1,262 research outputs found

    A synoptic description of coal basins via image processing

    Get PDF
    An existing image processing system is adapted to describe the geologic attributes of a regional coal basin. This scheme handles a map as if it were a matrix, in contrast to more conventional approaches which represent map information in terms of linked polygons. The utility of the image processing approach is demonstrated by a multiattribute analysis of the Herrin No. 6 coal seam in Illinois. Findings include the location of a resource and estimation of tonnage corresponding to constraints on seam thickness, overburden, and Btu value, which are illustrative of the need for new mining technology

    Development of Interactive Support Systems for Multiobjective Decision Analysis under Uncertainty

    Get PDF
    This paper presents interactive multiobjective decision analysis support systems, called MIDASS, which is a newly developed interactive computer program for strategic use of expected utility theory. Decision analysis based on expected utility hypothesis is an established prescriptive approach for supporting business decisions under uncertainty, which embodies an effective procedure for seeking the best choice among alternatives. It is usually difficult, however, for the decision maker (DM) to apply it for the strategic use in the realistic business situations. MIDASS provides an integrated interactive computer system for supporting multiobjective decision analysis under uncertainty, which assists to derive an acceptable business solution for DM with the construction of his/her expected multiattribute utility fuction (EMUF).expected multiobjective decision analysis, MIDASS, expected multiattribute utility function (EMUF), intelligent decision support systems (IDSS).

    Performance comparison of point and spatial access methods

    Get PDF
    In the past few years a large number of multidimensional point access methods, also called multiattribute index structures, has been suggested, all of them claiming good performance. Since no performance comparison of these structures under arbitrary (strongly correlated nonuniform, short "ugly") data distributions and under various types of queries has been performed, database researchers and designers were hesitant to use any of these new point access methods. As shown in a recent paper, such point access methods are not only important in traditional database applications. In new applications such as CAD/CIM and geographic or environmental information systems, access methods for spatial objects are needed. As recently shown such access methods are based on point access methods in terms of functionality and performance. Our performance comparison naturally consists of two parts. In part I we w i l l compare multidimensional point access methods, whereas in part I I spatial access methods for rectangles will be compared. In part I we present a survey and classification of existing point access methods. Then we carefully select the following four methods for implementation and performance comparison under seven different data files (distributions) and various types of queries: the 2-level grid file, the BANG file, the hB-tree and a new scheme, called the BUDDY hash tree. We were surprised to see one method to be the clear winner which was the BUDDY hash tree. It exhibits an at least 20 % better average performance than its competitors and is robust under ugly data and queries. In part I I we compare spatial access methods for rectangles. After presenting a survey and classification of existing spatial access methods we carefully selected the following four methods for implementation and performance comparison under six different data files (distributions) and various types of queries: the R-tree, the BANG file, PLOP hashing and the BUDDY hash tree. The result presented two winners: the BANG file and the BUDDY hash tree. This comparison is a first step towards a standardized testbed or benchmark. We offer our data and query files to each designer of a new point or spatial access method such that he can run his implementation in our testbed

    An application of multiattribute decision analysis to the Space Station Freedom program. Case study: Automation and robotics technology evaluation

    Get PDF
    The results are described of an application of multiattribute analysis to the evaluation of high leverage prototyping technologies in the automation and robotics (A and R) areas that might contribute to the Space Station (SS) Freedom baseline design. An implication is that high leverage prototyping is beneficial to the SS Freedom Program as a means for transferring technology from the advanced development program to the baseline program. The process also highlights the tradeoffs to be made between subsidizing high value, low risk technology development versus high value, high risk technology developments. Twenty one A and R Technology tasks spanning a diverse array of technical concepts were evaluated using multiattribute decision analysis. Because of large uncertainties associated with characterizing the technologies, the methodology was modified to incorporate uncertainty. Eight attributes affected the rankings: initial cost, operation cost, crew productivity, safety, resource requirements, growth potential, and spinoff potential. The four attributes of initial cost, operations cost, crew productivity, and safety affected the rankings the most

    Perspects in astrophysical databases

    Full text link
    Astrophysics has become a domain extremely rich of scientific data. Data mining tools are needed for information extraction from such large datasets. This asks for an approach to data management emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Moreover, clustering and classification techniques on large datasets pose additional requirements in terms of computation and memory scalability and interpretability of results. In this study we review some possible solutions

    Data Management and Mining in Astrophysical Databases

    Full text link
    We analyse the issues involved in the management and mining of astrophysical data. The traditional approach to data management in the astrophysical field is not able to keep up with the increasing size of the data gathered by modern detectors. An essential role in the astrophysical research will be assumed by automatic tools for information extraction from large datasets, i.e. data mining techniques, such as clustering and classification algorithms. This asks for an approach to data management based on data warehousing, emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Clustering and classification techniques, on large datasets, pose additional requirements: computational and memory scalability with respect to the data size, interpretability and objectivity of clustering or classification results. In this study we address some possible solutions.Comment: 10 pages, Late

    Scalability analysis of declustering methods for multidimensional range queries

    Get PDF
    Abstract—Efficient storage and retrieval of multiattribute data sets has become one of the essential requirements for many data-intensive applications. The Cartesian product file has been known as an effective multiattribute file structure for partial-match and best-match queries. Several heuristic methods have been developed to decluster Cartesian product files across multiple disks to obtain high performance for disk accesses. Although the scalability of the declustering methods becomes increasingly important for systems equipped with a large number of disks, no analytic studies have been done so far. In this paper, we derive formulas describing the scalability of two popular declustering methods¦Disk Modulo and Fieldwise Xor¦for range queries, which are the most common type of queries. These formulas disclose the limited scalability of the declustering methods, and this is corroborated by extensive simulation experiments. From the practical point of view, the formulas given in this paper provide a simple measure that can be used to predict the response time of a given range query and to guide the selection of a declustering method under various conditions

    A DHT-Based Discovery Service for the Internet of Things

    Get PDF
    Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users' quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of "smart things" on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation

    PERSPECTIVES IN ELECTRONIC SHOPPING: ON BEYOND AUTOMATED ORDER ENTRY

    Get PDF
    Large-scale electronic shopping systems need to accommodate both (a) a large number of products, many of which are close substitutes, and (b) a heterogeneous body of customers who have complex, multidimensional and perhaps rapidly changing-preferences regarding the products for sale in the system. Further, these systems will have to be designed in a manner so as to both (c) reduce the complexity of the shopping problem from the customer's point of view, and (d) effectively and insightfully match products to customers' needs. The aim of this paper is to address these requirements for electronic shopping systems. We show how an abstraction (or isa) hierarchy with an imposed distance metric can be used as a representational basis for modeling the salesperson's role (as embodied in the surplus and shortage problems) in an electronic shopping system. Further, we indicate how the distance metric, in the context of the abstraction hierarchy, can be interpreted as a unidimensional utility function. Finally, we extend the single dimensional (single perspective) treatment to multiple dimensions, or perspectives, and show how the resulting representation can be interpreted as a multiattribute utility function. We argue that the resulting function is plausible and, most importantly, testable.Information Systems Working Papers Serie
    corecore