiment design is 

given in a language which is interpreted by the Experiment Generator Tool 

(eg). 

Experiment Design Language This language is used to articulate the experi-

mental design in a way that is intelligible to a human being and is also input 

to the experiment generator program eg. This language is fully defined in 

the program documentation for eg [Ski92] and the syntax for the language 

is described in Appendix A. 

Execution Instance An execution instance is one particular setting of the van-

able parameters described in the experimental design. An experiment in-

stance is the input for the modelling engine and corresponds to one execu-

tion of a parallel program. 

Modelling Engine The modelling engine takes one experiment instance and 

interprets it in a meaningful manner. It will produce results that can be 
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processed and combined as part of the results of the whole experiment. 

An experiment design describes a set of program graphs, a set of processes and 

communication channels connected with this graph, and a set of mapping strate-

gies that will be used to map the programs to the hardware. 

From this description of the experiment a set of individual experiment instances 

are created. An experiment instance consists of a particular program graph, a 

particular hardware graph, and a process mapping. 

The program is described by a weighted graph as previously discussed. The 

meaning for these weights is provided by the modelling engine. The weighted 

graph can be generated by the experiment generator or it can be a user defined 

graph. 

A hardware graph is described by a set of nodes and links. This can be one of 

the types of hardware configuration provided by eg (e.g. hypercube, mesh ) or a 

user defined type. These must of course be supported by the particular modelling 

engine which is being used. 

The process mapping is just a simple onto map from the set of processes to the 

set of processors. This mapping is generated by one of the mapping strategies 

provided by the experiment generator. The user can add their own mapping 

strategies to the system. 

An experiment instance is domain independent because it is just a description of 

a parallel program through the use of a weighted graph and other values - it does 

not specify how these weights are interpreted, as there is no program code in an 

execution instance. 
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The execution instance is designed so that it can be taken by a modelling engine 

which will execute that particular instance in a particular modelling domain. This 

gives the user a certain amount of flexibility. Different process models can be used 

for the nodes of the weighted graph. The weights can be interpreted in different 

ways by different process models. It also allows for similar experiments to be 

conducted in different domains. For example it is possible to write a modelling 

engine in the MIMD simulation language ( several have been written ) but it 

would also be possible to write a C or Fortran program using Meiko's CSBuild 

environment [Mei92] (or similar multiprocessor programming system) to do the 

same thing. 

The steps of this experiment are shown graphically in Figure 4.2. eg provides 

the left hand side of the diagram by generating the set of execution instances. 

The modelling can be provided by a variety of systems, though mostly it has 

been provided by MIMD and the statistical analysis is performed either by using 

standard statistical packages or by use of a tool developed by the author for this 

specific purpose. 

4.3.1 An Example Experiment using the Experiment Gen-

erator 

Imagine that we have a parallel program and would like to investigate what would 

happen to the program if we made some changes to it. Our program is a regular 

grid decomposition program with boundary swapping. Each process computes 

for a fixed time step and then swaps values with its four neighbours. We want 

to investigate what will happen if instead of swapping data at the end of every 

time step we swap data at the end of every other time step. This requires us to 
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send larger packets at the end of two time steps. Let us say for simplicity that 

these packets have to be twice as large. 

That is our experiment design. Now we need to write this down in a formal 

manner that the experiment generator can understand. First of all we need to 

define a process. This process will have one parameter which will define the 

amount of computation that the process performs before swapping boundary 

values. Our experiment design says that this parameter is to take two values, one 

being twice as large as the other. 

This can be written in the experiment design language through the use of a 

process template, as follows: 

Begin Define Processes 
Processi { mt compute-time [ 1000, 2000 ] } 

End Define Processes 

This states that we have defined a process called Processl which has one integer 

valued parameter called compute-time. This parameter is to take two distinct 

values over the experiment. These values are 1000 and 2000 units. The units are 

meaningless at this stage. They only have significance to the modelling engine. 

This process definition has shown one of the major features of the experiment 

generator, namely the varying of parameters over the experiment. If no other 

parameters were varied in this experiment, then this would create exactly two 

experiment instances. These would be identical except for the value of the pa-

rameter compute-time. 

Following the process definition we need to give communication channel defini- 
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tions with which to link together these processes. In a similar manner we can 

define a channel with one parameter. This parameter will specify the size of the 

data packet to be sent down this channel. Our experiment design requires this 

to take two values, one double the value of the other. This could be written as: 

Begin Define Channels 
Channell { mt pkt-size t 50, 100 J } 

End Define Channels 

That describes all the process and channel types that are necessary for this ex-

ample experiment. Obviously, more than one process or channel type could be 

defined if necessary. 

It is now necessary to specify the shape of the program graph. The program is a 

regular graph of degree four. The experiment generator will randomly generate 

such a graph'. Random graphs can be generated in a variety of ways. See Section 

4.3.2. We also need to describe the hardware on which we want our program 

to be modelled (simulated). We can use one of the topologies provided by the 

experiment generator for this. We want to run our program on a ring with twenty 

nodes. This would lead to the following description: 

Begin Graph Parameters 
Graph Type Redfield 
Degree 4 
Number Nodes 40 
Hardware Ring 20 

End Graph Parameters 

Now all that is left to describe is how to map the program graph onto the hardware 
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graph. To do this one or more placement strategies provided by the experiment 

generator is specified. These strategies are given integer identifiers. A full list 

of these strategies can be found in documentation for eg [Sk192]. In this case 

placement strategy number one, a round robin process allocation is used. This is 

described as follows: 

Begin Placement 
Algorithm 1 

End Placement 

Figure 4.3 shows all the separate parts of the design combined together to make 

the complete experimental design for our example investigation. 

Three extra sections have been added to complete the design. The section enti-

tled Allocate Processes tells the experiment generator that all the processes 

in our random generated graph are to be identical and they are to be of type 

Processl. A similar specification is done for the channels. There is also a sec-

tion entitled Modelling Parameters. These are parameters which are important 

to the modelling engine, such as the total simulation time, and do not affect the 

generation of the experiment instances. 

Now that a full experiment design is complete, it can be presented in a computer 

file to the experiment generator program. This would then generate all our 

experiment instances. It does this by creating random experiment instances for 

a full factorial experiment based on all the parameters which are varying. In our 

case, only two parameters are varying, at two levels. This gives four experiment 

instances to be passed to the modelling engine. 
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Begin Experiment 
Begin Define Processes 

Processl { mt compute-time [ 1000, 2000 J } 
End Define Processes 
Begin Define Channels 

Channell { mt pkt-size [ 50, 100 ] } 
End Define Channels 
Begin Graph Parameters 

Graph Type Redfield 
Degree 4 
Number Nodes 40 
Hardware Ring 20 

End Graph Parameters 
Begin Allocate Processes 
Map Processi to 100 percent 

End Allocate Processes 
Begin Allocate Channels 

Map Channell to 100 percent 
End Allocate Channels 
Begin Placement 

Algorithm 1 
End Placement 
Begin Modelling Parameters 

End Modelling Parameters 
End Experiment 

Figure 4.3: Example Experimental Design 



Chapter 4. Methodology for Performance Evaluation 	 83 

4.3.2 Experiment Design Language 

Some of the experiment design language has been described in the previous ex-

ample. This section describes the language and the interpretation of it in more 

detail. The experiment design can be split into two parts - there is the part 

concerned with the experiment instances and there is the part concerned with 

the modelling engine. The modelling parameters tend to be domain dependent 

and usually do not vary. 

Experiment Instance Parameters 

Varying Parameters It is through the varying of parameters in the experi-

ment design that the user generates a set of execution instances. If parameters 

are not varied then just one execution instance is generated. This is useful if you 

want to test your modelling engine on a single execution instance or if you want 

to make observations on a specific known program 

Parameters are varied by specifying more than one value for them in the exper-

iment design. A parameter can either be a fixed value, a range of values with a 

constant difference or a list of disjoint values. A parameter which takes a con-

stant value or a list which contains only one element are essentially the same 

thing. A parameter which only takes one value is not strictly speaking a varying 

parameter. 

Note that it is easy to generate a lot of experiment instances, but the instances 

are never generated until you need them. The experiment generator will therefore 

inform the user of how many experiment instances it intends to create and will 

ask if it should go ahead. 
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Program Graph This can either be a user defined graph or it can be generated 

for the user by a random graph generation technique. After the graph has been 

generated the weights are added to the graph. 

If the graph is entered by the user then that graph size and shape is fixed for the 

set of experiments. If the graph is to be generated randomly, then the degree (the 

number of edges per node) and the number of nodes can be one of the parameters 

for the experiment. 

4.3.3 Random Graph Generation Strategies 

For the creation of synthetic programs, introduced in Section 4.2.2, it is necessary 

to have some graph generation algorithms. The experiment generator contains 

three example graph generation strategies; two regular graph generation strate-

gies and an irregular random graph generation strategy. The graphs produced by 

these strategies give the shape for the synthetic program into which the program 

parameters are laid. Two regular graph generation strategies were provided be-

cause though one was quicker: it was limited in the degree of the graphs that it 

could create. 

The strategies are now introduced in turn. Some sample graphs generated by the 

three strategies are shown in Figure 4.4 
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Redfield Regular 	Random Regular 
	

Random Irregular 

Figure 4.4: Example Regular Graphs, 8 Nodes, Degree 3, implies 12 Edges 
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Random Regular Graphs 

A k-regular graph is a graph where each vertex has the same number of edges. 

There are some simple properties that follow from this definition. 

• For a n-vertex k-regular graph the number of edges is nk 

• For a n-vertex k-regular graph, both n and k can not both be odd. 

• The degree k must be less than the number of nodes n. 

Random Regular Graph Generation due to Redfield This algorithm due 

to Redfield [Pa185] can be used to generate a k regular graph for any k, 3 < k < 5. 

This is a straightforward approach which makes connections randomly between 

the nodes, ensuring that the specified degree of the graph is not exceeded. 

A free list of nodes that have a degree less than the desired degree must be 

maintained to ensure that the graph is generated in a reasonable time. The 

algorithm is not given here in detail as it is fairly straightforward. 

Random Regular Graph Generation due to Jerrum and Sinclair This 

algorithm due to Jerrum and Sinclair [JS88] creates a k-regular graph of any de-

gree. The algorithm first creates a graph of the required degree deterministically 

and then manipulates it randomly for a number of steps. To ensure that the 

graph has reached uniformity the number of steps usually chosen is n 2 k 2 . This 

also gives the timing characteristics for the algorithm. The algorithm is given in 

more detail in Figure 4.5 
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Input n, k and Number of Steps 

Generate Deterministic k-regular graph 

/* Manipulate Graph Randomly *1 
steps = 0. 
finished = FALSE 
while not finished 

if graph is k-regular then 
remove edge selected at random 

else if one vertex has degree k-2 then 
find non-adjacent vertex and remove edge 
connect vertex to non-adjacent vertex 

else 1* Graph has two vertices of degree k-i *1 
if random(0:1) > 0.5 then 
connect the two vertices to non-adjacent nodes 
disconnect an edge from the two newly connected nodes 

else 
connect the two vertices together 
if ( steps > Number of Steps ) 

finished = TRUE 
end if 

end if 
end if 
steps = steps + 1 

end while 

Figure 4.5: Algorithm for Generation of k-regular Graph due to Jerrum and 
Sinclair 
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Input n,and k 

Number of Edges = nk/2 

for i1; ± <= Number Edges; i++ 
X  = random(1:n); y = random(1:n) 
Define edge connecting x and y 

Figure 4.6: Algorithm for Generation of Irregular Graph 

Name ]_Parameter(s) 
Mesh Length 	Width 
Hypercube Dimension 
Pipeline Length 
Ring Size 
Star Size 
Tree Depth 	Arity 
Random Size 	Links 

Table 4.1: Built-in Hardware Types 

Random Irregular Graph Generation This algorithm was devised by the 

author to create a random irregularly connected graph that has a specified average 

degree. The algorithm is outlined in Figure 4.6. The number of nodes is specified 

and a degree is given which is taken to be the average degree of the graph. From 

this the number of edges is calculated and then these edges are connected to 

nodes at random. The nodes are selected with replacement so it is possible to 

have an edge connecting a node to itself. This is not permitted in the previous 

two algorithms. 

Hardware Graph Only one hardware graph is allowed per experiment at the 

moment. This restriction is based on the author's interests and could be changed. 

The user can ask for one of the built-in hardware types or can enter a particu-

lar wiring configuration by using a user defined graph. The available hardware 

topologies are shown in Table 4.1. 
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Begin Define Processes 
Fred { mt Parameterl 10 

double Parameter2 20 to 30 step 0.5 

} 

End Define Processes 

Figure 4.7: Process template in the Experiment Design Language 

Placement Algorithm A number of placement algorithms have been imple-

mented. At least one of these placement algorithms must be chosen by the user 

for each experiment. The current placement algorithms are those used in the 

experiment described in Section 6.3. These placement algorithms have all been 

coded in the 'C' programming language and more can be added to by users of 

the experiment generator. This is described in the documentation [Ski92] where 

the placement strategies are also described in more detail. A description and 

investigation of several placement strategies is given in Section 6.2. 

Process and Channel Weights The user is allowed to define a number of 

process templates in the experiment design. The user also controls how these 

processes are actually allocated to the program graph specified above. A process 

template has a name and a set of named numeric parameters. The numeric 

parameters can be of type integer or double. An example process template in 

the experiment design language is shown in Figure 4.7. This shows a process 

which takes two parameters one of which is varied by the use of a lower and 

upper bound and a step size. It has already been shown how a fixed set of levels 

can be used instead. The other is constant. This process definition alone would 

generate twenty experiment instances. The channel weights are described in a 

similar fashion. 
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This process template is interpreted by the modelling engine. This is described 

in Section 4.3.5. 

Assigning Templates to the Software Graph Process and channel tem-

plates are randomly assigned to the software graph through the use of a percent-

age specification. Say, for example, that we wanted to assign the process defined 

in Figure 4.7 to half of the process nodes, then the following would do that: 

Begin Allocate Processes 
Map fred to 50.0 percent 
Map bert to 50.0 % 

End Allocate Processes 

This also allocates a process called bert to the other half of the nodes in the 

graph. The word "percent" or the symbol '%' are equally valid. 

Modelling Parameters 

The other parameters are all fixed value parameters. These are used to control 

the execution of the experiment instances and are usually domain related. For 

instance, for modelling through the MIMD simulation environment a total simula-

tion time, the name of the modelling engine executable and the amount of swap 

space to be used are all given. 
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4.3.4 Experiment Generator - Summary 

To summarise the functionality of the experiment generator: it allows the in-

vestigator to construct experiments to investigate the effect of parameters on 

performance. In particular, it allows the investigator to study the performance 

of randomly generated programs from a given class of parallel programs. The 

class of programs is defined by the process templates and the random selection 

of particular instances from that class is performed by the experiment generator. 

The parameters can be varied to include real programs within that range. 

It will be shown that the randomly generated programs behave in a similar way 

to real programs (5.3.1) and so the results for this random selection imply that 

the results will be valid for all programs of this class. This would not necessarily 

be the case if a fixed set of test programs were used. It would be difficult to 

justify an inference about any other programs except those in the test set. 

The experiment generator allows the investigator to choose parameter levels and 

conduct experiments and then apply standard statistical tools to the results. This 

would not be possible with a single fixed existing program in the same way. 

4.3.5 The Modelling Engine 

A modelling engine must be able to take an experiment instance as input, generate 

an executable program, execute the program and then report its results. 

The modelling engine can be a real parallel program which is able to emulate the 

parallel computation specified in the execution instance or it can be a simula- 
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tion engine which takes the instance and simulates the activities of the program 

executing in the particular environment specified in a statistical sense. 

The modelling engine also provides the process definitions for the nodes on the 

graph. An execution instance just defines the shape of the graph and a set of 

weights associated with the nodes and edges. The modelling engine describes 

how each of these weights is to be interpreted. In this way the same execution 

instances can be used in different domains as well as in the same domain by 

different modelling engines. 

The modelling engine must be constructed when the experiment is designed. The 

experiment design language allows different types of processes to be defined and 

this information is passed through to the modelling engine in a format described 

in Appendix A. 

4.4 The MIMD Modeling System 

MIMD is a discrete event simulation package tailored specifically towards the 

modelling of process based computations on distributed processor systems. It 

is built on top of the DEMOS ( Discrete Event Modeling on Simula) package 

[Bir86] and hence on top of the Simula programming language [Com87]. MIMD 

runs on workstations for which a Simula compiler is available. 

MIMD is not itself a parallel program. This allows the simulation system to have 

global system knowledge about the simulated parallel system. This is difficult 

to achieve for a parallel simulation system. Simulation of individual experiment 

instances can take advantage of multiple workstations as each instance is inde- 



Chapter 4. Methodology for Performance Evaluation 	 93 

pendent. 

MIMD is the usual acronym for Multiple Instruction Multiple Data stream parallel 

computers and hence was the obvious name for a simulator of those type of 

machines. 

The investigation of performance factors affecting parallel programs requires a 

general purpose simulation environment. When the investigation was started, it 

was unknown which parameters were to be investigated, or in what detail, and 

so the flexibility and power of a programming language was needed. 

4.4.1 MIMD - A Brief History 

At the time this project started, the University of Edinburgh had just installed 

its first distributed memory multicomputer. This was an Inmos T800 Computing 

Surface from Meiko which grew to house 400 processors and came to be known 

as the Edinburgh Concurrent Supercomputer (ECS) 1• 

The ECS had no operating system as such. All programming had to be done in 

Occam 2 [1nm84, 1nm88] which was based on the work of Hoare and his Commu-

nicating Sequential Processes or CSP [Hoa84]. All programming, compiling, and 

running of programs was performed in the Transputer Development System. 

A CSP based simulator package already existed [Gui88]. The author inherited 

this package on his arrival at Edinburgh and decided to use it as part of the 

project. Major changes were made to the message passing, routing and topology 

'Sadly, this machine was withdrawn from service in July 1994. 
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Figure 4.8: Example of Class-Based Inheritance 

code for both "real" and "simulated" message passing. The process and subpro-

cess models were completely rewritten. Most of the three and a half thousand 

lines of Simula code have been rewritten at some point in the last five years. 

The Simula programming language 

Simula is a general purpose programming language with concurrency imple-

mented by co-routines. It was the original language to introduce the class con-

struct, which made it the first object-oriented language. The class construct is 

an extension of the abstract data type that allows procedures and variables to be 

held in a single module. 

Classes can be declared in a hierarchy where classes lower in the hierarchy inherit 

all the procedures and variables of the classes above them. For example in Figure 

4.8, C3  inherits from C 2  which inherits C 1 's procedures and variables. 

A class object is created by the statement 

new <class name> ( <parameters> ) 
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Pointers are used to access the values and procedures in the class structure. A 

pointer in Simula is known as a reference. So for example 

ref (my-class) my_ptr; 

means that my_ptr is a pointer or reference to a class of type my-class. Simula 

also provides the ability for a class to detach or suspend itself and then resume it-

self later. This ability makes Simula far more applicable than most programming 

languages for simulation. 

Simula also provides the ability to write packages that can be separately compiled, 

then prefixed in a Simula program. Then the program inherits all the concepts 

defined in the package. This was the technique used to create the MIMD package. 

For a detailed description of the Simula programming language see Pooley [Poo85] 

or Birtwistle [Bir86]. 

4.4.2 The DEMOS system 

DEMOS is an acronym for Discrete Event Modeling on Simula. It is implemented 

as a Simula prefix block and can be separately compiled to the user's program. 

To use DEMOS the user simply prefixes their main program with DEMOS and 

then the program inherits all the procedures and classes defined in DEMOS. The 

user's program may declare new classes as being sub-classes of a DEMOS class 

and they will inherit the attributes of that DEMOS class. 

Some classes provided by DEMOS are: entity which is a basic modelling pro- 
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cess, res or bin which are finite resources, and waitq which is an entity-entity 

synchronization device. Together with these, DEMOS provides a set of data 

collecting classes like histograms and tally tables. 

DEMOS provides an internal event list and software to maintain it. Users' pro-

grams can schedule entities and have them compete for resources. DEMOS also 

provides a queuing mechanism for holding entities outside the event list. As 

well as this, DEMOS provides random number generators for various statistical 

distributions. 

DEMOS keeps a reference table of all the jobs it creates and at the end of the 

simulation provides an automatic reporting mechanism for all these objects. Since 

DEMOS is completely written in Simula, all DEMOS programs inherit all Simula 

properties. For an introduction to DEMOS see Birtwistle [Bir86]. 

The Structure of MIMD 

The implementation of the MIMD model has been directed towards providing an 

application package that extends the DEMOS modelling system into the special-

ized area of modelling distributed computation. 

The prefix classes DEMOS and MIMD are separately compiled and the MIMD class 

is used as a context just as the DEMOS class is used as a context. To use the 

system, the user's program must be prefixed by the MIMD block. A template for a 

typical user's program is given in Section 4.4.2 where a demonstration program 

is analysed in detail. 

Note that the user's program only requires to prefix the MIMD class since the 
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MIMD context inherits all the attributes of the DEMOS system. The MIMD class 

contains all the tools which the user's program may need to simulate a distributed 

computation. 

MIMD provides the performance modeller with a set of high level class definitions 

with which to model process based computations. These are the process and 

channel entities, hardware components (processor and link resources) and the 

means to combine, manipulate and refine these components through the use of 

the Simula language. 

Within the process construct four main primitives are provided for the perfor-

mance analyst. These are: compute, sleep, send and receive. These are based 

on the CSP model of computation [Hoa84]. Though MIMD does not follow this 

model of computation exactly, it simulates the main features i.e. there can only 

ever be one message outstanding on a communication channel and messages use 

blocking send calls for message passing. MIMD also provides the modeller with 

a process to process communications harness. This was provided in software on 

the ECS by several message passing harnesses, and MIMD can be programmed to 

simulate their operation. The modeller does not have to explicitly place process 

channels onto hard wire links. The use of the link resources is performed by the 

(simulated) communications harness. The communications harness is a straight-

forward table look up routing strategy. This is possible within MIMD because it is 

a sequential simulation environment and so global knowledge of the states of all 

entities within the simulation can be known. This opportunity for global knowl-

edge is not open to real parallel systems and is difficult to obtain for distributed 

simulation systems. 

The performance modeller constructs a Simula program using the MIMD classes. 

The performance of any real parallel program can be represented within the MIMD 
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system using the above constructs. The program can be a complete model of a 

real program - even including branching and looping due to the fact that it is 

coded in the Simula programming language. 

The MIMD system provides a simple hardware model similar to the Inmos Trans-

puter family [Inm89a]. This assumes that there is a hardware scheduler and so 

usually there is no operating system overhead to be built into the model although 

it has been extended to support process migration [Phi94]. 

Performance characteristics are available from within the MIMD system by using 

the DEMOS data collection devices (histograms, charts) or by using user-defined 

collection routines. The performance of any part of the simulated program or 

hardware is open to scrutiny and subsequent analysis. 

An Example MIMD Program 

The easiest way to get an impression of the MIMD language is to look at an 

example program in some detail. 

Program Description 

This section describes an example program which can he used to demonstrate 

the package. The simple program has two communicating processes. The first 

process continually sends and receives a message. The second process continually 

receives a message, computes and then sends back a reply. This is a simple 

deadlock free program. 
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The example program is shown in Figure 4.9. The line numbers have been added 

for descriptive reasons and would not usually be present. 

The whole of the program is wrapped in a block of code like this 

Begin 
External Class MIMD; 
MIMD 
Begin 

...User's Program Here 
End; 
End; 

This wrapper is used for every MIMD program. 

Lines 8-11 are standard declarations that are used for most MIMD programs. 

These declare pointers to objects that are necessary to build a simulation model. 

These pointers are filled in further on in the program with objects of suitable 

types. Here we are declaring a pointer to a Domain, a Program, a Pattern and a 

Hardware -des cript ion object. Line 12 declares a pointer to one Channel object. 

Now we need to describe some subprocesses. We have two types of subprocess 

in our example program. One is called SendFirst, the other RecvFirst. They 

continually send a packet of size 512 bytes backwards and forwards along a chan-

nel. RecvFirst computes for 100 time units in between receiving the packet and 

sending it back. SendFirst is declared in lines 14-21. The While TRUE construct 

ensures that this process will never terminate. Note the passing of the channel as 

a parameter to this subprocess. This shows the flexibility of using a programming 

language to describe these models. 
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1 Begin 
2 
3 External class MIND; 
4 
5 MIND 
6 Begin 
7 

	

8 	ref (Domain) Seat; 
9 ref (Program) Prog; 

	

10 	ref(Pattern) Wiring-structure; 

	

11 	ref (Hardware_Description) ECS; 
12 ref(Channel) Comm-Chan; 
13 
14 Modell-Subprocess Class SendFirst(Cj); 

	

15 	ref (Channel) Cl; 
16 Begin 
17 While TRUE do 

	

18 	Begin 	Send(C1,512); 

	

19 	 Receive(C1); 
20 End; 

	

21 	End; 
22 
23 Modell-Subprocess Class RecvFirst(C1); 

	

24 	ref (Channel) Cl; 
25 Begin 
26 While TRUE do 

	

27 	Begin Receive(C1); 

	

28 	Compute(100); 

	

29 	Send(C1,512); 

	

30 	End; 

	

31 	End; 
32 
33 Ref(SendFirst) Send; 
34 Ref(RecvFirst) Recv; 
35 

36 ECS :- New Hardware_Description(ECS,5000,0,3/40,o); 
37 

	

38 	Wiring-structure :- NewPatternflesh("Meiko,2,2); 
39 

	

40 	Seat :- New Domain(Wiring_Structure,ECs); 
41 

	

42 	Prog :- new Program('Nessage", 2); 
43 
44 Comm-Chan :-Prog.DeclareChannel(1,2); 

	

45 	Send:- New SendFirst('SendFirst,Conim_Chan); 
46 Recv:- New RecvFirst(RecyFjrgt" ,Coii_Chan); 
47 
48 Prog.DeclareSubprocess(1 ,Send); 
49 Prog.DeclareSubprocess(2Recy); 
50 

	

51 	Seat.Load(1,Prog,1); 

	

52 	Seat.Load(2,Prog,2); 
53 

	

54 	Start (Seat ,Prog,30000,FALSE); 

	

55 	Reporting(Seat,Prog); 
66 
57 End; 
58 End; 

Figure 4.9: The Demonstration Program 
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RecvFirst is described in lines 23-31. Note the difference between the two sub-

processes. RecvFirst has a Compute statement in it. It should also be noted that 

this period of computation does not have to be a fixed period. It could be a 

sample from a distribution. For example the lines 

Ref (RDist) S; 

S 	New Normal ('N,5,1); 

declare a normal distribution of mean 5 and variance 1. To compute for a period 

selected from this distribution then the code is 

Compute(S .Sample); 

It should also be noted that the subprocesses are not limited to infinite repeat 

loops. Any Simula programming structure can be used to characterize the sub-

process. Lines 33 and 34 declare two pointers one to each of the new subprocesses 

just defined. 

The next task is to describe the objects for the simulation. Line 36 describes the 

hardware on which the program will run. It says that processor type will be ECS. 

These processors will have a timeslice period of 5000 units, a soft channel transfer 

time of zero, a hard channel transfer ratio of 3/40 and a strategy computation 

time of zero. These numbers are examples chosen to be close to that for an Inmos 

T800 Transputer. See The Transputer Data Book for more details [Inm89aJ. 

Line 38 says that the processors will be connected in a two by two mesh. Note 

that the word New is juxtaposed to PatternNesh, this is because it is an MIMD 
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procedure and not just a Simula New statement. MIMD provides several built in 

patterns of processor connectivity. The programmer is also able to describe any 

arbitrary connectivity. 

Next the seat is declared, this is a set of processors linked together in a certain 

fashion. The term seat is a historical term relating to the fact that you used to 

have to physically sit at the computer in front of the processors you were using. 

So to declare this you need say what processor type ( ECS  ) and what pattern 

is being used (i.e. Wiring_Structure). This is done on line 40. This concludes 

the description of the hardware. Next comes the software. 

A modelling entity program called Message is created on line 42 which is to 

have two separate processes. There is a communication channel which is to link 

processes 1 and 2 declared on line 44. 

Lines 45 and 46 declare two subprocesses one of type RecvFirst and one of type 

SendFirst. They both take Coirun_chan as a parameter. All that now remains is 

to declare these processes to the program. Lines 48 and 49 do this. 

The hardware and software specifications for the simulation are now complete. 

All that remains to do is to load the software up onto the hardware and run it. 

The loading is achieved by lines 51 and 52. This says load process 1 which is to 

be found in Prog onto processor 1. The same for process 2 and processor 2. Note 

we are only using two out of our four processors. To start the simulation the 

subroutine Start is used. This starts Prog executing on Seat for a simulation 

time of 30000 time units with tracing turned off. 

After the simulation, reports on the hardware and software are printed out. This 

gives a lot of data and it is not envisaged that the user would use this procedure 



Chapter 4. Methodology for Performance Evaluation 	 103 

all the time, but would be more selective in using report procedures. Most objects 

in MIMD have reporting procedures. 

The reporting is verbose and statistics about all entities and resources in the 

system are available. Usually some subset of the available statistics are used. 

The most popular statistics for performance analysis are the processor utilization 

and the number of computation cycles performed. 

4.4.3 MIMD - Summary 

The MIMD modelling system provides the performance modeller with a general 

purpose tool for creating performance models of parallel computations and ma-

chines. The performance model is created in the Simula programming language. 

This gives great flexibility to the system. It is straightforward to extend the 

system, thanks to the object oriented nature of Simula, to provide a different 

processor description or a different message routing strategy. 

MIMD models a lot of detail. Each message transfer and computation cycle is 

measured and collated. Unfortunately this level of detail and flexibility leads to 

long simulation runs. This can be on the order of several hours for a complex sim-

ulation (up to 200 processes on a 64 processor domain) of 1 minute of simulation 

time. This could be overcome by using a faster processor of course, recoding in 

a faster language without garbage collection (e.g. C++) or even reimplementing 

MIMD as a parallel simulation system. 
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4.5 Conducting an Experiment 

Once an experiment and the modelling domain are decided upon the experiment 

can be conducted. I have created a set of shell scripts that help this process. These 

scripts are combined with the tools already described to allow the experiment to 

proceed almost automatically. The necessary steps and how they are performed 

are outlined below. These steps allow one to progress from the left to the right 

of Figure 4.2. 

The experiment generator will create a directory named after the experiment 

description file. This directory contains a set of numbered files that are the 

individual experiment instances. It also creates a shell script that can be used 

to execute the modelling engine for each individual experiment instance. This 

script can be split into separate portions if the user plans to run the simulations 

on separate workstations at the same time. 

The modelling engine produces a separate result file for each experiment instance 

and for each replication of that instance. Each result file has the desired metrics 

in it. Once all the experiments have completed another shell script can be used 

to create a table of data which lists each combination of factor level against the 

results for each replication. This file can then be used as input to a standard 

statistical package or to a tool that the author developed for producing statis-

tical tables and other output in the form of JTEX  or ASCII text. This includes 

the Analysis of Variance table presented in Section 3.3.3. Examples of tables 

produced by this program can be seen in Chapters 5 and 6. 
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4.6 Summary 

This chapter described a methodology for conducting performance experiments 

on arbitrary parallel programs. Two tools that enable a systematic investigation 

of the performance factors have also been introduced. 

Synthetic programs were presented as a way of describing a class of parallel pro-

grams. The construction of a synthetic program from a program graph and a set 

of process templates was described and it was shown how the experiment gener-

ator could be used to achieve this. The metric total number of compute cycles 

executed was selected. This metric is necessary as an alternative to execution 

time because synthetic programs do not terminate. 

A small example which showed how the experiment generator could be used to 

vary a set of factors at different levels to conduct a factorial experiment was 

presented. The different graph generation techniques used by the experiment 

generator to create synthetic programs were also presented. 

The MIMD modelling system was presented as a convenient way of conducting 

parallel program performance evaluation that allows many difficult metrics to be 

measured. In the next. chapter a validation of the MIMD modelling system will 

be presented as it plays a crucial role in the performance analysis. 



Chapter 5 

Validation of the MIMD 

Modelling System and Program 

Model 

5.1 Precis 

This chapter describes the validation of two important parts of the work of this 

thesis. In Section 5.2 the MIMD simulation system is validated against a process 

systems program. The second section in this chapter gives a complete experiment 

on a simple program model. This demonstrates the way in which the methodol-

ogy is applied and demonstrates that the simplified program model behaves as 

expected. 

106 



Chapter 5. Validation 	 107 

5.2 Validation of the MIMD Modelling System 

This section describes one of the more interesting experiments used to validate 

the MIMD modelling system. These results were presented at the 111I Occam 

User Group Technical Meeting [CLS89]. 

5.2.1 Distillation Simulation 

The validation used an early version of a distillation simulation program de-

veloped by McKinnell  as part of his Ph.D. thesis [McK94]. The version of the 

program that was used to perform the validation was an early version written 

in Occam [1nm84] for the Meiko Computing Surface at Edinburgh University. 

Occam provides a simple communicating sequential process (message-passing) 

system to the programmer. This gives a simple process based approach. 

The program modelled a distillation column by providing an Occam process for 

each physical plate in the column. This is a very natural approach to parallelism, 

sometimes called functional parallelism, which breaks the, problem into parallel 

processes based on the, physical geometry of the problem. The functional par-

allelism approach has several benefits. The data or information flow within the 

program closely follows the material flow within the real system. It was also found 

that the separate processes working independently gave a more robust simulation 

system because errors were localised in individual processes. These themes are 

expanded on in the paper by Ponton et al. [PFMS91] and by McKinnel in his 

thesis [McK94]. 

As well as the processes to represent the physical plates of the distillation column 



Chapter 5. Validation 	 108 

extra processes were needed for the reboiler and reflux units. Two more processes 

were needed to control the whole simulation, the master, and another to collect 

and display results on a graphics screen. The process graph for this program is 

shown in Figure 5.1. 

Each distillation plate or stage model has four communication arcs connecting it 

to the plate above and below. These communication arcs are used to transmit 

the data representing the real flow of liquid and vapour between the plates. In 

Occam communication arcs are called channels - channels can be thought of as 

conduits of information. Looking at one plate in detail, Figure 5.2 the naming 

scheme for the array of communication channels is shown. 

The communications capabilities for the first version of Occam for the Meiko 

Computing Surface were not very flexible - they did not allow true process to 

process communication. Because of this the distillation simulation program was 

written using a special communications harness called Tiny [Cla90] which allowed 

for direct process to process communication. Tiny was also much faster than the 

communications system provided with the system. 

The communications harness was specially instrumented to collect statistics by 

Candlin and Luo [CL89]. The harness could collect statistics about the size, 

frequency and timing of message transfers. Because the instrumentation could 

only collect data concerned with communications a metric had to be chosen to 

compare the real program with the simulation from the set of statistics available 

to the instrumented harness. For this reason the average communication delay 

between sending messages up and down the Occam channels was decided upon 

as a valid metric. It was felt that this was a valid metric because it would relate 

to the amount of computation that was being performed on the processes above 

and below an individual process. 
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Figure 5.1: Process Graph for the Occam Distillation Simulation Program 
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Vapour[N] 	Liquid [N] 

Vapour[N-1] 	Liquid[N-11 

Figure 5.2: Detail of a Stage Model and its Channels 

Each stage model had a two phase cycle. The first phase in the cycle was to swap 

data values with the stages above and below. The second phase was to compute 

new results for this stage. The stage model would proceed in this fashion until 

it received a message telling it to stop or to send a packet containing results to 

the graphics process. This was done by sending a packet through the processes 

in the program. Each stage would add its own results to the packet. 

5.2.2 Creating a Simulation Model 

A simulation model of the distillation simulation program was constructed with 

the aid of a tool developed by the author for this purpose. The tool was called 

Occula and it attempted to convert an Occam 2 source code file into a MIMD 
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simulation model [Ski89]. It did this by inspecting the source code of the Occam 

program and replacing all continuous computational statements by a single MIMD 

compute statement. The number of cycles to compute for was calculated by inter-

preting the Occam instructions and calculating suitable values based on timings 

found in the Transputer Compiler Writers Guide and the Transputer Data Book 

[Inm89a, Inm89b]. 

This translation was not completely automatic because the control structure of 

the program presented a problem. A DO loop which depended on the value of 

a variable could not be translated, nor the path taken at an if statement that 

also depended on the value for a variable. In these cases the user was asked to 

give an average number for the number of iterations and a probability for loop 

branches respectively. This meant that it was possible to make a data indepen-

dent non-deterministic simulation model quickly. This did of course have major 

drawbacks. The translation phase could turn a deterministic non-deadlocking 

program into just the opposite. For this reason alone the work on Occula did not 

go any further. Occula was most useful for getting the large grained computation 

and communications structure (i.e. the weighted process graph) quickly from 

the Occam program into a simulation model. This model could then be hand 

corrected to create a satisfactory simulation model. 

5.2.3 Results and Conclusions 

A set of results comparing the average communication time on all the channels in 

the real and simulated program are shown in Table 5.1. This was for 23 seconds 

of the running of the distillation program - which simulated 2 minutes of real 

distillation in the column. 



Chapter 5. Validation 	 112 

Channel ]_Real 	Simulated % Difference] 
Liquid[1] 40491 	38937 -4.0 
Vapour[1] 321 	330 +2.8 
Liquid[2] 39984 	37672 -6.1 
Vapour[2] 40316 	38754 -4.0 
Liquid[3] 393 	362 -8.5 
Vapour[3] 40239 	37632 -6.9 
Liquid[4] 399 	362 -10.2 
Vapour[4] 40322 	38911 -3.6 
Liquid[5] 461 	426 -8.2 
Vapour[5] 330 	362 +9.6 
Liquid[6] 40217 	38405 -4.7 
Vapour[6] 338 	362 +7.1 
Liquid[7] 40241 	38405 -4.8 
Vapour[7] 323 	362 +12.0 
Liquid[8] 40229 	38405 -4.7 
Vapour[8] 347 	362 +4.3 
Liquid[9] 40216 	38405 -4.7 
Vapour[9J 39418 	36297 -8.5 
Liquid[10] 1117 	924 -20.8 
Vapour[10] 39539 	36184 -9.2 
Liquid[II] 387 	362 -6.9 
Vapour[11] 40079 	38112 -5.1 
Liquid[12] 389 	362 -7.4 
Vapour[12] 40153 	38820 -3.4 
Liquid[13] 410 	362 -13.2 
Vapour[13] 40232 	39105 -2.9 
Average Absolute % Difference 7.30 

Table 5.1: Average Communication Time on Each Occam Channel (MicroSec-
onds) 
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In general there is sufficiently good agreement between the simulated and real 

values. There is a tendency for the simulated results to be too low. This may 

be due to a scaling error in translating the simulated time into real time or it 

may be a genuine effect from the extra load placed on the processors due to the 

instrumentation of the communications harness. 

With an average absolute difference of around seven percent it was felt that 

this was a good validation test for the MIMD modelling system. Other simpler 

programs such as pipelines and trees of communicating processes were also used 

for validation purposes. This rather complicated example was presented here 

as evidence because the same program is used later (6.6) to test placement 

strategies. MIMD was also tested with several hand crafted programs written 

both in Occam and using the CS-Tools package [Mei92]. The tests gave an overall 

agreement between MIMD and the real programs of around ten percent. This is 

felt to be an acceptable error for such a system where the timings of individual 

instructions are replaced by one amalgamated instruction. There is little point 

aiming for a greater accuracy than this when assumptions such as the instruction 

amalgamation have already been made. 

5.3 Program Model Justification and Valida-

tion 

This section demonstrates a use of the methodology to investigate program per-

formance parameters for the time-invariant program model. This was one of a set 

of experiments that were used to validate the program model that is proposed. 

The validation consisted of seeing whether the synthetic programs behaved in a 

consistent and reasonable way compared to a real program and that the parame- 
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terization was at a suitable level of detail. This demonstrates that a certain class 

of real programs can be described by a simple program model. 

5.3.1 Program Model 

In this example a simple, but important, class of parallel program will be simu-

lated at a range of parameter values. The results obtained from the simulations 

will be used to produce a predictive model which will then be applied to other 

programs in the same class. 

In this experiment the machine and connection topology remain fixed. The inten-

tion is to explore the effects of changing program parameters only. The hardware 

selected was a grid based machine with four links on each processor. This repre-

sents a simple low connectivity topology machine similar to the Inmos transputer. 

As previously discussed (Section 4.2.2) simple program models can be produced 

which may be representative of a larger class of parallel programs. The particular 

model used for these experiments and the parameters chosen are described below. 

Program Model - Parallel Geometric Decomposition 

This class of parallel program is very common, and forms one of the simplest 

types of parallel computation. It is known by several names the most common 

being structured spatial decomposition. It is suitable to application areas which 

are data-centric and the data can be fragmented into independent blocks. Often 

data has to be exchanged with neighbouring processes which contain the relevant 



Chapter 5. Validation 	 115 

While true Begin 
SEQ 
Compute 
PAR 
Exchange Messages with Program Neighbours 

End 

Figure 5.3: Pseudo Program for Geometric Decomposition 

boundary data. A common example of this is an image processing program or a 

geographical information system. 

The program is made up of a set of identical processes, each communicating with 

a fixed set of neighbours, which, depending on the mapping, may be situated 

anywhere on the machine. 

The dynamic behaviour is iterative, each process computes some new results, 

and then synchronizes with its neighbours to exchange data, before beginning 

the next iteration. In programs like this, the graph structure is fixed and regular, 

and the behaviour of each process can be summarized by the pseudo-program 

shown in Figure 5.3. 

All programs in this class have regular graphs and a dynamic behaviour according 

to the pseudo code. It is important to note that the communications with the 

neighbour(s) occurs in parallel. This means that the order of the communication 

is unimportant but the next compute period will not commence until all the 

communications for this process have completed. Also, if the communication is 

in parallel there will be no deadlock in the system. 

Programs in this class may differ in the following respects: in the size and con- 

nectivity of the program graph, the amount and variability of computation per- 
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Parameter] Description 

N Number of nodes in the graph 
c Connectivity of the graph 

PC Mean number of instructions between synchronizations 
arc  Standard deviation of the number of instructions 

ILM Mean message length 
am  Standard deviation of the message length 

Table 5.2: Simple Program Model Parameters 

formed by each process and the size and variability of each message that has to 

be exchanged with the neighbours. 

Therefore within this class a program can be represented by the set of parameters 

shown in Table 5.2. Two important assumptions have been made in this program 

model. Firstly it is assumed that the size of each message sent to the neighbours 

has the same probability distribution. The second assumption is that the prob-

ability distributions for the amount of computation and size of messages can be 

described by the mean and standard deviation of a truncated normal distribution. 

It is unlikely that this is the correct probability distribution for all programs in 

this class, but it does represent a reasonable approximation, since preliminary 

experiments indicated that results were not very sensitive to the distribution 

used. 

The y and cr values are averages over the graph, so there are many programs 

which have the same parameter set but which may differ substantially in their 

patterns of node and edge weights. Also, the parameters represent time-averages 

over the whole execution time, so many differences in dynamic behaviour are 

compatible with a given parameter set. Early experiments showed that there 

was very little difference between instances of programs with the same parameter 

values. This is encouraging because it shows that it is possible to use statistical 

distributions to characterize a program. 
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As has been described earlier, due to the construction of the synthetic programs 

described by this parameter set, it is not possible to measure the execution time 

of these programs and so the metric which is used is defined as the total number 

of computation cycles carried out in a fixed simulation time. 

5.3.2 Parameter Settings 

The experiment instances are generated from an experiment definition script 

through the Experiment Generator eg. This is a two level, full factorial exper-

iment varying the six parameters identified in the previous section. The values 

chosen are shown in Table 5.3. These parameters deserve some explanation for 

the choice of their values. 

Apart from the program parameters, all other factors were held constant through-

out the experiment. A 4x4 connected mesh of processors was used with a round 

robin placement strategy (6.3.2). 

The number of nodes N and the connectivity c were chosen to be at the lower 

and upper bounds of the size of a reasonable process graph for a 16 processor 

system. A 32 node graph of connectivity 4 fits easily onto the system, but a 64 

node graph with a connectivity of 6 is a medium load for such a system. 

The amount of computation time at each node was assumed to follow a Normal 

distribution truncated at zero. The mean at each node was allowed to take one 

of two values, and so was the standard deviation. The lower value for the compu 

tation mean, 500 clock cycles, represents 25 microseconds on a T800 Transputer 
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Program Parameters 
Parameter Value(s) 

N {32,64} 
c {4,6} 

PC f500,500000} 
{5,50} 

lA m  {1,10000 
} 

am {O.01,O.1} 
Other Parameters 

Parameter Value(s) 
Hardware 4x4 Mesh 
Placement Round Robin 

Trial Length 200,000,000 (10 seconds) 
Replications 3 

Table 5.3: Parameter Settings for Initial Experiment 

at a clock speed of 20 MHz 1 . 500 clock cycles is enough time to perform several 

floating point operations. The larger value is one thousand times that value and 

hence represents 25 milliseconds of computation. 

In a similar way, the message lengths on each edge were assumed to follow a 

Normal distribution with one of two values for the mean and standard deviation. 

The two message lengths chosen were a single byte message and a ten thousand 

byte message. Hopefully it is clear that these program parameters represent 

upper and lower bounds of reasonable programs for a 16 processor machine. 

The values for the parameters are summarised in Table 5.3. Those values shown 

within curly braces are the parameters that are varied and the different levels are 

shown. 

'A clock speed of 20 MHz implies that one clock cycle = 1/20e6 = 5e-8 = 50 nanoseconds. 



Chapter 5. Validation 	 119 

a=5 OcSO 
= 1 /2fl = 10000 1 = I = 10000 

7,n=0.01 I O=0.1 CmO.OI I orm=O.l am=O.O1 1 am=0.1 OTfl=0.01 1 	7m=0.1 
4 
4 
6 
6 

32 
64 
32 
64 

17.45 
16.72 
11.25 

1 	12.23 

15.41 
15.75 
11.67 
13.76 

7.94 
19.04 
9.59 

12.49 

11.71 
16.63 
8.68 

12.92 

15.29 
16.84 
12.01 
15.03 

13.70 
17.00 
12.33 
13.91 

9.32 
17.47 
9.54 

12.80 

11.38 
16.54 
8.46 

10.51 

PC  = 500000 
ac =S 1 a=5O 

= 1 Lm = 10000 1 	Am Am  = 10000 
T1W a,=O.Ol I a,=0.1 Cm=0.01 1 a=O.l 1 am=0.01 	am=0.I Um=O.Ol I a=0.1 
4 
4 
6 
6 

32 
64 
32 
64 

29.97 
31.97 
31.96 

1 	31.96 

27.97 
31.97 
27.96 
29.96 

27.88 
31.96 
29.83 
31.91 

25.90 
31.94 
25.81 
31.93 

29.97 
31.97 
23.97 
31.95 

27.97 
31.97 
29.96 
31.96 

27.85 
31.92 
29.77 
29.90 

27.89 
31.92 
29.78 
31.92 

Table 5.4: Total Computation Achieved (Divided by 1e8) 

11c = 500 
ac =5 ac 	50 

= 1 = 10000 Im = 1 Am  = 10000 
C N am0.01 	am=O.l Um=0.01 Iam=O.l Um=0.01 {Um=0.1 am=0.01 F am=0.1 
4 
4 
6 
6 

32 
64 
32 
64 1 

54.24 
52.24 
35.15 
38.22 

48.17 
49.21 
36.46 
43.02 

24.83 
59.49 
29.96 
39.02 

36.60 
51.98 
27.13 
40.37 

47.78 
52.62 
37.54 
46.95 

42.81 
53.13 
38.54 
43.47 

29.13 
54.58 
29.83 
39.99 

35.57 
51.69 
26.42 
32.85 

= 500000 
Oc=S ac 	50 

= 1 gm  = 10000 1 	ILM Am  = 10000 
C N am -=-0-.01--Form  =  0.1 Cm =0.01 1 Cm =0.1 1 Cm =0.01 I or m  =0.1  am  = 0.01 I Or m  =0.1 
4 
4 
6 
6 

32 
64 
32 
64 1 

93.66 
99.89 
99.86 . 
99.87 

87.42 
99.90 
87.39 
93.61 

87.13 
99.87 
93.21 
99.71 

80.94 
99.80 
80.95 
99.80 

93.66 
99.90 
74.91 
99.85 

87.41 
99.91 
93.61 
99.87 

87.02 
99.76 
93.03 
93.43 

87.17 
99.75 
93.08 
99.73 

Table 5.5: Percentage Utilization of Processing Available 

5.3.3 Results 

From Section 3.3.2 if six parameters are varied at two levels this gives a total 

of 64 experiments. Each experiment was replicated three times. The raw aver-

aged values from the simulation are shown in Table 5.4. This table shows the 

total number of computation cycles achieved by the program. The percentage 

utilization of the total number of cycles used by all the processes from the maxi-

mum number of available cycles, is shown in Table 5.5. The maximum number of 

available cycles is calculated by multiplying the simulation time by the number 

of processors. 
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The top and bottom halves of the Table 5.4 are markedly different. The set 

of experiments where the average computation block was 500 units have much 

smaller total computation values than those in the lower half of the table. 

This can be explained by the fact that correspondingly more messages are being 

sent by the programs in the top half of the table. The interruptions to the 

computation happen more frequently, also there are a lot more communications 

to be made in general. Each communication that travels across the network uses 

some processor resource to work out where to go next. With the program blocks 

being smaller, this means that it is more likely that a communication event will 

be scheduled rather than the next computation cycle. Hence more interruptions 

to the computation. 

Looking at the bottom part of the table the computation achieved is dominated 

by the factor p and all the processors are nearly saturated, so the results are very 

similar. There is still some slackness within the system as more computation is 

achieved by the sixty four process system than the thirty two even for the large 

computation mean. 

This becomes even more obvious if we look at the number of cycles performed 

plotted against experiment number to see how diverse the results are. This is 

shown in Figure 5.4 where the three replicates have been overlaid. The actual 

ordering of the experiments is not important and is just a consequence of the 

factorial experiment generation software. The top half of Table 5.4 can clearly 

be seen at the bottom of the graph as the smaller bars. 

From Table 5.4 and Figure 5.4 it is clear that the amount of computation achieved 

is determined to a large extent by the mean computation time p. This is to be 

expected from the format of the program, with the lower value of y, each process 
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Figure 5.4: Experiment Number vs Computation Achieved 

communicates one thousand times more often than the process with the larger 

value of p,. So the amount of communication that is performed is important in 

this respect. 

There is also a secondary effect visible in Table 5.4. Irrespective of the size of the 

computation mean, more computation is performed where the message size has 

a mean of one. This effect is small and may not be significant. To see whether 

this is significant we have to perform the analysis of variance. 

Analysis of Variance 

The analysis of variance table for this experiment is shown in Table 5.6. Re-

ferring to equations 3.13 and 3.14, the null hypothesis is that all the programs 

are the same, to test this at a 5% level of significance the critical regions F > 
F0 . 05 , 2 , 126  = 3.07 for the treatments and F > F0 . 05 , 63 , 126  = 5.43 for the replicates. 
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Source D o F Sum of Squares Mean Squares F 
Between Replicates 2 2.47867e+16 1.23934e+16 4.47667 
Between Treatments 63 1.47999e+20 2.34919e+18 848.561 
Residual 126 3.48823e+ 17 2.76844e+ 15 
Iota! 	 191 	1.43'12e+2U 

Table 5.6: Analysis of Variance Table 

Hence we can reject the null hypothesis for the treatments and accept it for the 

replicates. The differences between the replicates are small relative to the esti-

mate of the variability between program instances for the same parameter values 

(the error mean square). By contrast the differences between parameter settings 

(the "treatment" mean square) are very marked. 

This implies that the model itself is self consistent. Different replications of 

the experiment at the same parameter setting do not contribute greatly to the 

variance of the results. 

Estimates of the effects of individual parameters and their interactions can be 

derived from a transformation of the 64 means at each combination of the pa-

rameter settings. These values are presented in the second column of each part 

of Table 5.7 and correspond to the terms present in the model underlying the 

analysis (see Equation 3.16 in Section 3.4). Where a factor name appears that 

means that the estimate is for that factor or the interaction of the factors if there 

is more than one. The first entry in the table labelled gm is the overall mean 

value of the number of computation cycles, referred to as y in Equation 3.5. The 

estimates are the fli  values in the same equation. 

Each estimate in Table 5.7, apart from that for the constant term gm, has the 

same standard error which is given at the foot of the table. The t-values given in 

this table are the ratio of estimates to standard error. Values of t less than 10 can 

be taken as a guide to those terms in the model which are of little importance. 
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Effects ] 	Estimates t % Var 11 Effects } 	Estimates  

gin 2167057601.00 570.69 Urn -19603662.33 -5.16 0.087 
c -80530703.67 -21.21 0.839 co, 5056155.67 1.33 0.050 
N 166440889.00 43.83 3.585 NUrn 2279117.67 0.60 0.003 
cN -33442934.33 -8.81 0.145 cNorn 3591129.00 0.95 0.001 
/1c 837757036.33 220.62 90.821 LcCrn -5131940.33 -1.35 0.002 
CJI C  78921250.33 20.78 0.806 C/.O1n 7415703.00 1.95 0.003 
NA r  -1953814.33 -0.51 0.000 Nicurn 22629962.33 5.96 0.007 

9216137.00 2.43 0.011 cNtcurn -15631377.00 -4.12 0.066 
Or c  -2049401.00 -0.54 0.001 a c am 24621631.67 6.48 0.032 
ca c  1742627.67 0.46 0.000 CUcurn 13998324.33 3.69 0.078 
Nac  3535869.67 0.93 0.002 Nacrn -20678181.67 -5.45 0.025 
cNorc  1861131.67 0.49 0.000 cNoo,, -26503397.00 -6.98 0.055 
LcUc 1424310.33 0.38 0.000 1LUcCrn 38052712.33 10.02 0.091 

cAcac 14277345.00 -3.76 0.026 C/LcUcUrn 35855097.00 9.44 0.187 
Nzc 3413675.00 -0.90 0.002 Nicucorn -16887666.33 4.45 0.166 
cNAc or c  10794284.33 2.84 0.015 cNjiuc arn  1480519.67 0.39 0.037 

63514260.33 46.73 0.522 jim orm  3126980.33 0.82 0.000 
C/.Lm 13414800.33 3.53 0.023 CIrnUm -24881607.00 -6.55 0.001 
Nim 53691662.33 14.14 0.373 NimCrn -5598437.00 -1.47 0.080 
cNrn -43496886.33 -11.45 0.245 cNim um 38399110.33 10.11 0.004 
/.LciLrn 46880972.33 12.35 0.284 JicLrnUrn -2874689.67 -0.76 0.191 
CcLrn 10550007.67 2.78 0.014 CLrnUrn 12436719.00 3.28 0.001 
N c jim  -38953089.00 -10.26 0.196 N c j rn Crn  30416039.67 8.01 0.020 
cN jacm  19302707.67 5.08 0.048 CN c im Um  -482046.33 -0.13 0.120 
Cc/.rn 4586263.00 1.21 0.003 UcLmUm -9168616.33 -241 0.000 
CUCLrn -7254588.33 -1.91 0.007 cccmcrn -9938745.00 -2.62 0.011 
Naczrn -42566642.33 -11.21 0.234 Nac rnUrn  10062498.33 2.65 0.013 
cNorn -11386004.33 -3.00 0.017 cNuczrnorn 8516221.67 2.24 0.013 
PcUcLm 19761745.00 5.20 0.051 /CCcrnUm -3059738.33 -0.81 0.009 
CLcUc/4rn 19691817.67 5.19 0.050 czcccrnUrn -15103812.33 -3.98 0.001 
NAc ac jAm  7267461.67 -1.91 0.007 NtcUcMrnurn 2201552.33 0.58 0.030 
cNzcacrn -25869417.00 -6.81 0.087 cNcacrnUrn 16264773.00 1 4.28 	1 0.001 

Standard Error = 3.79723e+06 

Table 5.7: Parameter Contributions 
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The fourth column of each part of the table gives the percentage of variation that 

can be attributed to the factor or combination of factors. 

Of the six parameters, the t-values for the terms involving the standard deviations 

for both the computation mean (o) and message length (am ) distributions are 

all markedly small relative to the rest. Only two t-values greater than 10 include 

either of these parameters. This would lead the investigator to consider leaving 

these factors out of future experiments as they appear to have little effect at the 

chosen levels. Alternatively it could be that the levels chosen were too small to 

have an effect and large values may be necessary for differences to show up. 

Table 5.7 attributes 90 percent of the variation in the model due to i  the size 

of the computation mean. We had suspected this by looking at the raw results 

(Table 5.4) and the plot of computation cycles versus the experiment number 

(Figure 5.4). There is also a significant effect from N the number of processes as 

would be expected and one from /-m.  There is a second level interaction between 

c and jC  that looks signifcant. All of these interactions could be studied further 

in a separate experiment. 

It is necessary to test the assumptions outlined in Section 3.4.1 before we proceed 

any further with the analysis. A scatter plot of the residuals versus the predicted 

response for each replicate are shown in Figures 5.5 through 5.7. From the scatter 

plots it is clear that there is no visible trend apart from some of the higher values 

which are very far from the rest. There is clearly a non-constant error variance 

over the response range. The residuals are an order of magnitude smaller than 

the predicted response but vary widely. 

A normal quantile-quantile plot of the residuals from the first replicate is shown 

in Figure 5.8. This tests whether the errors are independently and identically 
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Figure 5.5: Residuals versus Predicted Response - Replicate 1 
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Figure 5.6: Residuals versus Predicted Response - Replicate 2 
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Figure 5.7: Residuals versus Predicted Response - Replicate 3 

distributed. If they are then a straight line passing through the origin would 

be present. A least squares straight line fit has also been plotted. There is a 

significant deviation from a straight line passing through the origin, this is mostly 

due to the large residual values which are created by having one dominant factor 

within the experiment. It is important that the plot does not show the degenerate 

case of a distinct 'U' shaped curve. 

5.3.4 Constructing a Model 

These visual tests lead us to believe that the model underlying the system is not 

linear. This doubt was investigated by Phillips [Phi94] who analysed the model 

in terms of a transformed response variable using a Box-Cox transformation. 

Phillips was using processor utilisation U as his metric. He found it necessary to 

use a Box-Cox transformation U' defined in Equation 5.1 in order for his results to 
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Figure 5.8: Normal Quantile-Quantile Plot of Residuals - Replicate 1 

pass all the visual tests. U is the unmodified utilization value. He also found that 

this reduced the dependence on the higher order interactions, which is desirable 

for reducing the number of factors to be investigated. The transformation did 

not however change the importance of the factors. 

- 7000000 	2.41 

{sinh 	
1000000 ) + 

iso} 	 (5.1) 

Unfortunately using the transformed response did not provide a significant im-

provement in the screening and selecting of factors. Lyon et al. have also found 

this to be the case [LSK94]. So it is still useful to look at the linear model. 

With reference to the response, it is expected that as more load is added to the 

processors in our system the processing speed will slow faster than linearly. This 

is due to the fact that we have a round robin scheduler in each processor and more 
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context switches and other process overheads must be taken into account. So our 

model is behaving as expected and in some joint work with Candlin, Fisk and 

Phillips [CFPS92] some other models are explored and found to be useful. This 

example is designed to show the system as a whole fitting a model to transformed 

data is the same operation as using the linear model. Notwithstanding this a 

linear model can be used to predict performance of other programs in this class. 

We have found the linear model sufficient for predicting relative performance and 

it is easier to understand. This is important because simple models can be easily 

derived by a programmer even at early stages of program development. 

5.3.5 Conclusions 

This section has shown that a simple synthetic program model can be used to 

represent a real program in a statistical experiment. The synthetic program 

behaves in an expected way. This section has also demonstrated that the program 

model is self consistent, that it does not vary widely between individual instances. 

From the statistical analysis it is easy to draw conclusions about which factors 

under investigation have had a significant effect on the performance. The general 

approach of applying statistical techniques to synthetic programs seems correct. 

5.4 Summary 

This chapter has shown the validation of two important parts of the proposed 

performance investigation environment. The MIMD system was described and 
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shown to be a useful tool for modelling arbitrary communicating sequential pro-

cess programs. 

The use of a synthetic program to represent a program was described and an 

experiment was performed on an important subclass of such programs. This 

demonstrated the correctness of the program model within the limitations of the 

simplifications made and that it behaved as expected. This also demonstrated the 

use of the whole experimental framework and showed the results and conclusions 

that can be drawn. 



Chapter 6 

Results 

6.1 Precis 

This chapter displays the use of the methodology on two examples. The first 

is an experiment, Section 6.4, to study a range of process placement strategies 

and is performed on a similar type of program as that used in the experiment 

described in Chapter 5. 

The second experiment in Section 6.6 shows the application of the placement 

strategies on a process engineering program similar to that used for validation of 

the MIMD system (5.2). 

In each experiment the analysis of the results requires use of the statistical tech- 

130 
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niques described in Chapter 3. The experiments described here were performed 

using the tools developed specifically for this purpose, namely the experiment gen-

erator (eg) and the multiprocessor simulation package MIMD. Each uses synthetic 

programs which are representative of the class of parallel algorithms previously 

discussed. 

6.2 Placement Strategy Evaluation using Syn-

thetic Program Graphs 

This section describes an experiment to investigate the effectiveness of four differ-

ent placement strategies. Previous work in this area has usually been performed in 

a non-systematic manner. This often involved the use of one placement strategy 

on several programs or several strategies on the same program. This experiment 

will take a set of process placement strategies and will apply them to a range of 

related programs. This will then allow the following questions to be answered: 

Did any of the strategies have an effect on performance? 

Which is the best strategy overall? 

Is one strategy better for certain types of programs? 

The actual outcome from the experiment can be an ordered ranking of strategies 

in terms of their effectiveness. 

In devising this experiment a diverse set of placement strategies has been used. 

The strategies have been chosen so as to be representative of different approaches 
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presented in the literature, not necessarily because of their claimed effectiveness. 

The process placement problem is essentially an optimization problem. In general 

terms the problem can be posed as follows: 

Minimizef = f(G,H) 	 (6.1) 

where G is the program graph H is the hardware and f is the execution of that 

program graph on that hardware. Each placement strategy takes a different 

approach to this optimization problem. 

6.2.1 Cost Function 

For various of these strategies a cost function has to be used to give a quick 

approximation of how good the mapping is. Ideally of course this cost function 

would give the exact cost of the particular mapping chosen. However, we have no 

way of deriving this accurately. So a short cut method is used to approximate the 

cost of the mapping. This is based on an intuitive basis that a good mapping is one 

that distributes the load of the processes but does not make the communications 

paths too long. These two opposing forces drive the random search strategies 

until they have found suitable solutions. The higher the cost of the mapping, the 

worse the mapping is considered to be. This is given in arbitrary cost units. 

This cost function was used as the function to be minimised by the genetic al 

gorithm and also as a way of comparing results from other strategies. For place- 

ments produced by any strategy a cost can be calculated. The cost function is a 
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modified version of that proposed by Sinclair [Sin87] and is described below. 

Problem Representation for Cost Function Evaluation 

A program consists of m modules. A module i can in general be executed on any 

of the p processors in the system. An assignment A of the program is a complete 

specification of the processors on which the modules are executed. A is an onto 

mapping from the set of modules to the set of processors; A(i) = s if and only if 

module i is assigned to processor s by A. 

If module i is executed on processor s, it incurs an execution cost es (s). When 

any module i must be assigned to one particular processor t, e(s) = oc for all s, 

1 < s < p and .s 54 t. If two modules i and j are executed on the same processor, 

the cost of communication between them is assumed to be zero. If they are on 

different processors s and t, the cost of communication is c,3 (s, t). 

The cost C(A) of an assignment is the sum of all the module execution costs and 

intermodule communication costs given the assignment A. 

C(A) 	e(A(i)) + 	c1,(A(i), A(j)) 	 (6.2) 
i=1 	 i=1 j=i+1 

A(i)A(j) 

The cost function for execution cost is as follows: 

(6.3) 
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Where mw 1  is the weight of the module i and 

bjj= { 1 A(i) A(j) 
 (6.4) 

0 A(i)A(j) 

This effectively means that if a more than one module is assigned to the same 

processor then the execution cost of that module is multiplied by the number of 

modules assigned to that processor. 

And for communication costs 

cij  = cwdist(A(i), A())) 	 (6.5) 

Where cw 2 ,, is the weight of the communication channel linking modules i and 

J, and di.st(A(i), A(j)) is the number of hops between processors. This distance 

can be zero and hence the cost for an on processor communication is zero. 

This cost function assumes that the weight of processes affects the cost in a 

multiplicative manner- with the addition of modules to a processor. Evidence 

from our earlier experiment (5.3.3) suggests that this is the case. Also there 

must be a balance between the size of the weights of the computation and the 

cost of the communication. This is merely a problem of the units involved in 

specifying the weight of the process. 
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nj 

Placement 1 	Placement 2 	Placement 3 

Cost = 6030 	Cost = 5050 	Cost = 6030 

Figure 6.1: Simple Process Graph, Placements and Costs 

6.2.2 Example use of Cost Function 

To demonstrate the use of the cost function it will be applied to the process 

and the three placements shown in Figure 6.1. Imagine that the four nodes in 

the program have a computational weight of 1000 units each. Then the weights 

for each placement are shown under the placement in the diagram. The two 

components are the computation and the communication weights as calculated 

by Equation 6.2. 
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Cost of Placement 1 

If we let the left part of Equation 6.2 be called Compute and the right part 

Communication then we have the following calculations: 

Compute 	= (1000 + 1000 + 1000 + 1000) 

= 4000 

Communication = (10 x dist(A(B), A(A)) + 10 x dist(A(B), A(D)) 

+10 x dist(A(C), A(A)) + 1000 x dist(A(C), A(B))) 

= (10x1+10xl+10x1+1000x2) 

= 2030 

Total 	 = 6030 

(6.6) 

Cost of Placement 2 

Compute 	= (1000 + 1000 + 1000 + 1000) 

= 4000 

Communication = (10 x dist(A(B), A(A)) + 10 x dist(A(B), A(D)) 

+10 x dist(A(C), A(A)) + 1000 x dist(A(C), A(B))) 

= (10 x.1 + 10 x 2 + 10  2+1000 x 1) 

= 1050 

Total 	 = 5050 

(6.7) 
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Cost of Placement 3 

Compute 	= (1000+1000+2000+2000) 

= 6000 

Communicate = (10 x dist(A(B), A(A)) + 10 x dist(A(B), A(D)) 

+10 x dist(A(C), A(A)) + 1000 x dist(A(C), A(B))) 

= (lOxl+lOxl+lOxl+Oxl) 

=30 

Total 	= 6030 

(6.8) 

Placement 2 reduces the communication costs by swapping processes C and D. 

Placement 3 tries to reduce the costs further by placing B and C on the same 

processor, unfortunately this has given an extra cost as B and C will now run 

more slowly. In the examples above Placement 1 and Placement 3 have the same 

cost. In practice they are unlikely to have the same execution time as this will 

depend on whether how costly communication is compared to computation and 

how quick the processor can context switch between several processes. This a 

limitation of the current cost function which can only be remedied by having 

more realistic models of the communication and computation. 

If the values of the communication and computation weights are not of the same 

order then we require an additional constant to describe their relative weightings. 

This can be used as a multiplicative factor on either part of Equation 6.2. 



Chapter 6. Results 	 138 

6.3 Strategies 

Each strategy is introduced and given a short description, followed by an outline 

of the algorithm and then a timing analysis. 

6.3.1 Random Process Allocation 

Each process is allocated to a processor selected at random. The selection of the 

processors is performed with replacement so highly unbalanced placements can 

result. This strategy takes a time that is linear in the number of nodes. 

This is intended to be the baseline strategy against which all other algorithms 

can be measured. It can be expected that other strategies will perform better 

than this strategy. 

6.3.2 Round Robin Process Allocation 

Each process is allocated to a processor in turn until all the processes have been 

allocated. This strategy shares the processes as evenly as possible over the pro-

cessors, not accounting for the relative weights of the processes. This strategy 

takes a time that is linear in the number of nodes. 
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Initialise a population of chromosomes. 

Evaluate each chromosome in the population 

Create new chromosomes by mating current chromosomes; Apply mutation  
and recombination as the parent chromosomes mate. 

Delete members of the population to make room for the new chromosomes. 

Evaluate the new chromosomes and insert them into the population. 

If time is up, stop and return the best chromosome; if not go to 3. 

Figure 6.2: The Genetic Algorithm 

6.3.3 Genetic Algorithm 

Genetic algorithms provide a framework for optimization based on genetic search 

techniques. Genetic algorithms are task independent optimizers. They have 

no inherent knowledge of the task that they are optimizing, and so represent 

a very different approach than the other strategies employed here. The task 

independence is such that the user of a genetic algorithm only has to supply 

an evaluation function which returns a value when given a particular point in 

the search space. The evaluation (or in this case the cost function described in 

Section 6.2.1) gives the fitness value for any member of the population. 

Genetic algorithms were invented to mimic some of the processes observed in 

natural evolution by John Holland in the early 1970's [Ho1751. The main things 

that make genetic algorithms different from other optimization routines are the 

mutation and crossover operators. 

The steps involved in a genetic algorithm, due to Davis, are shown in Figure 6.2 

[Dav91]. A generation in genetic algorithm terms consists of the steps: selection, 

mutation, crossover and evaluation. 
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Parameter Value 
Crossover Rate 0.6 
Mutation Rate 0.001 
Population Size 100 
Total Trials 10000 

Table 6.1: Parameters for the Genetic Algorithm 

In order to use a genetic algorithm you have to have a set of chromosomes which 

are the population. Each chromosome is made up of a set of genes. It is these 

genes that encode possible problem solutions. I chose to have each process as a 

gene where the value of the gene represents the processor it is to be placed onto. 

The genetic algorithm then had to find a set of values for the genes such that the 

cost function was a minimum. The cost function employed was that described in 

Section 6.2.1. 

I employed the Genesis genetic algorithm system which was freely available and 

easy to use [Gre90]. In terms of the genetic algorithm the important characteris-

tics are shown in Table 6.1. Most of these are built into the system though I did 

have to modify the code to perform placements automatically. 

This genetic algorithm uses the roulette wheel parent selection algorithm due to 

James Baker [Bak87]. The idea is to allocate to each chromosome a portion of a 

spinning wheel proportional to the chromosome's relative fitness. A single spin of 

the wheel determines the number of offspring assigned to every chromosome. The 

mutation and crossover rate were set experimentally as these produced a decent 

set of strategies within the time span. The execution of the genetic algorithm 

takes around thirty seconds of CPU time on a SparcStation ELC. 
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6.3.4 Node Swapping 

Given any random configuration, it is usually possible to perturb it so as to 

reduce the total cost. This algorithm swaps processes between processors if doing 

so results in a reduced total sum of the edge weights radiating from a processor. 

It proceeds in this way for all the processes in the system. The steps of the 

algorithm can be outlined as follows 

Allocate processes to processors randomly as an initial configuration. 

For all possible pairs of processes swap them and evaluate cost. 

If cost is lower then keep change otherwise reverse change. 

All possible pairs are tried, so this represents a large number of combinations. A 

different approach to this algorithm would have been to evaluate the effect that 

each swap would have had and then only perform the swap that reduces the cost 

by the largest amount. 

6.4 Evaluation of Four Placement Strategies 

This experiment demonstrates how, using the methodology proposed in this thesis 

we can evaluate the four different process placement strategies. The strategies 

that are to be used were outlined in Section 6.3. 

The parameters in this experiment are different from the previous experiment, 

obviously, because we wish to look at placement strategies. The program graph 
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Program Parameters 
Parameter Value(s) 

N 70 
c {4,7} 

fL c  {5000, 5000001 
ac  0 
am 0 
Ym  {1,1000} 

Other Parameters 
Parameter Value(s) 
Hardware 8x8 Mesh 
Placement Random (1) 

Round Robin (2) 
Genetic Algorithm (3) 
Node Swapping (4) 

Trial Length 20,000,000 (1 second) 
Replications 2 

Table 6.2: Parameter Settings for Placement Strategy Experiment 

will have a fixed number of nodes (70) and the program will run on a 64 processor 

machine. This was felt to be a reasonably large processor system with a medium 

program load. The process model described in Section 5.3.1 is used again, though 

this time only the process calculation mean and message length mean are varied. 

The parameters for the experiment are summarised in Table 6.2. 

It is instructive to look at the placements produced by the different strategies. 

The distribution of processor load (the number of processes allocated to a proces-

sor) generated by eachstrategy for each different experiment is shown in Figures 

6.3 through 6.6. If we consider the top left graph in Figure 6.4, this shows that 

the strategy decided to allocate one process to each of 58 processors and to allo-

cate two processes to each of six processors. This makes the respective totals of 

seventy processes and sixty four processors. The cost of each placement is also 

shown in arbitrary cost units. The higher the cost, the worse the placement. 

The raw results from this experiment are shown in Table 6.3. The corresponding 
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Figure 6.3: Processor Loading Frequencies Strategy 1 - Random 
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Figure 6.4: Processor Loading Frequencies Strategy 2 - Round Robin 
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Figure 6.5: Processor Loading Frequencies Strategy 3 - Genetic Algorithm 
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Figure 66: Processor Loading Frequencies Strategy 4 - Node Swapping 
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utilization figures are given in Table 6.4. From these tables we can see that the 

round robin and the genetic algorithm perform best, but that the round robin 

algorithm is more consistent. 

The round robin algorithm performs well in this instance due to the nature of the 

program graph. The connections of the process graph are fairly random and so 

the random placement strategy and the round robin strategy have both benefited 

from this - using very little knowledge. 

The genetic algorithm does not perform as well as the round robin algorithm 

and in one instance performs worse than the random algorithm. This is the case 

where we have a graph of high degree, a low computation mean and a large 

communication mean. This could suggest that the genetic algorithm was not 

sensitive enough to the communication needs of the program. The fault with this 

would be in the cost function. The cost function assumes that the cost of sending 

a message is linear with the size of the message. It has been shown by Clarke 

[C1a90] amongst others that this is not in fact the case and the communication 

time has a large setup period followed by a linear relationship on the size of the 

message. The MIMD modelling system follows this relationship accurately, but 

the cost function does not. 

The node swapping algorithm performs worse than the random placement strat-

egy in more than half of the cases. This is not a very good performance but the 

algorithm is not very complicated. 

It should be noted that the genetic and the node swapping algorithms use a start-

ing position generated by the random method. Unfortunately this is not the same 

initial placement that is used for the random placement method in that same ex-

perimental batch. This means that it is not possible to compare the performance 
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c4 c=7 
lLc = 5000 Ic = 500000 = 5000 = 500000 

Am = 1 = 1000 .Um = 1 1 jL M  = 1000 Lm = 1 gm = 1000 Im = 1 = 1000 
Random 8.46 8.54 8.60 8.20 7.99 8.27 7.80 9.00 
Round Robin 12.54 12.26 12.79 12.79 12.38 12.07 12.79 12.79 
Genetic 12.34 9.32 12.60 12.59 12.20 7.16 12.59 12.59 
Node Swop 8.69 7.80 8.40 8.60 8.59 7.90 7.00 8.60 

Table 6.3: Computation Cycles Achieved (Divided by 1e8) 

c4 c=7 
tLc = 5000 = 500000 = 5000 = 500000 

All, = 1 = 1000 All, = 1 = 1000 /L 	= 1 Arn = 1000 /L 	= 1 pm  = 1000 
66.68 67.18 64.04 62.41 64.57 60.92 70.28 

bin 97.96 95.79 99.94 99.91 96.73 94.31 99.89 99.89 L
66.10 

96.44 72.85 98.40 98.36 95.33 55.95 98.33 98.33 
p 1 	67.86 60.97 65.62 67.16 67.10 61.75 54.67 67.15 

Table 6.4: Percentage Utilization of Computation Cycles 

of, say for example, the random and node swapping within the same experiment 

as they are starting from different random positions. A further investigation of 

these strategies would use the random output as the starting point for both of 

these strategies. This would then allow a true comparison of the strategies and 

you could see whether the node swapping and genetic algorithm were actually 

improving the placement or making matters worse. The strategies themselves 

were not the main part of the investigation so the individual performance is not 

crucial, it was instead the ability to compare arbitrary strategies. 

Using the raw data we can already rank our strategies for the class of programs 

that we are investigating. The most consistent strategy is the round robin strat-

egy in this case. This may not be the case if the process weights were highly 

skewed because then the round robin strategy would produce many bad place-

ments. The genetic algorithm may perform better on some of these unbalanced 

programs. 

It is interesting to compare the costs as calculated by the cost function for all 

the placements against the responses observed. The calculated costs are shown 

on each individual processor loading frequency graph and in Table 6.5. These 
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c=4 1 c=7 
ju c = 5000 gc = 500000 Ac = 5000 /.LC = 500000 

1000 14m = 1 Mm = 1000 Mm_= 1 JAM _=_1000 Im_=_I =_1000 
Random 
Round Robin 
Geentic 
Node Swap 	I 

1.19e+07 
7.63e+06 
7.73e+06 
1.12e+07 

4.48e+07 
4.05e+07 
2.60e+07 
3.13e+07 

1.03e+07 
7.61e+06 
7.72e+06 
1.03e+07 

2.92e+07 
2.60e+07 
1.86e+07 
2.10e+07 

1.14e+09 
7.60e+08 
7.70e+08 
1.25e+09 

1.06e+09 
7.93e+08 
8.01e+08 
1.06e+09 

1.10e+09 
7.60e+08 
7.70e+08 
I.08e+09 

1.17e+09 
7.78e+08 
7.88e+08 
1.08e+09 

Table 6.5: Costs of Placements 

c=4 c=7 
Mc = 5000 Mc = 500000 I.Lc = 5000 Mc = 500000 

Mm = 1 Mm = 1000 Mm = 1 Mm = 1000M m  = 1 _Mm 	1000Mm_=_1 _= _Mm_=_1000 
Random 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Round Robin 2.530 1.108 1.353 1.124 1.499 1.337 1.447 1.501 
Genetic 2.500 1.730 1.336 1.567 1.481 1.322 1.428 1.484 
Node Swap 	1 1.063 1.435 1.001 1.397 0.912 0.998 1.018 1.083 

Table 6.6: Inverse Normalised Placement Costs 

figures show a higher value for a worse placement and so the normalised inverse 

costs are shown in Table 6.6. These figures show a high degree of correlation 

with the figures in Table 6.4. This suggests that the cost function is a reasonable 

measure of program performance. Though it appears that the cost function is over 

estimating the relative performance improvement from the different placements. 

This is particularly true for the first two costs given for the Round Robin and 

the Genetic algorithm. 

We can now perform an ANOVA on the data in Table 6.3. The data will be 

tested at a 5 percent level of significance (a = 0.05). The null hypothesis is that 

the strategies are all equally effective. The analysis of variance table is shown in 

Table 6.7. 

Referring to equations 3.13 and 3.14 the critical regions are F > F0 .05 , 1 , 15  = 245.9 

Source D o F Sum of Squares Mean Squares F 
Between Replicates 1 1.36224e+10 1.36224e+10 10.3515 
Between Treatments 15 1.55815e+18  1.03877e+17 7.89347e+07 
Residual 15 1.97398e+10 1.31599e+09  

bal 	 0I 	1.1e±1S 

Table 6.7: Analysis of Variance Table - Placement Strategy Experiment 
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for the treatments and F > F0 . 05 , 15 , 15  = 12.3 for the replicates. Hence we can 

reject the null hypothesis for the treatments and accept it for the replicates. So all 

the placement strategies are not equally effective. Once this conclusion has been 

reached further investigation can be made into the effectiveness of the individual 

strategies. 

6.5 Placement Strategy Experiment Summary 

This section has shown that the experimental framework can be used to investi-

gate process placement strategies and allows the user of the system to answer the 

questions posed in Section 6.2. Namely, that the placement strategies do indeed 

have an effect, that we can rank the strategies and that some strategies are only 

effective for some programs. 

It appears that the round robin algorithm performs just as well for this range of 

programs as does the more complicated genetic algorithm. This may not be true 

for more unbalanced programs. 

It is important to note that from our point of view, it is less interesting that a 

strategy be, or not be effective. What is important is the fact that the experi-

mentation system combined with the statistical techniques can be used evaluate 

these strategies and other performance parameters. It has been shown that the 

placement strategies did have an effect on the outcome of the experiment. 
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6.6 Evaluation of Placement Strategies on Pro-

cess Systems Example 

This experiment takes a real process systems program and applies the four place-

ment strategies described in the previous section. It uses the experiment gen-

eration software to describe the program model so that the placements can be 

constructed automatically. 

The program under investigation is a newer version of the dynamic distilla-

tion simulation program described in Section 5.2. This program is essentially 

a pipeline of processes, where each process represents a tray in the distillation 

column. Each process computes for a certain period of time until it converges to 

a new solution this data is then passed to the trays/processes above and below 

in the pipeline. This is essentially the same program model that was used in the 

previous experiment, though in this instance the actual program model is not 

necessary. 

The program was written in C and Fortran using the CS-Tools library by R C 

McKinnel [McK94]. It is designed to run on a network of workstations or on a 

Meiko computing surface. 

In order for the placement strategies to operate they need a weighted process 

graph. Luckily, the simulation program was already instrumented and so the 

time that each process spent calculating, the size of messages and the delay in 

sending and receiving those messages was already available. This data was used 

to specify some weights that could be passed to the experiment generator. The 

experiment generator can produce a weighted pipeline graph and other standard 

topologies for the placement strategies to operate on. Once the placements were 
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Figure 6.8: Processor Loading Frequencies Strategy 2 - Round Robin 

generated they were converted into the necessary CS-Tools configuration file so 

that the processes could be loaded onto the correct processor. 

The actual machine used was a 16 processor Meiko computing surface. Two 

versions of the program were used, one modelling ten distillation plates and the 

other modelling twenty. The simulation program was to execute for one thousand 

seconds of simulated time. The four placement strategies introduced in Section 

6.2 were used. This gave eight different experiment instances. The loading fre-

quencies created by each of the strategies are shown in Figures 6.7 through Figure 

6.10. The ten process system is shown on the left of each figure. 

Several runs were made and the average execution times are shown in Table 6.8. 

As these are real execution times in seconds the smaller the value the better the 

result. These values can be normalised by dividing the numbers in each column 
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Figure 6.10: Processor Loading Frequencies Strategy 4 - Node Swapping 

by the head number to produce Table 6.9. Again the smaller the number the 

better. The Round Robin and the Genetic algorithm both produce improvements 

between forty seven and twenty seven percent. 

Tables 6.10 and 6.11 show the costs produced by the placement strategies and 

the normalised costs respectively. In this case because a high cost implies a poor 

placement, hence a high execution time the costs can be normalised in the same 

way as the execution times. 

Strategy 10 Nodes 20 Nodes 
Random 190.68 308.82 
Round Robin 100.98 225.09 
Genetic 100.98 225.11 
Node Swapping 250.48 329.75 

Table 6.8: Execution Times for Programs under Strategies (seconds). 
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Strategy 10 Nodes 20 Nodes 
Random 1.00 1.00 
Round Robin 0.53 0.73 
Genetic 0.53 0.72 
Node Swapping 1.31 1.07 

Table 6.9: Normalised Execution Times. 

Strategy 10 Nodes 20 Nodes 
Random 1.6844e8 3.4888e8 
Round Robin 1.2029e8 2.8865e8 
Genetic 1.2023e8 2.8863e8 
Node Swapping 1.9216e8 3.7257e8 

Table 6.10: Costs for Placements 

6.7 Process Systems Placement Strategy Ex-

periment Summary 

This section has shown that the placement strategies are effective on a real pro-

gram. It has also shown that the experiment generation software can be used to 

generate an experiment for a real program provided some timing data is available 

for that program. 

It has also confirmed our suspicions about the effectiveness of the placement 

strategies under investigation. The same ranking is achieved as in the simulation 

experiment. It is obvious by now that the Node Swapping strategy is very poor. 

This is also reconfirmation that the program model is realistic as we have similar 

behaviour under the strategies. 

Strategy 10 Nodes 20 Nodes 
Random 1.00 1.00 
Round Robin 0.71 0.83 
Genetic 0.71 0.83 
Node Swapping 1.14 1.07 

Table 6.11: Normalised Costs for Placements 
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The cost function has proved to be a good guide to the effectiveness of a placement 

throughout these experiments. 

6.8 Summary 

This chapter has shown how the experimental framework can be used to investi-

gate process placement strategies both for real and simulated programs. There 

are advantages gained by having relatively automatic experimentation directly 

from the experimental design through to the statistical analysis. 

Through the use of the experimental framework the systematic investigation of 

the interaction between different placement strategies and program types becomes 

possible. 



Chapter 7 

Conclusions and Future Work 

7.1 Precis 

This chapter begins with a restatement of the contribution of the thesis and then 

these points are discussed in more detail and conclusions drawn. The last section 

describes possible futuEe work that could be performed. 

7.2 Contributions of Thesis and Discussion 

• The application of the methodology of statistical design of experiments to 

study the performance of arbitrary parallel programs. 

156 
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• The use of synthetic programs. to study a wide range of parallel programs. 

• The employment of these techniques in a systematic investigation of static 

placement strategies. 

• A demonstration of the utility of these techniques in producing performance 

models for both synthetic and real programs. 

When this work began the application of statistical techniques to parallel program 

performance evaluation had not previously been applied in a systematic fashion. 

This work has shown that serious performance analysis can be conducted on an 

arbitrary parallel program where it is possible to specify values for parameters or 

even where the parameters can only be measured. The identification of perfor-

mance limiting factors is possible using these techniques on any parallel program. 

Using a synthetic program model this can be done largely automatically with the 

experimentation software demonstrated here. 

This work has demonstrated that synthetic programs can be used to adequately 

represent a communicating sequential process program. The behaviour of the 

synthetic program was demonstrated to be similar to that of a real program. 

This implies that the general structure and time averaged communications and 

computation behaviour is more important than the individual instructions, con-

trol flow and synchronization for performance analysis at this level. Simplified 

program models are adequate for performance evaluation and early large scale 

tuning of applications. Simplified program models also allow rapid performance 

evaluation as opposed to the real program. 

It has also been demonstrated that the application of statistical techniques com-

bined with synthetic programs and the rest of the framework developed here is a 

sufficient system for investigating the performance of process placement strate- 
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gies. This systematic evaluation of placement strategies had not been performed 

before. It is also proposed that by using synthetic programs more information is 

gained about the placement strategies effect on a range of programs rather than 

just individual programs. The use of an artificially generated program allows the 

parameter levels to be specified, whereas an off the shelf program may not be 

very representative. 

The original motivation for this work was to study different placement strategies, 

but this was soon extended into a study of the ways of performing quantitative 

evaluations of the effects of relevant factors on parallel program performance. 

The system that has been constructed is capable of performing a wide range of 

performance studies. 

The system can also be used to predict the performance of parallel programs. I 

have shown that for the simple program models described here linear regression 

models can be used with acceptable results. More complicated models are pos-

sible and necessary for more complicated programs. More complicated models 

are not necessarily needed as useful predictions can be obtained from the regres-

sion equations derived from the synthetic programs for programs whose control 

structure does not conform exactly to the loosely synchronized model assumed. 

7.3 Future Work 

There are three main areas in which this work can continue: the modelling system 

itself, the software engineering tools and extension of the experimental designs. 

The following sections deal with each of these areas, followed by a section with 

some subsidiary points. 
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7.3.1 Modelling System 

Modelling and simulation will always be part of performance analysis. The con-

cept of Schrödinger's cat tells us that we can not know if we are interfering with 

the system by monitoring it. My proposal was that the best approach was to 

simulate rather than monitor the system. As parallel machines become faster and 

faster the simulation of those machines can also speed up. One obvious area of 

future work would be in the modification of a general purpose parallel simulation 

system to be able to model parallel computations as MIMD does. 

The models of parallel programs can be expanded to take in different and more 

complex program behaviour. It would be useful to extend the modelling system 

to be aware of new hardware and software such as networks of workstations or 

the Transputer T9000 chip. 

7.3.2 Software Engineering 

The rapid development of proper operating systems and software engineering 

tools has caught up with the fast development of parallel hardware. It is now 

common practice for supercomputers to be hosted by a Unix workstation or run 

Unix on its processors rather than a proprietary operating system. This means 

that standard and familiar software engineering tools can be used to develop 

programs and conduct performance studies. A performance study now could 

probably use a meta-modeller or modelling engine that was a real program that 

modified its behaviour based on the experiment instance. This would give results 

which could be measured in the terms of execution time rather than computation 

achieved. An early version of this type of meta-modeller was produced for use 
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with the CS-Tools environment but it was cumbersome. A meta-modeller of this 

nature could now be built using the PVM software. 

Message passing systems seem to be very much in vogue at the moment. This 

is largely due to the popularity and robustness of the Parallel Virtual Machine 

(PVM) software and also the proposal for the Message Passing Initiative (MPI) 

[GBD93, Mes94]. PVM is now provided as standard on several parallel ma-

chines. This type of message passing software has also encouraged cluster comput-

ing and the use of networks of workstations as loosely coupled parallel machines. 

A program written using PVM can, in theory, be taken from a development en-

vironment of a single workstation through to a network of workstations and on 

to a high performance machine such as the Cray T31) with little effort. This 

means that is likely that more productive use can be made of the most expensive 

machines as bugs can be ironed out on standard workstations. 

Perhaps the development of a single placement module that could be built into 

the operating system of our new distributed memory multicomputers is still some 

way away. It would take the set of modules that needed to be run and execute that 

monitoring it could then run the program again in a better configuration using 

the most appropriate placement strategy. A set of rules for choosing between 

placement strategies based on the calculated parameters for the program and 

the applicability of different strategies to different programs. The parameter 

levels for a program could be estimated with normal sequential profiling tools 

and by building a database of program performance during the development of 

an application. Then the placement of the program could be developed alongside 

the program code. This cooperative development should lead to a much better 

placement. 
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7.3.3 Experimental Design 

Phillips has used the framework developed in this thesis to investigate dynamic 

placement strategies [Phi94]. Dynamic placement strategies are necessary if the 

programs have a time variant nature. This means that the initial static placement 

strategy is invalidated by the behaviour of the program and a change needs 

to be made. Phillips also developed a more complicated program model for 

describing time variant programs. There is work here that is necessary to see how 

important a good initial placement is when a migration strategy is to be used. The 

combination of a static strategy, which has time to analyse a program in detail 

and then pass on these details to the migration strategy may be productive. 

It may also be suggested that as well as the placement strategy being developed 

alongside the program the use of statistical performance analysis becomes part 

of the standard software engineering tools for parallel programming. This is an 

increasing interest in systematic experimentation for programmers, as can be seen 

through the work of Lyon and coworkers on time perturbation tuning [LSK94]. 

7.3.4 Subsidiary Points 

Other placement strategies that were not covered here may have better per-

formance. The technique of simulated annealing could be investigated in more 

detail. Some initial work was undertaken for this study but the results were fairly 

inconclusive. The analogy of a physical system cooling to a stable state seems 

quite similar to the arrangement of processes across processors with their links 

being equivalent to chemical bonds or nearest neighbour interactions. I do not 

think that I gave Genetic Algorithms enough study and I may not have used 
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them to their best potential. I am convinced, based on evidence of other uses 

of genetic algorithms that they could produce better results. They were used as 

an example strategy of a different approach and in that way they fulfilled their 

role. There are a lot of parameters which can be manipulated with the genetic 

algorithm itself and I did not want to start a whole new parameter study on that 

algorithm. Once the system was producing a good stable population the levels 

of the factors affecting the genetic algorithm were left intact. 

It may also be feasible to do a full state search of all possible placement combi-

nations using a branch and bound technique. This would need a cost function 

that was quick to evaluate so that decisions could be made between different 

placements. The difficulty in this approach would be in ordering the possible 

combinations in such a way that pruning of the search tree is possible. 

The most important future work is to carry on with the application of the sta 

tistical techniques to the performance evaluation of parallel systems. There is 

much to do in the study of placement strategies and their interaction with the 

programs. 

And Finally 

Large parallel machines are very expensive things to use and anything that aids 

the productive use of these machines is a benefit. 
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Asynchronous/ Synchronous Programs Shu and Wu suggest that applica-
tion programs can be classified into three categories: synchronous, loosely 
synchronous and asynchronous [SW95]. 

Synchronous programs have a uniform structure. In each time step every 
processor executes the same operation over different data, resulting in 
a naturally balanced computational load. 

Loosely Synchronous programs can be structured iteratively with two 
phases: the computation phase and the synchronisation phase. In the 
synchronisation phase, processors exchange information and synchro-
nise with each other. In a system that supports dynamic migration 
some process migration may occur at this phase boundary. In the 
computation phase, different processors can operate independently. 

Asynchronous programs have no synchronous structure. Processes may 
communicate with each other at any time. The computation structure 
can be very irregular and the load imbalanced. 

Domain Used in the context of the "experimental or modelling domain" - this 
means the system or systems that constitute the parallel program and ma-
chine under study. This could be a program written in the MIMD modelling 
system or it could be a distributed memory computer and software. 

Fractional Factorial Design For the description of a Full Factorial Design see 
Section 3.3.2. Sometimes the number of experiments required for a full 
factorial design is too large. This may happen if the number of factors or 
their levels is large. It may not be possible to use a full factorial design 
due to the expense or the time required. In such cases a fraction of the full 
factorial design can be used. A fractional factorial design chooses some of 
the combinations of the factors. These designs save time and expense but 
the information gained from such an experiment is less than that from a full 
experiment. It may not be possible to get interactions from all factors due 
to confounding. On the other hand, if some of the interactions are known 
to be negligible, this may not be considered a problem. 

Granularity The size of a process chosen for parallelism is called the granularity 
or grain size. Krishnamurthy defines granularity with the following three 
levels [Kri89]: 

Data Level Here the parallelism results in effecting the same operation on 
multiple data items simultaneously, for example vector addition. This 
is called "fine granularity". 
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Operation Level Here the parallelism arises by the execution of indepen-
dent instructions simultaneously. For example consider (a + b) x (c/d) 
here we can execute the addition and division simultaneously. This is 
called medium granularity. 

Task Level Here the parallelism is at a specific task level or program level, 
for example simultaneous reading from a database. This is called 
coarse granularity. 

For task based programs the grain size problem occurs. This problem is 
how to determine the best clustering of tasks in the task graph such that 
the task graph execution is minimized. For more details see Kruatrachue 
[Kru87]. 

Hot spot A hot spot is a place where a resource is placed under a large de-
mand relative to other resources. This can be a physical resource such as 
a network link or a disk, or a software resource such as a process or even a 
memory location. The Gecko software system showed hot spots on trans-
puter systems through the use of colours, red being hot [SB89, Har89a]. 

Process Template This is a parameterised piece of program code. The param-
eters to the program define the functional and temporal behaviour of the 
process. A simple process template which loops continually computing and 
sending messages may take two parameters; the number of times to loop 
and the size of messages to send. More complex process templates can be 
constructed whose behaviour varies with time. The code for the process is 
written in the domain of the meta-modeller. 

Scatter and gather This is a term describing a master/slave parallel compu-
tation where the master scatters data amongst many slaves and then waits 
to gather the results. This operation is usually repeated. It is also common 
for all processes to perform scatter/gather operations with their nearest 
neighbours. 

Simulation Time This is the logical time within the simulation. This is speci-
fied in logical time units. 
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Experiment Generator 

Reference 

This appendix includes the complete syntax diagrams for the Experiment Defi-

nition language used by the Experiment Generator eg. 
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A.1 Syntax Diagrams for the Experiment De-

sign Language 

experiment 

Begin Experiment __1  expfIle  I__end Experiment  

expfile 

ifiesection 

T~ comment 

fi lesection 

Begin Simulation Paramet 	simulationparams —(Exiimulat ion Parameters 

Begin Graph Parameters  —EnaPhParter}- 

Begin Define Processes_ 	pro, : !;!;d I 	(End Define PrICACC1101:11:11s 

Begin Define  Channels 	chaj: Ili iii e1l 1:11 efEndDefjneChne1 

Begin Allocate Processes 	process :iii: 	End Allo cat e Pro case es 

Begin Allocate Channel 

Begin Placement )—] placement  —.( End Placement 

Figure A. 1: Top level components of an experiment description 
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szmzlaionparams 

simgenericvalue 

dom ainn am e 

MIND 

Heiko ~:v 
Figure A.2: Simulation Parameters 

graph params 

Graph Type )— gtype 

integerrange 

Number Node ')__l integerrange 

h1ype 

Figure A.3: Graph Parameters 
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hwjpe 

gype 

Redfield 

User 	swgraph 
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swgraph 

proces1js 

ff  
louble double 

_—In 
glisi 

integer H integer  }.— double  J—J double 	double —J double 

hwgraph 

integer 	integer 	integer 	hwglist 

hwglisi 	 - 

c integer 	integer 



Appendix A 

processdef 

process 

process 

name H '"' H parameterlist  H rcurl 

channeldef 

Cl th1 9 
channel 

name H icurl  H parameterlist  H rcurl 

paramcerlisi 

genericvalue 

genericvalue 

Int 	name 	integerrange 

Double 	name  

simyenericvalue 	 - 

179 

Figure A.4: Process and Channel Definition Syntax 
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processalloc 

Nap )-1 name H To )— double  F - - percent 

Percent 

channelalloc 

Nap )—J name H To )-1 double  F-  - 	percent 

Percent 

Figure A.5: Process and Channel Allocation Syntax 

placement  

Figure A.6: Placement Syntax 
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iniegerrange 

I integerrangera?nge T- 

integerrangelist 

2ne9errangeranye 

iniegcrranyelis 

integer 

dotLblerange 

era doublerangnge 

erjelis 

dotLblerangerange 

double 

double I—( To —1 double 

double H To H double F-C Step  )-J double 

doublerangelisi 

double 

181 

Figure A.7: Range Syntax 
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double 

—Clfloat I  

integer 

integer 

-C 
digit 

float 

exponent 

string 

Figure A.8: Basic Token Syntax 
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name 

( Z aZAZ9 I 
digit 

comment 

whitespace 

Z 7  
newline 

E<NEW 

183 

Figure A.9: Basic Token Syntax Continued 
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A.2 Syntax Diagrams for the Experiment In-

stance File 
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experimentinstance 

simulationparasns 	ranges 	hardware 	software 	placement 

simulatsonparams 

ranges 

rangecount _[] (nevalue  J.._.[] 

hardware 

software 

placement 

T 
processid 	processorid I-LEI1 

Figure A.10: Output Format for Experiment Instance 


