108 research outputs found

    Program and Proceedings: The Nebraska Academy of Sciences 1880-2013

    Get PDF
    PROGRAM FRIDAY, APRIL 19, 2013 REGISTRATION FOR ACADEMY, Lobby of Lecture wing, Olin Hall Aeronautics and Space Science, Session A, Olin 249 Aeronautics and Space Science, Session B, Olin 224 Collegiate Academy, Biology Session A, Olin B Biological and Medical Sciences, Session A, Olin 112 Biological and Medical Sciences, Session B, Smith Callen Conference Center NE Chapter, Nat\u27l Council For Geographic Education, Olin 325 Junior Academy, Judges Check-In, Olin 219 Junior Academy, Senior High REGISTRATION, Olin Hall Lobby Chemistry and Physics, Section A, Chemistry, Olin A Chemistry and Physics, Section B, Physics, Planetarium Collegiate Academy, Chemistry and Physics, Session A, Olin 324 Junior Academy, Senior High Competition, Olin 124, Olin 131 Aeronautics and Space Science, Poster Session, Olin 249 Anthropology, Olin 111 NWU Health and Sciences Graduate School Fair, Olin and Smith Curtiss Halls Aeronautics and Space Science, Poster Session, Olin 249 MAIBEN MEMORIAL LECTURE, OLIN B Bob Feurer, North Bend High School, Making People Smarter Using Habits of Mind LUNCH, PATIO ROOM, STORY STUDENT CENTER (pay and carry tray through cafeteria line, or pay at NAS registration desk) Aeronautics Group, Sunflower Room Biological and Medical Sciences, Session C, Olin 112 Biological and Medical Sciences, Session D, Smith Callen Conference Center Chemistry and Physics, Section A, Chemistry, Olin A Collegiate Academy, Biology Session A, Olin B Collegiate Academy, Biology Session B, Olin 249 Collegiate Academy, Chemistry and Physics, Session B, Olin 324 Junior Academy, Judges Check-In, Olin 219 Junior Academy, Junior High REGISTRATION, Olin Hall Lobby Junior Academy, Senior High Competition, (Final), Olin 110 Anthropology, Olin 111 Teaching of Science and Math, Olin 224 Applied Science and Technology, Olin 325 Junior Academy, Junior High Competition, Olin 124, Olin 131 NJAS Board/Teacher Meeting, Olin 219 BUSINESS MEETING, OLIN B AWARDS RECEPTION for NJAS, Scholarships, Members, Spouses, and Guests First United Methodist Church, 2723 N 50th Street, Lincoln, N

    Corrosion and hydrate formation in natural gas pipelines

    Get PDF
    Gas industry annually invests millions of dollars on corrosion inhibitors in order to minimize corrosion implications on flow assurance; however, attention has never been focused on possibilities of these chemicals to promote hydrate formation along deepwater pipelines, which would equally result in another flow assurance problem of high magnitude. This study investigated the possibilities of corrosion inhibitors to aid the formation of gas hydrate along offshore (or underwater) pipeline systems; developed a predictive model on corrosion rate for natural gas pipelines with gas hydrates as the corroding agent and finally investigated the ability of pure N2 and H2 gases to inhibit the formation of gas hydrates.All experiments in this thesis were conducted by forming various water-gas systems in a cylindrical cryogenic sapphire cell. The first investigative work on hydrate-corrosion relationship was conducted by allowing contacts between an industrial grade natural gas (with 20% CO2 content) and five different corrosion inhibitors that are commonly used at offshore fields. The equipment, consisting of several fittings could operate at a temperature range of -160oC – 60oC (with accuracy of ± 0.10oC) and pressure range of 1bar to 500bar (with accuracy of ± 0.5bar). Using the ‗Temperature Search‘ method, the hydrate formation temperature point for each inhibitor was located at 500ppm and 100bar and the result compared with that of control experiment. Due to observed significant influence, further investigations were conducted on Dodecylpyridinium Chloride (DPC) at various concentrations and pressures. The corrosion model was developed based on hydrate‘s thermodynamic properties such as the operating temperature, pressure, fluid fugacity, wall shear stress, superficial velocity, enthalpy, entropy and activity coefficient amongst others, and a Matlab computer code was written to simulate the generated solution algorithm. Finally, components interaction study was conducted on various gas mixtures inside the sapphire cell to investigate the ability of pure N2 and H2 gases to inhibit the formation of gas hydrates.The obtained results established that all corrosion inhibitors aid hydrate promotion; this was attributed to their surfactant and hydrogen bonding properties which were essential for hydrate formation. The five investigated inhibitors showed different promotional rates with DPC having the highest promotional ability. The different promotional rate is due to their different sizes and structures, active functional groups and affinity for water molecules which determine the type(s) of hydrogen bonding exhibited by each inhibitor while in solution. The significant performance of DPC compared to other inhibitors was justified by the specific available active functional group which obeys electronegativity trend of periodic table to determine whether the resulting bond type will be polar covalent, ionic or ionic with some covalent characteristic in nature. Also, DPC hydrates revealed strong influence of the chemical‘s surfactant properties at all pressures and concentrations while its Critical Micelle Concentration (CMC) was believed to be 5000ppm due to the various anomaly behaviors exhibited at this particular concentration.The developed mathematical model adequately predicted corrosion rates with gas hydrate as the corroding agent and its effectiveness was confirmed by the level of agreement between its generated results and existing literatures. The resulting corrosion rate from hydrates could be as high as 174mm/yr (0.48mm/day). This is extremely alarming compared to the industry‘s aim to operate below 2mm/yr. At this rate, an underwater pipeline would be subjected to full bore rupture within some days if corrective measures are not quickly taken.Furthermore, the components interaction study revealed that CH4 played key roles on hydrate formation patterns during natural gas transportation through offshore pipeline system; the higher a natural gas CH4 content, the higher the risk of hydrates promotion. It also showed that when alone, CO2 does not form hydrate at low concentrations but showed a remarkable ability to aid hydrate formation when mixed with CH4. This is not surprising since it is also a former with ability to form Type I hydrate due to its very small size. Again, the ability of pure N2 and pure H2 gases to inhibit the formation of gas hydrate was confirmed but with H2 showing more significant effects. This was ascribed to their individual pressure condition to form hydrate. Though, N2 gas with small molecules forms Type II hydrate at a relatively higher pressure above the investigated pressures, it still forms hydrate within higher operating pressures practiced at gas fields during the transportation. However, H2 gas can never form hydrate at any natural gas transportation conditions. H2 gas only forms hydrates at extremely high pressure of about 2000bar because its molecules are too small and usually leaked out of hydrate cage, thus, reducing the amount that could be stored. By extension, these individual properties affect their interactions with natural gas during the hydrate formation process.Conclusively, this study has essentially revealed a new hydrate-corrosion relationship and established the need for comprehensive investigations in this research area. At all the investigated pressures, it was realized that DPC prolonged the complete blockage of the glass orifice at 10000ppm. This special characteristic may suggest the potential in applying the chemical as an additive for natural gas transportation and storage in slurry forms. Finally, the use of pure N2 or H2 as hydrate inhibitor in the offshore pipeline would be very cost effective to the industry. However, extreme care should be taken during the selection process since there are needs to further investigate the safety factors, material availability, cost implication and recovery from the main gas stream in order to choose the better option

    Cells in Space

    Get PDF
    Discussions and presentations addressed three aspects of cell research in space: the suitability of the cell as a subject in microgravity experiments, the requirements for generic flight hardware to support cell research, and the potential for collaboration between academia, industry, and government to develop these studies in space. Synopses are given for the presentations and follow-on discussions at the conference and papers are presented from which the presentations were based. An Executive Summary outlines the recommendations and conclusions generated at the conference

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Air Force Institute of Technology Research Report 2017

    Get PDF
    This Research Report presents the FY18 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs)

    Planet Earth 2011

    Get PDF
    The failure of the UN climate change summit in Copenhagen in December 2009 to effectively reach a global agreement on emission reduction targets, led many within the developing world to view this as a reversal of the Kyoto Protocol and an attempt by the developed nations to shirk out of their responsibility for climate change. The issue of global warming has been at the top of the political agenda for a number of years and has become even more pressing with the rapid industrialization taking place in China and India. This book looks at the effects of climate change throughout different regions of the world and discusses to what extent cleantech and environmental initiatives such as the destruction of fluorinated greenhouse gases, biofuels, and the role of plant breeding and biotechnology. The book concludes with an insight into the socio-religious impact that global warming has, citing Christianity and Islam

    An Insulating Glass Knowledge Base

    Full text link

    Full Proceedings, 2018

    Get PDF
    Full conference proceedings for the 2018 International Building Physics Association Conference hosted at Syracuse University

    Current Air Quality Issues

    Get PDF
    Air pollution is thus far one of the key environmental issues in urban areas. Comprehensive air quality plans are required to manage air pollution for a particular area. Consequently, air should be continuously sampled, monitored, and modeled to examine different action plans. Reviews and research papers describe air pollution in five main contexts: Monitoring, Modeling, Risk Assessment, Health, and Indoor Air Pollution. The book is recommended to experts interested in health and air pollution issues
    • …
    corecore