research

Linear-algebraic list decoding of folded Reed-Solomon codes

Abstract

Folded Reed-Solomon codes are an explicit family of codes that achieve the optimal trade-off between rate and error-correction capability: specifically, for any \eps > 0, the author and Rudra (2006,08) presented an n^{O(1/\eps)} time algorithm to list decode appropriate folded RS codes of rate RR from a fraction 1-R-\eps of errors. The algorithm is based on multivariate polynomial interpolation and root-finding over extension fields. It was noted by Vadhan that interpolating a linear polynomial suffices if one settles for a smaller decoding radius (but still enough for a statement of the above form). Here we give a simple linear-algebra based analysis of this variant that eliminates the need for the computationally expensive root-finding step over extension fields (and indeed any mention of extension fields). The entire list decoding algorithm is linear-algebraic, solving one linear system for the interpolation step, and another linear system to find a small subspace of candidate solutions. Except for the step of pruning this subspace, the algorithm can be implemented to run in {\em quadratic} time. The theoretical drawback of folded RS codes are that both the decoding complexity and proven worst-case list-size bound are n^{\Omega(1/\eps)}. By combining the above idea with a pseudorandom subset of all polynomials as messages, we get a Monte Carlo construction achieving a list size bound of O(1/\eps^2) which is quite close to the existential O(1/\eps) bound (however, the decoding complexity remains n^{\Omega(1/\eps)}). Our work highlights that constructing an explicit {\em subspace-evasive} subset that has small intersection with low-dimensional subspaces could lead to explicit codes with better list-decoding guarantees.Comment: 16 pages. Extended abstract in Proc. of IEEE Conference on Computational Complexity (CCC), 201

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019