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Abstract

Brain–computer interfaces (BCI) have recently gained interest both in basic neuroscience and clinical
interventions. The majority of noninvasive BCIs measure brain activity with electroencephalography
(EEG). However, the real-time signal analysis and decoding of brain activity suffer from low signal-
to-noise ratio and poor spatial resolution of EEG. These limitations could be overcome by using
magnetoencephalography (MEG) as an alternative measurement modality. The aim of this thesis
is to develop an MEG-based BCI for decoding hand motor imagery, which could eventually serve
as a therapeutic method for patients recovering from e.g. cerebral stroke. Here, machine learning
methods for decoding motor imagery -related brain activity are validated with healthy subjects’
MEG measurements.

The first part of the thesis (Study I) involves a comparison of feature extraction methods for
classifying left- vs right-hand motor imagery (MI), and MI vs rest. It was found that spatial filtering
and further extraction of bandpower features yield better classification accuracy than time–frequency
features extracted from parietal gradiometers. Furthermore, prior spatial filtering improved the
discrimination capability of time–frequency features.

The training data for a BCI is typically collected in the beginning of each measurement session.
However, as this can be time-consuming and exhausting for the subject, the training data from
other subjects’ measurements could be used as well. In the second part of the thesis (Study II),
methods for across-subject classification of MI were compared. The results showed that a classifier
based on multi-task learning with a l2,1-norm regularized logistic regression was the best method for
across-subject decoding for both MEG and EEG.

In Study II, we also compared the decoding results of simultaneously measured EEG and MEG
data, and investigated whether the MEG responses to passive hand movements could be used to
train a classifier to detect MI. MEG yielded altogether slightly, but not significantly, better results
than EEG. Training the classifiers with subject’s own or other subjects’ passive movements did not
result in high accuracy, which indicates that passive movements should not be used for calibrating
an MI-BCI.

The methods presented in this thesis are suitable for a real-time MEG-based BCI. The decoding
results can be used as a benchmark when developing other classifiers specifically for motor imagery
-related MEG data.

Keywords magnetoencephalography, brain–computer interface, MEG, BCI, motor
imagery, sensorimotor rhythm
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Tiivistelmä

Aivo-tietokone -käyttöliittymät (brain–computer interface; BCI) ovat viime aikoina herättäneet
kiinnostusta niin neurotieteen perustutkimuksessa kuin kliinisissä interventioissakin. Suurin
osa ei-invasiivisista BCI:stä mittaa aivotoimintaa elektroenkefalografialla (EEG). EEG:n matala
signaali-kohinasuhde ja huono avaruudellinen resoluutio kuitenkin hankaloittavat reaaliaikais-
ta signaalianalyysia ja aivotoiminnan luokittelua. Nämä rajoitteet voidaan kiertää käyttämällä
magnetoenkefalografiaa (MEG) vaihtoehtoisena mittausmenetelmänä. Tämän työn tavoitteena on
kehittää käden liikkeen kuvittelua luokitteleva, MEG:hen perustuva BCI, jota voidaan myöhemmin
käyttää terapeuttisena menetelmänä esimerkiksi aivoinfarktista toipuvien potilaiden kuntoutuk-
sessa. Tutkimuksessa validoidaan terveillä koehenkilöillä tehtyjen MEG-mittausten perusteella
koneoppimismenetelmiä, joilla luokitellaan liikkeen kuvittelun aiheuttamaa aivotoimintaa.

Ensimmäisessä osatyössä (Tutkimus I) vertailtiin piirteenirrotusmenetelmiä, joita käytetään
erottamaan toisistaan vasemman ja oikean käden kuvittelu sekä liikkeen kuvittelu ja lepotila. Ha-
vaittiin, että avaruudellisesti suodatettujen signaalien taajuuskaistan teho luokittelupiirteenä tuotti
parempia luokittelutarkkuuksia kuin parietaalisista gradiometreistä mitatut aika-taajuuspiirteet.
Lisäksi edeltävä avaruudellinen suodatus paransi aika-taajuuspiirteiden erottelukykyä luokittelu-
tehtävissä.

BCI:n opetusdata kerätään yleensä kunkin mittauskerran alussa. Koska tämä voi kuitenkin olla
aikaavievää ja uuvuttavaa koehenkilölle, opetusdatana voidaan käyttää myös muilta koehenkilöiltä
kerättyjä mittaussignaaleja. Toisessa osatyössä (Tutkimus II) vertailtiin koehenkilöiden väliseen luo-
kitteluun soveltuvia menetelmiä. Tulosten perusteella monitehtäväoppimista ja l2,1-regularisoitua
logistista regressiota käyttävä luokittelija oli paras menetelmä koehenkilöiden väliseen luokitteluun
sekä MEG:llä että EEG:llä.

Toisessa osatyössä vertailtiin myös samanaikaisesti mitattujen MEG:n ja EEG:n tuottamia luokit-
telutuloksia, sekä tutkittiin voidaanko passiivisten kädenliikkeiden aikaansaamia MEG-vasteita
käyttää liikkeen kuvittelua tunnistavien luokittelijoiden opetukseen. MEG tuotti hieman, muttei
merkittävästi, parempia tuloksia kuin EEG. Luokittelijoiden opetus koehenkilöiden omilla tai mui-
den koehenkilöiden passiiviliikkeillä ei tuottanut hyviä luokittelutarkkuuksia, mikä osoittaa että
passiiviliikkeitä ei tulisi käyttää liikkeen kuvittelua tunnistavan BCI:n kalibrointiin.

Työssä esitettyjä menetelmiä voidaan käyttää reaaliaikaisessa MEG-BCI:ssä. Luokittelutuloksia
voidaan käyttää vertailukohtana kehitettäessä muita liikkeen kuvitteluun liittyvän MEG-datan
luokittelijoita.

Avainsanat magnetoenkefalografia, aivo-tietokone -käyttöliittymä, MEG, liikkeen
kuvittelu, sensorimotorinen rytmi
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1. Introduction

Brain–computer interfaces (BCI) translate brain activity in real time into
commands for external devices. Noninvasive BCIs have various applica-
tions in both basic and clinical neuroscience, including communication and
movement assistance devices for disabled people and tools for neurological
rehabilitation [1,2]. For example, hemiparetic patients can learn to control
an orthosis attached to the paretic hand using motor imagery (MI) and
concurrent feedback. Several studies have suggested that this kind of
closed-loop feedback training boosts neurological recovery [2–6], albeit
most of the studies involve only small groups of patients and no control
group. In spite of the substantial advancements in the field during the
last decades, there is still need for improvement of both the experimental
protocols and usability of BCIs.

Electric brain activity can be measured noninvasively with electroen-
cephalography (EEG) and the corresponding magnetic fields with mag-
netoencephalography (MEG). During the last decade, MEG has gained
attention in the context of BCI and closed-loop neurofeedback studies [7–
12]. The advantages of MEG compared to EEG are better signal-to-noise
ratio (SNR) and spatial resolution, which are crucial for BCI applications
in which the signal is analyzed in real time. Due to these benefits, MEG
can be used e.g. to assist the development of eventually EEG-based BCIs.
MEG-based BCIs can also be used in basic neuroscientific research.

The core component of a BCI is signal classification, i.e. the automatic
detection of predefined brain states, such as motor imagery vs resting state.
Machine learning methods are typically employed for this classification
task, either in a supervised or unsupervised manner. Regardless of the
classification algorithm, successful decoding requires that relevant signal
features are extracted from the raw data. Optimal features should accu-
rately discriminate between the brain states of interest and, even more
importantly, they should generalize across sessions and subjects in order
to enable successful inter-session and inter-subject classification. Feature
extraction is an elementary part of a BCI, and selecting optimal features
can significantly improve the classification accuracy.
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Introduction

The state-of-the-art BCIs typically require dozens or even hundreds
of samples of each subject’s neurophysiological signals for training the
classifiers to decode the user’s brain states with an accuracy exceeding
chance level. Due to large inter-subject variability of these signals, user-
specific brain responses are usually collected in the beginning of each
session for calibrating the BCI. Because of the calibration, the total time
spent for each BCI practice session can be quite long. The training can
be exhausting for the BCI users, especially for patients suffering from
neurological disorders. Therefore, there is a need for robust classifiers that
can be trained in advance with other subjects’ data and generalized to new
subjects. With these generalized classifiers, the laborious BCI calibration
session could be omitted.

This thesis presents methods for optimizing the accuracy and usability
of MEG-based BCI systems utilizing hand MI. Specifically, methods for
feature extraction and inter-subject decoding are considered. The long-
term goal of this research is to develop an MEG-BCI that could be used for
rehabilitation of hand function after e.g. cerebral stroke.

2



2. Aims of the thesis

The main goal of this licentiate thesis was to develop an MEG-based MI-
BCI and search for solutions to issues related to the usability of noninvasive
BCIs. The aims of the thesis were:

1. Finding optimal MEG signal features for within-subject classification of
MI (Study I),

2. Validating methods for inter-subject classification of MI (Study II),

3. Comparing MEG and EEG in within- and inter-subject classification of
MI (Study II), and

4. Investigating the use of passive movements for training a MI-BCI
instead of MI (Study II).

3



3. Background

3.1 Motor system

The neural structures controlling voluntary movements involve several
cortical and subcortical areas as well as peripheral nerves. The primary
motor cortex sends movement commands to the peripheral muscles via
nerve tracts in the brainstem and spinal cord. The cerebellum and basal
ganglia are also involved in movement control, and the motor cortex has
reciprocal connections to other regions of the cerebral cortex. Cooperation
of many sensory and associative cortical areas is required to perform
delicate, coordinated movements.

3.1.1 Motor cortex

The motor cortical areas include the primary motor cortex (M1), the pre-
motor cortex and the supplementary motor area (SMA). M1 is located in
the precentral gyrus in the frontal lobe and extends to the central sulcus.
M1 sends movement commands to neurons in the corticospinal tract, and
is thus involved in initiating voluntary movements. The premotor cortex is
located anterior to M1 and is responsible of planning and sensory guidance
of movement. SMA is also located anteriorly to M1, and its functions in-
clude postural stabilization as well as coordination of bilateral movements
and complex movement sequences. In addition, SMA is suggested to play
a role in internal generation of movements, i.e. those not triggered by a
sensory stimulus. SMA and premotor cortex are adjacent to each other:
SMA is located medially and premotor cortex laterally.

The motor cortical areas receive input from the thalamus, mainly the
ventral lateral nucleus, and from association areas of the cerebrum. Cor-
respondingly, output signals are sent from the motor cortex to several
cortical and subcortical areas. The primary motor cortex is organized such
that different muscles are controlled by different parts of M1. The size of
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Background

the cortical representation is proportional to the precision of movements
performed by the corresponding body part: a larger cortical area allows
more detailed control of movements. The representation areas are also
slightly different in each individual, depending on the learned motor skills.

3.1.2 Motor pathways

The corticospinal tract originates primarily in M1. Neurons of the corti-
cospinal tract have their cell bodies in the cortex, and the axons descend
towards the brainstem and spinal cord, going through the internal capsule
and the cerebral peduncle, and further into the brainstem and anterior
medulla oblongata. Below that point, most of the axons (about 80%) cross
over, or decussate, to the opposite side and form the lateral corticospinal
tract, which controls movements of lateral muscles. The anterior tract,
containing about 10% of the corticospinal fibers, does not cross over and
controls the muscles in the proximal parts of the body. The rest of the cor-
ticospinal tract’s fibers do not cross over at brainstem, but instead join the
lateral tract in the spinal cord. The axons of corticospinal neurons synapse
at spinal cord with alpha motoneurons either directly or via interneurons.
The alpha motoneurons are connected to skeletal muscles. A single alpha
motoneuron and the muscle fibers connected to it form a motor unit.

The anatomy of motor cortical areas and corticospinal tract is illustrated
in Fig. 3.1.

A B SMA 
Primary motor  cortex Premotor  cortex 

Figure 3.1. Anatomy of the human motor system. A) Motor cortical areas, B) A diffusion
tensor image of the corticospinal tract extending from the primary motor
cortex (MR tractography of the author’s brain, image by V. Sairanen).

3.1.3 Motor cortical plasticity

Neural plasticity refers to the brain’s ability to reshape itself in response to
environmental and behavioral changes. Plasticity involves e.g. changes in
the amount of gray matter in certain brain areas, weakening or strengthen-
ing of synapses, or even relocation of entire functional brain areas. Plastic
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Background

changes occur throughout life, although some areas remain unchanged
after childhood development.

The core principle underlying neural plasticity is Hebbian learning, i.e.
the activity-dependency of synaptic connections. The rule often summa-
rized as “neurons that fire together, wire together” does not actually mean
that two neurons have to fire action potentials simultaneously – it rather
implies that if a presynaptic neuron is repeatedly stimulating a postsynap-
tic neuron, these two are more likely to form a strong connection. This
phenomenon can emerge between multiple neurons as well if the same
activation pattern involving several cells is repeatedly fired.

Reorganization and functional changes in the motor system can occur
during practising of new motor skills or spontaneously when recovering
from neurotrauma [13]. In neurological rehabilitation of the motor system
after e.g. cerebral stroke, physical therapy is often exploited to guide the
reorganization of the injured brain areas. Motor imagery (MI), i.e. the
mental simulation of movements without actually performing them, acti-
vates partially the same areas as the execution of the same movements.
Thus, plastic changes of the motor cortex can be expected in response to
practising MI. However, performing MI without any external feedback can
be challenging, and without simultaneous neurophysiological measure-
ments it is impossible for the clinician to observe the patient’s performance.
Therefore, MI combined with (noninvasive) measurement of brain activity
and real-time activity-induced feedback could be a more engaging and
motivating task. Furthermore, the concurrent activation of both motor
cortical areas with MI as well as afferent pathways with proprioceptive
feedback could re-establish sensorimotor integration.

3.1.4 Sensorimotor rhythms

The sensorimotor rhythm (SMR), also referred to as rolandic mu rhythm, is
the oscillatory activity occurring in the primary somatosensory and motor
cortices [14]. The rhythm is most prominent during rest, and therefore the
oscillations are thought to correspond to idling of the somatosensory and
motor cortices [15]. SMR consists of two distinct frequency components in
the alpha and beta band, centered at approximately 10 Hz and 20 Hz. The
10-Hz oscillation originates predominantly in the primary somatosensory
cortex, whereas the 20-Hz component originates mainly in the primary mo-
tor cortex [16]. The center frequencies of these components vary between
individuals.

The power of SMR is suppressed (event-related desynchronization, or
ERD) primarily during voluntary movements. After termination of move-
ment, SMR power returns back to baseline via a transient rebound (event-
related synchronization, or ERS). Besides voluntary movements, SMR
modulation is also observed during passive movements and somatosensory
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stimulation [17], as well as MI [18–20]. Furthermore, mere observation of
movements can affect the modulation of SMR by decreasing the strength
of rebound [21]. The resting state power of SMR, as well as the degree
of suppression and rebound, can vary substantially between individuals
and also as a function of age [22]. SMR modulation can also change in
response to motor practice and during neurological recovery; for instance,
the rebound of the 20-Hz rhythm has been found to increase during the
course of stroke recovery [23,24].

Representative time–frequency patterns corresponding to SMR suppres-
sion and rebound during passive hand movements and hand MI followed
by proprioceptive feedback are illustrated in Fig. 3.2. Importantly, the pas-
sive movements activate only the alpha-band SMR component (centered
at 12 Hz), whereas MI and the corresponding feedback activate both the
alpha- and beta-band (centered at 16 Hz) components, shown by a power
suppression shortly after the beginning of the epoch. In both cases, SMR
rebound is observed after termination of the motor task.
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Figure 3.2. The time–frequency plot of SMR modulation measured with MEG during (A)
passive hand movements (start indicated by the green line), and (B) hand
motor imagery (start indicated by the red line) followed by proprioceptive
feedback (green line). The signal is measured from a single subject and
averaged over 52 parietal gradiometers and 50 epochs of left- and right-hand
activity.

In addition to the approximately 10- and 20-Hz oscillations included in
the SMR, the motor cortex is also found to elicit high frequency gamma-
band activity. Both low-gamma (30–60 Hz) oscillations [25–29], and tran-
sient high-gamma (60–90 Hz) bursts [30, 31] have been found to occur
during movements. Also MI can elicit gamma-band activity, as shown by
Miller and colleagues in an electrocorticography study [32]. They found
that high-gamma power is increased in a similar manner both during
movements and MI, and that the gamma-band activity is more localized in
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the cortex than the suppression of SMR.

3.2 Magnetoencephalography

Magnetoencephalography (MEG) measures noninvasively the magnetic
fields generated by electrical brain activity [33]. The first MEG signal was
measured in 1968 with a single induction coil [34]. Later, superconducting
quantum interference devices (SQUID) became the state-of-the-art MEG
sensors. First whole-head SQUID array was developed in the 1990’s [35],
and nowadays most commercial MEG devices involve a sensor helmet
covering the whole head with hundreds of SQUID sensors. Quite recently,
optically-pumped magnetometers (OPM) [36] have been developed in order
to overcome certain limitations of SQUIDs.

One of the advantages of MEG compared to other neuroimaging methods
is excellent temporal resolution, which allows capturing brain dynamics
even in sub-millisecond scale. Another benefit of MEG is spatial resolution
superior to that of EEG due to the fact that magnetic fields are not distorted
by the high conductivity difference of skull and scalp.

3.2.1 Signal generation

The neurophysiological signal measured by MEG is mostly generated by
synchronous activity of cortical pyramidal neurons. Signals in neurons are
conveyed via action potentials, which are triggered when the membrane po-
tential exceeds a certain threshold, resulting in depolarization. When the
action potential in a presynaptic neuron reaches a synapse, neurotransmit-
ters are released into the synaptic cleft. The neurotransmitters bind to the
receptors of the postsynaptic neuron, which results in opening of ion chan-
nels and subsequent change of the membrane potential, i.e. depolarization
or hyperpolarization depending on the neurotransmitter. The change of
potential at the postsynaptic cell membrane causes a graded postsynaptic
potential along the dendrite, and related intracellular current.

In a presynaptic axon, the intracellular currents associated with action
potential flow in opposite directions and thus the generated magnetic fields
cancel each other out. In addition, the extracellular electric and magnetic
fields generated by the action potential attenuate rapidly as a function
of distance, and therefore are not detectable outside of the head. In the
postsynaptic dendrite, the intracellular current flows in one direction,
thus producing a magnetic field that can be measured outside the cell. In
addition, currents related to postsynaptic potentials are slower than those
related to action potentials and therefore easier to measure. The MEG
signal reflects the net magnetic field of tens of thousands of postsynaptic
currents. MEG is most sensitive to currents oriented parallel to the scalp,
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corresponding to the current sources in the walls of sulci where apical
dendrites are positioned tangential to the scalp [37].

3.2.2 Physics and instrumentation

The strength of magnetic fields measured by MEG is typically 100-500 fT,
being orders of magnitude weaker than Earth’s magnetic field. Therefore,
in order to detect the neural signals and avoid interference from external
sources, the measurements must be conducted with highly sensitive sen-
sors in a magnetically shielded room. The SQUIDs are kept below critical
temperature by embedding them in a large dewar containing liquid helium
for maintaining superconductivity.

In SQUID-MEG, magnetic fields are picked up by flux transformers,
which can be configured as magnetometers or gradiometers. A magnetome-
ter comprises a single coil which measures the magnetic flux component
perpendicular to its surface. A gradiometer measures the magnetic flux
difference, or gradient, between its two loops, which can be arranged along
the same radial axis (axial gradiometer) or in the same plane as a figure-
of-eight shape (planar gradiometer). Magnetometers are sensitive to both
deep and superficial sources, whereas gradiometers are most sensitive
to nearby superficial sources and their sensitivity decreases rapidly as a
function of distance. On the other hand, gradiometers often have better
signal-to-noise ratio [37].

The measured magnetic field induces a current in the flux transformer
circuit. This current is further converted into magnetic flux through the
SQUID loop. The SQUID converts the flux to a voltage, which is amplified
and digitized.

In this thesis, the MEG measurements were conducted using Elekta Neu-
romag Vectorview device (Elekta Oy, Helsinki, Finland), comprising 102
magnetometers and 204 gradiometers arranged in a helmet-shaped array
as elements consisting of two planar gradiometers and one magnetometer.
In both studies, only the signals from the gradiometers were utilized in
the analyses.

3.2.3 Data analysis

A crucial part of MEG analysis is reduction of artifacts originating from
both the subject and environment. A powerful method for artifact removal
is signal space separation (SSS) [38], which is based on separation of signal
and noise subspaces by utilizing the physical properties of the magnetic
fields. SSS is particularly well suited for suppressing signals from sources
outside of the head. Interference related to physiological processes, such
as cardiac and muscle artifacts as well as eye blinks, cannot be suppressed
by magnetic shielding, and usually not even with SSS. Thus, they have to
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be eliminated by other means. An effective way to suppress artifacts is to
decompose the multi-channel signal into additive subcomponents with e.g.
principal component analysis (PCA) or independent component analysis
(ICA) and omit the artifactual components.

In order to increase the SNR, the raw MEG data can be filtered before
further analyses. It is usually appropriate to band-pass filter the signals
such that only the frequencies corresponding to the neural activity of
interest are included in the passband.

Another approach to increase SNR is spatial filtering, i.e. creating linear
combinations of the sensor-level signals such that the SNR of the signal
of interest is maximized. Supervised machine learning methods, such as
common spatial patterns (CSP) and linear discriminant analysis (LDA),
can be used to project the data such that they most effectively disriminate
between the classes of interest.

If the location of the signal source of interest is known in advance, beam-
formers [39] can be used to suppress activity originating outside that
source. A beamformer is based on a spatial filter that selectively blocks
the contributions from all other sources except the predefined source. For
calculation of beamformers, also the estimate of the data covariance matrix
is required.

In most offline analyses, SNR is further increased by averaging over
epochs. It is assumed that noise is uncorrelated with the signal, and thus
averaging multiple stimulus-time-locked responses will reduce the effect
of noise and thus make the neural response more discernible. However, in
real-time signal analysis averaging is not feasible since it would increase
the latency of feedback. Furthermore, in the analysis of SMR modulations
averaging in time domain should not be done, since the rhythms are not
phase-locked to external events and averaging would distort the phase
and amplitude information of SMR. Instead, averaging in frequency or
time–frequency domains can reveal SMR modulation over epochs, sessions
and subjects.

3.3 Brain–computer interfaces

Brain–computer interfaces (BCI) are systems in which the user’s brain
activity is measured in real time and utilized to control an external de-
vice or to provide feedback. These closed-loop systems have a variety of
applications from pure entertainment to basic neuroscience and clinical
interventions. During the last decades, the computing power and mea-
surement technology have developed sufficiently to enable robust real-time
signal analysis and translation into meaningful feedback for the user.

The setup of a BCI varies greatly depending on the application, but
in general all BCI systems consist of the following elements: 1) signal
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acquisition, 2) signal processing, 3) interpretation of the ongoing signal,
and 4) feedback for the user. Parts 2) and 3) may involve feature extraction
and classification using various machine learning methods, and in some
cases they can be combined. As the recorded signals are usually high-
dimensional, many BCI applications involve some form of dimensionality
reduction in the signal processing phase.

BCIs can be designed as permanent neuroprostheses, usually involving
electrodes implanted on the cortical surface, or noninvasive rehabilitation
tools, in which the neural signals are measured from head surface. It is
important to make a distinction between these two types of BCI; the former
replace the lost brain functions by bypassing the damaged brain areas,
whereas the latter aim at recovery of the neural pathways via training and
activity-induced brain plasticity. In this thesis, the focus is solely on the
noninvasive, rehabilitative BCIs.

3.3.1 BCIs based on motor imagery

The modulation of SMR in response to MI has inspired the development of
MI-based brain–computer interfaces. The core idea of MI-BCIs is that users
who have lost the ability to perform voluntary movements can control the
interface by performing MI, and successful SMR modulation is rewarded
with appropriate feedback.

In the early days of SMR-based BCIs, the level of SMR suppression was
calculated from EEG signals and linearly translated to e.g. movement of
a cursor on a screen [40, 41]. The subjects could thus learn to modulate
their SMR via operant conditioning. However, this straightforward ap-
proach was problematic because the SMR varied substantially between
measurement sessions, and minor power changes were easily masked by
noise, which made the learning process difficult for the user.

In order to overcome this issue, the next generation of MI-BCIs relied
on machine learning and automatic classification algorithms. In these
approaches, the classifiers are trained such that the subject performs
the requested task, e.g. left- and right-hand MI, in a calibration session,
and the parameters of the classifier are adjusted in accordance with the
subject’s individual task-specific signal features.

3.3.2 Common spatial patterns

A popular method for reducing the dimensionality of multi-channel signals
is spatial filtering, i.e. weighting of signals measured at different locations
such that the difference between two classes is maximized. Common
spatial patterns (CSP; [42]), based on simultaneous diagonalization of two
covariance matrices, has for some years been more or less the state-of-
the-art spatial filtering technique in two-class EEG classification. Using
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the training data, CSP computes a set of spatial filters that maximize the
variance for signals in one class and minimize it for the other class. The
method is described in detail below.

First, the covariance matrices for two signals X1 and X2, corresponding
to two classes, are computed:

R1 = X1X⊤
1

t1
(3.1)

R2 = X2X⊤
2

t2
(3.2)

where t1 and t2 are the numbers of time points in X1 and X2, respectively.
CSP finds eigenvector w such that the ratio of variances is maximized:

w= argmax
w

∥wX1∥2

∥wX2∥2 (3.3)

The simultaneous diagonalization of the two covariance matrices is done
by finding eigenvectors of R1 and a corresponding diagonal matrix of
eigenvalues D, sorted in decreasing order such that w⊤ is the first column
of P and following equations hold:

P−1R1P=D (3.4)

and

P−1R2P= In (3.5)

where In is the identity matrix.
The original signals are projected, i.e. multiplied with these filters,

typically using the two largest and two smallest eigenvectors in P. There-
after, the band powers of the filtered signals are usually averaged, log-
transformed and classified using e.g. linear discriminant analysis (LDA)
or support vector machine (SVM).

The downside of CSP and other spatial filters is that the frequency
band and time window for the signal of interest have to be predetermined.
Thus, it is not very robust to subtle variations in task-specific parameters,
let alone to outliers or extremely noisy trials. Some modifications are
developed in order to increase the robustness of CSP, such as filter bank
CSP (FBCSP; [43]) and common spatio–spectral patterns (CSSP; [44].
Furthermore, EEG and MEG classification based on Riemannian geometry
has been suggested as an alternative for CSP-based methods [45–47].

3.3.3 Inter-subject decoding

The aforementioned subject-specific BCIs require large amounts of neuro-
physiological data from each user for training the classification algorithms
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to decode the user’s brain states. Due to substantial inter-subject and
inter-session variability of these data, the common approach is to collect
user-specific brain responses in the beginning of each session for calibrating
the BCI. Therefore, the total calibration time per subject can be significant,
which makes the calibration process exhausting especially for patients
recovering from neurotrauma. In addition, when employing neurofeedback
for rehabilitation, the feedback should drive brain activity towards that
of a healthy brain and not reinforce the prevailing pathological state as
a patient-specific BCI might do. In order to overcome these issues, sev-
eral research groups have developed inter-subject-generalized classifiers
[48–52]. With such an approach, the classifier can be trained in advance
using other subjects’ data and a new BCI user can begin the BCI practice
immediately without the initial calibration session, which saves both time
and effort of the patients.

Successful inter-subject classification requires that globally relevant sig-
nal features are extracted from each training subject. Multi-task learning
(MTL; [53,54]) aims at selecting a few relevant features from a large fea-
ture set such that these features are shared across multiple related tasks;
in the case of BCI training, the tasks are usually measurements from
different subjects. MTL is beneficial for learning problems in which the
number of samples is much lower than the number of features, since it
effectively reduces the dimensionality of the feature space. In addition,
MTL finds a sparse feature set that is correlated across tasks instead of
optimizing features for each individual task, which makes the method
robust to outliers. In case of inter-subject classification, MTL considers
decoding of each subject’s data as a separate task. In contrast to data
pooling, MTL does not assume equal distributions for all training data,
which allows variability between subjects.

Logistic regression with l2,1-norm regularization is found to be efficient
for selecting a small number of relevant features from a high-dimensional
feature space shared across subjects [55]. Already in 2010, Alamgir and
coworkers showed the efficacy of this method in multi-subject EEG-BCI
[48]. Recently, MTL based on logistic regression regularized with l2,1-norm
minimization was successfully used for inter-subject classification of MEG
signals [56].

The optimization problem for l2,1-norm regularized MTL can be formu-
lated as:

min
W,c

t∑
i=1

ni∑
j=1

log(1+exp(−Yi, j(W⊤
i X i, j +ci)))+ρ∥W∥2,1 (3.6)

where X i, j is sample j of the ith task, Yi, j denotes the corresponding label
(–1 or 1), Wi and ci are the model for task i, parameter ρ controls the
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sparsity of the feature space and ∥W∥2,1 is the l2,1-norm of W:

∥W∥2,1 =
ni∑
j=1

∥W j,:∥2 (3.7)

During recent years, convolutional neural networks (CNN) have been
studied in classification of MI-related EEG [57,58] and MEG [59] signals.
Regarding the SMR-based BCIs, CNNs provide several advantages com-
pared to traditional classification methods. First, whereas CSP and logistic
regression can (without further extensions) only discriminate between two
classes, CNNs are able to perform multi-class decoding. Second, CNNs are
usually more robust to measurement noise and intra- and inter-subject
variations, thus providing better generalization than other types of clas-
sifiers. The downside of CNNs is the requirement of large amounts of
training data, while the number of training samples from each user is
typically limited in traditional BCI paradigms. However, CNNs are well
suited for inter-subject learning, which allows using large databases of
previously recorded signals and thus omitting the collection of training
data from each user. Deep learning in general has gained increased in-
terest in BCI research over the last years, and many studies demonstrate
improved decoding accuracy using deep learning compared with other
machine learning methods (for MI-BCI applications, see e.g. [60,61]; for
a comprehensive review about deep learning for EEG, see [62]). Besides
these complex machine learning methods, Riemannian geometry has been
successfully used for inter-subject classification [63].

3.3.4 Clinical applications

Regarding the clinical applications of MI-BCI, the benefit of BCI-based
motor function rehabilitation is that the repeated feedback training can
induce brain plasticity via simultaneous activation of both afferent and
efferent pathways. In contrast to the traditional physiotherapy, which
relies mostly on passive manipulation of the paretic limbs, BCI therapy
engages the patient’s own top-down modulation of motor activity. The
voluntary activation of motor cortex together with tactile or proprioceptive
feedback "closes the sensorimotor loop" [64], which is fundamental to the
sensorimotor integration and eventual reorganization of the injured motor
cortical areas.

There is evidence that BCI therapy improves motor function [3–6], but
further evidence about its long-term clinical effect is still needed. In ad-
dition, certain recovery-related neurophysiological phenomena should be
taken into account while designing rehabilitative BCIs. Many stroke pa-
tients with motor disabilities have difficulties in modulating SMR in the
affected hemisphere. Instead, the unaffected hemisphere shows increased
motor-related activity due to reduced intracortical inhibition. Therefore,
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discriminating between MI and resting state is not necessarily an optimal
goal for a rehabilitative BCI, since the activity in the unaffected hemi-
sphere can be erronenously recognized as activity of the target area. As a
result, neural plasticity during recovery might only enhance the activity
of the healthy motor cortex and thus result in decreased functionality of
the affected limb. Decoding left- vs right-hand MI instead of MI vs rest is
a better option, since it encourages the user to produce SMR modulation
with motor areas in the affected hemisphere.

3.3.5 MEG in BCI research

To date, a vast majority of noninvasive BCIs involves EEG as the measure-
ment method. However, MEG has recently gained interest in the context
of BCI as it is well suited for closed-loop experiments [65]. In fact, several
groups have developed real-time signal processing [66, 67] and artefact
removal [68] methods specifically for MEG with regard to possible usage
in closed-loop paradigms. A number of studies have also investigated the
feasibility of MEG in real-time neurofeedback experiments [7–12,69–71].
According to these studies, both sensor- and source-level MEG can be used
for providing the user with feedback that is used for modulating his/her
brain activity. Indeed, the high temporal and spatial resolution of MEG
make it inherently suitable for real-time measurements.

Although MEG outperforms EEG in terms of SNR and spatial resolution,
certain technical challenges are specifically emphasized with MEG-BCIs.
One of these issues is head position: changes in the position of the subject’s
head and thus the signal sources with respect to the sensor array might
impair the real-time signal decoding. The reason for this effect is that
classifiers optimized for a certain fixed head position cannot accurately
decode signals measured with a different head position. Even BCIs trained
and tested with the same subject may therefore yield poor results, espe-
cially if the subject is removed from MEG between the training and testing
sessions. Head position is not as critical for EEG, because the electrodes
are attached to the scalp, in contrast to the helmet-like MEG sensor array.
This difference between modalities should be considered when designing
BCI studies, as the decoding methods well suited for EEG might not yield
as good results with MEG. Changes in head position in MEG should be
either corrected online, or taken into account by designing classifiers that
are robust to small head movements. In the future, OPMs [72], already
available as multi-channel arrays [73–75], might solve this problem and
additionally improve SNR as the sensors are placed on scalp.

Portability, low price and better availability are common reasons for
preferring EEG over MEG in BCI applications. Nevertheless, MEG-based
BCIs have been studied in post-stroke motor function rehabilitation [8,
12], and the results suggest good usability of MEG in clinical studies.
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Furthermore, the neurophysiological effects of long-term BCI training,
such as changes in functional connectivity, can be more reliably estimated
using MEG. Studies by Fukuma and coworkers [70,71] suggest that MEG-
BCI can be also used to evaluate whether a patient would be able to control
an invasive neuroprosthesis. Besides clinical applications, real-time MEG
analysis and closed-loop feedback experiments have wide potential in
basic neuroscience. MEG-based BCIs can also assist the development of
eventually EEG-based BCIs.
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4. Methods

This thesis comprises two studies on healthy participants. Both studies
were approved by the Aalto University Research Ethics Committee. The
research was carried out in accordance with the guidelines of the Declara-
tion of Helsinki, and all subjects gave written informed consent prior to
the measurements.

4.1 Measurements

In both studies, MEG was recorded with a 306-channel Elekta Neuromag
Vectorview (Elekta Oy, Helsinki, Finland) located at the MEG Core of Aalto
Neuroimaging, Aalto University. During signal acquisition, the signals
were filtered to 0.1–330 Hz and digitized at the rate of 1 kHz. Four head-
position indicator (HPI) coils were attached to the subject’s scalp for head
position estimation and alignment to a common coordinate frame. The
visual cues and feedback were delivered on a screen located approximately
1 m in front of the subject’s eyes by a projector outside the shielded room.
During the recording, the raw MEG data were continuously written in
300-ms segments to a network-transparent rtMEG ring buffer [66, 76]
hosted by the MEG acquisition workstation (6-core Intel Xeon CPU at
2.4 GHz, 64-bit CentOS Linux, version 5.3). This buffer was read over
a local network connection by another computer (64-bit Ubuntu Linux,
version 12.04-LTS), which processed the data in real time using functions
implemented in the MNE-Python [77] software and presented the visual
stimuli using PsychoPy [78] version 1.83.

In Study II, EEG was measured simultaneously with MEG using an
MEG-compatible cap with 60 electrodes. EEG was used only in offline
analyses, and the real-time feedback was determined using MEG signals
only.

The measurement setup is illustrated in Fig. 4.1.
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Figure 4.1. The setup for real-time MEG experiments.

4.2 Pneumatic hand stimulators

The proprioceptive stimulators used in Study II consisted of two plastic
frames supporting each hand, and of 8 elastic pneumatic artificial muscles
(PAM; DMSP-10-100 AM-CM, diameter 10 mm, length of the contracting
part 100 mm; Festo AG & Co, Esslingen, Germany) attached to fingers 2–5
of both hands with tape. During the experiment, the subject’s hands and
arms were resting on the plastic frames, and the PAMs were touching the
fingertips horizontally from beneath the frame. The PAMs were connected
to the frame via moving hinges, so that the stimulator system could be
adjusted to fit the subject’s hand.

During the stimulation paradigm, the PAMs produced horizontal move-
ments according to the internal air pressure (max 4 bar). The pressure
to each PAM was switched on and off by a solenoid valve (SY5220-6LOU-
01F-Q, SMC Corporation, Tokyo, Japan) controlled by trigger pulses. The
valves were placed outside the magnetically shielded room, and 3.5-m long
semi-elastic tubes (internal diameter 2.5 mm) conveyed the pressurized
air to the PAMs. A computer controlled the valves such that all the four
PAMs for either left or right hand contracted sequentially (each for 500
ms) at intervals of 500 ms and flexed the fingers. After the contraction,
each PAM returned to its resting length and extended the corresponding
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finger, returning it back to the initial position. This four-finger movement
sequence was repeated twice during each epoch.

The stimulator for one hand is shown in Fig. 4.2.

Figure 4.2. Pneumatic stimulator.

4.3 Data preprocessing

In both studies, before offline analyses the MEG data were preprocessed
with MaxFilter [38], involving removal of bad channels, signal space sep-
aration, and head position transformation into the default position and
orientation. Only signals from gradiometers were retained for further anal-
ysis. In the online analyses, the signals were split to epochs of 3 (Study II)
or 4 seconds (Study I) and filtered to 8–30 Hz.

In Study II, EEG was referenced to the common average.
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5. Summary of studies

5.1 Study I

Motivation

In Study I, we evaluated several feature extraction methods for discrim-
inating 1) left- and right-hand MI, 2) MI and rest. The aim was to find
features that are both discriminative and fast to compute, and thus usable
in a real-time MEG-based BCI.

Methods

The study involved nine healthy volunteers (5 females, 4 males, age
25.8±1.4 yrs, all right handed by self-report). None of the subjects had
previous experience in BCI training.

In the experimental paradigm, the task was to imagine finger tapping
with either left or right hand, directed by visual cues. An online classifier
was trained with the first 40 epochs and tested with the following 40 epochs,
during which the subjects received feedback. For the online feedback,
power spectral densities in 8–30 Hz were calculated over the 3-s MI epoch
and 64 parietal gradiometers, and 50 most relevant features were retained
for classification with LDA. After MI, visual feedback presenting a hand
grasp was shown. The feedback was graded with 20 levels between a
resting open hand and a fully closed fist, based on a linear transformation
of the classification probability, and it was given separately for the left and
right hand. The experimental paradigm is illustrated in Fig. 5.1.

As most of the subjects did not achieve good (>70%) online decoding accu-
racy, we performed an offline analysis to find more efficient decoding meth-
ods. The evaluated features were power spectral density (PSD), Morlet
wavelets, short-time Fourier transform (STFT), common spatial patterns
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Figure 5.1. Stimulus paradigm.

(CSP), filter bank common spatial patterns (FBCSP; [43]), spatio—spectral
decomposition (SSD; [79]), and combinations of SSD+CSP, CSP+PSD,
CSP+Morlet, and CSP+STFT. In addition, we compared four classifiers
applied to single trials using 5-fold cross-validation for evaluating the
effect of classification algorithm to decoding performance.

Results & conclusions

We found that the combination of SSD and CSP filters yielded the best
accuracy in both left vs right (mean 73.7%) and MI vs rest (mean 81.3%)
classification. The combination of SSD and CSP outperformed other pop-
ular decomposition methods (CSP and FBCSP) in both left vs right and
MI vs rest classification. CSP has been found efficient for discriminating
single-trial MI patterns in EEG, and our results agreed with these findings,
since CSP alone yielded accuracies above chance level. However, adding
SSD filtering prior to CSP improved the classification. The increase in clas-
sifier performance was most likely due to decreased overfitting compared to
CSP alone. The reasonable performance of SSD+CSP on both left vs right
and MI vs rest indicates the flexibility of the method in discriminating the
relevant oscillatory activity from noise.

There were large inter-subject differences in classification accuracy; some
subjects barely got over chance level accuracies whereas others yielded
over 85% regardless of the extracted features. The level of beta-band
suppression correlated significantly (p=0.037) with the subjective MI vs
rest accuracy. On the contrary, no correlation between suppression in
either alpha- or beta-band and left vs right classification was found.

5.2 Study II

Motivation

The main motivation for Study II was to improve the BCI usability by de-
veloping a BCI that requires zero training data from the user. Furthermore,
in many clinical studies the training data is collected from the patients
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whose brain function is severely disturbed, and the BCI is trained to rec-
ognize and reward this activity. Although this kind of protocol might lead
to improved BCI performance over time, it does not necessarily support
recovery of neurotrauma since the patient is guided to enhance the dis-
turbed brain activity. Therefore, a BCI trained with healthy participants’
data might better guide the patient to achieve normal brain function.

Methods

We evaluated methods for inter-subject decoding of MI from MEG and EEG
in healthy people. In addition, we compared the decoding performance
of simultaneously recorded MEG and EEG. Furthermore, as it has been
suggested that responses to passive movements (PM) could be used for
training an MI classifier [80], we also examined whether training with
other participants’ PM data yields results similar to those obtained by
training with MI.

Eighteen healthy volunteers (5 males, 13 females, age 27.7±5.0 y, 3 left-
handed by self-report) were recruited for Study II. Two of the subjects had
participated in Study I, and the others had no previous BCI experience. The
experimental protocol consisted of 80 PM and 80 MI epochs, both involving
40 left- and right-hand epochs. The online classifier was trained by each
subject’s own PM. The PM and proprioceptive feedback in the MI task
were delivered via the pneumatic stimulators. In the MI task, feedback
was elicited only when the online classification result was consistent with
the target; otherwise, the stimulators did not move.

The decoding accuracy was evaluated offline using 1) MI and 2) PM
as training data, separately for MEG and EEG. The evaluated decoding
methods were based on either 1) CSP combined with linear discriminant
analysis (LDA) classifier, or 2) logistic regression with l2,1- or l1-norm
regularization. For the CSP-based methods, the following approaches
(abbreviation in parentheses) were used for decoding:

• CSP, classification with LDA (CSP+LDA)

• CSP, classification with bootstrap aggregating & LDA (CSP+bagging)

• Regularized CSP, classification with LDA (regCSP)

Inspired by the results of Study I, we used SSD for dimensionality re-
duction prior to CSP in order to improve classification performance, and
preliminary tests proved that SSD indeed yielded better accuracy than
CSP alone.

The functions included in MTJFL [56] and MALSAR [81] Matlab tool-
boxes were modified and used for the logistic regression –based methods.
The following approaches, implemented in the MTJFL toolbox, were used
for decoding:
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• Pooling with logistic regression and l1-norm regularization (pooling)

• MTL with logistic regression and l1-norm regularization (L1-MTL)

• MTL with logistic regression and l2,1-norm regularization (L21-MTL)

In addition, we calculated the accuracies for within-subject decoding
for comparison with the inter-subject decoding results. In this case, each
subject’s own PM or MI data were used for training. PM training for MEG
was tested in the online BCI paradigm using CSP+LDA. For EEG, similar
PM training paradigm was conducted for the offline data.

Results

The online accuracy was below the sample-size-adjusted chance level of
58.7% [82] for 7 subjects. However, as the online decoding was done
with PM training, we assumed these results probably did not reflect the
robustness of MI or the ability to perform MI. Therefore, the decoding
accuracy was also calculated offline with MI training in order to evaluate
the individual MI performance. The mean accuracy for each subject was
calculated as the average of online and offline within-subject accuracies.
Five subjects with the lowest mean accuracy were discarded from the
training data in further analyses, i.e. the poorly performing subjects were
used only for testing the decoders.

When the classifiers were trained with MI, the best inter-subject mean
accuracies of 70.6% for MEG and 67.7% for EEG were obtained with
L21-MTL. For MEG, also pooling and L1-MTL yielded above chance level
results (66.5% and 67.8%, respectively). For EEG, L1-MTL yielded an
average accuracy significantly better than chance (p=0.01).

In contrast, training with passive movements was not successful. For
all subjects, the online within-subject MEG decoding yielded an average
accuracy of only 62.8%, compared to 75.0% with MI training. For EEG, the
difference was not that clear: the offline within-subject decoding resulted
in an average accuracy of 66.8%, compared to 69.3% with MI training.
For both MEG and EEG data, none of the inter-subject methods yielded
accuracies significantly above chance level.

The results are summarized in Fig. 5.2.

Conclusions

The accuracy of L21-MTL was better than that of the other inter-subject
decoding methods both for MEG and EEG data, when other subjects’ MI
was used for training. In addition, with this method we achieved accuracies
significantly above chance level for both modalities. As the method is rather
simple and fast to calculate, it can be applied to online BCI paradigms.
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Figure 5.2. Classification results for (A) Motor-imagery-trained MEG and EEG, (B)
Passive-movement-trained MEG and EEG. The chance level is indicated with
a dashed line. Error bars represent the standard deviation.

However, further optimization of the decoder parameters should be done
before using the approach in clinical BCI applications.

Besides the average accuracy across subjects, it should be validated
how inter-subject decoding affected the performance of individual subjects.
Many subjects showed poor performance during the online BCI task, when
the decoder was trained using their own PM data. By using the subject’s
own MI data and cross-validation, the accuracy was improved for most of
the poor online performers. However, some subjects have poor decoding
performance simply because of insufficient SMR modulation. For example,
Subjects 3 and 5 did not show any discernible SMR modulation during
MI, and their accuracy remained under chance level even when their own
MI was used for training. In case of the mentioned subjects, inter-subject
decoding did not remarkably improve the results. On the contrary, for
Subjects 11, 12 and 14, L21-MTL yielded better results with MEG (also
with EEG for Subjects 11 and 14) compared to within-subject L1. In
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conclusion, inter-subject decoding might improve the accuracy of poorly
performing subjects.

Training the classifiers with PM resulted in poor accuracy with all de-
coders and both MEG and EEG, even in within-subject decoding. With
regard to this finding, it can be argued that in inter-subject learning the
performed mental task should be as similar as possible for the train and
test subjects.
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6. Discussion

6.1 Feature extraction for within-subject decoding

In Study I, we evaluated methods for decoding left- and right-hand MI
using each subject’s own data for training and testing. The results showed
that spatial filtering methods in general outperformed time–frequency
methods in both left-vs-right and MI-vs-rest classification. In addition,
CSP filtering improved the discrimination capability of time–frequency
domain features. Among the evaluated methods, the best results were
obtained with the combination of SSD and CSP, which outperformed other
signal decomposition methods (SSD, CSP and Filter-Bank CSP) in both
left vs right and MI vs rest classification.

As has been shown by Blankertz and colleagues [83], CSP is an efficient
method for extraction of variance differences between two classes, and
a prior linear decomposition does not add any new information to that.
The increase in classifier performance was probably due to decreased
overfitting compared to CSP alone, as suggested by Haufe and coworkers
[84], or improved signal-to-noise ratio because of spectral filtering.

In Study I, CSP or FBCSP did not yield the best average classification
results amond different methods, unlike in many EEG-BCI studies. This
could imply that CSP, which is effective for EEG decoding, is perhaps not
an optimal filter for MEG data. MEG is more high-dimensional than EEG,
and head movement causes uncertainty in spatial filter optimization, as
the most discriminative channels might change between trials and sessions.
Thus, for reliably estimating CSP filters one should either have a large
amount of training data or reduce the data dimensionality prior to CSP, as
we have done here.

In Study II, we obtained reasonably good results for within-subject MI
decoding using amplitude features and l1 norm regularized logistic regres-
sion for decoding and MI data for training. On the contrary, training the
classifier with each subject’s own passive movements and testing with MI
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was not successful. Our results were contradictory to those obtained by
Kaiser and coworkers [80], who trained classifiers with active and passive
movements and tested them with MI. A plausible reason for this discrep-
ancy is that they decoded rest vs MI and not left vs right MI. Furthermore,
the data dimensionality in the mentioned study was much lower than
in our case, as only 15 EEG channels were used for measuring activity
over contralateral motor cortex. Thus, the MEG data probably resulted
in overfitting when the classifiers were trained with PM. The activation
patterns of MI and PM are slightly different, as PM mainly activates the
somatosensory cortex and MI the primary motor cortex. Furthermore,
PM might cause more bilateral SMR suppression compared to MI [85,86],
which would explain why the hemispheric difference was not sufficiently
learned from PM data.

6.2 Methods for inter-subject decoding

Several methods for inter-subject decoding were evaluated in Study II.
According to the results, classification with multi-task learning based on
logistic regression and l1- or l2,1-norm regularization yields fairly good
inter-subject decoding accuracy, and the mean accuracy was comparable to
that of within-subject decoding. On the contrary, CSP and its generalized
variations did not work very well in this context, despite good classification
results obtained in previous EEG studies involving inter-subject classifi-
cation [87]. Again, the high data dimensionality and variation in head
position in MEG cause overfitting of CSP. These findings suggest that CSP
is not a robust enough method for decoding MI from MEG data.

Decoding MI-related brain activity across subjects is a challenging task
due to the wide variety of SMR strength, modulation level, latency and
location between subjects. Especially if the dataset contains subjects
with poor SMR modulation, inter-subject decoding might not even be
feasible. Therefore, in order to calibrate an inter-subject generalized
classifier one should always check the within-subject performance of each
training subject in advance. In Study II, only subjects having high accuracy
in within-subject decoding were used for training the inter-subject decoding
algorithms. Using these well-performing subjects for training and L21-
MTL for classification we managed to improve the accuracy of two subjects
showing poor within-subject accuracy.

6.3 Comparison of MEG and EEG in MI-BCI

Study II investigated the efficacy of MEG and EEG in decoding of MI.
It was found that MEG yielded slightly better results than EEG in both
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within-subject and inter-subject decoding, when similar methods were
applied to both modalities. However, the differences were not statistically
significant. The minor differences might be due to the higher number of
measurement channels in MEG, or simply a result of higher signal-to-noise
ratio of MEG compared to EEG. However, in this study we only included
signals from parietal sensors in both modalities, which may not give a
reliable estimate of modality differences.

MEG and EEG are complementary methods, as EEG is most sensitive
to radial current sources and MEG to tangential ones. Thus, it could be
argued that the combination of them would be the most sensitive modality
for detecting MI-related signals, as suggested in a recent study [88]. How-
ever, a practical issue related to this kind of multimodal measurement is
that attaching the EEG electrodes is time-consuming. Thus, simultaneous
measurement of MEG and EEG requires more preparation time than MEG
alone. In addition, due to the EEG cap the distance of the sources from
MEG sensors is increased with a few millimeters, which reduces the SNR
of MEG signal. It should be further investigated whether simultaneous
measurement of both modalities brings relevant additional information to
MI decoding compared to MEG or EEG alone.

6.4 Practical considerations

Certain practical issues were considered when designing the studies in-
cluded in this thesis. One of the most important factors in a BCI is the
modality of feedback. Study I involved visual feedback, whereas in Study II
proprioceptive feedback was used. In addition, in Study II the experiment
began with a passive movement session, in which the subjects were given
a "model" of the movement they were supposed to imagine during the BCI
task. Most subjects reported that the initial passive movement session
helped them to perform MI. Proprioceptive stimulation might enhance
the SMR modulation as it inherently provides the somatosensory stimuli
corresponding to those elicited during actual finger movements.

The pneumatic stimulator was also considered comfortable and easy to
get used to. Many clinical studies have used functional electrical stimu-
lation (FES) of target muscles as feedback [6,89–91]. FES is found to be
effective for activation of the paretic muscles, and undoubtedly works well
as a feedback modality for MI-BCI. However, proprioceptive stimulation
might be a more gentle option for patients, and it is able to produce more
delicate movements than FES, which typically stimulates multiple mus-
cles at a time. Furthermore, the pneumatic stimulators used in Study II
could be useful for other researchers working with MEG, since they are
fully MEG-compatible and can be modified for various forms of tactile and
proprioceptive stimulation.
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It is also crucial to consider how the subjects are instructed to perform
the MI task. In both studies of this thesis, the subjects were specifically
asked to imagine the somatosensory aspect of hand movement instead or
visual imagination of moving fingers. It has been previously reported, not
very surprisingly, that visual imagery activates mainly the visual areas
and kinesthetic imagery the motor areas [92]. A BCI designed for motor
cortex rehabilitation is practically unusable if the user does not actually
activate the motor areas. Thus, practising MI beforehand and careful
instructions for the subjects are important.

As SMR modulation via MI is among the most challenging BCI tasks [93],
it should be acknowledged that it is a skill that improves with practice
(see discussion about this issue by McFarland & Wolpaw [94]). MI and
concurrent SMR modulation requires active contribution from the subject,
and it might feel difficult especially in the beginning of MI-BCI training.
Nevertheless, the feedback of the BCI should reliably indicate whether
the SMR modulation was sufficient or not, even if that leads to only a
few successful trials in the first training sessions. This also means that
a high classification accuracy is not always desirable, if it is not based on
motor cortex activity. Although robust machine learning classifiers are
essential for flexible usability of a BCI, especially in noisy measurement
conditions, it is not appropriate to adapt them to any possible brain activity.
Instead, the BCI should reward the user if and only if the desired activity
is originated in the targeted motor areas.

6.5 Future directions

All decoding approaches evaluated in this thesis suffer from one substantial
limitation: the analysis is restricted to two-class classification. However,
three and more classes should preferably be classified in real-life experi-
ments. For example, in a MI-BCI experiment the subject might imagine
moving left hand, right hand or no hand at all. Extending the decoding
into multi-class paradigms is an essential improvement for future clinical
applications. In a recent study of our research group [59], convolutional
neural networks (CNN) were trained offline to distinguish between left-
hand MI, right-hand MI and rest. The online performance of CNN was
validated using two healthy participants, who achieved high accuracy for
two-class classification. This approach should be further tested with more
participants and three-class classification.

One possible extension of MEG-BCI would be source-level analysis for
the real-time paradigm. Oscillatory SMR could be captured with e.g. syn-
thetic aperture magnetometry (SAM; [95]) or dynamic imaging of coherent
sources (DICS) beamformer [96]. However, cortically-constrained source
estimation requires additional acquisition and processing of head MRIs,
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which might not be feasible in real-time applications. In addition, source
modeling requires more computation than sensor-level signal analysis, and
thus could cause longer delays in the feedback. Furthermore, the signal
quality of single-trial MEG might not be sufficient for reliable source local-
ization in real time. Despite these challenges, the efficacy of source-level
and sensor-level signals in MI decoding should be compared, as previous
studies have yielded promising results also for source-level neurofeedback.
Florin and colleagues [10] successfully provided feedback to the subjects by
measuring oscillatory components at predefined sources. Also Battapady
and colleagues [97] reported high accuracy for decoding motor execution
and MI from SAM-filtered MEG data; however, the analysis was done for
offline data and thus is not directly indicative of good online performance.

The future generations of multi-sensor OPM arrays will most likely
benefit the development of MEG-BCIs as well. Improved signal-to-noise
ratio and diminishing of movement artifacts due to on-scalp sensors could
improve the accuracy and robustness of real-time signal analysis and
decoding. For inter-subject decoding, however, this might constitute a
challenge, if the sensor locations are at different positions with respect
ro the brain for each subject. On the other hand, also in current MEG
measurements the head position with respect to the sensors varies between
subjects, and even after head position correction the anatomical regions
are not necessarily aligned. In the future, it should be evaluated whether
current decoding methods designed for SQUID-MEG are robust enough
also for OPM-MEG.

Another important extension of the current BCI paradigms is clinical
use, e.g. with patients suffering from hemiplegia. The MEG-based MI-BCI
could be useful especially in the beginning of rehabilitation, since the
higher signal-to-noise ratio of MEG allows more efficient detection of small
SMR modulations than EEG. Thus, the patients could receive concurrent
proprioceptive feedback for generating even minor SMR suppression dur-
ing MI or attempted movements. Also in this case, OPM-MEG will likely
further improve measurement sensitivity. If the BCI therapy improves
the patients’ SMR modulation, they could continue practising with similar
EEG-based BCI system.
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