106,417 research outputs found

    Comments on "A New Random-Error-Correction Code"

    Get PDF

    Fault-tolerance techniques for hybrid CMOS/nanoarchitecture

    Get PDF
    The authors propose two fault-tolerance techniques for hybrid CMOS/nanoarchitecture implementing logic functions as look-up tables. The authors compare the efficiency of the proposed techniques with recently reported methods that use single coding schemes in tolerating high fault rates in nanoscale fabrics. Both proposed techniques are based on error correcting codes to tackle different fault rates. In the first technique, the authors implement a combined two-dimensional coding scheme using Hamming and Bose-Chaudhuri-Hocquenghem (BCH) codes to address fault rates greater than 5. In the second technique, Hamming coding is complemented with bad line exclusion technique to tolerate fault rates higher than the first proposed technique (up to 20). The authors have also estimated the improvement that can be achieved in the circuit reliability in the presence of Don-t Care Conditions. The area, latency and energy costs of the proposed techniques were also estimated in the CMOS domain

    RSDIMU acceptance testing system: Overview of acceptance software and procedures

    Get PDF
    An overview of the acceptance software and certification testing procedures is presented

    Experiments in fault tolerant software reliability

    Get PDF
    Twenty functionally equivalent programs were built and tested in a multiversion software experiment. Following unit testing, all programs were subjected to an extensive system test. In the process sixty-one distinct faults were identified among the versions. Less than 12 percent of the faults exhibited varying degrees of positive correlation. The common-cause (or similar) faults spanned as many as 14 components. However, a majority of these faults were trivial, and easily detected by proper unit and/or system testing. Only two of the seven similar faults were difficult faults, and both were caused by specification ambiguities. One of these faults exhibited variable identical-and-wrong response span, i.e. response span which varied with the testing conditions and input data. Techniques that could have been used to avoid the faults are discussed. For example, it was determined that back-to-back testing of 2-tuples could have been used to eliminate about 90 percent of the faults. In addition, four of the seven similar faults could have been detected by using back-to-back testing of 5-tuples. It is believed that most, if not all, similar faults could have been avoided had the specifications been written using more formal notation, the unit testing phase was subject to more stringent standards and controls, and better tools for measuring the quality and adequacy of the test data (e.g. coverage) were used

    Linear-algebraic list decoding of folded Reed-Solomon codes

    Full text link
    Folded Reed-Solomon codes are an explicit family of codes that achieve the optimal trade-off between rate and error-correction capability: specifically, for any \eps > 0, the author and Rudra (2006,08) presented an n^{O(1/\eps)} time algorithm to list decode appropriate folded RS codes of rate RR from a fraction 1-R-\eps of errors. The algorithm is based on multivariate polynomial interpolation and root-finding over extension fields. It was noted by Vadhan that interpolating a linear polynomial suffices if one settles for a smaller decoding radius (but still enough for a statement of the above form). Here we give a simple linear-algebra based analysis of this variant that eliminates the need for the computationally expensive root-finding step over extension fields (and indeed any mention of extension fields). The entire list decoding algorithm is linear-algebraic, solving one linear system for the interpolation step, and another linear system to find a small subspace of candidate solutions. Except for the step of pruning this subspace, the algorithm can be implemented to run in {\em quadratic} time. The theoretical drawback of folded RS codes are that both the decoding complexity and proven worst-case list-size bound are n^{\Omega(1/\eps)}. By combining the above idea with a pseudorandom subset of all polynomials as messages, we get a Monte Carlo construction achieving a list size bound of O(1/\eps^2) which is quite close to the existential O(1/\eps) bound (however, the decoding complexity remains n^{\Omega(1/\eps)}). Our work highlights that constructing an explicit {\em subspace-evasive} subset that has small intersection with low-dimensional subspaces could lead to explicit codes with better list-decoding guarantees.Comment: 16 pages. Extended abstract in Proc. of IEEE Conference on Computational Complexity (CCC), 201

    Post-processing procedure for industrial quantum key distribution systems

    Full text link
    We present algorithmic solutions aimed on post-processing for industrial quantum key distribution systems with hardware sifting. The main steps of the procedure are error correction, parameter estimation, and privacy amplification. Authentication of a classical public communication channel is also considered.Comment: 5 pages; presented at the 3rd International School and Conference "Saint-Petersburg OPEN 2016" (Saint-Petersburg, March 28-30, 2016

    Experiments in fault tolerant software reliability

    Get PDF
    The reliability of voting was evaluated in a fault-tolerant software system for small output spaces. The effectiveness of the back-to-back testing process was investigated. Version 3.0 of the RSDIMU-ATS, a semi-automated test bed for certification testing of RSDIMU software, was prepared and distributed. Software reliability estimation methods based on non-random sampling are being studied. The investigation of existing fault-tolerance models was continued and formulation of new models was initiated
    corecore