229 research outputs found

    Feedback Driven Annotation and Refactoring of Parallel Programs

    Get PDF

    XARK: an extensible framework for automatic recognition of computational kernels

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in ACM Transactions on Programming Languages and Systems. The final authenticated version is available online at: http://dx.doi.org/10.1145/1391956.1391959[Abstract] The recognition of program constructs that are frequently used by software developers is a powerful mechanism for optimizing and parallelizing compilers to improve the performance of the object code. The development of techniques for automatic recognition of computational kernels such as inductions, reductions and array recurrences has been an intensive research area in the scope of compiler technology during the 90's. This article presents a new compiler framework that, unlike previous techniques that focus on specific and isolated kernels, recognizes a comprehensive collection of computational kernels that appear frequently in full-scale real applications. The XARK compiler operates on top of the Gated Single Assignment (GSA) form of a high-level intermediate representation (IR) of the source code. Recognition is carried out through a demand-driven analysis of this high-level IR at two different levels. First, the dependences between the statements that compose the strongly connected components (SCCs) of the data-dependence graph of the GSA form are analyzed. As a result of this intra-SCC analysis, the computational kernels corresponding to the execution of the statements of the SCCs are recognized. Second, the dependences between statements of different SCCs are examined in order to recognize more complex kernels that result from combining simpler kernels in the same code. Overall, the XARK compiler builds a hierarchical representation of the source code as kernels and dependence relationships between those kernels. This article describes in detail the collection of computational kernels recognized by the XARK compiler. Besides, the internals of the recognition algorithms are presented. The design of the algorithms enables to extend the recognition capabilities of XARK to cope with new kernels, and provides an advanced symbolic analysis framework to run other compiler techniques on demand. Finally, extensive experiments showing the effectiveness of XARK for a collection of benchmarks from different application domains are presented. In particular, the SparsKit-II library for the manipulation of sparse matrices, the Perfect benchmarks, the SPEC CPU2000 collection and the PLTMG package for solving elliptic partial differential equations are analyzed in detail.Ministeiro de Educación y Ciencia; TIN2004-07797-C02Ministeiro de Educación y Ciencia; TIN2007-67537-C03Xunta de Galicia; PGIDIT05PXIC10504PNXunta de Galicia; PGIDIT06PXIB105228P

    Runtime-adaptive generalized task parallelism

    Get PDF
    Multi core systems are ubiquitous nowadays and their number is ever increasing. And while, limited by physical constraints, the computational power of the individual cores has been stagnating or even declining for years, a solution to effectively utilize the computational power that comes with the additional cores is yet to be found. Existing approaches to automatic parallelization are often highly specialized to exploit the parallelism of specific program patterns, and thus to parallelize a small subset of programs only. In addition, frequently used invasive runtime systems prohibit the combination of different approaches, which impedes the practicality of automatic parallelization. In the following thesis, we show that specializing to narrowly defined program patterns is not necessary to efficiently parallelize applications coming from different domains. We develop a generalizing approach to parallelization, which, driven by an underlying mathematical optimization problem, is able to make qualified parallelization decisions taking into account the involved runtime overhead. In combination with a specializing, adaptive runtime system the approach is able to match and even exceed the performance results achieved by specialized approaches.Mehrkernsysteme sind heutzutage allgegenwärtig und finden täglich weitere Verbreitung. Und während, limitiert durch die Grenzen des physikalisch Machbaren, die Rechenkraft der einzelnen Kerne bereits seit Jahren stagniert oder gar sinkt, existiert bis heute keine zufriedenstellende Lösung zur effektiven Ausnutzung der gebotenen Rechenkraft, die mit der steigenden Anzahl an Kernen einhergeht. Existierende Ansätze der automatischen Parallelisierung sind häufig hoch spezialisiert auf die Ausnutzung bestimmter Programm-Muster, und somit auf die Parallelisierung weniger Programmteile. Hinzu kommt, dass häufig verwendete invasive Laufzeitsysteme die Kombination mehrerer Parallelisierungs-Ansätze verhindern, was der Praxistauglichkeit und Reichweite automatischer Ansätze im Wege steht. In der Ihnen vorliegenden Arbeit zeigen wir, dass die Spezialisierung auf eng definierte Programmuster nicht notwendig ist, um Parallelität in Programmen verschiedener Domänen effizient auszunutzen. Wir entwickeln einen generalisierenden Ansatz der Parallelisierung, der, getrieben von einem mathematischen Optimierungsproblem, in der Lage ist, fundierte Parallelisierungsentscheidungen unter Berücksichtigung relevanter Kosten zu treffen. In Kombination mit einem spezialisierenden und adaptiven Laufzeitsystem ist der entwickelte Ansatz in der Lage, mit den Ergebnissen spezialisierter Ansätze mitzuhalten, oder diese gar zu übertreffen.Part of the work presented in this thesis was performed in the context of the SoftwareCluster project EMERGENT (http://www.software-cluster.org). It was funded by the German Federal Ministry of Education and Research (BMBF) under grant no. “01IC10S01”. Later work has been supported, also by the German Federal Ministry of Education and Research (BMBF), through funding for the Center for IT-Security, Privacy and Accountability (CISPA) under grant no. “16KIS0344”

    Open Effects

    Get PDF
    Open world assumption is an important design decision for modern object-oriented languages --- it allows extensibility in program design. Type-and-effect systems are also valuable for these languages, e.g. they can help reason about concurrent OO programs. Open world assumption, however, makes the design of a type-and-effect system challenging for an OO language. Main problem is with the computation of the effects of a dynamically dispatched method call, because all possible dynamic types are not known in advance. Previous research has proposed asking programmers for effect annotations that give an upper bound on the effects of a dynamically dispatched method call. This work describes an easier approach for programmers, albeit with some runtime overhead compared to previous work, which is based on the novel notion of open effects, effects that are optimistically assumed to satisfy the effect-based property of interest. We describe a sound type-and-effect system with open effects which has two parts: a static part that takes effects of dynamically dispatched calls with certain special references as an open effect; and a dynamic part that manages dynamic effects as these special references change and verifies that the optimistic assumptions about open effects hold. This system is implemented in the OpenJDK compiler and its utility is tested by applying it to verify non(interference) of concurrent tasks

    Abstraction Raising in General-Purpose Compilers

    Get PDF

    A framework for parametric design optimization using isogeometric analysis

    Get PDF
    Isogeometric analysis (IGA) fundamentally seeks to bridge the gap between engineering design and high-fidelity computational analysis by using spline functions as finite element bases. However, additional computational design paradigms must be taken into consideration to ensure that designers can take full advantage of IGA, especially within the context of design optimization. In this work, we propose a novel approach that employs IGA methodologies while still rigorously abiding by the paradigms of advanced design parameterization, analysis model validity, and interactivity. The entire design lifecycle utilizes a consistent geometry description and is contained within a single platform. Because of this unified workflow, iterative design optimization can be naturally integrated. The proposed methodology is demonstrated through an IGA-based parametric design optimization framework implemented using the Grasshopper algorithmic modeling interface for Rhinoceros 3D. The framework is capable of performing IGA-based design optimization of realistic engineering structures that are practically constructed through the use of complex geometric operations. We demonstrate the framework’s effectiveness on both an internally pressurized tube and a wind turbine blade, highlighting its applicability across a spectrum of design complexity. In addition to inherently featuring the advantageous characteristics of IGA, the seamless nature of the workflow instantiated in this framework diminishes the obstacles traditionally encountered when performing finite-element-analysis-based design optimization

    Compile-time support for thread-level speculation

    Get PDF
    Una de las principales preocupaciones de las ciencias de la computación es el estudio de las capacidades paralelas tanto de programas como de los procesadores que los ejecutan. Existen varias razones que hacen muy deseable el desarrollo de técnicas que paralelicen automáticamente el código. Entre ellas se encuentran el inmenso número de programas secuenciales existentes ya escritos, la complejidad de los lenguajes de programación paralelos, y los conocimientos que se requieren para paralelizar un código. Sin embargo, los actuales mecanismos de paralelización automática implementados en los compiladores comerciales no son capaces de paralelizar la mayoría de los bucles en un código [1], debido a la dependencias de datos que existen entre ellos [2]. Por lo tanto, se hace necesaria la búsqueda de nuevas técnicas, como la paralelización especulativa [3-5], que saquen beneficio de las potenciales capacidades paralelas del hardware y arquitecturas multiprocesador actuales. Sin embargo, ésta y otras técnicas requieren la intervención manual de programadores experimentados. Antes de ofrecer soluciones alternativas, se han evaluado las capacidades de paralelización de los compiladores comerciales, exponiendo las limitaciones de los mecanismos de paralelización automática que implementan. El estudio revela que estos mecanismos de paralelización automática sólo alcanzan un 19% de speedup en promedio para los benchmarks del SPEC CPU2006 [6], siendo este un resultado significativamente inferior al obtenido por técnicas de paralelización especulativa [7]. Sin embargo, la paralelización especulativa requiere una extensa modificación manual del código por parte de programadores. Esta Tesis aborda este problema definiendo una nueva cláusula OpenMP [8], llamada ¿speculative¿, que permite señalar qué variables pueden llevar a una violación de dependencia. Además, esta Tesis también propone un sistema en tiempo de compilación que, usando la información sobre los accesos a las variables que proporcionan las cláusulas OpenMP, añade automáticamente todo el código necesario para gestionar la ejecución especulativa de un programa. Esto libera al programador de modificar el código manualmente, evitando posibles errores y una tediosa tarea. El código generado por nuestro sistema enlaza con la librería de ejecución especulativamente paralela desarrollada por Estebanez, García-Yagüez, Llanos y Gonzalez-Escribano [9,10].Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos
    corecore