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STEPWISE ITERATIVE FOURIER

TRANSFORM:	 THE SIFT

I `^	 t Vernon A. Benignus and Gayla Benignus
Behavioral Technology Consultants, Inc.'

SUMMARY
l	 i

i
Spectrum analysis of biomedical data offers some unique advantages over classi-
cal statistical analyses and over visual analysis by trained clinicians, par-
ticularly for applied biomedical studies of physiological functioning in flight
and simulation chamber environments. 	 The data obtained in these settings often

I take the form of time series, which typically present complex waveforms composed
of various periodicities.	 The application of spectrum analysis techniques to
biological data still presents enough uncertainties and constraining factors to
make spectrum analysis results less than straightforward with respect to inter-
pretations.	 The present study program was designed specifically to study the
respective effects of some common data problems on results obtained through

f stepwise iterative Fourier transformation of synthetic data with known waveform
composition.	 Included in this group were the problems of gaps in the data,
different time-series lengths, periodic but nonsinusoidal waveforms, and noisy

i (low signal-to-noise) data. 	 Results on sinusoidal data were also compared with
x

s	
f results obtained on narrow -band noise with similar characteristics. 	 The findings

'- showed that the analytic procedure under study can reliably reduce data in the
nature of (1) sinusoids in noise, (2) asymmetric but periodic waves in noise, -..

and (3) sinusoids in noise with substantial gaps in the data.	 The program was
also able to analyze narrow-band noise well, but with increased interpretational

c problems.	 The procedure was shown to be a powerful technique for analysis of
periodicities, in comparison with classical spectrum analysis techniques. 	 How-
ever, informed use of the stepwise procedure nevertheless requires some back-
ground of knowledge concerning characteristics of the biological processes under
study.	 Uninformed use of the procedure can lead to obvious inferential errors.
It is also recommended that the program should be subjected to further tests
involving comparisons of its performance across a range of different life

{ systems measures of periodic processes before it is accepted as a standard
^'	

y
analytic tool for general biomedical data analysis applications.
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This report describes a method of spectrum analysis that was developed in the
course of testing and modifying Rummel's program for multiple -regression
estimation of period domain spectra (Rummel, 1971). It follows an earlier
report addressed to evaluation of the original program (Benignus, 1972).

The findings described in this report are relevant to the many theoretical and
practical complexities confronting research investigators who wish to analyze
biorhythms data. While a number of spectrum analysis techniques are available
for the study of biorhythms, application to biological time - series continues
to yield results that are often ambiguous. For applied research purposes such
as studies of spaceflight effects on circadian rhythms in astronauts, several
specific problems assume considerable significance. The amount of data
required for reasonably precise estimates of circadian phenomena is one issue
of special importance tc. !pace medicine and biology. The task of obtaining
data in flight simulation or spacecraft environments over a period of many
days can be very expensive. Standard spectrum analysis procedures may require
testing subjects over periods of time that are too long to be feasible. Another
significant problem faced in applied research on biorhythms is the problem of
spectral resolution. Resolution capacity of standard forms of spectrum analysis
is a function of record length. Therefore, if it is possible to obtain data
only over short periods of time, changes in the characteristics of the bio-
rhythms under study may not be detected because of coarse spectrum resolution.

In chamber studies, as well as in manned spaceflights, other problems can arise
that affect spectrum analysis results in ways that have not yet been clearly
delineated. The problem of missing data effects on spectrum results is a very
common occurrence and questions still exist concerning the selection of inter-
polation procedures for filling gaps in the data. The necessity for collecting
biological samples such as blood or urine samples at unequal intervals presents
significant questions. One particularly serious problem for standard spectrum
analysis procedures is the problem of analyzing biorhythms which are unstable
with respect to amplitude or phase. Research investigators could greatly
profit from new spectrum analysis techniques capable of usefully characterizing
such unstable rhythmicities.

The study program described in this report provided an opportunity to explore
the Rummel program ' s performance with respect to these significant problems
and then to refine his basic approach, to the extent of creating a new program
for stepwise iterative Fourier transformation, designated as SIFT.

The results obtained not only have methodological implications but also provide
an empirical basis for reconceptualizations of spectrum analysis philosophy.

It is assumed that the reader has previously acquired a basic understanding of
multiple regression, stepwise regression, and spectrum analysis, although
references to basic literature are provided for review purposes.
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SYMBOLS

T time series length

+? b least squares regression coefficient

Cxn time series of n length
t..

b vector of regression coefficients

R 11 matrix of correlations among the independent variables

R12 vector of correlations between independent variables and
the dependent variable

jAf frequency increment

A P period increment

#'r• Ai amplitude estimate at frequency i

` ai sine component of amplitude at frequency i
a

b i cosine component of amplitude at frequency i

t statistical criterion for estimating predictive value (student's t)

R multiple squared correlation coefficient
a

z Fisher's z-transform

RMS root mean square

SNR signal-to-noise ratio

` L length of time series containing narrow-band noise (in terms of number
of observations)

f frequency

P period

P probability

k number of bands used for spectrum analysis t
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Resolution of the DFT

In methods of spectrum analysis using the Discrete Fourier Transform (DFT) or
its fast algorithm, the Fast Fourier Transform (FFT), the attainable frequency
domain resolution is 1/T Hz, where T is the length of the time series being
analyzed (Hinich and Clay, 1968).

This reports shows that, for some cases, it is possible to achieve considerably
better resolution by a method of multiple regression spectrum analysis. For
present purposes the DFT is viewed as a series of single-variable, orthogonal,
regression analyses. This view permits generalization to a method of multiple
estimation which can yield better spectral resolution. In the following
discussion the usual assumptions are made about time series, in terms of their
randomness, Gaussian distribution,and stationarity (Bendat & Piersol, 1966).

By solving a least-squared-error equation using a cosine wave as an independent
variable to estimate a time series, it may be shown that the least-squared
estimation error is obtained when the regression coefficient is

N
bi = N L xn cos (2 r nfitn )	 [ 1 ]

n=1

Here X  is an N-long time series estimated by a cosine wave of frequency fi.
The least-squares regression coefficient, b i , is the Fourier coefficient for
the cosine component at frequency fi. Equation [1] is the Euler equation for
estimating the Fourier coefficient using the usual DFT. By minimizing squared
errors of estimation, the usual Euler expression may be derived for the sine
components as well.

It has been demonstrated (Bendat and Piersol, 1966) that two cosine Fourier
coefficients, bi and b J•,are independent so long as the frequencies of the consine
estimator waves, fi and fj, are harmonic multiples. This is true when the
lowest frequency to be estimated in the data is 1/T and the next higher fre-
quencies estimated are spaced in a harmonic progression and separated by
1/T, i.e., 2 (1/T), 3 (1/T), etc. It may be easily shown that two cosine
independent variables of frequency fi and f 1• are linearly uncorrelated when
they are harmonically related. When two independent variables are uncorrelated
and the dependent variable is a Gaussian random variable,- the corresponding two
regression coefficients are also unrelated (Guilford, 1965). From least-squares
regression analysis the DFT may then be viewed as a series of single-variable,
orthogonal, regression estimates, each performed at a different frequency with
frequencies spaced at the harmonic intervals of l/T. At each frequency there
are, of course, two orthogonal estimators: the sine and the cosine waves.

If two independent variables, say cosine waves, are spaced more closely than
1/T, it can easily be shown that they are no longer uncorrelated. When two
independent variables in a regression analysis are correlated, their corres-
ponding regression (Fourier) coefficients are also correlated (Guilford, 1965).
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It is for this reason that, when spectrum estimates are spaced more closely
than 1/T, they are no longer fully resolved from one another.

Multiale Regression Spectra

It is not at all unusual in multiple regression analysis to treat correlated
independent variables. As discussed above, if a series of single-variable
regressions is run in such a situation, the regression coefficients will be
correln,;ed. Indeed, the estimates of regression are highly misleading
(Guilford, 1965). The usual solution is to use multiple-regression analysis
in such a way that the regression coefficients are each calculated with the
effects of the correlated.estimators "taken out," i.e., considered. Such
regression coefficients are called "partial" regression coefficients, and
they are much less misleading (Guilford, 1965).

It is often desirable to estimate a spectrum in which estimates are spaced
more closely than 1/T and hence would (in the usual DFT) be overresolved.
If, however, a multiple-regression scheme is used, it is possible to account
for the inter-correlations among independent-variable waves and obtain more
meaningful sample regression (Fourier) coefficients. It is this method of
analysis which is treated in this report.

An equation for the computation of multiple regression coefficients can be
written in matrix form as

i b ` R 11	 R12	 (21

where the boldface letters indicate matrices (Cooley and Lohnes, 1971). In
equation (2], b is the vector of regression coefficients which are being
computed, R ll is the matrix of correlations among the various independent
variables, and R12 is the vector of correlations between the independent
variables and the dependent variable.

A first impression would suggest that for a multiple-regression spectrum
analysis one could simply compute R 1 for the full spectrum of independent
variables (the sine and cosine waves 	 compute R	 (the correlations^^	 P	 1
between the sine and cosine waves and the time series); then solve 	 '°	 A
equation (2] for b, the vector or regression coefficients, and obtain
a highly resolved spectrum. In fact, the matrices of correlations are
easily computed, and this is done in the method reported here.

When, however, an attempt is made to solve equation (2], a complication occurs.
When the order of R 11 is high and when many inter-correlations are large, the
inversion of R 11 becomes increasingly inaccurate for any fixed level of
computational precision. While this is a soluble difficulty, solutions are
costly in terms of memory and computation time.
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There is another, more compelling reason for not proceeding as indicated in
equation [2], i.e., for not computing a spectrum containing all possible
frequencies of interest simultaneously. If such a simultaneous computation
were made, many of the spectrum estimates (regression coefficients) would
have highly unreliable values. In the life sciences, most time series have
at least a moderately peaked spectrum; consequently, most of the significant
activity in a time-series record can be accounted for by considerably fewer
than all possible frequencies. If only a few frequencies are required, it is
implied that the simple correlations in matrix R 12 would, in general, be low
for all except the required frequencies. The standard error of estimation
for a partial regression coefficient varies inversely with the correlation
between the corresponding independent and dependent variables (Guilford, 1965).
Thus, for any independent variable (sine or cosine wave of a particular fre-
quency) that does not correlate well with the time series, the estimate of
spectrum energy (regression coefficient) will be very unstable, especially in
a multiple-regression case. In practice it has been found that, for fre-
quencies that do not contribute significantly to the time series, spectrum
estimates of 10 to 100 times larger than reasonable values actually occur
under common circumstances. Not only is it computationally costly to perform
[2], but also many of the values in b are wildly unreliable.

A Steawise Method

When faced with many possible independent variables of unknown predictive
value, a common statistical procedure is to employ stepwise selection of
those independent variables (Draper and Smith, 1966). This implies the per-
formance calculations described in equation [2] but with fewer variables used.
Most regression programs compute R 11 and R 12 for all possible independent
variables and then select independent variables, singly and in order of their
predictive importance, to build a set of regression solutions in order of
increasing complexity. The first regression equation executed contains one
(the most predictive) independent variable. The next solution usually con-
tains two independent variables: the first found to be highly predictive
plus the next most predictive one. This procedure continues to include, one
at a time and in order of predictive salience, the remaining independent
variables.

In a true stepwise procedure, all variables previously entered are checked at 	 7.'

each step to see if they still contribute to prediction in a significant way
after other variables have subsequently been entered When the program reaches
some a priori criterion of predictive accuracy, the addition of new indepen-
dent variables stops.

In the case of spectrum analysis, the final solution of a. true stepwise pro-
cedure would yield a vector, b, of regression coefficients which would specify
the characteristics of the first k most important frequencies, k being the
number of frequencies entered in order to achieve the desired predictive
accuracy. There are several presumed advantages of this method over some
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alternative procedure such as simply picking the first k biggest spectrum peaks.
As discussed above, after the first variable is entered, the others are computed
with the correlations between independent variables considered; and therefore,
a much more accurate result is achieved (Guilford, 1965; Draper and Smith,
1966). (This is true, of course, only for the overresolved spectrum case).
Variables are also selected on the basis not of their amplitudes, but of their
predictive reliability. Especially in cases where several predictors have
already been entered, as discussed above, the reliability of the regression
coefficient can be very low; and its computed amplitude can, therefore, be
erroneously very high. In the latter case, the ,frequency chosen would not be
a good candidate as an independent variable.

When a vector, b , of spectrum estimates has been computed by a stepwise pro-
cedure, it is certainly not equivalent to a comparable spectrum as estimated
by the standard DFT. The DFT computes k spectrum estimates, equally
spaced and orthogonal to each other. The true stepwise program computes
k spectrum estimates which are the first most important ones and which might
be unequally spaced and nonorthogonal. In this stepwise method, no estimates
are made in spectrum regions which have insufficient activity to enter into the
prediction scheme. The method of stepwise spectrum analysis has the advantages
that (1) it yields a more accurate and resolved result and (2) its spectrum
is still parsimoniously stated (and may indeed be more parsimoniously stated) than
a less resolved DFT. The disadvantages of the method are (1) it yields no
estimates for some parts of the spectrum, so that the usual continuous spectrum
series is not obtained, and (2) stepwise procedures can be seriously capricious.
The latter difficulty will be discussed extensively in the next paragraph and
in context throughout this report.

The first difficulty cited, that of noncomparability to DFT results, is only
one of form or convention. It is easily arguable that in an overresolved
spectrum these other frequency estimates are either redundant in the case of
the DFT or would be highly inaccurately estimated in the case of the stepwise
Fourier Transform. In any case, the argument of parsimony is a very powerful
one from both a statistical and a philosophical point of view.

The point is often made (and with great vehemence in some quarters) that any
method of stepwise regression analysis such as the stepwise Fourier Transform
is a capricious procedure which capitalizes on small sampling fluctuations
(Efroymson, 1962). In all cases of stepwise procedures, which are in the
nature of general "fishing expeditions," it is necessary to replicate the
procedure at least once (or until stable results are achieved) to insure that
chance results did not occur. The probability of chance results increases with
(1) the number of independent variables available for selection by a program
and (2) the number finally selected. A great deal of attention has been paid
to such capriciousness in the evaluation of this method.

1
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TABLE 1. COMPARISONS OF FREQUENCY AND
PERIOD SPACING FOR SPECTRUM ANALYSIS

P AP f of

1 1
1 .5

2 .5

1 .17
3 .33

1 .08
4 .25

The fact that the period domain represents an unequally spaced frequency domain
gives rise to somewhat undesirable properties. The main problem is that, since
the correlations among spectrum estimates are determined by their spacing in the
frequency domain, the period domain spectrum has a varying amount of correla-
tion between each pair of the adjacent frequencies, depending upon where in the
spectrum the pair is located. Thus, if o P is set to produce resolved (uncor-
related) estimates at the short-wave (high-frequency) end of the spectrum, then
the long-wave (low-frequency) end of the spectrum will be grossly overresolved,
i.e., estimates will be highly correlated.

In this report, the theory underlying methods is always discussed in terms of
the more usual frequency domain. The method of spectrum computation is always
evaluated in both the frequency and the period domains. Further comparisons
and discussion of the differences are made.

9
r
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Two Domains

The usual DFT is a transformation of data measured in time (time-domain data)
into data expressed as a function of frequency (frequency-domain data).

It is possible to express the results of a Fourier transformation as a "period"
spectrum where period, P, is defined as P = 1/f, the reciprocal of the frequency
(f). The period of a wave is simply its duration. Spectra computed in this
manner will be said to be expressed in the "period domain."

Usually the frequency-domain analysis is performed by calculating equally
spaced spectrum estimates at some interval of f = 1/T. Similarly, the period-
domain estimates are also calculated at equal period increments of P, where P
is expressed as time. It should be pointed out that equally spaced period esti-
mates are not equally spaced in the frequency domain, as illustrated in table 1.
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METHOD

Some Particulars of Computation
I

j	 There are many different forms of stepwise regression analysis. It is, there-
fore, necessary to speci y the particulars of the approach used in this report.
Further, since this report describes how stepwise regression is applied to
analyze spectra, it has also been necessary to discuss more specifically the
computational routine used here. Many of the features of computation have
been decided upon in a somewhat arbitrary fashion, when no obvious advantage
was offered by alternate but similar procedures. In such cases, choice of
procedures was governed by (1) programming convenience or (2) convention.

jSine and cosine characteristics are found at each frequency in a spectrum,
fand the inclusion of these two specific phase angles of a frequency will

provide all possible information about the amount of that frequency in a
spectrum. It was arbitrarily decided that, if either component of a given
frequency was to be entered into (used in the analysis of) the spectrum,

}	 the other component of that frequency would be entered as well. In the
procedure used here, the sine and cosine components were combined first and
then evaluated for predictive utility. Combinations of sine and components
were handled in the usual way: The amplitude, A i , at frequency i is

6
2	 2

	

Ai = ai + bi	[3]

where ai is the amplitude of the sine component and b i is the amplitude of
the cosine component. It is possible that a better procedure might consist
of evaluating sine and cosine components separately and entering them only
if they meet some pre-set criterion. This alternative choice might be
especially important at a late stage of selection of predictors where either
the sine or the cosine component could be of almost no predictive worth and,
therefore, only contribute to a higher error in estimation. Separate selec-
tion of sine and cosine components has not been previously explored in any

1

J	
..	 I

known procedure, nor is it included here.

In this program two criteria for selection are used at various stages of
computation for assessing the utility of an independent variable. One of
the criteria, the t-value associated with an independent variable as a
predictor, evaluates the reliability of that variable's estimate. The
other criterion evaluates the importance of the independent variable as
an estimator in terms of reduction of uncertainty. This latter criterion
is R:, the multiple squared correlation between the group of independent
variables and the dependent variable. A discussion of how these criteria
are used follows.



4

I

E

.^k

• a

h	 ^	 r

r

r

At any given stage of selection, the previously unselected variable that has
the most reliable estimate (highest t-value) is selected for entry into the
spectrum. Just after a new variable is entered, an attempt is made to opti-
mize the R2 value by moving all of the previously entered independent vari=
ables plus the newly entered variable up and down in the spectrum. For
example: Suppose frequencies 12, 14, and 32 Hz were entered into a spectrum
where 0.5 Hz resolution was being attempted, and suppose that 14 was the one
last entered. a next step would be to move the 12 Hz band down to 11.5 Hz
and recompute R . If an increase in R? occurred, the next step would be to
move the 12 Hz band down to 11 Hz, etc., until a decrease in R 2 occurred, at
which point the frequency just previous to the decrease of R2 would be used.
if, when the first downward movement was made, R had decreased, an attempt
would then be made to move the 12 Hz band up to 12.5 Hz and recompute R?
When the lowest frequency band has been moved down and/or up to optimize . R2,
the next highest band (in this case the newly entered 14 Hz band) would be
moved up and down in a similar fashion. In this way all bands are adjusted
for optimum R2 in relation to specified frequencies. This up and down
movement of the frequencies will be called "iterative R 2 optimization."
If, during iterative R2 optimization, an attempt is made to move an indepen-
dent variable at some frequency into a frequency band already occupied by a
previously entered independent variable, the optimization is halted there;
and the "merger" of two independent variables is prevented. If an attempt
is made to move an independent variable into either the highest or lowest
frequency band in a spectrum, during iterative R2 optimization, this, too,
is prevented. This general procedure of stepwise variable selection and
iterative R? optimization will be called the stepwise iterative Fourier
Transform (SIFT).

The SIFT Computational Procedure

The SIFT procedure has evolved from a trial-and-error procedure using Monte
Carlo test runs. New variables are entered until no more variables with
sufficient t-values remain. The t-value which is used as a criterion by the
SIFT is a severe problem and will be discussed later.

Further details of the program's computational procedure are spelled out in
the step-by-step list in table 2.

Computational SIFT Options	 a:A

The procedure described in table 2 may be implemented in either the frequency
or the period domain. The program's output can be controlled via various print/
plot options to provide step-by-step out -put of considerable detail. Less
detailed output consisting, in the extreme, of only the final solution can
also be obtained. Input data are obtainable from either real data or Monte
Carlo simulation subroutines. The whole program may be executed any number
of times under do-loop control. Further computational details are given in
the program documentation.

12
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TABLE 2. COMPUTATIONAL PROCEDURES FOR EXECUTION OF SIFT

1	 1. Read in the parameters of the analysis.
1

2. Generate a matrix of estimator waves consisting of
the sine and cosine waves of the frequencies of
interest.

3. Read in the dependent variable wave Y.

4. Compute a matrix of intercorrelations between the
estimator waves,	 R 11 , and between the estimator
waves and the dependent variable wave,	 R 12'

5. Compute a usual DFT spectrum by first multiplying
a the correlations in	 R12 by the standard deviations

" of the dependent-variable wave and then combining

r sine and cosine components.
h

6. Compute a vector of t-values associated with each
amplitude (regression coefficient) in the DFT
spectrum.

i

f ' 7. Select the most stable estimator wave (the one with
the largest t-valu;:), and attempt iterative optimi-
zation of R2 for that estimator, as discussed on
page 12.

8. Compute a new spectrum using a 2-variable estimation
scheme where the amplitude at each frequency is
estimated using, equation [21  , with the frequency

`I entered first as one variable, and each frequency in

G

the spectrum entered, in turn, as the other variable.

9. Evaluate the t-values of the new 2-variable-estima-
tion spectrum to find the next highest t-value. 	 Also
check previously entered t-valuesor some minimum

f^ value.	 Again, attempt iterative R 	 optimization for
all predictor waves. 	 j

[;j

10. Loop through steps 8 and 9 until no new variables
can be added (because no new t-values are large

s enough) or until some maximum number of variables
have been added.

j

116 Compute amplitudes and phase angles only for the

^i

frequencies selected by the above SIFT procedure.

j
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RESULTS

{

j

The performance of the SIFT program has been documented both by Monte Carlo
simulation and by analysis of real physiological data. The results of these
tests are reported here.

Some Criteria of Performance

Since the output from the SIFT program has a format inherently different
from that of the DFT, it was necessary to devise new criteria for performance
evaluation. The basic criteria of performance involved (1) measures of reso-
lution and (2) measures of error rate. Program performance was tested by
executing the SIFT program 100 times, using Monte Carlo data as input. The
output from SIFT, at each execution, printed a list of frequencies which
were found to be significant, along with their amplitudes, phases, t-values,
and R? value. These output values were then collected, over all executions,
into distributions. Means and standard deviations for these outputs were also
computed.

The frequency resolution of SIFT was described by making a probability distri-
bution of the frequencies found in each execution. Thus, if the Monte Carlo
signal contained one sinusoidal wave added to noise, one would expect the SIFT
to find one frequency per execution to be significant; and, over all execu-
tions, the frequencies found should be distributed around the original frequency
put into the Monte Carlo data. If twosinusoids were put into the Monte Carlo
data, the probability distribution of all frequencies should then show two
peaks at the correct frequencies; and the tails of the two peaks should over-
lap minimally.

The amplitude accuracy of the program is evaluated in similar terms. A prob-
ability distribution of amplitudes found by the SIFT, collected over all exe-
cutions, is constructed. If all sinusoids in the Monte Carlo data had the
same amplitude, a single-peak distribution should occur. If two different
amplitudes were used for the sinusoid(s) in the Monte Carlo data, two peaks
should occur in the amplitude data.

For each series of Monte Carlo runs, the mean R 2 value (via Fisher's z
transform) was also computed. In certain cases, means and standard devia-
tions were also computed on other output values.

Records were kept on the number of errors of various kinds that the program
made. On any individual execution the SIFT could have found either more or
less than the correct number of frequencies in the Monte Carlo data. A
count was kept of this type of error. It should be pointed out that this kind
of error is not detectable when real data are being analyzed. The other kind
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of error which was recorded is a detectable type of error that can be spotted
even in real data. For example, in any execution the program occasionally
found amplitudes which were much too large in view of the root mean
square (RMS) amplitude of the input wave. On each run of data, the SIFT
program computed the amplitude of the input wave and compared it to the
amplitude of the wave reconstructed by an inverse Fourier transform of the
SIFT results. If the reconstructed wave's amplitude was greater than the
input wave's amplitude by more than a factor of two, the results were
deleted from the probability distribution.and an error count was made. Since
this is a detectable error, it is proper to delete the results of the Monte
Carlo execution from the probability distributions describing program perfor-
mance, so long as the error count is considered.

The following is an evaluation of SIFT's performance when various kinds of
Monte Carlo data were used. The criteria of performance outlined above were
used to document the results.

The t-Value Criterion

One of the major problems in a stepwise-regression analysis is the proper
utilization of the "significance test" criterion that is used. It was there-
fore decided to study this problem using a Monte Carlo procedure. It is
clear that if the t-criterion is set too small, then spurious peaks due to the
Gaussian noise may become significant, and the possibility of finding too
many significant peaks begins to rise. Similarly, if the t-criterion is set
too large, then some of the salient peaks in the Monte Carlo data will be
rejected.

Another problem, not unique to the SIFT, is that,as more estimators are
added to the regression equation, the value of the residual becomes pro-
gressively smaller, and the calculated t-value becomes larger. Again, for
certain stages of a SIFT procedure, spurious peaks might appear significant.
A solution to this problem would be to use some other criterion such as (1)
accepting a significant decrease in the residual sum of squares or (2) enter-
ing that variablewith the highest partial correlation. The SIFT uses two
t-value criteria: one for the first selection and another for a later stage
of the selection. While some other procedure could be better, the pressure
of computational time and the availability of the double t-criterion solu-
tion made this method most attractive.

A study using Monte Carlo runs was performed to evaluate the effect of the
value of the t-to-enter criterion when more than one sinusoid was present
in a signal. For each Monte Carlo run, the program was executed 100 times
on 100 independently generated signals. Monte Carlo runs were made for
various values of t-to-enter and for various signal-to-noise ratios (SNRs).
For each SNR, the "best" t-to-enter was selected. As t-to-enter was made
larger, the program found proportionally fewer significant frequency bands,



and as t-to-enter was made smaller, too many bands were found significant.
It was possible, therefore, to select the value of t-to-enter so as to
minimize the probability of these kinds of errors, which (again) are

4

1	 undectable in real data.	 The detectable kind of error discussed above
(that of finding too much amplitude in the reconstituted wave) was a
monotonically decreasing function as t-to-enter increased in value. 	 There-
fore, the "best" value of t-to-enter was selected as the one which minimized
the undetectable error of Finding too few or too many bands in the data.

The criterion for entry of the first frequency band for the Monte Carlo data
was arbitrarily set at a t-value of 1.65, corresponding to p .<	 0.1.	 Using
this value of t, the program never entered an estimator in 100 Monte Carlo
trials using only Gaussian random noise.	 Yet, even with relatively large
proportions of noise added to single sinusoids, at least one frequency was
always entered as a predictor.

Table 3 shows the "best" values of t_-to-enter for the case where two sinu-
A	 soids of equal amplitudes (of 1.0) at periods of P 	 23.0 and P2 = 27.0

were mixed with Gaussian noises of amplitudes 0.5 or 1.0 (SNR = 1.0:0.5
or SNR = 1.0:1.0). 	 As may be seen from inspection of table 3, the best
t-to-enter value decreases as the amplitude of the noise increases. 	 This
is a reasonable result, since more noise implied that the entered sinusoidal
independent variables account for less of the dependent variable wave. 	 This
finding is disturbing in that the value of the SNR is never known a priori
in real data.	 The implication of this fact is that one should probably do
several analyses on each piece of real data.

TABLE 3.	 BEST VALUE OF t-TO-ENTER AS
A FUNCTION OF SNR, USING TWO SINUSOIDS

OF P = 23.0 AND P = 27.0

Amplitude	 Best
of Noise	 t-to-enter

0.5	 10.0

1.0	 5.0



Early analyses should be used to (1) estimate the SNR and (2) more informedly
set the t-to-enter criterion on subsequent runs. The value of t-to-enter
must eventually be set by some rather arbitrary method involving the criteria
of parsimony and reasonableness. In summary, this consideration means that
the SIFT produces non-unique solutions; but, then, this is true of other
stepwise statistical techniques and is one of their disadvantages in general.

f	 Table 4 shows the error rate for the two previously discussed kinds of errors
as a function of noise level for the optimum t-to-enter values when the SIFT
was used in the period domain. When the frequency-domain performance was
evaluated, the t-to-enter values were optimum at the same values and the
error rates were almost identical r.

1
{

TABLE 4e PROBABILITY OF TWO KINDS OF ERROR
AS A FUNCTION OF SNR, USING THE SIFT

IN THE PERIOD DOMAIN

Probability of	 Probability of

SNR	 Detectable Errors Undetectable Errors

	

1.0:0.5	 0.15
	

0.03

	

1.0:1.0	 0.16	 0.10

t

i

Figure 1 shows plots of the probabilities of finding various periods in
synthetic data (sinusoids combined with Gaussian random noise), produced
as described above.

F

	

	 It can be seen that the discrimination between the two periods is quite good
for both SNR values. Even when t-to-enter values are not optimum in terms
of various error rates (as discussed above),the curves of period discrimina-
tion are not greatly degraded.

In subsequent sections, comments continue to be made about the optimum L-to-
I

	

	 enter value. The problem of how to set t-to•enter values is addressed in the
"Concluding Remarks" section.
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Figure 1.	 Period discrimination at two levels of SNR, k
using SIFT with optimized t-to-enter values, two periods
in Monte Carlo data, P1 _ 23.0, P2 _ 27.0.
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Period and Amplitude Discrimination

The curves for discrimination between two periods of equal amplitude are shown
in figure 1. Since both of the periods in that graph had the same amplitude,
it would be expected that the amplitude probability distribution for the out-
put from SIFT would have a single peak centered about 1.0, the correct amplitude.

Figure 2 shows that this is indeed the case for both levels of SNP.. The 1.0:1.0
SNR value, of course, produced a wider distribution of amplitudes.

t
The period and amplitude discrimination study was also carried out for two
sinusoids which had different amplitudes. Figure 3 shows the period-discrimi-
nation curve for two sinusoids of P1 = 23.0 and P2 = 27.0 with amplitudes of
2.0 and 1.0 respectively. Figure 4 shows the corresponding amplitude-discrimi-
nation curves. Nute that the sinusoid of P 1 = 23.0 has an amplitude (Al ) of
2.0, and the noise amplitude is 1.0, so that the SNR for this wave is 1.0:0.5.
The peak in the frequency-discrimination curve of figure 3, corresponding to
P= 23, should be compared in shape to the P1 = 23.0, SNR = 1.0:0.5, curve
o figure 1. It is apparent that the shape is almost the same. Similarly,
the shape of the peak in the amplitude discrimination curve of figure 4
corresponding to A] = 2.0 should be compared to the shape of the peak for
SNR = 1.0:0.5 of figure 2. Except for absolute probabilities, the curves

U
	 b	 1	 b 1, .1

	 1	 .1 	 4:4 4

t

are reasonably similar. Obviously t e a so ute pro a 	 y va ues n gure
ought to be lower, since the events are divided into two peaks.

The peak in figure 3 which corresponds to P 2 = 27.0 has a shape which approxi-
mates the corresponding peak in figure 1, SNR = 1.0:1.0. This is reasonable,
since the amplitude of the P2 = 27.0 component was 1.0, thus making the SNR
for the P2 = 27.0 sinusoid 1.0:1.0. Similarly, the amplitude-distribution
peak for the wave with P2 = 27, A2 = 1.0 is similar to the amplitude distri-
bution for SNR = 1.0:1.0 in figure 2.

From these observations the reasonable conclusion is that, when two or more
sinusoids are present in a signal, the discrimination of those sinusoids is
based upon the ratio of their amplitudes to the noise in the signal.

The best t-to-enter criterion for the runs considered above was t = 7.5,
which is halfway between the best value for SNR = 1.0:0.5 and the best
value for SNR = 1.0:1.0, when amplitudes of the two sinusoids are equal.
Apparently for one of the components, P2 ='27.0, the t-to-enter is too
large; and occasionally the SIFT does not enter one of the P2 waves. This
contention was borne out by an examination of the particular periods found in
100 Monte Carlo runs by SIFT. This examination revealed that, when an un-
detectable error occurred, it was due to an omission of the P 2 = 27.0 band.
Since the t-to-enter value for P1 = 23.0 was too small, none of these bands
were ever omitted. Consequently, the overall undetectable error rate of the
Monte Carlo runs for two amplitudes was lower than that for either of the
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SNR = 1.0:1.0 runs. Table 5 shows the probability values for the two kinds of
error. It is probable that the detectable error rate for this case was also
lower, simply because detectable error rate falls as t-to-enter is increased.
These runs were repeated for the frequency domain, and the results were
similar.

TABLE 5. PROBABILITY OF TWO KINDS
OF ERRORS FOR t-TO-ENTER = 7.5a

k

Probability of	 Probability of
Detectable Errors	 Undetectable Errors

0.04	 0.06

aP1 = 23.0, Al = 2.0, P2 = 27.0, A2 = 1.0,

noise amplitude	 1.0.

The Effects of Time-Domain Data Length

It was decided to evaluate the effect of the length (L) of the time domain
data upon the period discrimination and error rate of SIFT. Theoretically,
if all factors were adjusted appropriately, the output from the SIFT ought
to be predictable.

Three values of L were used in Monte Carlo tests: L = 50, L 100, and
L = 200 data points. In all of these cases, it was assumed that the sampling
rate was held constant so that longer data vectors correspond to longer time
intervals. The value of P was adjusted to an appropriate size for a given
value of L as shown in columns 1 and 2 of table 6.

i

le

TABLE 6. VALUES OF AP, Pl , AND P2 FOR VARIOUS VALUES OF L

1	 L AP P2 P1 P2 -Pl	 Number of Cycles

E

at Mid-Frequency

f

k	
50 1.00 13.5 11.5 2	 4 

100 0.50 27.0 23.0 4	 4

200

I

0.25 54.0 46.0 8	 4
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Preliminary results during this phase seemed to indicate that the number of
cycles of the periodic components that could be completed during the course of
the time-series segment was a critical factor. If more cycles were completed,
better resolution was obtained. In order to make useful comparisons, this
factor (the number of cycles used) had to be held constant. In previous
studies, about 4 cycles of the mid-frequency between the two periodic compo-
nents were completed,i.e,, the mid-frequency between P l = 23.0 and P 2 = 27.0
was P = 25.0. In the case of L = 100, a wave of P = 25 could complete 4
cycles. Then, if L was doubled, P for the periodic components was also
doubled to allow the waves to complete the same number of cycles. Table 6
shows the values of the two periodic components, P 2 and Pl , for each value
of L. The effect of using a different number of cycles will also be shown.

Figure 5 shows three period-domain discrimination curves for L = 50, L = 100,
and L = 200. In this figure P 1 and P2 are not specifically labeled nor are
any other periods. Examination of figure 5 enables the reader to assign
specific period values to the graph. The nonspecific values were used to
permit superposition of the graphs for comparative purposes. It appears
from figure 5 that, even when the various above-mentioned factors are
accounted for, longer pieces of time-series data possibly yield better reso-
lution.

This finding was further emphasized by an examination of failure rates.
Figure 6 shows the probability of detectable and undetectable failures as
a function of L. Even when the various parameters were accounted for,
short time series produced more failures of both kinds.

It is not entirely clear why long time series can be more accurately analyzed
even when AP and (P2 -P1) are adjusted for theoretical expectations. It
appears, however, that not only does the SIFT provide greater resolution than
would be theoretically expected, but as L increases, the performance improves
increasingly over theoretical expectation. This probably has something to do
with the value of L with respect to the size of the correlation matrix. This
conclusion is supported by the fact that, as L increased, the decrease in
program failures was more dramatic than the increase in resolution.

t

i

a

d

A test was performed of the hypothesis that the width of the spectrum window
at L = 200 had not really narrowed appreciably over expectation. A Monte
Carlo run was performed with P 2 = 50 and Pl = 47, which produced a frequency-
domain separation of 0.0007 rather than 0.0032, as shown in figure 5. In
the 0.0007 frequency separation run, the program separated the two signals
in only one case out of 100. In all other cases, it found only one frequency.
Thus, we may conclude that, as L increases, the program makes fewer errors;
but the resolution is approximately an inverse function of L. This observa-
tion is consistant with theory.
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In summary, it has been shown that the SIFT method has resolution which is
approximately an inverse function of L. This finding is entirely consistent
with theory. It appears, however, that as L increases, the number of program
failures decreases, even when the three variables, AP, (P2-P1) and the

number of cycles per time-series segment are accounted for.

Asymmetric Waves

It is well known that some biological waves (such as the circadian rhythm) do
not present symmetrical positive and negative half-cycles. It was decided to
investigate the performance of the SIFT on such asymmetric data. For this
purpose, periodic waves were generated with certain asymmetries. Specifically,
an asymmetric wave was constructed by splicing a long, positive, sine wave
with a short, negative, sine wave at the 180 0 point. Several cycles of this
wave were generated. The asymmetry coefficient was defined as the proportion
of the whole cycle occupied by the positive half-cycle. Thus, a wave with an
asymmetry coefficient of 0.5 is an ordinary sine wave. Figure 7 shows the
plot of a single cycle of a wave with P = 24.0 and an asymmetry coefficient
of 0.75.

,22 i
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The initial study of asymmetry was carried out with a single periodic wave of
amplitude = 1.0 added to a Gaussian noise of. amplitude = 1.0. Figure 8 shows
the width of the probability peaks for three asymmetries. It can readily be
seen that, as asymmetry becomes more extreme (the asymmetry coefficient
increases), the period discrimination is degraded. However, an asymmetry
coefficient of 0.75 is probably more extreme than is usually found in actual
biological data. At 0.75 the discrimination accuracy is still quite good.
Figure 9 shows a plot of the amplitude discrimination of SIFT for the same
kind of signals with three levels of asymmetry. While the discrimination
curves have only slightly greater width for an asymmetry coefficient of 0.9
than for an asymmetry coefficient of 0.5, there is a definite shift in the
mean values such that the more asymmetric a wave becomes, the more its
amplitude is "underestimated." The calculated RMS amplitude of an asymmetric
wave is exactly correct, so that the underestimation of amplitude is apparently
due to the fact that the dependent variable wave is non-sinusoidal while the
predictor wave is sinusoidal. The power in the harmonies of the dependent-

i b l	 i th f	 t i 1 d d i th P= 24 b d	 hvara e wave s	 ere ore no nc u e n e	 an	 T e Pstimate is,
therefore, an accurate estimate of the amplitude of the fundamental.

It was also decided to investigate the two-period case where both of the
waves in the signal were asymmetric. It is difficult to judge the suit
ability of such a model to real data situations. In real data, if two
asymmetric waves occurred, they would probably be separated widely in the
period domain. Alternatively, if two closely spaced waves occurred, they
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would not necessarily both be asymmetric. Nonetheless, it was decided to
run a Monte Carlo study to compare a signal with two asymmetric waves, each
with an asymmetry coefficient of 0.75, to a signal with two sinusoids. In
both cases a noise level of 1.0 was used (SNR = 1.0:1.0).

i

Table 7 shows the two kinds of error rates for the two kinds of signals.

i

TABLE 7. PROBABILITY OF TWO KINDS OF ERROR FOR A SIGNAL
CONTAINING TWO SINUSOIDS AND FOR A SIGNAL CONTAINING

TWO ASYMMETRIC WAVES, ASYMMETRY 0.75a j

l•
Signal

	

	 Probability of	 Probability of
Detectable Errors Undetectable Errors

Two
Symmetric	 0.16	 0.10

..g	 Waves
a

Two
Asymmetric	 0.11	 0.15
Waves

a.All sinusoids had an amplitude of 1.0, noise amplitude was 1.0,
and t-to-enter was 5.0.

I
Apparently, the asymmetric pair of waves lead to identifying too-large ampli-
tudes less frequently than is the case for symmetric pairs. However, with
asymmetric pairs, too many or too few bands are found more frequently than
for sinusoidal waves, Inspection of the results reveals that, with two
asymmetric waves, the SIFT routine too often finds too few bands. Experi-
ments done for this report have shown that if t-to-enter is reduced so

j	 that the SIFT enters two bands more frequently, the probability of finding
ij

	

	 too much power is prohibitively increased,	 j

Figure 10 compares the period discrimination of the SIFT for Monte Carlo
signals with two periodic waves for two levels of asymmetry. When two periodic
asymmetric waves of asymmetry - 0.75 are found in a signal, it is apparent that

I	 the period discrimination of SIFT is degraded as compared to SIFT's-performance
'	 on sinusoidal waves. The tendency of SIFT is to find more extreme bands
j. (periods either too long or too short) in a signal containing a, pair of asym-

metric waves.
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Figure 11 compares the amplitude estimation accuracy for the two cases of
a signal containing two periodic (sinusoidal) waves. Again, due to the
non-sinusoidal nature of the asymmetric wave, its amplitude is "under-
estimated." The extra power is, of course, found in the harmonics. The
widths of the amplitude discrimination peaks are approximately equal, the
asymmetric wave peak being perhaps a bit narrower.

It appears, in summary, that (1) unless the asymmetry becomes quite extreme
or (2) unless there are two asymmetric waves closely spaced in the period
domain, the SIFT does a quite acceptable analysis. Frequency discrimina-
tion suffers little, and amplitudes are accurately estimated (except for
their harmonics).

Narrow-Band Noise

It is reasonable to argue that biological data are never strictly periodic.
There is usually variability in the peak-to-peak amplitude from cycle to
cycle, and there is also usually variability in the cycle length from cycle
to cycle. If these two variabilities are small (but non-zero) and Gaussian
in nature, the signal is not a strictly periodic one but is called a "narrow-
band Gaussian noise." As these two variabilities increase, the bandwidth of
the noise increases. Since biological signals are usually represented as
narrow-band-noises (however narrow the band might be), it was considered
important to test the performance characteristics of SIFT on effects of these
kinds of signals. In addition to the problem of narrow-band noises in "real"
biological data, many of the usual assumptions in spectrum analysis are
actually violated by the presence of periodic signals in time-series data.

A convenient way of generating narrow-band noise is to simultaneously modu-
late the amplitude and frequency of a sinusoid ("carrier signal") with
filtered Gaussian random noise. The procedure is as follows: (1) generate
two Gaussian, random, time series of length L, where L is the same as the
length of the narrow-band noise to be generated, (2) low-pass filter the
two Gaussian, random, time 'series so as to remove frequencies above about
1/10 of the frequency of the "carrier signal," and (3) use one of the two
low-pass, filtered, Gaussian time series to frequency-modulate the "carrier
signal" and the other to amplitude-modulate it. The results of such pro-
cedures are shown in figure 12.

The upper and lower waves are the same except for the "gain" of the modulators.
In subsequent discussion, the two waves of figure 12 are called "low-gain
modulated" and "high-gain modulated" narrow-band noises. The reader might
find it interesting to compare the waves of figure 11 with some real bio-
logical time series. Aschoff (1965), for instance, shows a plot of body
temperature across time which is quite similar in wave shape to the high-
gain, modulated, narrow-band noise. R
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The high-gain, modulated, narrow-band noise was used in a series of Monte
Carlo studies with SIFT. At values of t-to-enter which worked well for
sinusoids of SNR = 1.0:0.5, the narrow-band noise produced alarmingly
frequent instances of entering too many bands. When t-to-enter was increased,
as shown in table 8, this type of error decreased. Since the narrow-band
noise signals contain a wave of constantly changing period, the SIFT apparently
properly attempted to fit several sinusoids, all of which account for different
parts of the wave.

r

TABLE 8.	 SIFT PERFORMANCE FOR SINGLE SINUSOIDAL SIGNAL IN 'I
GAUSSIAN NOISE AND NARROW-BAND NOISE OF THE SAME PERIODa

Probability of Probability of
Detectable Errors Undetectable Errors

t-to-enter_	
Narrow-band	 Sinusoid Narrow-band	 Sinusoid
Noise	 SNR 1.0:1.0 Noise	 SNR 1.0:1.0

5.0	 0.23	 0.05 0.57	 0.13 r
7.5	 0.06	 0.02 0.37	 0.06

10.0	 0.01	 0.02 0.24	 0.02
15.0	 0.01	 0..01 0,06	 0.02
20.0	 0.01	 0.01 0.03	 0.01 w_
30.0	 0.01	 0.01 0.01	 0.00

aP	 24.0, SNR - 1.0:1.0,,

As shown in figure 13, however, if the SIFT is given a high enough t-to-enter
value (in this case 20), the program most probably fits the correct period.

9

When operating on a narrow-band noise, the discrimination of the SIFT is
poorer than when it is operating on a sinusoid with SNR = 1.0:1.0.	 For
those segments where the SIFT did fit waves, but not at P = 24.0, inspec-
tion of a few individual narrow-band noise runs indicated that the SIFT had 2'

selected from the signal those cycles about the period value which had the
highest amplitude.

The amplitude-discrimination curve for the narrow-band noise data is shown
in figure 14.	 The fact that SIFT usually "seized upon" the highest ampli-
tude cycles to fit the first wave selected is further illustrated by the
fact that most of the cycle, amplitudes found were higher than 1.0.- Thus,
it is to be expected that SIFT will usually overestimate such amplitudes.
As can be seen from figure 14, the program also occasionally underestimated

f	
the amplitude.
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of t-to-enter for' narrow-band Monte Carlo run was 20.0.
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Although it is difficult to estimate the degree of generalizability of such
a model to real biological data, an attempt was made to study the performance
of SIFT with two narrow-band noises spaced more closely in ther period domain
than are theoretically resolvable.

Since the effort to analyze two high-gain, modulated, narrow-band noises ended

j
in almost complete failure to find consistent data, two low-gain modulated
waves were generated and analyzed in a Monte Carlo run. 	 The t-to-enter values
were found here to be broadly optimized around 20.0, but, as shown by table 9, 	 t a,
the probability of finding the wrong number of peaks was still prohibitively
high.	 Figure 15 shows the frequency-discrimination curves for the 2-period

§ case.	 From this curve it may be seer that the lower period is estimated
with about the same accuracy as two sinusoids, with an SNR = 1.0:1.0. 	 The
longer period is found less oftsn and is usually estimated as too long.

TABLE 9;,	 OPTIMIZED ERROR PROBABILITIES OF SIFT
WHEN ANALYZING TWO LOW-GAIN, MODULATED, NARROW-BAND NOISES

Probability of	 Probability of
Detectable Errors	 Undetectable Errors

0.04	 0.52
_a

j The empirical results from the narrow-band noise Monte Carlo runs demonstrated
a basic property of the SIFT program.	 With these runs the band-width of the

" population of all possible signals was not zero (as with a sinusoid) but rather
a population of time series with a bandwidth greater than zero. 	 When the SIFT
is used to analyze such data, it will pick the period containing the cycle
with the largest amplitude in the particular segment being sampled and
analyzed.

If the t-to-enter value is low enough, it will then pick the period of the
next most prominent cycles in the particular sample segment analyzed. 	 This
is indeed an accurate analysis of a narrow-band noise segment, but it must
be interpreted correctly by the user. 	 From all that has been determined'
empirically, if the SIFT finds two 	 eriods in closep	 y,	 B	 proximity in the period	 «
domain, it could mean that some cycles were of one period and other cycles
were of the other,period.	 If such a result is found in real biological data,
the implication is that the data are either composed of two closely spaced
sinusoids or of a narrow-band noise containing individual cycle lengths, as	 A	

`
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Figure 15. 'Period discrimination for two sinusoids
with SNR = 1.0:1..0 and for two narrow-band noises.
Mean period values for narrow-band noise waves were
the same as for sinusoids; P = 23.0; P2 = 27.0.
Sinusoids were mixed with noise: SNR 1.0:1.0,
narrow-band noises were constructed without added
noise and had amplitudes of 1.0.
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t found by the SIFT. Furthermore, the fact that the SIFT frequently finds the
"wrong" number of peaks in a Monte Carlo narrow-band noise probably only
implies that the cycle lengths of that particular segment were more or less
homogeneous and the SIFT (at least approximately) reported them correctly.
The utility and interpretation of any SIFT results,then, depend upon the
philosophical position that the investigator holds with respect to life-
sciences data. If narrow-band noise is considered the appropriate model,
then SIFT probably draws the user's attention to a great deal of irrelevant
detail about a particular sample segment from a population, which would not
necessarily be repeated in exactly the same way on another segment sampled
from the same population. This is especially true if the t-to-enter value is
set too small. The "best" t-to-enter figure is, of course, determined by (1)
the amount of white, Gaussian noise in the signal, (2) the bandwidth of the
narrow-band noise, and (3) the amount of detail that the user wishes to use in
describing a wave. It is to be stressed that these "unknowns" are not readily
determined when time-series data collected from biological systems are analyzed.

Missing or Asynchro nous ly Sampled Data

In many biological data acquisition systems, the probability of losing data
is relatively high. Transitory instrumentation failure, "noise" from arti-
facts such as muscle potential, atmospheric noise in telemetry systems, etc.,
can all produce segments of "missing data" in a time series.

In some cases of biological time series, it would be extremely difficult
(and often artificial) to sample values at regular time intervals. Urine
volume measures are such a variable. Usual forms of spectrum analysis assume
that data are sampled synchronously and continuously, The SIFT was written,
however, in such •a manner as to circumvent this problem.

At the suggestion of Dr. John Rummel (1974), the subroutine in the SIFT which
generates the sine/cosine estimator waves for the least-squares spectrum
equation was modified as follows: Instead of internally generating a "time-
axis" of regularly spaced points which serve as the arguments for sine and
cosine function calls, the subroutine reads a series of time points as input
data. The time points that are utilized are only the read-in times at which
the corresponding samples in the data were collected. This time vector is then
used as a series of arguments for the sine/cosine function calls. For the
purposes of the Fourier (regression) analysis, the important aspect is that
the sine/cosine estimator wave is sampled at the same time that the dependent
variable is sampled.

Monte Carlo studies were run 'to'explore the uffects of several types of
asynchronous sampling, as follows: (1) "jitter" in the sampling rate, (2)
sampling in "clumps" separated by times when do samples were collected,
and (3) relatively long gaps in the data (to be called the "missing-data"
case). The jittered sampling was achieved by generating a synchronous sample

9
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series with a random number of ± 1.0 sampling unit (maximum) added to each time
point. The clumped sampling was done by generating 10 samples for t = 0.0 to
t = 5.0, then skipping (not taking samples) from t = 5.0 to t = 10.0, sampling
from t = 10.0 to t = 15.0, etc. The missing data sampling was done in three
ways: (1) 10% missing from the middle, (2) 10% missing during the first
third, and (3) 10% missing during the final third. All of these tests were
performed with sinusoidal data having two periods (P 1 = 23.0; P2 := 27.0) and
an SNR = 1.0:1.0. In all cases, a total of 100 points was used.

Optimization runs on the above kinds of asynchronously sampled data showed
that optimum t-to-enter was around 10.0, the optimum value also for syn-
chronously sampled data of those specifications. The comparisons to follow,
however, are made at a t-to-enter of 5.0 because error rates were so near zero
in the synchronously sampled data that it was felt that a slightly higher rate
would show differences better.

Table 10 shows the error probabilities for synchronously sampled data, jittered
sampling, and clumped sampling. In the two cases of asynchronous sampling
shown, the error rates are actually lower than those for synchronous sampling.
Why this should occur is not clear, but differences of this size, where
(in fact) slightly different parts of the same data are used, are probably not
important. Figure 16 shows the period-discrimination curves for the three
cases shown in table 10. Obviously, only minor differences are seen. For
jittered or clumped sampling, then, it may be concluded that no deleterious
effects occur over synchronous sampling.

TABLE 10. ERROR RATES FOR SYNCHRONOUS,
JITTERED, AND CLUMPED SAMPLING

Type of	 Probability of	 Probability of
Sampling	 Detectable Errors	 Undetectable Errors

Synchronous	 0.14	 0.20

Jittered	 0.15	 0.09

Clumped	 0.12	 0.06

f
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Table 11 and figure 17 show comparisons for the three kinds of missing data,
i.e., where 10% of the data was missing in one of three places in the time-
series wave. Considering that the time-series data used in this test were
composed of two sinusoids, closely spaced in the period domain, the differences
observed in table 11 and figure 17 might easily be due to the amount of redun-
dancy between the two waves (which almost overlap in the time domain in some
parts of the record). Under any circumstances the error scores are always
better for the missing data (again no possible explanation is offered), and
the period discrimination scores overlap well with the synchronously sampled
case.

TABLE 11.	 ERROR RATES FOR 10% MISSING DATA IN ONE w
OF THREE PLACES OF A TIME-SERIES RECORD

Type of	 Probability of	 Probability of
Sampling	 Detectable Errors	 Undetectable Errors

r

Synchronous	 0.14	 0.20

Missing data
0.09	 0.08

in middle

Missing data	
0.04	 0.08in 1st third

Missing data	
0.07 	 0,10

in 3rd third

In conclusion, it is probably safe to say that missing data and asynchronous
sampling are not important considerations in considering the use of the SIFT
on "real" life-sciences data.	 The practice of not attempting to analyze for
any period shorter than twice the shortest inter-sample interval should be
followed.	 Also, if no smoothing or accumulators are used during data collec-
tion, the minimum sampling rate must be twice that of the highest frequency
fluctuation present in the data.

Real Data Analysis Test

i	 In order to test the SIFT program on real data, numeric data were obtained
by manually scaling the record of urine volume over a 10-day period, as
reported in Aschoff (1965).` Figure 18 shows a plot of this record interpreted
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as an interpolated curve rather than as the step function shown by Aschoff.
It is readily seen that each day the urine volume peaks at some time which
varies across days. Not only do the widths and times of occurrence of urine-
volume cycles vary across days, but the height of the peaks also varies.
The cycles in figure 18 are not sinusoidal and might, therefore, fit the
asymmetric, periodic data model with random noise added. Alternatively, the
appropriate model might be a narrow-band noise model. The narrow-band noise
model clearly does not, however, account for the apparent cycle asymmetry.
Possibly some model involving asymmetry plus random-cycle width and height
might be appropriate. Such a wave might be made symmetrical by performing
a log transform before SIFT analysis.

It was decided to perform several different types of SIFT analyses on these
data. It would be possible to analyze them in the frequency domain by
making frequency spectrum estimates beginning at 0.1 cycle per day, spacing
other estimates at 0.1 cycles per day. This frequency spectrum would be
computed at appropriate resolution, i.e., at frequency intervals of 1/T.
The highest frequency that could be analyzed in the spectrum would be
about 2 cycles per day. This limitation is due to the fact that one or two
of the measures of urine volume were spaced at 8-hour intervals, although
most of the inter-sample times were shorter than 4 hours. Inferences about
frequencies higher than 2 cycles per day should be viewed with caution,
because most of the days contained 4 to 5 samples.

It was decided, therefore, to perform a SIFT on the Aschoff data in the period
domain. ThA shortest analyzable period would be about 0.5 day and the longest
one possible, about 10 days. Since it was felt that the major interest would
lie between 0.5-day to about 2.5-days, it was decided to analyze for periods
in the range of 0.5- to 2.75-day length.

The space between adjacent period estimates, o P, was set at 0.05 day. Table
12 shows the equivalent frequency-domain spacing for three points in the
period-domain spectrum. Clearly, with P = 0.05 and T = 10.0 days, the
period-domain spectrum is well overresolved at P = 2.75, is approximately
properly resolved at P - 1.0, and is quite a bit underresolved at P = 0.5.
Perhaps the most-serious implication of these resolution difficulties is that
there are considerable gaps in the spectrum in the region of P = 0.5. It is
possible that much energy could be missed by this type of analysis if a narrow
peak existed between, say, P = 0.50 and P = 0.55. This analysis ( AP = 0.05,
T = 10) was performed as a "first cut" at the data. Subsequent runs will be
discussed where the problem of resolution is less extreme.
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R	 •-	 TABLE 12. FREQUENCY-DOMAIN SPACING OF SPECTRUM ESTIMATES 	
p

FOR VARIOUS PERIODS IN A PERIOD-DOMAIN SPECTRUM

P	 f	 o f

0.50	 2.000	
0.182

r

r

i

l

r:

'a r.
xz

0.55 1.818

1.00 1.000
1.05 0.952	 0.048

2.70 0.370
2.75 0.356	 0.014

Figure 19 is a plot of the raw period-domain spectrum, computed as described
above. This plot represents a DFT result which is the first spectrum computed
by the SIFT program. It can readily be seen that the spectrum in figure 19 is
relatively smooth and has broad peaks toward the long-wave end, while the
peaks at the short-wave end are sharp and narrow. From the discussion above
regarding the resolution in various parts of the period spectrum, it is seen
that the broad, long-wave peaks are composed of many highly redundant esti-
mates and might, therefore, represent a narrow-band spectrum element even
though the peaks are quite broad. Similarly, the short-wave peaks are jagged
and narrow because each peak represents a unique, nonoverlapping piece of
information with,-in this case, a gap of noncovered spectrum data between.
The spectrum estimates around P = 1.0 represent approximately properly resolved
data.

The program next performed a SIFT on the Aschoff data. For this analysis,
the t-to-enter value was set at 15.0. This value is quite possibly too low
if the data at hand really are narrow-band noise. On the other hand, if
SIFT is permitted to print out its stepwise solutions, even if more periods
are fitted in the final solution than the user believes reasonable and
parsimonious (whatever ground there might be for such belief), then the user
can always select that step which he considers most desirable. Table 13
shows the periods with their amplitudes and t-values at each step during the
SIFT.	
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Figure 19.	 Plot of raw period-domain spectrum of the
' urine volume data shown in figure 18, as computed by

the DFT;	 A P = 0.05.
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TABLE 13. STEPWISE PERIOD-ANALYSIS RESULTS FROM
A SIFT OF THE TIME SERIES SHOWN IN FIGURE 18a

Step	 Period	 Amplitude	 t-Value

1	 1.00	 35.77	 29.35

2	 1.00	 39.49	 33.54

	

1.90	 21.77	 16.21

3	 1.00	 39.73	 34.19

	

1.10	 18.96	 18.20

	

1.90	 22.53	 21.05

4	 0.85	 20.82	 16.24

	

1.00	 42.97	 37.84

	

1.15	 17.40	 8.74

	

1.90	 20.26	 16.84

aPeriod domain; AP 0.05; t-to-enter = 15.0.

Steps 1 and 2 showed logical and interpretable results. The first period entered
was the 24-hour (circadian) rhythm, and it was clear from Figure 19 that there
was a great deal of power in that band. The second period entered, P = 1.9,
is at a nearly two-day period length. Some subjects, when placed in sensory
isolation, spontaneously go into a 48-hour rhythm. This might be a rhythm
coexisting with the circadian but of lower amplitude. A sufficiently i±iagina-
tive look at figure 18 might permit a viewer to "see" that the volume output
around the end of even-numbered days is lower than that around the end of
odd-numbered days. Perhaps this is the 2-day rhythm that SIFT has found.

Steps 3 and 4 added components that are not easily explained. Perhaps they
are due to statistical deviations in cycle width for this sample segment
taken from a population of narrow-band noise segments, and for this reason
ought to be ignored.

On the other hand, they might represent actual periodic processes. At this
point there is.no way of knowing which is the "true" case from an empirical
point of view. If a number of repetitions of the study on the same subject
(or a group of subjects) always show these periods, then it would be worth-
while to try to explain them. If not, they must be attributed either to
random variability or to an uncontrolled variable. Of course, all periods
must stand up to the criterion of replicability.
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At this point in the analysis it was decided to do something about the gaps
between adjacent spectrum estimates for short period lengths as well as to
improve resolution around P = 1.0.	 One way of doing this might have been to
run a new period domain spectrum where oP = 0.02 rather than AP = 0.05.
This would have resulted in some overresolution at P = 0.5 and would thus have
improved the resolution at the shorter period lengths.	 The problem with this f

would be that, for a fixed-spectrum vector length (limited by memory require-
' ments), a shorter long-wave limit would have obtained. 	 Because the P = 1.9

band contained considerable power and would have been eliminated by this pro-
cedure, an alternative was sought.

Since the period domain spectrum had already computed a highly overresolved,
!

t

long-wave spectrum (1.0 < P < 2.75), it was decided to run a frequency-domain
SIFT on the data of figure 18.	 Figure 20 shows this raw frequency-domain spec-

' trum.	 This spectrum is computed with a	 of = 0.05, which represents about
twice maximum resolution. 	 This resolution is, for the frequency domain, uniform
for all parts of the spectrum.	 Another advantage of the frequency domain spec-
trum is that it entirely covers all possible frequencies without gaps.

f As can be seen from figure 20, the two major peaks are at 1.0 and about 1.9
cycles per day.	 The width of the peaks is about equal (as would be expected

a from theory).

Ta i-- 14 shows the frequencies, amplitudes, and t-values at each step of the SIFT.
f

d

TABLE 14.	 STEPWISE FREQUENCY-ANALYSIS RESULTS FROM
A SIFT OF THE TIME SERIES SHOWN IN FIGURE 18a

. C

Step	 Frequency	 Amplitude	 t-Value

r

1	 1.90	 32.79	 29.76
;

2	 1.00	 31.08	 27.22
1.90	 27.31	 25.96

3	 1.00	 30.04	 27.25
1.75	 21.09	 20.53`
1.90	 27.70	 27.95

4	 0.50	 21.73	 21.14	 N

1.00	 33.61	 32.11
1.75	 22.59	 23.28
1.90	 26.94	 28.85

s r

5	 0.50	 22.49	 22.58
0.90	 17.63	 16.58
1.00	 36.87	 36.32
1.75	 22.92	 24.67
1.90	 24.14	 25.16

i

aFrequency domain;	 of _ 0.05; t-to=enter _ 15.0.
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Here (as with the period-domain analysis) the first few steps are clearly
believable from examination of the raw spectrum and, again with some imagina-
tion, from the time-series record. The circadian rhythm has the highest ampli-
tude, and the peak at 1.9 cycles per day is possibly related to the first
harmonic of the circadian frequency. The fact that the actual frequency is

P not 2.0, however, militates against this notion. As with the period-domain
spectrum, periods entered after the first two steps are more difficult to
interpret, although the 0.5 cycle per day (P = 2.0) did eventually make it-
self evident as salient. The fact that the 0.5-cycle-per-day frequency was
entered on the 4th step in the frequency-domain SIFT but was entered instead
on the second step in the period-domain SIFT is difficult to explain. One
clue is that in the period spectrum the band of P = 2.0 was in an area of the

,...	 spectrum where the data were highly overresolved and perhaps, therefore, over-
represented. Another possibility is that the different results occurred
because the frequency spectrum has a wider coverage and different resolution.
In any event, the two domains appear to provide perhaps complementary pieces
of information about the time series. Probably the frequencies of highest
reliability are (1) the circadian, (2) a 2-day period, and (3) the first

{	 harmonic (0.5 day) of the circadian.

It should be pointed out that the SIFT`s output must be considered in a sta-
tistical light, just like any other descriptive procedure. The output from
an analysis of one subject, one trial, is only one observation in k-space,
where k is the number of bands in the output of the SIFT. In order to

„	 interpret SIFT results, one must have many observations (both trials and
ia	 11 subjects), and one must compute the usual summary data, such as means and

significance tests. However, these further computations, particularly the
problem of hypothesis testing, represent the subject of an entirely different

;.	 discourse.
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Studies of biological processes such as the circadian rhythm during manned
space flights and flight simulation are usually subject to significant con-
straints. Testing may be restricted to single individuals, or small groups
at best, and massive amounts of data may be acquired for analysis purposes
over a period of days. The purpose of biomedical studies may be exploratory,
in that they are often addressed to detection of any medically -significant
deviations from normal physiological functioning. For these kinds of purposes,
time-series analysis techniques can be appropriately used, and their use can
permit detection of changes in biological processes that cannot be discovered
through visual analysis or conventional statistical treatment of the data.

The correct application of classical spectrum analysis techniques involves
taking into account some specific design considerations in initial construc-
tion of the experimental design. Even when this is done, however, spectrum
analysis of the resulting data can present problem situations for which the
appropriate treatment has not been clearly established.

The present program was undertaken to examine some problems commonly experienced
in spectrum analysis of biomedical data, such as gaps in the data, different
time-series lengths, and periodic but nonsinusoidal processes in the data being
analyzed. Through this work, it has been possible to develop an improved type
of spectrum analysis procedure and to examine how results obtained with this
procedure are specifically affected when the problems identified above occur.
The findings have shown that the SIFT (Stepwise Iterative Fourier Transform)
can reliably reduce data zf the nature of (1) sinusoids in noise, (2) asym-
metric but periodic waves in noise, and (3) sinusoids in noise during which
sampling was asynchronous and/or data were missing. The program was also
able to analyze narrow-band noise well, but substantial interpretational
problems became apparent. Specifically, on any "real" data analysis, it would
be very difficult to determine the appropriate model for the data from the
analysis results; and, unless the model is known a priori, it is difficult to
set such parameters as t-to-enter.

The t-to -enter problem must be handled via philosphical methods and considera-
tions. The results must be "reasonable," for instance, in terms of consis-
tency with previously developed knowledge concerning the processes under study.
The final criterion of any analysis is, of course, that of replication, and this
is complicated because different t-to-enter values can influence the number of
spectrum peaks found in the data. With this type of program, it is not advis-
able to leave all the decisions to the computer. The indiscriminate use of
SIFT could lead to very serious inferential errors.

The SIFT has been shown to be a powerful data reduction technique for eluci-
dating the main structure of time-series records in the frequency or period
domain. Before, the utility of the SIFT can be fully assessed, more experience
with large volumes of ,real data must be acquired.
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