
PERSPECTIVES IN ELECTRONIC SHOPPING:
ON BEYOND AUTOMATED ORDER ENTRY

by

Steven 0 . Kimbrough
Department of Decision Sciences

The Wharton School
University of Pennsylvania

Philadelphia, PA 19104

and

Tomas Isakowitz
Information Systems Department

Leonard N. Stern School of Business
New York University
New York, NY 10003

December 1989

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Workinn Paper Series

STERN IS-90-8

Center for Digital Economy Research
Stem School of Business
Working Paper IS-90-08

Perspectives in Electronic Shopping: On beyond
Automated Order Entry

Tomiis Isakowitz* Steven 0. Kimbrought

December 25, 1989

Abstract

Large-scale electronic shopping systems need to accommodate both (a)
a large number of products, many of which are close substitutes, and (b) a
heterogeneous body of customers who have complex, mu1tidimensiona.l-
and perhaps rapidly changing-preferences regarding the products for sale
in the system. Further, these systems will have to be designed in a man-
ner so as to both (c) reduce the complexity of the shopping problem from
the customer's point of view, and (d) effectively and insightfully match
products to customers' needs. The aim of this paper is to address these
requirements for electronic shopping systems. We show how an abstrac-
tion (or isa) hierarchy with an imposed distance metric can be used as a
represetational basis for modeling the salesperson's rBle (as embodied in
the surplus and shortage problems) in an electronic shopping system. Fur-
ther, we indicate how the distance metric, in the context of the abstraction
hierarchy, can be interpreted as a unidimensional utility function. Finally,
we extend the single dimensional (single perspective) treatment to multi-
ple dimensions, or perspectives, and show how the resulting representation
can be interpreted as a multiattribute utility function. We argue that the
resulting function is plausible and, most importantly, testable.

key words: decision analysis, decision support systems, electronic shopping,
preference modeling, user interfaces, utility theory, multiattribute utility theory

1 Introduction

Both technical developments and economic forces are continuing t o evolve in
a direction favoring computer- and communications-based services for purchas-
ing activities, either by consumers or by businesses. On the technical side,

'Department of Infonnation Systems, New York University, Stem School of Business, New
York, New York, 10003

t~epmtment Decision Sciences, The Wharton School, University of Pennsylvania, Philadel-
phia, PA 19104, USA

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

personal computers and workstations continue to become more powerful, and
to have increasingly sophisticated software; communications networks continue
to proliferate, and the infrastructure to support them-including fiber optics
transmission facilities and network services such as ISDN-continues to be de-
veloped at a rapid pace. On the economic side, computing and communications
continue to become cheaper; time and labor continue to become more expen-
sive; markets continue to expand both in the variety of products offered and
the extent of the offerors of these products, viz. 24-hour, worldwide trading of
equities; and globalization of commerce continues to accelerate. But whether
widespread electronic shopping comes sooner or later, the time is surely ripe
for investigating the theory and principles of design for supporting effective
electronic shopping. This is true, in spite of such commercially disappointing
products as electronic banking and treasury workstations.

There is a rich and broad range of issues to be taken into account when
designing and developing systems to support electronic shopping. There are
marketing issues-Is there need for such systems? Is there sufficient willingness
to pay for them? Which sectors of the population should be addressed? Which
lines of products should be involved?-and so on. There are system issues, such
as establishing the various protocols for network communication; developing a
formal language for business communication [4,8]; ensuring privacy and cor-
rectness of the transactions; keeping the information updated; and building a
suitable user interface. In this paper, our concern is with the problem of what
information should be presented to electronic shoppers, rather than with how
that information is presented. Thinking in terms of decision support systems
(DSS), our focus is on the problem processing and the knowledge subsystems
for an electronic shopping DSS [2].

Electronic shopping, on our view, represents the microprocessing descendant
of the shopping by mail concept, in which the shopper, at home or at the office,
uses a computer to access an on-line catalog, to browse over and inquire about
its offerings, and to initiate purchases. Among the advantages of electronic
shopping systems are these:

their ability to provide continually updated, current information

their potential for substantially lowering shoppers' transaction costs [3,11,
121, including both the costs associated simply with ordering and invoicing,
and the costs associated with searching among offerings in a market

the opportunities they present in the implemention of new marketing
strategies (advertisements can be done via the system) and in measur-
ing their effects

The requirements for a successful system for electronic shopping are exten-
sive. Secure and fast communication mechanisms have to be present; the system
will need a friendly user interface; reliability and availability standards must be

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

stringent, and so forth. The impetus for many of these elements, however, goes
well beyond requirements induced by electronic shopping. Consequently, present
technology is sufficiently advanced, in many of these areas, so as not to be an
impediment to the development of electronic shopping systems. Consequently,
our present focus is on how to provide for what we call the salesperson's rcile in
an electronic shopping system.

In general, a customer needs guidance and suggestions in order to find what
he or she is looking for. The ability to perform these tasks will have, we believe,
a substantial effect on the success of electronic shopping systems. A system that
presents screen after screen of product descriptions will place on the customer
the burden of finding the right item. Furthermore, this will result in a dull, long
and boring process that will discourage use of the system. Even presenting the
information in a catalog-like fashion with indices will not be good enough. What
is needed is an intelligent system that is capable of obtaining from the customer
enough information to guide him or her through the shopping process. The
system should also be able to take into account customer preferences, which it
should be able to learn from succesive sessions. Basically, it has to play the r6le
of a good salesperson: understand what the customer is looking for, remember
his or her personal preferences and make appropiate suggestions. In addition,
it should represent the seller's interests by offering profitable items.

Our aim in this paper is to propose implementation principles for such
a salesperson system. We suggest using Artificial Intelligence techniques to
achieve the desired results. Our work is based in part on the paper by Lee
and Widmeyer [9], which proposes a graph representation of the data. There, a
search for the item to propose to the customer is implemented as a graph search
procedure. We extend their ideas so that the system is capable of dealing with
several aspects of the search. We do so by representing multiple perspectives on,
or attributes of, the items that are for sale. Thus we not only include the general
category of the desired object (e.g., a pair of pants) but also other attributes
such as for cost, color, fashion, and so forth. Further, we are able to interpret
our representation as an encoding of a multiattribute utility function (see $7).
This permits the theoretical apparatus of utility theory to be brought into play
in order to validate any particular representation in a given application.

We deal with two basic problems: surplus and shortage.

1. Surplus occurs when the customer issues a vague request. For example
he asks for a pair of pants. If this is J.C. Penney's system, chances are
that there is more than one pair of pants in the store. The system has to
narrow down the search so that it can come up with a good candidate. In
order to do this it might take into account other information such as cost,
the season in which the garment will be used, color preferences, the sex of
the person that will use it, and so forth.

2. Shortage occurs when a request is issued for an item which is not available.
Supose that a customer asks for item number jcp 279-1730 d-a pair of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

pants-and the item is currently out of stock. The system should offer a
reasonable substitute. This means a pair of pants of similar color, cost-
range, fashion category, and so on.

We propose a system to perfom-or at least to approximate-the salesperson's
rde. Using graphs as a data structure to represent catalogs and preferences on
items in them, we have implemented operations to support the sorts of requests
described above. A prototype program (listed in part in the appendices) was
written in Prolog. As an example, we used a J.C. Penney's catalog, taking
into account attributes such as Clothing category, Color, Cost, Sex, Fashion
and Season. The system was tested by several people and the results were
rewarding.

The remainder of the paper is organized as follows. We begin, in $2, with a
discussion of the Lee and Widmeyer work and of the basics of the data structure
we propose for supporting the saleman's r61e in an electronic shopping system.
The Lee and Widmeyer work encompasses only the single perspective (single
attribute, unidimensional) case. In $3, we extend the Lee and Widmeyer work
for the single perspective case, by elaborating upon their basic data structure.
$4 extends our treatment of the problem to the multiple perspective case. We
show, in $5, that the shortage, as well as the surplus, problem can be handled
in essentially the same manner under our representation scheme, and in $6 we
discuss how learning and idiosyncratic preferences can be incorporated into our
proposed system. We demonstrate, in $7, how the measure of preference we have
used throughout is an implicit utility function and we present certain features of
this function, which could be used in developing a valid representation, Finally,
we conclude in $8.

2 The Basic Graph Representation

Our purpose in this section is to review earlier work on this subject by Lee and
Widmeyer [9] and to indicate ways in which we propose to extend it. Unless
otherwise noted, the proposals and data structures we discuss in this section are
those originally presented in [9].

The general problem we are faced with is how to organize the information
on the items for sale in a way that supports the search process. In general,
printed catalogs organize the information into categories. When looking for an
item, one determines the category to which it belongs and then flips through the
corresponding pages. For example, a catalog for a clothing shop could split the
items into pants, shirts, jogging suits, swimming suits, gloves, coats, and so on.
Furthermore, it seems natural to group coats and gloves together since both are
outdoor garments, and jogging and swimming suits could be grouped together
as sportswear. In this manner one arrives at a hierarchical organization of the
different categories that together represent the products for sale.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

Different ways of structuring the information are possible (and actually de-
sirable), but the point we want to make here is that such a structure does exist
and is inherent to the problem. Lee and Widmeyer [9], using ideas originated
in semantic networks, propose representing the structure as a directed graph.
The nodes are categories, leaves are individual items, and the directed arcs
represent the inclusion relation between categories and are called isa-links. A
possible graph representing the information about clothes is presented in figure
1.

I I

Figure 1: A Graph for Clothes

The items for sale are gloves, coats, jogging suits, swimming suits, and so
forth. The nodes clothes, outerwear, daywear, sportswear and pants represent
abstract categories. They are groupings used to support the search process. The
graph imposes a distance notion, for which a natural measure is the number of
arcs between two nodes. For example, jogging suits are closer to swimming suits
(2 arcs away) than to leather pants (4 arcs away). A request for an item of a
category is handled by performing a graph search that arrives at the closest
available (in stock) item. For example, in response to a request for a sportswear
item, a graph traversal is performed which checks whether there are any jogging
suits or swimming suits before proposing leather pants.

In [9] a Prolog implementation is proposed and discussed. The isa links

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

are represented by predicates: isa(Cat1 ,Cat2) represents an arc from Cat2 to
Catl. For example, the previous graph is represented by the folowing predicates:

isa(gloves, outerwear).
isa(outerwear, clothes).
isa(coats ,outerwear).
isa(jogging suit, sportswear).
isa(sportswear, daywear).
isa(swimming suit, sportswear).
isa(daywear,clothes).

We also need a way of indicating the codes of the products belonging to the
different categories. We do this via the predicate instance-of (Individual,
Category). For example,

instance-of ("jp 279-1730 d" , "corduroy pants")

represents the fact that the product with code jp 279-1 730 d is a pair of corduroy
pants. One could actually include the codes in the graph itself, but this is
space inefficient. (Since there might be more than one way of structuring the
information into graphs, a node might appear in more than one graph. Including
the product codes in the graphs would force us to include them in every graph in
which their parent nodes appear, thus wasting space by duplicating information.
The instance-of predicate implicitely includes the product codes as leaves of the
graphs, without wasting space.)

We will also use the instance-of predicate to specify availability of an
item. Thus given that cat is a leaf node in some graph, if the query ?-
instance-of (Code, cat) is unsatisfiable, we conclude that there is no avail-
ability for items in the category cat. So the codes in this paper will represent
actual objects, although in a real system other predicates could be present to
keep the inventory.

The predicate match is used by [9] to find suitable candidates for a user's
request:

match(Item, Individual) :- instance,of(Individual, Item).
match(Item, Individual) :- isa(Desc, Item),

match(Desc, Individual).

This performs a search of the descendants of a node in order to find an individual
of the desired category. For example, in the clothing graph presented in figure
1 in response to the query ?- mat ch(sportswear , X) , a graph traversal would
be activated which first checks for individuals of category jogging suit, if none
are available swimming suits are tried and if there are none of them, the search

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

fails. A natural extension is to continue the search in the subtree rooted at
pants. Thus the system might propose leather pants, which are not sportswear
items, but this may be the best match the store can offer (depending on the
graph used). This is implemented via the predicate pmatch:

pmatch(Item, Individual) : - match(Item, Individual) .
pmatch(Item, Individual) :- isa(Item, Parent) ,

pmatch(Parent, Individual) .

Although an interesting and useful approach to the problem, the proposed graph
representation and Prolog predicates in [9] are insufficiently powerful to handle
certain aspects of the problem.

A) The graph search is dependent upon the order in which the Prolog predi-
cates are written. In the previous example when looking for a match for
sportswear, jogging suit will be tried before swimming suit if the predicate
isa(jogging s u i t , sportswear) appears before isa(swimming s u i t ,
sportswear) among the Prolog facts. Thus the only way of specifying
preferences between siblings is through the sequencing in the Data Base,
a rather undesirable feature. Notice that this is not due to the Prolog
implementation, but to the absence of ways of specifying preferences bew-
teen siblings in the data structure. Another problem related to this fact
occurs when a node has more than one parent. Consider the graph of
figure 2. Although exagerated, this example shows the need for specify-
ing a more precise notion of distance between nodes. If a request for a
Swiss Army Knife were issued and none were available, the system might
propose either a Eammer or a Missile. The graph designer has no con-
trol over which should be presented first. We propose a solution to this
problem by adding weights to the arcs.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

Figure 2: The Swiss Army Knife Problem

B) The propoejal in 191 handles shortage by calculations on the graph data struc-
ture, but in order to handle surplus, a different approach is taken there.
Information about user preferences is introduced in order to focus the
search, but in an incompletely specified manner. We propose to represent
user preferences in graphs, thereby providing a unified treatment of both
the surplus and the shortage problems.

C) In general, there is more than one aspect to take into account when propos-
ing a product to a customer. For example, when buying clothes it is not
only important to consider the categories as described in figure 1, but the
system should also comply with such other constraints such as cost, color,
and fabric. We call these aspects perspectives and present a system that
is capable of dealing with a number of perspectives simultaneously. Our
intention is that the different aspects to be taken into account should be
treated as multiple attributes in an underlying multiattribute utility (or
value) model [6]. We shall expand upon this point in the sequel.

3 Expanding the Graphs

In this section, we introduce the idea of enhancing the graphs by assigning costs
to the arcs. This turns out to solve some of the problems presented in the
previous section. We also discuss the implementation of the data structure and
the new algorithms.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

3.1 Assigning costs to the arcs

In order to specify a more precise notion of distance between nodes in the graph,
we assign costs to the arcs. The cost of a path is the sum of the costs of its arcs.
We define the distance between two nodes as the minimum over the costs of all
paths connecting them. Thus, low cost is equated with close similarity, and the
cost of an arc has nothing to do with the cost of any item, e.g., leather pants,
in the system.

Figure 3: Adding Costs to the Arcs
In figure 3 we present a possible cost assignment for some arcs in the Clothing

graph. The codes (catalog numbers) appearing inside the rectangular boxes
correspond to individuals which are instances of the nodes immediately above
them, to which they are linked. Throughout this and the following sections we
will use that subgraph as our example, rather than the whole clothing graph
(figure I), in order to conserve the space needed for figures and examples.

The question now is how these costs, or arc weights representing similarity,
are to be assigned. One way to do so (and in $7 we will consider other ways) is to
take into account the probability of chosing a link to an immediate descendant.
Since the higher the probability the lower the cost has to be, we use the formula

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

where Pi j is the probability of choosing the arc from node i to node j , given you
are at ancestor (higher-level) node i . For present purposes, we assume that this
probability is independent of how you got to node i. (This assumption could
be relaxed, but computational costs would increase significantly.) Also, we note
that assigning probabilities, hence costs, in this way may well be a prudent
heuristic for the operator of the system, although other heuristics are certainly
sensible, too.

Suppose, for example, that the probability of a customer chosing leather
pants when looking for pants is 75 %. The cost associated with that arc will
therefore be 0.25. Similarly a probabilty of 25 % for Corduroy pants yields
a cost of 0.75. In this way the distance between pants and leather pants is
shorter than the distance between pants and corduroy pants. A point to take
into consideration with this approach is that the further down a node is in the
graph, i.e., the further away from the root, the finer the distinction between
its succesors. The distinction between leather pants and corduroy pants is finer
than the one between outerwear and daywear. Thus the costs associated with
the arcs ending in the latter nodes should weigh more than the ones associated
with the former. The formula used to compute the cost associated with an arc
is to multiply the quantity obtained in equation 1 by kh where h is the height
of the source node. (In the examples that follow, we set k = 10.) The cost
equation now becomes

Cost = (1 - Probability) + kh (2)

The system will be very sensitive to variations in the cost figures, hence they
should be dealt with carefully. It is advisable to have a program which interacts
with the catalog designer and assigns the costs according to his or her specifica-
tions. It is possible to do this with a qualitative technique that does not present
the subject with any numbers at all.

Conrlumy pants
Swimming suit 10.3

Table 1: Distances from Pants

Let us analyze via an example how the costs influence the distance measure-
ments. Table 1 shows the distances from Pants to all leaf nodes. We have only
included there the leaf nodes because the system has to suggest one of them.
It would not make any sense to suggest an abstract category such a s Clothes or
Daywear. In the actual program we will only need the distances from internal
nodes to the product codes. This distance is defined to be the distance between

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

' -

that internal node and the leaf of which the product code is an instance of. The
nodes in the table are ordered from closest to farthest, thus the first sugges-
tion is Leather pants, then Corduroy pants, and so forth. Notice that we have
succeded in specifying a preference between siblings, actually we have a total
ordering which is completely specified by the graph. The Swiss-Amy Knive
problem presented in figure 2 is solved similarly.

The possibility of enforcing stricter distance notions opens the doorway to
a number of applications. Using the same underlying graph structure, different
personal preferences can be specified by changing the costs of certain arcs. This
will be explored in section 6. Similarly, if the managment wants to stress one
product over other ones, it could do this by lowering the costs associated with
the corresponding nodes. As we can see from these two examples, adding costs
to the arcs provides flexibility without having to pay the penalty of having to
redesign the graphs, or of abandoning the graph representation altogether.

3.2 ' Implementation

The implementation of the expanded graph as a data structure is straightfor-
ward. An argument representing the cost of the arc is added to the isa pred-
icate. Since the system will deal with more than one graph, we also add an
argument for the graph name. The predicate becomes:

isa(Graph,name, Child, Parent, Cost).

As before, the actual leaves are represented via the instancesf predicate.
Since these links are graph independent and there is no need to associate costs
with them, this predicate remains unchanged. The cost of the virtual arc linking
a node with a product code is taken to be 0. Part of the graph depicted in figure 3
is represented by the following predicates:

isa(clothing, leather pants, pants, 0.26).
isa(clothing, corduroy pants, pants, 0.76).
isa(clothing, pants, daywear, 2).
isa(clothing, jogging snit, sportswear, 0.7) .
isa(clothing, swimming suit, sportswear, 0.3)
isa(clothing, sportswear, daywear, 8) .

3.2.1 A note on complexity issues

Given a node, how long does it take to find the closest leaf? The answer to
this question is important beacuse it will influence the implementation of the
system. We do not want our customer to wait for an hour and a half before
receiving an answer, or even 5 minutes. The system should run in real time,
responding within seconds, simulating a conversation.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

Notice that in general there might be more than one path connecting two
nodes. This makes the computation of the distance quite time consuming. There
are at least two possible implementation strategies.

1. The system could store internally the graphs and find the closest leaf by
transversing the graph with each request. Suposing there are n nodes and
e edges in the graph, this approach takes O(e) space and 0(n2) time,
using Dijstra's algorithm [I].

2. Another approach precomputes the distances between the internal nodes
and the leaves and stores them using 0(n2) space. Although this process
is costly (O(n3)), it is a one time cost. Given a node, finding the closest
leaf can then be done in linear time. As we explain later on, in some cases
the distances from one node to all leaves will have to be retrieved and
sorted. This can be done in O(n . ln(n)) time.

If space is not a concern and changes to the graphs are rare, the second alter-
native seems more attractive. It is interesting, however, to analyze the special
case in which the graphs are trees, as in the examples so far. In this case there
is at most one path connecting any two nodes. Using Dijstra's algorithm [I],
one can produce a list of all nodes in ascending order of distance from a source
node in time (O(n . ln(n)). In this case, the first apporach is advisable. The
condition that there be at most one path connecting any two nodes, and that
the graph be a balanced tree, are essential for this estimate to-hold.

For the purposes of this paper we use the second alternative to propose a
prototype program. In a real system, however, the factors discussed in the last
paragraph should be taken into account to decide which strategy to adopt.

3.2.2 The Prolog implementation

We adopt the strategy of precomputing the distances beween the nodes and
the leaves and storing them. (Our implementation is in Prolog, so this in-
formation is stored as Prolog facts.) There is no need to store the distances
between internal nodes, because the system will only be looking for leaf nodes.
For similar reasons the distances between leaf nodes, which represent product
codes, are not relevant. Thus the only distances that need to be stored are
those between internal nodes and product codes. A program to precompute
these distances and store them as Prolog facts appears in appendix A. The
predicate d i s t (Graph, Xode, Leaf node, Distance) denotes that Distance
is the distance between Pode and Leafsode in graph Graph.

If there is no path connecting two nodes, the distance separating them is
taken to be infinite. We represent the value of infinite with the atom top which
is greater than any integer. This concept is enforced by adding the clause
dist (,, ,, ,, top) after all the other d i s t facts.

In the example we are using, some of these facts are:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

dist(clothing,dayvear,'jp 200-1000 dJ,8.3).
dist (clothing,dayaear,' jp 350-1000 d' ,3.25).

'

dist(clothing,'corduroy pant','jp 200-1000 dJ,12.05).
dist (clothing, 'corduroy pant', ' jp 350-1000 d' ,l) .
dist (clothing, 'jogging suit ', ' jp 200-1000 dl, 1).
dist(clothing,'jogging suitl,'jp 350-1000 d3,11.95).

dist (- , - , -, top).
We use the meta-logical bagof feature of Prolog which works as follows:

bagof(Expression, Predicate, List)

returns a List whose individual members have the form Expression which is
built up with the values satisfying Predicate. List contains no repetitions.
For example bagof (X, man(X), L) will return a repetition-free list of all X
satisfying man(X). We also asume the existence of a sort predicate that returns
as its second argument a lexicographically ordered version of its first one, both
of which are lists.

Given a graph G and a node i?, the predicate reachable(((;, If), L) holds
whenever L is a list of the leaf nodes of G and their associated distances to I.
The list is in ascending order of distance.

dist((G,H),X,Cost):- dist(G,H,X,Cost).
dist(G,N,X,O):- instance-of (X,N) .
reachable((G,H), L) :- bagof((Cost, Node),

(dist ((G ,R) ,Bode,~ost),
less,than(Cost, top)),
L1) ,

sort(L1,L).

less-than(X,Y):- number(X) , number (Y) , X < Y .
less,than(X,top) : - number (X I .

In order to interact with the user, the system captures the desired selection from
him. This selection consists of a graph and a node, for example (clothing,
pants). The predicate reachable is set as a goal which returns the ordered list
of leaves, i.e., the ordered list of items actually in the catalog. Then a dialog is
started which suggests products to the user in order of proximity. The predicate
match implements this idea:

match(Se1ection) : - reachable (Selection, List) ,
dialog (List) .

The dialog predicate shows the first item of a list, asks the user if she or he
wants to see another one. If the answer is positive, it continues showing the rest
of the list.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

dialog(fl).
dialog([(Cost ,Node) I Tail]) : - show (Node),

((more ,dialog(Tail)) ;true) .

more :- print('Wou1d you like to see more? '1, !, read(y).

Show displays a description of the product beeing offered. It identifies all the
categories to which it belongs (it might be a member of more than one as we'll
see later), and displays them using nice-print.

show(l) :- bagof(category,instance-of(N, category),L),
nice-print (L) ,
write(with code # $1,
write(N) ,
nl .

nice-print () .
nice-print ([XI) : - print (X) .
nice-print ([X,YI) :- print(X1 ,print (' ' ,print(Y) .
nice-print ([H IT]) :- print (H) ,print(' , ') ,nice-print (T) .

The following is a sample session. A match for pants is presented, the system
suggests leather pants, corduroy pants, s w i m suits and jogging suits in that
order.

leather pant with code # jp 360-1000 d
Would you like to see more ? y.

leather pant with code # jp 360-1001 d
Would you like to see more ? y.

corduroy pant with code # jp 279-1730 d
Would you like to see more ? y.

corduroy pant with code # jp 610-7578 e
Would you like to see more ? y.

swimsuit with code # jp 200-1000 d
Would you like to see more ? y.

swimsuit with code # jp 200-1001 d
Would you like to see more ? y.

jogging suit with code # jp 517-0287 d

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

Would you l i k e t o s ee more ? y .

jogging s u i t with code # j p 517-0295 d
Would you l i k e t o s ee more ? y.
no.

4 Perspectives

In general, when looking for a product to buy, we take into consideration more
than one aspect of it. For example when looking for a pair of pants we may
have in mind certain color and cost preferences. We calI these various aspects
perspectives. In this section we show how certain operations on graphs allow us
to deal with more than one perspective.

4.1 Perspectives as dimensions

We explained how a graph imposes a notion of distance (to be interpreted as util-
ity, below, $7) on a collection of abstract categories and product codes. Different
graphs will impose different distance notions. If we think of the perspectives as
dimensions, we can think of the distance notion imposed by a number of per-
spectives as a multidimensional concept. For example, each of the perspectives
of clothing, color, cost, season determines a specific dimension. In order to take
them all into account, a multidimensional distance should be used. In two di-
mensional Eucidean space the distance between two points (xl, yl) and (x2, yz)
is computed as a function of the distances in the x and the y-dimensions:

d((x1, YI), (12% 92)) = J (x 1 - ~ 2) ~ + (~ 1 - ~ 2) ' (3)

Here (XI -22) is the distance along the x-dimension and (yl - yz) is the distance
along the y-dimension.

To take an example from the world of clothes, consider the color perspective
represented in figure 4.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

light

leather pants

jp 200- 100 1
sw lmsul t

jogging sult

Figure 4: A Perspective for Color

The leaves correspond to codes of products that also appear in the clothing
graph. Although this information is not part of the color graph, we have listed
the categories of clothing, to which the coded objects belong, in order to facilitate
our discussion here,

This color graph defines a notion of distance different to the one defined by
the clothing graph. For example, since jp 279-1 730 and jp 510- 7578 are corduroy
pants, they are very close in the clothing perspective since the distance between
them is 0 . From the point of view of color, however, their distance is 10.3, thus
they are distant from each other. We would like to combine the information
present in both graphs to support a complex search. Supose the customer is
looking for blue pants. Notice that there are not any blue pants, thus the system
has to choose between brown leather pants and red confumy pants. From the
clothing perspective leather pants should be considered before corduroy pants.
F'rom the color perspective red should be considered before bmwn. Should it
suggest a pair of brown leather pants or a pair of red corduroy pants?

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

Similarly the maximal-metric is given by:

maximal (CHI , H I .
maximal(CH,TI ,D) :- max(H,T,D).
maximal(CHIT1 ,Dl :- maxirnal(T,Dl), max(H,Di , D l -

Since we have represented infinite distances by the top atom, we have to make
sure that the arithmetic operations are performed correctly, i.e. top -+ x = top,
top x = top, max(top, x) = top, etc. This is done using by plus, times and
max predicates:

p lus(top, - , top) .
plus (- , top , top) .
plus(X,Y,S) :- S i s X+Y.

max(top,-,top):- t r u e , ! .
% The cuts here are t o avoid backtracking
% when looking f o r candidates.

max(,,top,top) :- t r u e , ! .

The formulz presented so far provide no means for distinguishing perspectives
with regard to relative importance. There certainly should, however, exist
means for specifying that a certain perspective is more important than another
one in a specific search. Suppose, for example, that a customer is looking for
a pair of pants, and that he or she would prefer them to be blue. Since, as
we saw, there are no blue pants, the system has to find an alternative. In this
case it might be better to suggest a brown pair of pants than a blue swimming
suit. However, if the color is important because Susan loves blue, then the blue
swimmhg suit constitutes a better match. In the implementation we associate
weights with the pespectives when performing a search. The distance along each
perspective is multiplied by the corresponding weight prior to calculating the
multidimensional distance. Thus, for the first request one assigns more weight,
wi, to clothing than to color, while the opposite will occurr in the other case.
To do this formally, we use a weighted Euclidean formula.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

4.4 The join operation

We implement the multiperspective match with the join operation which com-
bines an arbitrary number of graphs and nodes within those graphs, finding the
best match in all perspectives, i.e., the individual that is closest to all of the
criterion nodes, where closest depends on the metric chosen, which in our case
is the weighted Euclidean.

As mentioned at the end of the last section, weights are added to the graphs
in order to specify their relative importance. The d i s t predicate is extended to
compute this distance, it receives an expanded graph list (EGL) of the form:
[[[Weightl, (Graphl, Nodel)], . . . , [Weight,, (Graph,, Node,)]].
The second argument of d i s t is a node H. The third argument is the computed
distance between the nodes in EGL and H.

dist(join(EGL) ,H,D) :- coll-dist (EGL, H ,L) ,
euclid(L,D).

The predicate c o l l d i s t is used to collect the distances between a sequence of
weight-graph-node triples and a given node. This list is its first argument, the
collection of distances is returned in the third one. The second argument is the
target node.

The computation of the weighted distance is done with the d i s t predicated as
well:

dist(CU,GBI ,HID) :- dist(GE,H,DI), % the
D i s V * D l . % weighted distance.

Notice that no change has to be made to the match predicate, all the work
is performed by the d i s t predicate.

We now show the result obtained using the clothing and color perspectives
in a summarized form.

1. Searching for a blue pair of pants, emphasizing blue:

?- match(join([[i, (clothing,pants)] , [2, (color ,blue)l l))
Output :

red corduroy pants with code # jp 510-7578 e
brown leather pants with code # jp 350-1001 d
red swimsuit with code # jp 200-1001 d
blue jogging s u i t with code # jp 517-0287 d
red jogging s u i t with code # jp 517-0295 d
green corduroy pants with code # jp 279-1730 d
yellow leather pants with code # jp 350-1000 d

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

yellow swimsuit with code # jp 200-1000 d

Notice that although leather pants are prefered over corduroy pants in the
clothing perspective, a pair of the latter is suggested first since blue is closer to
red than to brown.

2. The same query, but now the emphasis is on pants:

?- match(join([[2, (clothing,pants)] , [I, (color,blue)]]))
Output :

brown lea ther pants with code # jp 350-1001 d
red corduroy pants with code # jp 510-7578 e
green corduroy pants with code # jp 279-1730 d
yellow lea ther pants with code # jp 350-1000 d
red swimsuit with code # jp 200-1001 d
blue jogging s u i t with code # jp 517-0287 d
red jogging s u i t with code # j p 517-0295 d
yellow swimsuit with code # j p 200-1000 d

Here leather pants came before corduroy ones, but only the red ones. Even with
these adjusted weights, a pair of yellow leather pants is further away from blue
pants than from green corduroy pants.

4.5 The union operation

Suppose someone is interested in buying pants, would like them to be blue, but
would accept green. Using the color perspective given earlier, since there are no
blue pants, the system would come up with red or brown ones before suggesting
a green pair of pants. How can this user's preference be handled?

What if both green and blue were selected and the beat of both outcomes
is proposed? This type of operation is implemented via the union operator.
As with join, it takes as an argument an expanded graph list (EGL) whose
elements are triples containing a weight, a graph and a node in that graph. The
distance from each node appearing in the EGL to a target node is computed,
multiplied by the weight, then the minimum of the distances is taken to be the
distance of the union. Since minimums are taken here, the role of the weights
is reversed: a higher weight means less importance.

The minimal metric is computed as foIIows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

minimal ([Dl , D l .
minimal.([H,T] , D l : - min(H,T,D).
minimal([HIT] ,D) :- minimal(T,Di),
min(H,Di,D).

min(top,X,X):- t rue , ! .
min(X,top,X):- t r u e , ! .

The example above is represented by a combination of join and union as fol-
lows:

?- match(join(1 [3, union([[0.3,(color,blue)l ,
EO.7, (color ,green) l l)1 ,

[i, (clothing,pants)]])).
output :

green corduroy pants with code # jp 279-1730 d
brown lea the r pants with code # jp 350-1001 d
red corduroy pants with code # jp 510-7578 e
yellow l e a t h e r pants with code # jp 350-1000 d

Since the notation becomes very cumbersome, we remind the reader that, in any
commercial-grade application, a front-end user interface should handle dialogs
and provide the system with the formal queries.

By analyzing the output we realize that even though green was given lower
priority than blue, a green pair of pants is suggested first, since no blue ones
are available. The ordering of the subsequent suggestions comes from the fact
that red and brown are closer to blue than yellow is to green.

The same operation can be used to combine different graphs. The color
perspective of figure 4 clusters colors according to their brightness. One could,
however, easily think of other interesting criteria, for example complement. Su-
pcwe we have a perspective complementary colors which is organized according
to which colors are complementary. In this perspective red and green are close
toghether as are lilac and yellow. If someone is looking for something red, the
system could use both the color and the complementary colors perspective to
make suggestions. Thus if nothing red were available, it would suggest some-
thing that would match with red either according to brightness or according to
complement. This is naturally done via the union operator:

?- match(join([C l , union([CO.6, (color, red)] ,
10.5, (complementary, red)]])],

E l , (clothing, jacket)]])) .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

Using this query, the system will find a match for a jacket that also matches red.
Thus it could come up with either a brown (using the brightness perspective)
or a green (complementary perspective) jacket if no red one was available.

5 Shortage

So far we have focused on the surplus problem, i.e., how to narrow down on
the set of possible suggestions and find the best one. In terms of our graph
representation, we start at one or more non-leaf nodes and find a closest leaf.
The shortage problem occurrs when a specific product is selected by the user
(with a specific product code number) that is not available. In terms of our
graph representation, we start at a leaf and need to find a closest distinct leaf.
It is significant that shortage can be dealt with in much the same way surplus
was.

Supose we are looking for a certain item, say T-shirt jp 522-1635 dl and there
are none in stock. What should the program offer instead? What happens if we
issue the query match(jp 622-1635')? There is a basic problem: we are not
telling the system under which perspective to search. The solution is to have
the system find out to which perspectives jp 522-1635 belongs and perform a
join operation. The weights for each perspective should be gathered according
to some mechanism that either asks the user for the relative importance of the
perspectives, or uses a predetermined scale.

Why it is necessary to perform a join operation? Suppose that we also have
a perspective for the cost of items in dollars, so that we know whether or not an
item is expensive. If we are looking for the specific T-shirt jp 522-1 635 d, which
happens to be blue and inexpensive, the alternatives offered should consider
not only the fact that we want a T-shirt, but also that it should be blue and
not high-priced. The assignment of weights to the perspectives will reflect how
important the color, the cost, etc. are.

If the system were implemented so that the distances were computed from
the graphs as needed, the procedure described above would work fine. The
same holds if it stored the distances between coded products, for example
dis t (clothing, jp 274-1730 d* , ' jp 350-1001 d' ,2.3).

Since the implementation adopted does not keep the distances between in-
dividuals, we offer a different approach. Find all the abstract categories and
corresponding graphs to which the individual belongs, assign weights to the
graphs and then find a best match using join. This is basically the same pro-
cedure as described earlier with the distinction that the set of abstract nodes to
which the individual belongs is collected. In the example of the T-shirt jp 522-
1635 d this collection could be {(clothing, T-shirt), (color, blue), (cost, cheap),
. . .). The implementation could be as follows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

collect,categories(Ind, c a t l i s t) :-
bagof((Graph, Node).

(instance-of (Ind, Node),
in,graph(Node, Graph)) ,
C a t l i s t) .

get-weights ([3 , 1.
get-weights ([(Graph, lode) I TI] ,

[(Weight, Graph, Node) I T21) :-
ask-user (Weight, Graph, Node) ,
get-weights (TI, T2).

ask-user (Weight, Graph, liode) :-
priat(*What is the weight associated with '1,
p r i n t (Graph) , p r i n t (lode) ,
read(Veight1.

Personal Preferences

So far we have described operations on graphs that combine them in such a way
that no new graph traversals are needed for the computations. Both the join and
the union operations required simple arithmentic operations to be performed,
such as sum, product, minimum and maximum, on the distances of the graphs
provided as arguments. We now introduce a natural operation that requires
graph traversals, since it works by modifying the underlying graphs.

Supose that Susan prefers dark colors to light ones. Otherwise her prefer-
ences agree with those represented by the colorperspective. Instead of building a
new perspective for her preferences and thereby duplicating most of the graph,
it would be interesting to establish a way of changing the values of selected
weights in the color perspective.

We propose the following solution. Build a graph that only holds the arcs
whose weights have to be changed. When computing distances on this new
graph default to the other one when no information is vailable. That is, if there
is an arc between two nodes in the new graph, then use it; if there is not, try
finding one in the other graph.

For the example of Susan, we would build a Susan-colors graph containing
only the nodes color, light and dark as shown in figure 5.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

Color Q

Figure 5: Susan's Preferences

Since it modifies the graph, the default reasoning is implemented via the i s a
predicate:

isacdef au l t (Graph, Def -Graph) . B i , H2, C) : -
(isa(Graph, Hi, 112, C);
isa(Def,Graph, H i , H2, C)) .

If an arc is present in Graph it is used, otherwise one in ~ e f ~ L a ~ h is used.
The advantage of using this default operation, as opposed to building a new

graph for each minor variance, is twofold. First, it is space efficient since no
infomation is duplicated. Second, it provides for consistency by keeping only
one version of the shared information.

The most interesting utilization is probably the representation of personal
preferences. By interacting with the user and monitoring his or her choices, the
system could observe in which way a user's preferences d i e r from the stored
perspectives. It could then build user models in the form of personal perspec-
tives.

7 Relation to Utility Theory
Our purpose in this section is to show how our distance measures for a single
perspective can be interpreted as a series of unidimensional utility functions,
and to show how our extension to multiple perspectives can be interpreted as a
series of multiattribute utility functions.

We begin with the unidirnensional case, i.e., with a single perspective as in
$3. Recall that we assigned the cost of the arc i - j , Cij , as

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

where Pij is the probability of choosing the arc from (ancestor) node i to (de-
scendant) node j, given you are at node i; h is the height of the arc from the
bottom of the graph; and k is a scaling constant that we set to 10 for the sake of
the discussion. The distance between any two nodes in a single graph, d(xi, xj),
was (letting CiPj = Cjti, for all i, j) simply the length of the path between xi
and xj . (We have implicitly been assuming that the distance from any node to
itself is 0. Also, remember that we have been restricting our discussion to trees,
so that there is exactly one path between any two nodes. This assumption could
be relaxed, in which case the distance could be measured, e.g., as the length of
the shortest path.) Given this, we can readily see that the graph may be taken
as encoding a series of conditional utility functions, one for each node. We can
define u(xj Ixi), the utility of going to node j given that you are at node i, as

where max is the length of the longest path in the graph. Thus, u ranges from 0
to m a x . Since utility functions are unique only up to a positive linear transfor-
mation and since in equation 8 the distance is a negative linear transformation
of the utility, we minimize distance in order to maximize utility.

Given the definition implicit in 8, it remains to investigate the requirements
of that utility function and to determine whether these requirements are rea-
sonable. So far as we are aware, e.g., [5,6,7], the sort of graph-functional utility
function we are proposing has not been investigated. We will confine ourselves
to but a few remarks. We note two properties of our utility function. First, for
any node XI. on the path from x i to x j ,

We call this the additivity property. Second, we note an independence property:
U (X ~ Ixi) is independent of the cost of any arc not on the path from xi to xj.

These are, we think, sensible properties for a utility function for this sort
of application. In any case they can be used diagnostically in eliciting a utility
function and constructing a tree. To illustrate, suppose that xi and x j are two
leaf nodes with a common ancestor, xk, and that d(x;,xk) < d(xj,xk). Then,
for any node, XI for which xa is on the paths between xl and xi and between
xl and xj, u(xilxr) > u(xjlxr). This fact can be used to validate a given graph
and assignment of arc costs. Further, if upon examination the graph is found
to be invalid in this way, then the graph can be modified by adding (or perhaps
removing) nodes and arcs, e.g,, by splitting xk so that it is not a common
ancestor for both xi and xj. Similarly, if the independence property is violated,
then the graph can be changed so that the offending arcs are in fact on the
paths in question.

We turn now to the multiple perspectives case, discussed in $4. The required
utility function definition is mainly a generalization of that for the unidimen-
sional case:

u (~ j l ~ l , . - . , ~ n) = m X - d (~ ~ , (~ l , - - - , ~ n)) (10)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

where x j is a leaf node (hence common to all the trees in question); the yis are
categorization (non-leaf) nodes, one for each perspective in play; and MAX is the
length of the longest path in all of the perspectives. In $4 we emphasized that
several different distance metric were possible. We choose, as indicated earlier in
the discussion of the code, a weighted Euclidean metric for our implementation:

j 9 Y - . , n)) = (ki wi . d(zj , yi)12

where, as above, x j is a leaf node (hence common to all the trees in question);
the yis are categorization (non-leaf) nodes, one for each perspective in play; the
wi are the weights placed on the various perspectives; and the ki are standard-
ization factors, set so that ki . maxi = kj . maxj = MAX for all i, j. (For the sake
of simplicity in our implementation, we absorbed the kis into the w~s.)

This weighted Euclidean metric is, we think sensible and intuitive. It is also
implementation-specific and can be changed. In particular, we note that with a
slightly simpler metric:

we have an additive multiattribute utility function, the one most commonly
used in practice.

8 Summary and Conclusion

In this paper, we showed how an abstraction (or isa) hierarchy with an im-
posed distance metric can be used as a representational basis for modeling the
salesperson's r6le (as embodied in the surplus and shortage problems) in an
electronic shopping system. Further, we indicated how the distance metric, in
the context of the abstraction hierarchy, can be interpreted as a unidimensional
utility function. Finally, we extended the single dimensional (single perspective)
treatment to multiple dimensions, or perspeciives, and showed how the resulting
representation can be interpreted as a multiattribute utility Eunction, and we
argued that the resulting function is plausible and, most importantly, testable.

If, in the future, there are to be large-scale electronic shopping systems,
they will need to accommodate both (a) a large number of products, many of
which are close substitutes, and (b) a heterogeneous body of customers who
have complex, multidimensional-and perhaps rapidly changing-preferences
regarding the products for sale in the system. Further, these systems will have
to be designed in a manner so as to both (c) reduce the complexity of the
shopping problem from the customer's point of view, and (d) effectively and
insightfully match products to customers' needs. We think that our approach,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

described above, bids fair to be able to meet requirements (c) and (d) in the
context of (a) and (b). Of course, no approach can be shown to be optimal.
Much remains to be learned, then, about alternative approaches and about
refinements to the one we have proposed.

A Computation of shortest paths

help : -
pp("This program calculates the distances from each"),
nl ,
pp('5nternal node in a graph to the product codes. ") ,nl,
pp("To start consult the GRAPH file with the 'isa links"'),
nl ,
pp("then consult the INSTANCES file"),nl,
pp("then enter the goal 'tg . ', "1 ,nl.

?- help.

% new-member
% new,member(V,L,Ll,Lr) is true if L is of the form CLl,V,Lr]
% It is like member, but it also return the left and right
% sublists bounding the element.

% Calculating the distances.
% calc~dist,source(Graph,Sourca, Bodes,S) computes
% the distances from Source to the nodes in
% Bodes with paths in graph Graph.
% It uses DijstraJs algorithm.
% In S we store the nodes whose distance
% was already found, Bodes are the ones to consider,
% It asumes the graph is a tree,
% hence the first distance computed
% is final, i.e.
% there is at most one path berween two nodes.

calc,dist,source (, , ,, ,,I.
calc,dist,source(G, Source, Bodes, S):-

member((V1 ,Dl) ,S),
arc(G,Vl,V,D2),

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

new-member (V , Nodes, NL , NR) ,
D is Dl + D2,
store(dist source ,V,D)),
app (Nodes I, NL, NR) ,
calc~dist~source(G,Source,Nodesl, C(V,D)ISI).

% store: prints the distances found
% and stores them if they are leaves.

store(dist(G,Source,V,D)):-
(leaf(G,V), store-codes(G,Source,V,D)); true.

% store-codes retrieves the product codes corresponding to V.

store-codes(G,Source,V,D):-
setof (C, instance-of (C,V) ,Code-list),
print ('Saving '1 ,print (Source),
print (' to) ,print (Code-list) ,
n1,print ('Distance= '1 ,print(D) ,nl,
store~code~list(G,Source,D,Code,list).

store,code,list(-,-,-,0).
store-code,list(G ,Source,D,EHlTl) :-

assertz(dist (G,Source AD)),
store-code,list(G,Source,D,T).

% An arc is a commutative version of an isa.

% Get the set if nodes of a graph.
nodes(G,Bodes):- setof (B,C-V-arc(G,V,B,C) ,Bodes).

% A leaf has no descendants.
leaf(G,V) :- not(isa(G,X,V,C)).

comp-dist (G) : - nodes (G ,Bodes),
ne~-member(X,BodeS,L,R),
proceed,dist(G,L,X,R).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

proceed,dist(G,L,X,C)):- calc,dist~source(G,X,L,C(X,O)I).
proceed-dist(G,L,X, CRIlRT1):-

app(N,L, [RIIRT]),
calc-dist-souce(G,X,N,[(X,O)]),
proceed-dist (G, EX IL1 ,RI ,RT) .

%--- ...
% Main level
tg:-
pp(" Graph name: "),
read(G),
pp(" Xame of file where to store the computed distances: "1,
read(S),
comp-dist (G) ,
tell(S),
listing(dist1,
told,
abolish(dist,4).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

I3 The salesman program

reachable(H, L) :- setof ((Cost, Node),
($dist(H,Node,Cost),
less-than(Cost , top)),
L) .

...
% The highest order predicate :

match(Se1ection) : -
reachable (Selection, List),
dialog(List).

dialog (1.
dialog ([(Cost, Bode) I Tail]) : -
show(lode),
((more,dialog(Tail));true).

more :-
print('Vould you like to see more ? '1,
!, read(y).

shov(B) :-
bagof (Category, instance-of (H, category) ,L) ,
nice-print (L) ,
mite(' with code # '3,
mite(H1,
nl.

nice-print (El 1 .
nice-print ([XI) : -

print (XI.
nice-print(fX,n) :-

print(X),print(' '),print(Y).
nice-print (CH l TI) : -

print (H) ,print(' , ') ,nice,~rint (TI.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

-

%------------------------------------"'---- ...
% Change the distance predicate a little.

$dist((G,N),X,Cost):- dist(G,N,X,Cost).
$dist(G,N,X,O):- instance-of (X ,N) .

% now dist((W.(G,N)),M,D)
$dist(CW,GN] ,H,D) :- $dist(~N,H,Dl),

D is Y * Dl.

$dist (j oin(EGL) , H ,D) : - coll-dist (EGL , H ,L) ,
euclid(L,D).

% now dist (union([(W-1, (G-I ,H,l)),
% (U-2, (G-2,H-2>>, . . . ,(W-k,(G,k,B,k))l ,H,D)

$dist (union(E~L) ,H ,D) : - coll-dist (EGL ,H ,L) ,
minimal(L,D).

coll,dist(U ,-,a).
coll-dist (EH IT1 ,H, CDILI) :-

$dist(H,H,D), coll,dist(T,H,L).

...
% HETRICS
...
euclid(L,D) :- stun-squares(L,S),

D is sqrt(S).
sum-squares (q ,O) .
sum,squares([H IT] ,D) :- sum,squares(T,Di),

times(H,H,Hsquare),
plus(Hsquare,Di ,Dl. x-- ..

x ARITHHETIC

plns(top,-,toP).
plus (- , top, top).
plus(X,Y,s) . -

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

times(top,~,top).
times(,,top,top) .
times(X,Y ,PI . - P is X*Y.
...
% Maximal metric:

maximal (CH , TI , D) : - max(H,T,D).
maximal(CHIT1 ,Dl :- maximal(T,~I),

max(H,Dl,D).
max(top,,,top) :- true, ! .
ma(-,topstop) :- true, ! .

%-- ..
% Minimal metric:

min(top,X,X):- true,!.
rnin(X,top,X):- true,!.

References

[I] Aho, A., J. Hopcroft, J. Ullrnan. The Design and Analysis of Computer Al-
gorithms, Addison-Wesley Publishing Company, Reading, Massachusetts,
1974.

[2] Bonczek, Robert H., Clyde W. Holsapple, and Andrew B. Whinston, Foun-
dations of Decision Support Systems, Academic Press, New York, New
York, 1981.

[3] Clemons, Eric K. and Steven 0. Kimbrough, %formation Systems,
Telecommunications, and Their Effects on Industrial Organization," Pro-
ceedings of ihe the Seventh International Conference on Information Sys-
tems, Leslie Maggie et al., eds., San Diego, CA, (December 1986), 99-108.

[4] Dewitz, Sandra K., and Ronald M. Lee, "Legal Procedures as Formal Con-
versations: Contracting on a Performative Network," Proceedings of the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

Tenth International Conference on Information Systems, Janice I. DeGross,
John C. Henderson, and Benn R. Konsynski, eds., Association for Com-
puting Machinery, Baltimore, Maryland, (December 4 6 , 1989), 53-65.

[5] Fishburn, Peter C., Utility Analysis for Decision Making, Robert E. Kreiger
Publishing Company, Huntington, New York, 1979

[6] Keeney, Ralph L., and Howard Raiffa, Preferences with Multiple Objectives:
Preferences and Value Padeofls, John Wiley & Sons, New York, New York,
1976.

[7] Krantz, David H., R. Duncan Luce, Patrick Suppes, and Amos Tversky,
Foundations of Measurement, Volume I, Additive and Polynomial Prepre-
seniations, Academic Press, New York, New York, 1971.

[8] Kimbrough, Steven 0. and Michael J . Thornburg, "On Semantically Ac-
cessible Messaging in an Office Environment," Proceedings of the Twenty-
Second Hawaii International Conference on System Sciences, IEEE Press,
Washington, D.C., 1989, 566-574.

f9] Lee, Ronald M. and George Widmeyer, "Shopping in the Electronic Mar-
ketplace," Journal of Management Information Systems, 2 , no. 4, (1986),
21-35.

[lo] L. Shastri, L., "A Massively Parallel Encoding of Semantic Networks,"
Pmc. Distributed Artificial Intelligence Workshop, Sea Ranch, CA, August
1985.

[l l] Williamson, Oliver E., Markets and Hierurchies, The Free Press, New York,
New York, 1975.

[12] Williamson, Oliver E., 'The Economics of Organization: The Transaction
Cost Approach," American Journal of Sociology, 87, (1981), 548-575.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-08

