1,966 research outputs found

    Spatial Filtering Pipeline Evaluation of Cortically Coupled Computer Vision System for Rapid Serial Visual Presentation

    Get PDF
    Rapid Serial Visual Presentation (RSVP) is a paradigm that supports the application of cortically coupled computer vision to rapid image search. In RSVP, images are presented to participants in a rapid serial sequence which can evoke Event-related Potentials (ERPs) detectable in their Electroencephalogram (EEG). The contemporary approach to this problem involves supervised spatial filtering techniques which are applied for the purposes of enhancing the discriminative information in the EEG data. In this paper we make two primary contributions to that field: 1) We propose a novel spatial filtering method which we call the Multiple Time Window LDA Beamformer (MTWLB) method; 2) we provide a comprehensive comparison of nine spatial filtering pipelines using three spatial filtering schemes namely, MTWLB, xDAWN, Common Spatial Pattern (CSP) and three linear classification methods Linear Discriminant Analysis (LDA), Bayesian Linear Regression (BLR) and Logistic Regression (LR). Three pipelines without spatial filtering are used as baseline comparison. The Area Under Curve (AUC) is used as an evaluation metric in this paper. The results reveal that MTWLB and xDAWN spatial filtering techniques enhance the classification performance of the pipeline but CSP does not. The results also support the conclusion that LR can be effective for RSVP based BCI if discriminative features are available

    Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing

    Get PDF
    Brain computer interfaces (BCI) provide a new approach to human computer communication, where the control is realised via performing mental tasks such as motor imagery (MI). In this study, we investigate a novel method to automatically segment electroencephalographic (EEG) data within a trial and extract features accordingly in order to improve the performance of MI data classification techniques. A new local discriminant bases (LDB) algorithm using common spatial patterns (CSP) projection as transform function is proposed for automatic trial segmentation. CSP is also used for feature extraction following trial segmentation. This new technique also allows to obtain a more accurate picture of the most relevant temporal–spatial points in the EEG during the MI. The results are compared with other standard temporal segmentation techniques such as sliding window and LDB based on the local cosine transform (LCT)

    EEG-Based Brain-Computer Interfacing via Motor-Imagery: Practical Implementation and Feature Analysis

    Get PDF
    The human brain is the most intriguing and complex signal processing unit ever known to us. A unique characteristic of our brain is its plasticity property, i.e., the ability of neurons to modify their behavior (structure and functionality) in response to environmental diversity. The plasticity property of brain has motivated design of brain-computer interfaces (BCI) to develop an alternative form of communication channel between brain signals and the external world. The BCI systems have several therapeutic applications of significant importance including but not limited to rehabilitation/ assistive systems, rehabilitation robotics, and neuro-prosthesis control. Despite recent advancements in BCIs, such systems are still far from being reliably incorporated within humanmachine inference networks. In this regard, the thesis focuses on Motor Imagery (MI)-based BCI systems with the objective of tackling some key challenges observed in existing solutions. The MI is defined as a cognitive process in which a person imagines performing a movement without peripheral (muscle) activation. At one hand, the thesis focuses on feature extraction, which is one of the most crucial steps for the development of an effective BCI system. In this regard, the thesis proposes a subject-specific filtering framework, referred to as the regularized double-band Bayesian (R-B2B) spectral filtering. The proposed R-B2B framework couples three main feature extraction categories, namely filter-bank solutions, regularized techniques, and optimized Bayesian mechanisms to enhance the overall classification accuracy of the BCI. To further evaluate the effects of deploying optimized subject-specific spectra-spatial filters, it is vital to examine and investigate different aspects of data collection and in particular, effects of the stimuli provided to subjects to trigger MI tasks. The second main initiative of the thesis is to propose an element of experimental design dealing with MI-based BCI systems. In this regard, we have implemented an EEG-based BCI system and constructed a benchmark dataset associated with 10 healthy subjects performing actual movement and MI tasks. To investigate effects of stimulus on the overall achievable performance, four different protocols are designed and implemented via introduction of visual and voice stimuli. Finally, the work investigates effects of adaptive trimming of EEG epochs resulting in an adaptive and subject-specific solution

    Sub-band common spatial pattern (SBCSP) for brain-computer interface

    Get PDF
    Brain-computer interface (BCI) is a system to translate humans thoughts into commands. For electroencephalography (EEG) based BCI, motor imagery is considered as one of the most effective ways. Different imagery activities can be classified based on the changes in mu and/or beta rhythms and their spatial distributions. However, the change in these rhythmic patterns varies from one subject to another. This causes an unavoidable time-consuming fine-tuning process in building a BCI for every subject. To address this issue, we propose a new method called sub-band common spatial pattern (SBCSP) to solve the problem. First, we decompose the EEG signals into sub-bands using a filter bank. Subsequently, we apply a discriminative analysis to extract SBCSP features. The SBCSP features are then fed into linear discriminant analyzers (LDA) to obtain scores which reflect the classification capability of each frequency band. Finally, the scores are fused to make decision. We evaluate two fusion methods: recursive band elimination (RBE) and meta-classifier (MC). We assess our approaches on a standard database from BCI Competition III. We also compare our method with two other approaches that address the same issue. The results show that our method outperforms the other two approaches and achieves similar result as compared to the best one in the literature which was obtained by a time-consuming fine-tuning process

    BCI Competition IV – Data Set I: Learning Discriminative Patterns for Self-Paced EEG-Based Motor Imagery Detection

    Get PDF
    Detecting motor imagery activities versus non-control in brain signals is the basis of self-paced brain-computer interfaces (BCIs), but also poses a considerable challenge to signal processing due to the complex and non-stationary characteristics of motor imagery as well as non-control. This paper presents a self-paced BCI based on a robust learning mechanism that extracts and selects spatio-spectral features for differentiating multiple EEG classes. It also employs a non-linear regression and post-processing technique for predicting the time-series of class labels from the spatio-spectral features. The method was validated in the BCI Competition IV on Dataset I where it produced the lowest prediction error of class labels continuously. This report also presents and discusses analysis of the method using the competition data set

    MEG:hen perustuvan aivo-tietokone -käyttöliittymän kehitys

    Get PDF
    Brain–computer interfaces (BCI) have recently gained interest both in basic neuroscience and clinical interventions. The majority of noninvasive BCIs measure brain activity with electroencephalography (EEG). However, the real-time signal analysis and decoding of brain activity suffer from low signal-to-noise ratio and poor spatial resolution of EEG. These limitations could be overcome by using magnetoencephalography (MEG) as an alternative measurement modality. The aim of this thesis is to develop an MEG-based BCI for decoding hand motor imagery, which could eventually serve as a therapeutic method for patients recovering from e.g. cerebral stroke. Here, machine learning methods for decoding motor imagery -related brain activity are validated with healthy subjects’ MEG measurements. The first part of the thesis (Study I) involves a comparison of feature extraction methods for classifying left- vs right-hand motor imagery (MI), and MI vs rest. It was found that spatial filtering and further extraction of bandpower features yield better classification accuracy than time–frequency features extracted from parietal gradiometers. Furthermore, prior spatial filtering improved the discrimination capability of time–frequency features. The training data for a BCI is typically collected in the beginning of each measurement session. However, as this can be time-consuming and exhausting for the subject, the training data from other subjects’ measurements could be used as well. In the second part of the thesis (Study II), methods for across-subject classification of MI were compared. The results showed that a classifier based on multi-task learning with a l2,1-norm regularized logistic regression was the best method for across-subject decoding for both MEG and EEG. In Study II, we also compared the decoding results of simultaneously measured EEG and MEG data, and investigated whether the MEG responses to passive hand movements could be used to train a classifier to detect MI. MEG yielded altogether slightly, but not significantly, better results than EEG. Training the classifiers with subject’s own or other subjects’ passive movements did not result in high accuracy, which indicates that passive movements should not be used for calibrating an MI-BCI. The methods presented in this thesis are suitable for a real-time MEG-based BCI. The decoding results can be used as a benchmark when developing other classifiers specifically for motor imagery -related MEG data.Aivo-tietokone -käyttöliittymät (brain–computer interface; BCI) ovat viime aikoina herättäneet kiinnostusta niin neurotieteen perustutkimuksessa kuin kliinisissä interventioissakin. Suurin osa ei-invasiivisista BCI:stä mittaa aivotoimintaa elektroenkefalografialla (EEG). EEG:n matala signaali-kohinasuhde ja huono avaruudellinen resoluutio kuitenkin hankaloittavat reaaliaikais-ta signaalianalyysia ja aivotoiminnan luokittelua. Nämä rajoitteet voidaan kiertää käyttämällä magnetoenkefalografiaa (MEG) vaihtoehtoisena mittausmenetelmänä. Tämän työn tavoitteena on kehittää käden liikkeen kuvittelua luokitteleva, MEG:hen perustuva BCI, jota voidaan myöhemmin käyttää terapeuttisena menetelmänä esimerkiksi aivoinfarktista toipuvien potilaiden kuntoutuk-sessa. Tutkimuksessa validoidaan terveillä koehenkilöillä tehtyjen MEG-mittausten perusteella koneoppimismenetelmiä, joilla luokitellaan liikkeen kuvittelun aiheuttamaa aivotoimintaa. Ensimmäisessä osatyössä (Tutkimus I) vertailtiin piirteenirrotusmenetelmiä, joita käytetään erottamaan toisistaan vasemman ja oikean käden kuvittelu sekä liikkeen kuvittelu ja lepotila. Ha-vaittiin, että avaruudellisesti suodatettujen signaalien taajuuskaistan teho luokittelupiirteenä tuotti parempia luokittelutarkkuuksia kuin parietaalisista gradiometreistä mitatut aika-taajuuspiirteet. Lisäksi edeltävä avaruudellinen suodatus paransi aika-taajuuspiirteiden erottelukykyä luokittelu-tehtävissä.BCI:n opetusdata kerätään yleensä kunkin mittauskerran alussa. Koska tämä voi kuitenkin olla aikaavievää ja uuvuttavaa koehenkilölle, opetusdatana voidaan käyttää myös muilta koehenkilöiltä kerättyjä mittaussignaaleja. Toisessa osatyössä (Tutkimus II) vertailtiin koehenkilöiden väliseen luo-kitteluun soveltuvia menetelmiä. Tulosten perusteella monitehtäväoppimista ja l2,1-regularisoitua logistista regressiota käyttävä luokittelija oli paras menetelmä koehenkilöiden väliseen luokitteluun sekä MEG:llä että EEG:llä. Toisessa osatyössä vertailtiin myös samanaikaisesti mitattujen MEG:n ja EEG:n tuottamia luokit-telutuloksia, sekä tutkittiin voidaanko passiivisten kädenliikkeiden aikaansaamia MEG-vasteita käyttää liikkeen kuvittelua tunnistavien luokittelijoiden opetukseen. MEG tuotti hieman, muttei merkittävästi, parempia tuloksia kuin EEG. Luokittelijoiden opetus koehenkilöiden omilla tai mui-den koehenkilöiden passiiviliikkeillä ei tuottanut hyviä luokittelutarkkuuksia, mikä osoittaa että passiiviliikkeitä ei tulisi käyttää liikkeen kuvittelua tunnistavan BCI:n kalibrointiin. Työssä esitettyjä menetelmiä voidaan käyttää reaaliaikaisessa MEG-BCI:ssä. Luokittelutuloksia voidaan käyttää vertailukohtana kehitettäessä muita liikkeen kuvitteluun liittyvän MEG-datan luokittelijoita
    corecore