6,806 research outputs found

    TFAW: wavelet-based signal reconstruction to reduce photometric noise in time-domain surveys

    Full text link
    There have been many efforts to correct systematic effects in astronomical light curves to improve the detection and characterization of planetary transits and astrophysical variability. Algorithms like the Trend Filtering Algorithm (TFA) use simultaneously-observed stars to remove systematic effects, and binning is used to reduce high-frequency random noise. We present TFAW, a wavelet-based modified version of TFA. TFAW aims to increase the periodic signal detection and to return a detrended and denoised signal without modifying its intrinsic characteristics. We modify TFA's frequency analysis step adding a Stationary Wavelet Transform filter to perform an initial noise and outlier removal and increase the detection of variable signals. A wavelet filter is added to TFA's signal reconstruction to perform an adaptive characterization of the noise- and trend-free signal and the noise contribution at each iteration while preserving astrophysical signals. We carried out tests over simulated sinusoidal and transit-like signals to assess the effectiveness of the method and applied TFAW to real light curves from TFRM. We also studied TFAW's application to simulated multiperiodic signals, improving their characterization. TFAW improves the signal detection rate by increasing the signal detection efficiency (SDE) up to a factor ~2.5x for low SNR light curves. For simulated transits, the transit detection rate improves by a factor ~2-5x in the low-SNR regime compared to TFA. TFAW signal approximation performs up to a factor ~2x better than bin averaging for planetary transits. The standard deviations of simulated and real TFAW light curves are ~40x better than TFA. TFAW yields better MCMC posterior distributions and returns lower uncertainties, less biased transit parameters and narrower (~10x) credibility intervals for simulated transits. We present a newly-discovered variable star from TFRM.Comment: Accepted for publication by A&A. 13 pages, 16 figures and 5 table

    Spectral analysis for nonstationary audio

    Full text link
    A new approach for the analysis of nonstationary signals is proposed, with a focus on audio applications. Following earlier contributions, nonstationarity is modeled via stationarity-breaking operators acting on Gaussian stationary random signals. The focus is on time warping and amplitude modulation, and an approximate maximum-likelihood approach based on suitable approximations in the wavelet transform domain is developed. This paper provides theoretical analysis of the approximations, and introduces JEFAS, a corresponding estimation algorithm. The latter is tested and validated on synthetic as well as real audio signal.Comment: IEEE/ACM Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, In pres

    Characterization of the near-Earth Asteroid 2002NY40

    Full text link
    In August 2002, the near-Earth asteroid 2002 NY40, made its closest approach to the Earth. This provided an opportunity to study a near-Earth asteroid with a variety of instruments. Several of the telescopes at the Maui Space Surveillance System were trained at the asteroid and collected adaptive optics images, photometry and spectroscopy. Analysis of the imagery reveals the asteroid is triangular shaped with significant self-shadowing. The photometry reveals a 20-hour period and the spectroscopy shows that the asteroid is a Q-type

    Stepwise Iterative Fourier Transform: The SIFT

    Get PDF
    A program, designed specifically to study the respective effects of some common data problems on results obtained through stepwise iterative Fourier transformation of synthetic data with known waveform composition, was outlined. Included in this group were the problems of gaps in the data, different time-series lengths, periodic but nonsinusoidal waveforms, and noisy (low signal-to-noise) data. Results on sinusoidal data were also compared with results obtained on narrow band noise with similar characteristics. The findings showed that the analytic procedure under study can reliably reduce data in the nature of (1) sinusoids in noise, (2) asymmetric but periodic waves in noise, and (3) sinusoids in noise with substantial gaps in the data. The program was also able to analyze narrow-band noise well, but with increased interpretational problems. The procedure was shown to be a powerful technique for analysis of periodicities, in comparison with classical spectrum analysis techniques. However, informed use of the stepwise procedure nevertheless requires some background of knowledge concerning characteristics of the biological processes under study

    Comparison of different repetitive control architectures: synthesis and comparison. Application to VSI Converters

    Get PDF
    Repetitive control is one of the most used control approaches to deal with periodic references/disturbances. It owes its properties to the inclusion of an internal model in the controller that corresponds to a periodic signal generator. However, there exist many different ways to include this internal model. This work presents a description of the different schemes by means of which repetitive control can be implemented. A complete analytic analysis and comparison is performed together with controller synthesis guidance. The voltage source inverter controller experimental results are included to illustrative conceptual developmentsPeer ReviewedPostprint (published version
    • …
    corecore