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Summary

This thesis combines programmer knowledge and feedback to improve modeling
and optimization of software. The research is motivated by two observations.
First, there is a great need for automatic analysis of software for embedded
systems – to expose and model parallelism inherent in programs. Second, some
program properties are beyond reach of such analysis for theoretical and prac-
tical reasons – but can be described by programmers.

Three aspects are explored. The first is annotation of the source code. Two
annotations are introduced. These allow more accurate modeling of parallelism
and communication in embedded programs. Runtime checks are developed to
ensure that annotations correctly describe observable program behavior. The
performance impact of runtime checking is evaluated on several benchmark ker-
nels and is negligible in all cases.

The second aspect is compilation feedback. Annotations are not effective unless
programmers are told how and when they are beneficial. A prototype compila-
tion feedback system was developed in collaboration with IBM Haifa Research
Labs. It reports issues that prevent further analysis to the programmer. Per-
formance evaluation shows that three programs performes significantly faster –
up to 12.5x – after modification directed by the compilation feedback system.

The last aspect is refinement of compilation feedback. Out of numerous issues
reported, few are important to solve. Different compilers and compilation flags
are used to estimate whether an issue can be resolved or not. On average,
43% of the issues reported can be categorized as potentially resolvable (27%) or
unresolvable (15%).
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Resumé

Denne afhandling kombinerer computer programmørens ekspertise med feed-
back for bedre at modellere og optimere programmel. Forskningen er motiveret
af to observationer. For det første er der et stort behov for automatisk analyse
af programmel til indlejrede systemer. Programanalyse er nødvendigt for at
identificere og modellere parallelisme i indlejrede programmer. For det andet s̊a
er programanalyse utilstrœkkeligt til at udlede visse egenskaber af teoretiske og
rent praktiske grunde – men programmører kan ofte beskrive disse.

Tre aspekter af denne problemstilling udforskes. Det første er annotationer som
indsættes i kildekoden. To annotationer introduceres og det vises at disse tillader
en mere præcis modellering af parallelisme og afhængigheder i kildekoden. Der
blev implementeret funktionalitet som under programafvikling sikrer at annota-
tionerne beskriver programmets afhængigheder p̊a korrekt vis. Denne funktion-
alitets indflydelse p̊a køretiden blev evalueret p̊a en h̊andfuld test-programmer.
Eksperimenterne p̊aviste ikke en forringelse i ydeevnen.

Det andet aspekt er feedback fra oversættere. Annotation er ineffektivt med
mindre det oplyses hvor og hvorn̊ar programmøren kan bidrage. En prototype
af et feedback system blev udviklet i samarbejde med IBM Haifa Research Labs.
Systemet rapporterer problemer som forhindrer programanalyse. Eksperimenter
viste at tre test-programmer afvikles væsentligt hurtigere – op til 12.5 gange –
efter modifikation vha. systemets anvisninger.

Det tredje aspekt er raffinering af feedback. Et f̊atal af de mange problemer
som rapporteres er værd at løse. Forskellige oversættere og oversætterflag blev
dernæst anvendt til at estimere om et problem kan afhjælpes eller ej. I gennem-
snit blev 27% af problemerne kategoriseret som potentielt løsbare og 15% blev
kategoriseret som uløselige.
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Preface

This thesis was prepared at DTU Informatics, Technical University of Denmark
in partial fulfillment of the requirements for acquiring the Ph.D. degree in en-
gineering.

Programmers gain a high-level understanding of programs after working with
their source codes for some time. It was studied how such programmer knowl-
edge can be leveraged to model and optimize software for embedded and parallel
systems.

The thesis is based on a collection of five research papers written during the
period 2009–2011, and elsewhere published.

Lyngby, June 2011

Per Larsen
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Chapter 1

Introduction

Computers form an integral part of the developed world. We use laptops, smart-
phones, cameras and tablet computers every day. Some computers can go where
man cannot – deep underwater, in space, nuclear power plants, munitions and
autonomous vehicles, to mention a few.

In many cases, the computers are embedded into other devices. Such devices are
quite different from personal computers, servers and super-computers. Devices
that integrate computing capabilities, or embedded systems, account for the vast
majority of computer systems.

The research in this thesis is motivated by challenges in analyzing and optimizing
programs for embedded systems. Many challenges are primarily due to limita-
tions in our ability to analyze program source codes. This thesis demonstrates
that several concrete limitations can be mitigated by programmer inserted an-
notations and code refactoring. Compiler feedback is used to report to the
programmer where and why program analysis encounters issues. Many issues
are reported but not all can be resolved by changing the code. The possibility
of resolving an issue via annotation and refactoring is estimated by combining
compiler feedback from multiple builds of the same source code. This prioritizes
the annotation and refactoring efforts.



2 Introduction

This chapter has three parts. The first part characterizes embedded systems and
their development. It also explains where and why the analysis of embedded
systems rely on abstract models of programs. Finally, the difficulties in gener-
ating such models are outlined. The second part focuses on the programming
aspects of embedded systems development. Most importantly, it explains the
challenges of exposing parallelism to the underlying hardware. This part also
describes techniques to analyze programs, techniques to annotate programs and
their interaction. The final part motivates the work in this thesis and outlines
its contents.

1.1 Embedded Systems Design

Embedded systems are often battery powered, are manufactured in high volume
and must provide real-time performance. As a result, they are highly constrained
in terms of cost, size and power consumption. To meet performance and power-
consumption constraints, critical parts may be realized as dedicated hardware
blocks. The resulting systems often have a heterogeneous system architecture
combining general-purpose units with dedicated hardware components. This
complicates the system design [127]. Yet, design teams are expected to deliver
increasingly complex designs within a short period of time. When combined,
these circumstances create a need for automation of embedded systems design.

Typically, it is easier and less costly to make significant changes early rather
than later in a project. It is therefore important to explore different choices
early in the design process. Initially, the design team must determine what the
embedded device will look like at the system level. For instance, the type and
number of processing elements, memories and interconnects between these must
be determined.

Devices having essentially the same function can be realized through a num-
ber of quite different system-level designs [144]. If two candidate designs can
be evaluated and compared with respect to objectives such as power, cost and
performance, a systematic search of the design space is feasible. This is called
design space exploration, DSE. Early in the design process, simulators and hard-
ware prototypes are typically unavailable. Alternatively, design teams can build
analytical models of hardware components and relevant application workloads.
Techniques using analytical models for evaluation are therefore important to
identify corner cases early in the design process [68]. The task graph model is
one, commonly used abstraction of application workloads.
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1.1.1 Task Graphs

Task graphs or variants thereof model coarse grain computation and communi-
cation in parallel programs. Task graphs are directed and acyclic. Sequentially
executed instruction sequences are called tasks and form the nodes of a task
graph. Communication and synchronization creates dependencies among tasks.
These constrain the execution order among tasks. The dependence relation is
represented by directed edges in the graph.

As previously mentioned, DSE tools often use task graphs to model embedded
application workloads [143, 52, 168, 108, 58, 167]. This enables design space
exploration to happen before simulators or hardware prototypes become avail-
able. Another area which relies on task graphs is scheduling and schedulability
analysis [145, 48]. The accuracy of the analysis results, however, is only as good
as permitted by the input. Hence, it is important that the task graphs reflect
the application workloads as accurately as possible.

1.1.2 Constructing task graphs

Programs are usually expressed in imperative programming languages such as C
or C++. These languages partition programs into modules, functions and basic
blocks that are connected by control-flow. The flow of data between program
statements is implicit and must be found by analyzing the effects of statements.
Task graphs, on the other hand, are partitioned into sequential sub-tasks con-
nected by data dependencies. This makes it non-trivial to extract task graphs
from source code.

Manual approach For very simple programs, it may be possible for the pro-
grammer to determine the tasks and their dependencies by hand [143]. Reason-
ing about data dependencies is known to be difficult and error prone. Therefore,
a completely manual approach to task graph extraction is infeasible for all but
the simplest programs.

Execution based approaches Instrumenting and executing the program is
one alternative. This makes data dependencies occurring under a particular ex-
ecution directly observable. There are two problems with this approach though.
First, fine-grained instrumentation is required to find all dependencies. Such in-
strumentation slows down program performance by orders of magnitude. This
means that profiling is only practical for small input sets. This is related to the
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second problem. A single profiling run does not necessarily expose all data de-
pendencies [155]. Hence, a task graph constructed via profiling may not capture
all dependencies. Dependencies must not be overlooked because they constrain
the execution order of tasks. Violating this ordering may lead to incorrect re-
sults.

Program analysis approach A third approach to task graph extraction re-
lies on program analysis. Program analysis approximates the effect of each
source statement. The dependencies between program tasks can be found by
analyzing the source code. Compared to execution-based approaches, program
analysis is typically faster and finds all dependencies. While this makes program
analysis the most attractive option so far, it does have a significant drawback.
To remain computable, the results of program analysis are necessarily approxi-
mate [118]. In case of dependence analysis, program analysis over-approximates
the number of dependencies. Superfluous dependencies reduce the apparent
amount of parallelism in a task graph. When given such graphs as input,
scheduling and DSE tools have fewer degrees of freedom and are therefore pre-
vented from considering all feasible solutions.

The approaches outlined above lead to task graphs that either over-approximate
or under-approximate the dependencies between program parts. Missed depen-
dencies lead to correctness issues while over-approximation may cause task graph
tools to miss useful solutions. Techniques to analyze embedded systems via task
graphs can therefore benefit from a more precise approach to extract task graphs
from the source codes of programs. The next section explains techniques that
enable programmers to assist program analyzers.

1.2 Annotations and Compiler Feedback

Program analysis tools are built to analyze source code regardless of purpose or
application domain. Programmers, on the other hand, typically spend most of
their time working on relatively few programs. Programmers learn a great deal
about programs this way. This knowledge is encoded in the choice of algorithms,
data structures and symbol names.

As an example, consider the three tasks shown in figure 1.1 on the facing page.
A task graph extraction tool may not be able to determine if task 2 and task 3
are independent. Without additional information, the tool must consider task
2 and task 3 as potentially dependent. This adds a superfluous edge to the
corresponding task graph. The programmer, on the other hand, can determine
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list *l, *a, *b;
l = createList()
splitClone(l, &a, &b);

processList(a) processList(b)

task 1 task 2 task 3

Figure 1.1: Program fragment consisting of three tasks.

that tasks 2 and 3 are independent by interpreting symbol names and drawing
on his or her understanding of the function calls involved. Program analysis
on its own is therefore less potent than a combination of program analysis and
programmer provided information. This makes annotations – declarative lan-
guage constructs – attractive. In addition to annotations, code refactoring [62]
can also make code more amenable to program analysis.

Annotations have traditionally been used by expert-programmers to allow a
compiler or runtime system to perform additional optimization. This thesis
explores source code annotation as a way to extract more precise task graphs
from source code. Also, programmers traditionally use these annotations at
their own peril. Erroneous use may cause the compiler to produce incorrect
code without warning. The annotations proposed in this thesis are subject to
runtime checks, which warn about incorrect use.

Annotation and refactoring take effort and must therefore be used judiciously.
Ideally, annotation or refactoring is only performed:

1. when program analysis cannot determine an important program property;
and

2. when annotation or refactoring helps program analysis determine said
property.

Determining where programmers should modify programs was not studied in
the context of task graph extraction. Rather, the focus was shifted to a related
problem: finding parallelism in sequential code. The two problems are related
as the analysis of data dependencies plays a central role in both instances. The
change was necessary for practical reasons including the availability of tools.

The first of the above points was addressed by extending a compiler to report
issues that prevent automatic parallelization. The idea is that the program-
mer applies a potential workaround and recompiles until the issue is no longer
reported. The high volume of issues reported creates a challenge of its own.
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Many of the reported issues cannot be resolved or do not improve program
performance significantly.

To address the second point, the code was compiled several times in different
contexts to estimate if annotation or refactoring is worthwhile. Compilers differ
in their ability to automatically parallelize loops in sequential codes. Further-
more, the compilation options can greatly affect results of automatic paralleliza-
tion. Multiple compilers and multiple compilation options were therefore used
to compile the same code. This approach builds on two ideas. First, if one
compiler reports failure to parallelize where another compiler is able to success-
fully optimize, the programmer may be able to resolve this issue. Similarly, if a
compiler is able to parallelize a loop under potentially unsafe assumptions, then
the programmer should determine whether the assumptions are safe to make or
not. Together, the two techniques separate issues that may be resolved from
issues that may waste programmer time.

Code can be made more amenable to analysis and optimization through im-
proved interaction between programmers and program analyzers. The research
in this thesis contributes to this important direction.

1.3 Thesis Outline

The following three chapters provide background information on areas related
to the research in this thesis. Chapter 2 introduces the fundamentals of parallel
computer architecture, programming abstractions and program optimization.
Program analysis is also covered in more detail.

Chapter 3 concerns parallel programming. It covers the types of dependencies in
programs and describes how to approximate these. Decomposition of sequential
programs into tasks that may execute in parallel is also discussed. Finally, it
covers manual and automatic ways to exploit parallelism.

Chapter 4 revisits embedded systems and models of embedded programs. It
introduces task graphs and their role in the analysis of embedded systems. The
last section of this chapter covers the correspondence between task graphs and
programs parallelized with OpenMP – a parallel programming model.

Chapter 5 explains how the research in this thesis contributes to the state of
the art and summarizes the major results presented herein.
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Chapters 6 to 8 present the research upon which this thesis is based. Chapter 6
describes two annotations that transfer information from the programmer step
to program analyzers. The impact of the directives are evaluated on benchmark
kernels. Programmers need guidance on where and how to annotate. Hence,
chapter 7 presents a system that provides the programmer with feedback from
compiler analysis. This helps the programmer expose more parallelism to the
compiler. The system is evaluated on three embedded codes. Finally, chapter 8
presents techniques to evaluate and filter the compilation feedback. This lowers
the programmer effort required to address compilation feedback. The techniques
are evaluated via feedback from compilation of an embedded benchmark suite.
The final chapter summarizes the thesis and provides an outlook.
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Chapter 2

Technical Background

This chapter serves as a foundation for the topics discussed in subsequent chap-
ters. Each section covers a fundamental aspect of programming, namely: what
we program, how we program and finally where and how we can improve the
programs. The former two aspects are governed by the computer architecture
and the programming model respectively. The latter aspects are addressed by
program analysis and program optimization.

2.1 Computer Architecture

Computer architecture is concerned with the organization and design of hard-
ware components. This includes processing elements, memories and the inter-
connects between these.

Until recently, processor designs were focused on sequential programs and high
clock frequencies. In the period between 1978-2002, sequential performance
increased approximately 50% annually. Since then, the annual growth in se-
quential performance has been significantly lower [125]. This slowdown can be
attributed to the following observations, dubbed walls, in computer architecture:
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Power wall Power has become a limiting factor [66]. More transistors can be
put on a chip than there is power to turn on.

Memory wall Memory limits the performance of processor cores. Computa-
tion is fast but loads and stores are slow [165].

ILP wall Finally, the gains from finding more parallelism at the instruction
level are diminishing [125].

Moore’s law [113], which predicts a doubling of transistors on a single chip every
eighteen months, is still in effect [81]. However, the transistor budget is no
longer spent on optimizing sequential performance. Rather, processor designers
are integrating multiple, simpler and lower frequency cores on a single chip.
While the move to multicore chips addresses the power wall, it also requires
programmers to move from sequential to parallel programming models.

2.1.1 Processing Elements

Flynn’s taxonomy classifies computers according to the number of instruction
and data streams that can be processed in parallel [61]. There are four possible
combinations. Single instruction, single data stream, SISD describes a sequential
computer. Single instruction, multiple data streams, SIMD, performs the same
instruction on multiple data streams in parallel. Multiple instruction, multiple
data streams, MIMD, is the most general class as the instruction and data
streams are be fully independent. The final combination – multiple instruction,
single data stream, MISD – is mostly of interest in fault tolerant processors and
irrelevant to this discussion.

Figure 2.1 on the next page shows the relation between several types of pro-
cessing elements – processors, processor cores and vector units respectively. At
the outermost level, multiple processors can be combined to build a parallel
system. If the processors are similar, the system is called a symmetric multi-
processor. Each processor can operate on a stream of instructions and data
independent of other processors in the system. The system therefore supports
MIMD parallelism.

Each individual processor may also support MIMD parallelism. Such processors
duplicate the processor core, while sharing peripheral functionality such as IO
and memory controllers. Such processors are called multi-cores and also support
MIMD parallelism.
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Processor 1

Core 1 Core 2

Processor 2

DSPGPU

Alu

Figure 2.1: Processing elements supporting MIMD and SIMD parallelism.

Each general purpose processor core may also support SIMD parallelism via
vector units. Scalar instructions operate on a single data element at a time.
SIMD instructions operate on a short vector of data elements. The vector
length is dependent on the size of each data element and are typically between
2 and 32 elements.

Notice that Processor 1 in figure 2.1 contain two cores as well as two other types
of processing elements. One is a graphics processing unit, GPU and the other
is a digital signal processor, DSP. GPU’s and DSP’s are highly optimized for
certain tasks but unsuitable for many others. Embedded processors typically
have a heterogeneous configuration of processing elements.

2.1.2 Memory Organization

Memory runs at a fraction of the processor speed. Hence, processors do not op-
erate directly on the contents of main memory. Rather frequently used data is
kept in a hierarchy of smaller and faster memories closer to the processor. This
creates multiple copies of shared data. These copies must be consistent to give
each processor a coherent view of the memory. The memory coherence prob-
lem must be addressed by computer architects, compiler writers and sometimes
programmers.

Caches, scratchpads and registers A cache is a local memory that trans-
parently stores data so requests to the same or a nearby memory address can
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be sent to the processor faster. A coherence protocol can be used to maintain
consistency of cached data. The exact type of memory consistency depends on
the memory consistency model [1] implemented by the protocol. A scratchpad is
another type of high-speed local memory. In contrast to caches, data is moved
to and from scratchpads via data transfer instructions. They must therefore
be managed by a runtime system or explicitly by the programmer. Finally, the
memory closest to the processor – registers – is managed automatically by the
compiler or manually by assembly programmers.

Main memory Multiple processing elements must be able to communicate
among each other and with main memory. This raises the question whether the
main memory should remain centralized or be distributed with the processing
elements. MIMD systems is therefore further classified according to the memory
architecture.

A system having a one or more shared memories is called a shared memory mul-
tiprocessor. There are two possible access policies when memory is distributed.
With a private access policy, the memory can only be directly accessed by its
associated processing element. This is known as distributed memory. With
a shared access policy, a global address space makes the distributed memories
accessible to all processing elements. This is called a distributed shared memory.

Processor/memory bandwidth is typically a limiting factor for the performance
of shared memory multiprocessors. When memory is distributed with the pro-
cessing elements, the memory bandwidth grows with the number of processing
elements. Distribution of memory therefore allows systems with more proces-
sors.

The access time from a processor to a memory location depends on how close
the processor is to the memory. Shared memory multiprocessors have uniform
memory access times, UMA to main memory. With distributed memory, proces-
sors have non-uniform memory access times, NUMA. To mitigate NUMA effects,
processors in a distributed-shared memory system have caches and a protocol to
keep them coherent. These are known as cache coherent non-uniform memory
access systems, ccNUMA.

Hybrid memory architectures are also possible. A system may consist of a set
of homogeneous general purpose cores connected to one or more accelerators.
The cores may access centralized shared memory whereas each accelerator may
have its own memory. Figure 2.2 on the facing page shows four distinct memory
architectures. One architecture is fully centralized, two are distributed and one
is a hybrid between a centralized and a distributed architecture.
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(a) Centralized shared mem-
ory.

PE1 PE2

M1 M1

(b) Distributed shared mem-
ory.
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(c) Distributed memory.
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M
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(d) Hybrid between central-
ized and distributed memory.

Figure 2.2: Four different memory organizations.

2.2 Programming Models

The architecture of a parallel computer defines an interface between the software
stack and the hardware that executes it. Similarly, a programming language
and the libraries available define an interface between the programmer and the
system being programmed.

The programming model is the abstraction or conceptualization of the underly-
ing system that is presented to the programmer. The hardware/software inter-
face presents a programming model for developers of hardware specific software
such as of compilers, assemblers, operating systems and device drivers. The
choice of programming language and libraries defines the programming model
for application programmers. This section is about the latter kind.
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Programming models differ greatly in terms of programmer productivity, safety,
availability, compatibility and execution speed. The interplay between these at-
tributes is intricate. For instance, parallel programming models must carefully
balance the opacity and visibility of the system architecture – non-essential de-
tails and idiosyncrasies should be hidden while features to enable the full com-
putational power of the hardware must be exposed. The programming model
also determines how program parts executing in parallel communicate and which
synchronization constructs are available.

Programming models typically support one of the following memory abstrac-
tions – shared memory or distributed memory. The memory abstraction usually
reflects the memory organization of the system but it is not necessarily so. For
instance, a programming model can provide the programmer with the abstrac-
tion of a distributed memory on a shared memory multiprocessor. Software
distributed shared memory middleware can provide the opposite: the abstrac-
tion of shared memory on a system with distributed memory [132].

Communication through shared memory has been compared to the use of a
bulletin board [50]. Information is exchanged by posting data to shared locations
which are agreed upon by the sender and the receiver.

In shared memory programming models, parallelism is introduced by running
multiple threads inside a single process so threads can communicate directly
using ordinary loads and stores. This is possible since threads share the address
space of the parent process. Typically, a single master thread executes the
sequential tasks in the program. When several tasks can execute in parallel,
the master distributes them to a set of worker threads including itself. This
is the fork step. The master then waits before all worker threads have run to
completion before executing the next sequential task. This is the join step. This
is known as fork-join or master-worker parallelism.

With distributed memory programming models, communication is commonly
implemented as point-to-point transfers between two or more processing ele-
ments. This is known as message passing. It is conceptually similar to the
exchange of letters that explicitly name the sender and receiver of the informa-
tion [50]. Since there is no shared address space, all exchange of information
and synchronization must happen via exchange of messages.

During execution, multiple instances of the same message passing program are
run with different parameters that cause each process to operate on different
data. This approach is known as single program, multiple data, SPMD. The
exchange of messages is typically done via system call or by calling a library
function. Thus, a single information exchange has much higher overhead than
executing a pair of load and store instructions. The programmer can amortize
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the communication overhead by sending a few large messages rather than many
smaller ones.

The shared memory programming model is a simple extension of the sequential
programming model. It allows gradual parallelization of sequential programs
and no special primitives are required to communicate among tasks. The mes-
sage passing programming model requires the programmer to accept more re-
sponsibilities. In return, the programmer is given more flexibility to schedule
the communication and synchronization among processes.

An important difference between programming models based on message pass-
ing and shared memory is that communication among tasks is explicit in the
former and implicit in the latter. With message passing, communication happen
via well known function calls that send or receive messages. With shared mem-
ory programs, communication happens when accessing shared memory. Since
memory which is shared is typically indistinguishable from memory that is pri-
vate to each thread, the accesses that transfer data between tasks are equally
hard to identify.

2.3 Program Analysis

Program analysis refers to techniques that predict safe and computable approx-
imations to the values or behaviors observable during program execution. This
enables program optimization. Program analysis is also used to detect func-
tional defects and security vulnerabilities. To remain computable, all variants
of program analysis can only provide approximate answers [76, 118]. Correct-
ness of compiled programs is more important than efficiency. When a precise
answer cannot be produced, program analysis must therefore err on the safe
side. The relation between a program property and the answers computed by
program analysis is illustrated in figure 2.3 on the next page.

Figure 2.3 highlights another important point. Different techniques may be used
to implement the same program analysis. The implementer must therefore bal-
ance the precision delivered by an approach with its computational complexity.
Modest increases in precision often comes at the cost of significantly increased
computational complexity [75]. The following section introduces data-flow anal-
ysis and design choices that affect its precision and speed.
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property x holds
for program

property x is provable by
analysis y and z

property x is provable by
analysis y

property x is provable by
analysis z

property x does not 
hold for program

Figure 2.3: Program analysis computes approximate answers regarding program
properties. The level of precision and computational complexity varies with the
type of analysis. A gray zone exists where all types of program analysis provides
imprecise but conservatively correct answers.

2.3.1 Data-Flow Analysis

Basic blocks are sequences of instructions that do not contain branches except
for the last instruction in each block. A fundamental type of program analysis
computes the data-flow between basic blocks. In a forward flow analysis, the
exit state – the program state after exiting the basic block – is formulated as a
function of the state at entry to the block. This is the transfer function. The
entry state of a basic block is a function of the exit states of its predecessor
blocks. A join operator is used to combine multiple exit states. This creates a
pair of data-flow equations for each basic block bb.

entrybb = join({exitp : p ∈ predecessors(bb)})
exitbb = transferbb(entrybb)

The transfer function and join operation depend on the type of data-flow anal-
ysis. In a backward analysis, the transfer function and join operation translates
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from the exit to the entry state and the join – or meet – operator computes exit
state from entry states of successor basic blocks.

An iterative algorithm is often used to solve the data-flow equations. In a
forward analysis, the entry state of each basic block is approximated and the
block itself is enqueued in a work list. The exit states are then computed via
the transfer functions and the entry states are updated. The process continues
iteratively until a fix-point is reached. This happens when additional iterations
do not generate any new information and therefore drain the work list.

It must be guaranteed that a data-flow algorithm eventually converges on a
fix-point solution. The domain of the entry and exit states must therefore be
a lattice – i.e. a partially ordered set having an unique least upper bound and
greatest lower bound for any two elements. Further, the transfer function and
join operation must be monotonic with respect to the lattice [118].

A reaching definitions analysis is the textbook example of a forward analysis. It
computes where definitions (assignments) of a variable are used. A live variables
analysis is an example of a backward data-flow analysis. It detects assignments
to variables that are never used. This allows dead assignments to be removed.

2.3.2 Control-Flow Approximation

Data-flow analysis is built on a representation of the program control-flow. The
control-flow may be represented by the control-flow graph, CFG, or the loop
hierarchy tree which itself is based on the CFG. Basic blocks form the nodes in
a CFG. Each basic block is connected to its successor and predecessor blocks
by directed edges that represent the flow of control.

The CFG approximates the actual control-flow. Some edges represent control-
flows which will never occur under execution. This happens because control-
flow analysis does not analyze the conditional expressions controlling condi-
tional branching. Figure 2.4 on the following page illustrates over-approximated
control-flow edges.

2.3.3 Precision of Program Analysis

An advanced compiler performs a hundred or more optimization passes on each
file. Each optimization in turn may require one or more types of program
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if((x % 2) == 0) {

...;

}

...

if((x % 2) != 0) {

...;

}

(a) Source code.

bb1

bb2

bb3

bb4

bb5

(b) Paths through
the code fragment.

Figure 2.4: 2.4a Simple example to illustrate over-approximation of of control-
flow. 2.4b Execution can only follow paths containing both dashed and solid
arrows. Program analysis will report that all the shown paths possible.

analysis. To keep compilation times acceptable, a program analysis must balance
precision and execution time. This section introduces aspects of this trade-off.

Analysis scope The analysis described in the previous section is typically
run on basic blocks inside a single procedure. Such types of analysis are called
intra-procedural. The alternative is to operate on the scope of a translation
unit – a set of files being compiled together – or the entire program. In such
cases, the scope of the analysis may cross procedure boundaries and is therefore
inter-procedural.

Analysis sensitivity Another dimension is the sensitivity of a program anal-
ysis. An analysis is said to be sensitive or insensitive to a program property if
it provides distinct or summarized information about the property. An analysis
is flow -insensitive if it summarizes information across all points in the pro-
gram. Similarly, an analysis is context-insensitive if it summarizes information
about a procedure across all calls to that procedure. Finally, an analysis is
field -insensitive if it does not distinguish between the individual fields of ag-
gregate objects. The time required to perform inter-procedural, context and
flow-sensitive analysis is often unacceptable. Summarizing program properties
lowers the analysis time at the cost of precision.
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Analysis time Another important dimension is the time at which the analysis
happens. Analysis can take place at compile-time, link-time, run-time or post
runtime. The analysis time interacts with the scope of the analysis. For instance,
an analysis of the whole program cannot happen at compile time and must be
deferred to link-time. If the program analysis happens at run-time it is said to
be dynamic and otherwise it called static. Dynamic program analysis directly
adds to the execution time of the program. Static approaches, on the other
hand, can afford to spend more time on analysis since it does not add to the
execution time. Also note that program analysis at compile or link-time happens
before the program is executed in contrast to analysis at run-time and post-
runtime. The former two approaches are therefore unable to take advantage
of information obtained during program execution. The latter two approaches
can do so. Both the program source code and profiling provides information
to program analysis. Additionally, the source code may contain programmer
inserted annotations that assist the analysis.

2.4 Program Optimization

The primary goal of program optimization is to improve a programs use of com-
putational resources while preserving its functionality. Some optimizations seek
to minimize the use of resources such as memory, power, communication and
execution time. Others seek to maximize the use of caches and the available pro-
cessing elements. Finally, many optimizations – especially those transforming
loops and inlining functions – have an important secondary effect: they create
additional opportunities for other types of optimizations. Loop unrolling, for
instance, lowers the control overhead in frequently executed loops by duplicat-
ing the loop body. This increases the basic block representing the loop body
and in turn benefits the instruction scheduling optimization. Loop unrolling
also illustrates the time-space tradeoff involved in program optimization. When
applied successfully, loop unrolling decreases the execution time of the loop but
it also increases the code size.

Hotspots and Liveness Temperature is used as an metaphor for the execu-
tion frequency of code. If an instruction or sequence of instructions are executed
frequently, it is considered hot. Analogously, instructions which are infrequently
executed are cold. Similarly, liveness is used to describe whether instructions
are redundant or not. Instructions computing a result that is never used are
said to be dead. Instructions that are unreachable in the control-flow of the
program are also considered dead.
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As a rule of thumb, programs follow the 90/10 rule [125]. For instance, 90%
of the execution time may be spent executing just 10% of the code. These
frequently executed parts are known as hot spots. Obviously, the optimization
effort should target these to be effective. Hot spots can be found by profiling
the program and re-optimizing the program based on the profiling data. Alter-
natively, hot spots can be estimated via program analysis. Basic blocks nested
inside several loops, for instance, are likely to be hotter than basic blocks outside
loops. Optimization can also happen at runtime and this allows optimization of
instruction sequences as they become hot.

Roles of compilers and programmers Optimization can be done by the
compiler, the programmer or both. While programming, the programmer can
manually optimize the source code. Unfortunately, manual optimization tends
to make the source code less readable. Rather than optimizing the source code
directly, the programmer can insert annotations. These direct how the compiler
should optimize the source code. Finally, optimization can be performed in
a mostly transparent manner during compilation, link or runtime. Generally
speaking, the automatic approaches do not obscure the source code and require
only modest or no programmer effort. The likelihood that errors are introduced
during optimization is therefore much smaller with automatic techniques.

The need for manual optimization is reduced but not removed by automatic op-
timizations. Automatic optimization relies on program analysis. Opportunities
for optimization are necessarily missed since analysis results are approximate.
In such situations, the programmer can either optimize by hand or annotate and
refactor the source code to make it amenable to program analysis. Annotations
are most attractive since they do not obscure the source code. Further – unlike
manual optimization – it is not completely left to the programmer to preserve
program correctness. Finally, annotated code is transformed automatically so
errors are not introduced by the programmer at this step.
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Exploiting Parallelism

As mentioned in the previous chapter, multi-core processors are now common-
place. Software written for sequential processors need to be modified to to
expose parallelism to multi-core processors. This chapter is concerned with the
conversion of sequential programs into parallel ones. Programs contain paral-
lelism at different levels of granularity and regularity. Some types of parallelism
can be exploited automatically while others must be addressed by the program-
mer.

Manual and automatic approaches to exploit parallelism are covered by this
chapter. It builds on the material introduced in the background chapter. Sec-
tion 3.1 revisits program analysis and optimizations with a focus on automatic
parallelization. Section 3.2 expands the background on programming models by
introducing three concrete parallel programming models.

3.1 Automatic Parallelization

Automatic parallelization is attractive since the compiler or runtime system
must shoulder the burden of finding and exploiting parallelism – rather than the
programmer. Writing sequential code is hard in the first place. Programmers
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must address several concerns such as correctness, maintainability, flexibility,
portability, readability and testability [111]. Parallel programming adds a new
dimension to many of these concerns. This may explain the substantial research
efforts to lower the burden of parallel programming.

With automatic parallelization, the programmer writes sequential code. A com-
piler or runtime system then analyzes the code to discover parallelism. This is
in contrast to manual approaches where the parallel tasks are explicitly marked
in the source code.

Programs can contain recognizable, implicit parallelism in one of two ways.
First, programs may be constructed out of high-level primitives whose opera-
tions are known to be independent. A built-in function that sums a list is an
example of such a primitive. Many existing codes, however, are not written
this way. Second, many programs contain loops having no inter-iteration de-
pendencies or which can be transformed to remove such dependencies. Many
optimizing compilers are able to recognize and generate parallel code for these
loops. This section covers program analysis and program optimizations that
enable automatic loop parallelization and vectorization.

3.1.1 Program Analysis for Automatic Parallelization

Before a loop can be automatically parallelized by the compiler, it must un-
dergo several types of program analysis. These include alias analysis, induction
variable analysis and dependence testing. The sophistication of each analysis
step varies from one compiler to another which leads to varying strengths and
weaknesses among different compilers.

After introducing dependencies, this section describes three types of program
analysis. When combined, they allow automatic loop parallelization. These are
dependence testing, alias analysis and induction variable analysis.

Dependencies The notion of dependence is central to both automatic and
manual parallelization [14, 15]. Parallel execution causes instructions to be re-
ordered. Dependencies among instructions prevent reordering. Programs con-
tain two kinds of dependence: data dependence and control dependence.

An operation o1 is control dependent on operation o2 if the latter determines
whether o1 should execute or not. Control dependencies originate from condi-
tional statements and loops. Control dependence can be transformed into data
dependence [123, 15]. This can increase the scope of data dependence analysis.
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Two operations are data dependent when they access the same storage location
and at least one of the accesses is a write. Three types of data dependence exist.

Read-after-write This dependence transfers data which typically prevents re-
ordering. This is called a true or flow dependence. Special cases exists
where reordering is still possible. For instance, true dependencies can be
reordered when the sequence of updates forms a recurrence relation.

Write-after-read No data is transferred among the operations. The opera-
tions cannot be reordered since the read could then receive the wrong
value. The dependence can be removed by renaming the target of one of
the accesses. This is also called an anti dependence.

Write-after-write Like an anti-dependence, there is no transfer of data. Re-
ordering of the operations is prevented unless the target of one of the
accesses is renamed. This is also called an output dependence.

Anti and output-dependencies can be classified as name dependencies since they
are arise from name (resource) conflicts rather than data transfer.

The above classification assumes that the storage locations accessed are internal
to the program. When accessing variables that are visible outside the program,
reordering is not legal. For instance, accesses to storage locations used for IO
must be performed in program order.

Data dependencies in loops The execution time of many programs is con-
centrated in iterative computations such as loops. Parallelization of loops may
therefore result in a significant performance increase over sequential execution.
Being able to reorder the execution of loop iterations is a requirement for au-
tomatic loop parallelization. Dependencies between instructions in loops are
therefore important.

Loops are different from straight line code in two respects. Loops execute the
statements in their bodies repeatedly. Typically, they also access subscripted
variables such as pointers and arrays. The subscripts used to access arrays are
often linear functions of the loop counters. Such loops form a regular pattern
of computation.

A statement can be nested inside n loops. A statement instance refers to the
execution of the statement in a given loop iteration. Statement instances can
be identified by a n-dimensional iteration vector where each loop corresponds
to a dimension in the vector. For example, S(1, 2) refers to the execution of a
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statement S in a doubly nested loop during the first iteration of the outer loop
and the second iteration of the inner loop.

Dependencies in loops can be divided into intra-iteration or inter-iteration de-
pendencies. The former occur between statement instances with identical it-
eration vectors. The latter describe dependencies between statement instances
with different iteration vectors.

Dependencies between two memory accesses in a loop may also be characterized
by distance vector. Distance vectors must be lexicographically positive. For
instance, the dependence vector between a read from an array arr[i,j,k] and
a write arr[i+1,j,k-1] is (1, 0,−1). The direction vector is an abstraction
of the dependence vector, which only indicates the direction of the dependence
in each dimension. The direction vector corresponding to the distance vector
(1, 0,−1) is (<,=, >).

Dependencies can be analyzed by a dependence tester during compilation or
manually by the programmer [110]. They can also be analyzed via runtime
layer [136, 140], hardware support [125], or a combination thereof [71, 138, 128,
161].

Dependence testing When array subscripts are affine functions of the loop
iteration, dependence testing can be done by the compiler. Such a loop is shown
in listing 3.1.

Listing 3.1: Example loop

1 for(i = 0; i < N; i++)

2 for(j = 0; j < M; j++)

3 /* (1) (2) */

4 data[i][j] = data[i][j-k] + 1;

The loop nest contains a statement with two memory accesses labeled 1 and 2
respectively. Let i1 and j1 be the values of variables i and j in array reference
1. Similarly, let i2 and j2 be the values of i and j in reference 2. Dependence
testing of the loop is then equivalent to finding integer solutions to the following
set of linear equalities and inequalities:



3.1 Automatic Parallelization 25

i1 = i2

j1 = j2 − k

0 ≤ i1, i2 ≤ N

0 ≤ j1, j2 ≤M

This is also known as a dependence problem. Exact solutions to such problems
can be found with integer linear programming [60]. Unfortunately, integer pro-
gramming is NP-complete [37]. Many approximate or specialized dependence
tests have therefore been developed [16, 25, 57, 133, 126, 105].

Compilers may take a divide-and-conquer approach to dependence testing. Spe-
cialized and inexpensive tests are applied first. If any data references are un-
resolved after these tests, a more general and expensive test is applied. Mea-
surements have shown that this strategy is effective since simple cases are most
common [67].

The per-iteration increment or decrement of the loop counter is called the loop
stride. Dependence tests are often based on the assumption that loops have
unit strides [67]. Loops with non-unit strides must therefore be normalized – at
least during dependence testing.

Alias analysis Programming languages lets programmers assign symbol names
to memory locations. The naming method allows multiple symbols to name –
or alias – the same memory location. Given a pair of memory accesses, an alias
analysis attempts to determine their aliasing relation. There are three possibil-
ities: no alias, must alias and may alias. When the alias information cannot be
determined, the alias analysis returns may alias, which is conservatively correct.
Other types of program analysis rely on alias analysis to disambiguate symbol
names [115]. For automatic parallelization, dependence testing must use alias
analysis to determine if references to pointers and arrays may alias.

The aliasing problem is undecidable [134, 137] and alias information is necessar-
ily approximate. As a result, many different types of alias analysis algorithms
exist. They differ in their level of precision and computational complexity [75].
Compilers must be able to compile millions of lines of source code in reasonable
time. Hence, they often use a fast and less accurate alias analysis by default [74].
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Induction variable analysis Symbolic analysis seeks to express the value
of variables as functions of program input and other – reference – variables.
Induction variable analysis is such an analysis. Induction variable analysis is
an important analysis for automatic loop parallelization [163, 130] – as well as
many other optimizations such as strength reduction, loop nest transformations
and bounds check elimination.

The purpose of induction variable analysis is to approximate the evolution of
values inside loops. Given a set of constants c0, c1, . . . , cn and reference vari-
ables r1, r2, . . . , rn, the expression c0 + c1r1 + c2r2 + · · · + cnrn is affine. The
array subscript expressions are often affine. Representing these values as affine
expressions of reference variables is therefore of special interest. Induction vari-
ables are those whose values can be expressed as a function of the iteration
count of the closest surrounding loop [7]. Such functions are called closed form
expressions.

Consider the following loop: for(i = 0; i < N; i++) { j++; ... }. It con-
tains inter-iteration flow and name dependencies on j. The dependencies can
be removed by expressing j as a function of i (the reference variable). This can
allow automatic parallelization. Replacing induction variables with their closed
form expressions is called induction variable substitution. Induction variable
analysis is a prerequisite to this transformation.

To parallelize a loop, the number of iterations must be countable. A loop is
countable when the number of iterations can be expressed as i) a constant; ii) a
loop invariant expression; or iii) a linear function of surrounding loop counters.
For countable loops, the number of iterations can be determined by analyzing
the loop exit conditions. To compute the evolution of some scalars, induction
variable analysis also needs to compute the number of loop iterations. This
eliminates the need for a separate analysis to compute loop iterations.

A reduction is a set of updates to a single location of the form var = var op . . .
where op is a binary associative operation such as arithmetic addition and mul-
tiplication and var is a scalar or array. Like induction variables, reductions
form a recurrence relations that must be transformed to allow parallelization.
A symbolic analysis similar to that which recognizes induction variables is used
to recognize reductions [9, 131].

Like alias analysis, induction variable analysis may be unable to properly an-
alyze the code. For instance, when induction variable analysis happens, the
code is already transformed by prior optimizations. This may jumble the code
seen by induction variable analysis. An additional challenge when transform-
ing induction variables is to preserve the effects of types and the behavior of
overflows [130].
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3.1.2 Code Transformations for Automatic Parallelization

Automatic parallelization relies on code transformation to increase performance
and to facilitate further analysis.

Once program analysis has proved that parallelization of a loop nest is legal,
the code can be transformed to increase performance. Parallelization can target
multiple threads or a vector unit. Auto-parallelization normally refers to multi-
threaded code generation. The more precise term threadization is used by some.
Vectorization refers to code generation for vector units. Auto-parallelization
and vectorization of the same loop or loop nest is sometimes possible.

Auto-parallelization Compilers typically transform loops using fork-join style
parallelism. The compiler must insert code to start multiple threads before the
loop and additional code to join the threads after the loop. The compiler must
also arrange for loop iterations to be distributed among threads. OpenMP al-
ready includes such functionality. Hence, many compilers reuse parts of the
OpenMP runtime for auto-parallelization.

Vectorization Two types of vectorization are possible: loop vectorization [24,
56] and vectorization of basic blocks [99, 90]. Only the former type will be
discussed here.

Loop vectorization exploits SIMD parallelism by executing multiple loop itera-
tions in parallel. Vectorization has traditionally targeted innermost loops but
outer loop vectorization is also possible [120]. The number of iterations exe-
cuted in parallel is called the vectorization factor. It depends on the width of
the vector units as well as the size of the data types being operated on. For
instance, a 128-bit vector unit and a loop that operates on 32-bit data types
yields a vectorization factor of 4. The higher the vectorization factor, the higher
is the potential speedup over sequential execution.

Vector units execute specialized vector instructions. Several loop transforma-
tions are necessary before vector instructions can be generated. Vector in-
structions are subject to memory alignment constraints. Accessing data not
aligned on a natural vector boundary is either prohibited or carries a perfor-
mance penalty. Alignment issues can be handled by special instructions to
reorder or shuffle data once it has been loaded but degrades performance. In-
stead, alignment can be analyzed statically or dynamically and loop peeling can
remove unaligned loads from the loop to be vectorized [100].
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Vector loads and stores must also access consecutive, vector-sized storage loca-
tions. However, loops that operate on images or complex numbers often lead to
strided access patterns. This must be addressed via platform specific instruc-
tions for data manipulation – i.e. packing and unpacking – or additional loop
transformations [119].

Two additional loop transformations are applied before vector instructions can
be generated for the loop. These are strip mining and loop distribution [88].
Strip mining transforms a single loop into two nested loops. The inner loop
iterates over strips whose length equals the vectorization factor. Loop distribu-
tion splits the body of the newly created inner loop into several simpler loops
so each corresponds to a single vector operation.

Facilitating transformations Control-flow in loops can prevent automatic
parallelization and vectorization. Dependence tests can only analyze a limited
class of loops with control-flow. Furthermore, loop vectorization requires that
the flow of control does not diverge between loop iterations executed in parallel.

If-conversion transforms control dependence into data dependence [123]. It re-
moves conditional branches and propagates the conditions to the successor basic
blocks. In the successor blocks, assignment statements are changed to condi-
tional assignment statements using the propagated condition. Finally, control-
flow is removed by merging the affected basic blocks. Loop unswitching [115] is
a related transformation. It hoists loop-invariant branches out of a loop body
and replicates each execution path as an independent loop in each branch. This
increases the code size but decreases the instructions executed and facilitates
parallelization.

Loop normalization was mentioned in the previous section. It changes loop
bounds, strides and expressions involving the loop counter so that the loop
counter counts from 0 (or 1, depending on the language) in steps of one [88].
This simplifies dependence testing since it does not have to account for variations
in loop bounds and strides.

The inline expansion or function inlining [115] transformation replaces a func-
tion call with the body of the callee. It lowers the overhead associated with a
function call. It removes function call and return instructions as well as func-
tion prologues and epilogues. Inline expansion also enables the caller and callee
to be analyzed as a single entity. This is important to allow parallelization of
loop bodies containing function calls. When a dependence tester encounters a
function call in a loop body, it will assume that inter-iteration dependencies are
possible since the function call can have side-effects. Functions that are known
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to have no side effects – pure functions – do not prevent parallelization. With
inline expansion, the function body rather than the function call becomes visi-
ble during dependence testing. It can therefore analyze the code as if there had
been no function call.

The above mentioned transformation enable dependence testing. If depen-
dencies are identified, additional loop transformations can in sometimes re-
move these. These transformations include loop reversal, skewing and peel-
ing [122, 115, 88].

Profitability Auto-parallelization and vectorization adds additional compu-
tation to programs. The overhead sometimes outweighs gains from parallel ex-
ecution. Hence, these optimizations are not guaranteed to be profitable. Com-
pilers may therefore refrain from optimizing even when doing so is legal. For
auto-parallelization, the overhead originates from forking and joining threads
and from distributing work among threads which may require synchronization.
For vectorization, if-conversion, loop transformations and vector instructions to
rearrange unaligned data also create additional computation.

Compilers use a cost model to estimate if an optimization is profitable. Some
cost models are static and work by analyzing the code at compile time and mak-
ing informed guesses. Static cost modeling can benefit from program profiling
information. Cost models can also be dynamic. With a dynamic cost model, the
compiler may generate a sequential and a parallel version of a loop for instance.
This is called loop versioning. A runtime check selects a loop version during ex-
ecution. The runtime checks may analyze iteration counts, aliasing, alignment
and features of the processing elements. If the time to evaluate the dynamic
cost model outweighs the benefits of parallelization, performance is degraded
nevertheless. As with other types of program analysis, programmers can supply
information about the profitability of an optimization. The following section
shows how programmers can transfer information to program analyzers.

3.1.3 Annotations and Compiler Options

There are two commonly used mechanisms with which the programmer can
provide information to program analyzers. These are annotations and compiler
options. Options state facts that hold for across a source file or across an entire
code base. Annotations are put directly in the source code where they provide
fine-grain information about individual functions, loops or variables.
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The syntax used for annotations is dependent on the programming environment.
Programming languages such as Java, Python and C# support annotation of
classes, functions and function parameters as part of their core language syntax.
Some languages also allow special source code lines – called pragmas in C,
Objective-C and C++ – to be embedded at arbitrary places in the source code.
If the compiler does not know how to interpret a pragma, it is simply ignored.

The C99 language standard – formally ISO/IEC 9899:1999 – added the restrict
pointer qualifier[84]. Semantically, if memory addressed by a restrict qualified
pointer is modified, no other pointer is used to access that memory [41]. The
compiler can therefore assume that no dependencies exist between two accesses
to restrict qualified pointers. Dependencies can still exist between two ac-
cesses to the same restrict’ed pointer. Programmers can use the restrict

qualifier to rule out data dependencies that would otherwise prevent automatic
parallelization. Only pointers can be qualified although objects with other data
types may also alias. Several compilers also recognize the restrict syntax
outside C99 mode.

Compilers also define non-standard extensions to the language syntax. In con-
trast to the annotation constructs defined by the programming language, the
use of such extensions lead to non-portable code. The extensions, however, may
prove sufficiently useful to be included in revised language standards. Several
non-standard annotations help automatic parallelization. For instance, func-
tions have side-effects if they modify global variables, perform IO operations,
etc. Unless a dependence tester knows that the target of a function call is pure
or constant it must assume that side-effects from the call prevent parallelization.
The programmer may use non-standard annotations to specify that a function is
constant or pure. A constant function may modify its parameters but no other
program state. Pure functions are entirely free from side-effects.

Many compilers also support an annotation that overrides data dependence
testing in part or altogether. For instance, an annotation may specify that loop
iterations are independent, that no dependencies exist unless the dependence
test can prove the opposite or that dependencies that exist can be ignored [46,
45, 42]. Compared to manual parallelization, these annotations let the compiler
decide if and how to exploit the parallelism.

The last kind of annotation to be discussed here targets the profitability of
parallelization. Compilers may recognize annotations of minimal and maximal
iteration counts of loop. This helps static cost models estimate the benefit of
automatic parallelization when profiling information is unavailable. Alterna-
tively, the programmer may directly specify whether parallelization is profitable
or not. Finally, the cost model may benefit from information about the target
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hardware. For instance, this makes runtime checks for the presence and type of
vector units superfluous. Such information is passed via compilation flags.

3.2 Manual Parallelization

Manual parallelization is an alternative to automatic parallelization. To par-
allelize a program, the programmer must at least i) identify tasks that can be
executed in parallel; ii) choose a parallel programming model; and iii) decom-
pose the program into independent sub-tasks as prescribed by the programming
model.

This section introduces sub-task decomposition and three programming models
commonly used for manual parallelization: two shared-memory models and one
based on messages passing.

3.2.1 Decomposition

Once parallelism has been discovered, it can be used to speed up program execu-
tion by performing independent operations in parallel. The best way to exploit
parallelism depends on its type and granularity. Fine-grain instruction-level
parallelism, ILP, can be exploited automatically. For instance ILP can be ex-
ploited by compilers via static instruction scheduling. Processors also exploit
ILP via pipelining, multiple-issue, out-of-order execution and speculation [125].

Programs are naturally composed of instructions, so ILP can be exploited with
no further decomposition. To exploit parallelism at the level of entire instruction
sequences, the entire program must be decomposed into sub-tasks so work can be
distributed among multiple processing elements. Several partitioning strategies
exist. The best program decomposition varies from program to program. Often,
programmers need to test several partitioning strategies to determine which
works best. The partitioning strategy determines how many processing elements
can be used simultaneously to speed up the computation. This is known as the
degree of concurrency.

Programs are often decomposed using one or more of these partitioning strate-
gies [91, 110]:

• Data decomposition This strategy works well when the application
works on large data structures such as those found in image processing
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programs or scientific computing. Parallelization of loops is often based
on data decomposition. This leads to a high degree of concurrency. The
textbook parallel programming example – matrix multiplication – uses
data decomposition.

• Recursive decomposition A recursive decomposition is based on the
divide-and-conquer strategy. It is suitable when it is natural to decom-
pose the overall problem into similar sub-problems which can be solved
independently. Parallel sorting algorithms typically use this strategy.

• Exploratory decomposition This strategy is similar to recursive decom-
position in its structure. In contrast to recursive decomposition, which is
suitable for sorting, exploratory decomposition is often used for searching.
The main difference is that with recursive decomposition, all sub-tasks
must be solved. With exploratory decomposition, computation finishes
once the first sub-task finds a solution.

• Structural decomposition Recursive and exploratory decompositions
are both instances of structural decompositions and many more variants
exist. Pipelining is another general approach that may be used to partition
a program based on its overall structure.

A decomposition, which exposes plenty of parallelism, does not guarantee opti-
mal program performance. The sequential code on which the parallel code was
derived should be carefully optimized as well. In computers with a centralized-
shared memory, parallelization increases the computing resources available to
the application while bandwidth to main memory remains unchanged. It is
therefore important that parallel applications are optimized to make good use
of the memory hierarchy [110]. Minimizing the interactions between tasks is also
important. The speedups from parallelization are easily eroded if tasks spend
their time waiting to communicate with other tasks.

3.2.2 Threads

As mentioned in section 2.2, shared-memory programming models use threads
to implement MIMD parallelism whereas message passing models use processes.
Processes and threads differ several ways. A process can be independent while
a thread is part of a process. Each process has a separate virtual address space
whereas all threads in a process share its address space. This enables threads to
communicate directly via shared variables. In contrast, processes must interact
via system-provided inter-process communication mechanisms.
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POSIX threads The Portable Operating System Interface, Posix, is a stan-
dardization of the interface between applications and operating system belong-
ing to the Unix family. Most importantly Posix contains an API to create and
manage threads, Posix.1c, which is also known simply as pthreads [78].

The pthreads API includes functions create, synchronize and deallocate threads.
When starting a new thread, the programmer must specify its entry point by
passing a function pointer to the pthreads create function. To parallelize a
program, the programmer must split parallel sub-tasks into new functions which
serve as entry points for threads. The process of splitting a code region into
a new function fnout and replacing the region with a call to fnout is called
function outlining.

In parallel programs, tasks executed by different threads are not related by
program order. Synchronization must therefore be used to enforce an ordering
between the instructions in different tasks. The pthreads API provides several
low-level synchronization primitives. These include mutexes, locks, semaphores
and barriers [73].

3.2.3 OpenMP

A thread is a flexible but low-level primitive for parallel programming. It can be
argued that threads should not be used directly by the programmer. Program-
mers should rather use higher-level abstractions that can be mapped to threads
by an underlying runtime [103, 51].

OpenMP [152] follows that philosophy. OpenMP is a set of compiler directives
and API’s that lets programmers direct the compiler on how to parallelize the
code. Like pthreads, OpenMP is a shared memory programming model based
on fork-join parallelism. Unlike pthreads, which relies solely on library func-
tions, OpenMP uses directives as the primary way to direct the parallelization.
This raises the abstraction level. For instance, the programmer does not manage
threads directly. For C and C++, these directives use the previously mentioned
pragma mechanism.

Support for incremental parallelism is a key feature of OpenMP. Directives
can be added gradually starting from a sequential program while retaining the
possibility of sequential execution. In many cases, the compiler can generate a
sequential program by simply ignoring the OpenMP directives.

Parallelization of loop nests is an area where OpenMP excels [51]. A loop is
made parallel by inserting a single line – #pragma omp parallel for. Unlike
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pthreads, the programmer must not create a function outline for the loop.
Rather, this is handled by the compiler.

The variables accessed in the loop can either be private to each thread or shared
among them. The omp parallel for directive lets the programmer declare
shared and private variables. Again, the declarative approach saves time com-
pared to pthreads, which offers no assistance with variable scoping.

Finally, the programmer must schedule loop iterations among the available
threads. OpenMP also handles scheduling declaratively. The omp parallel

for directive has a schedule clause to select among five built-in schedules.
This is also a timesaver for programmers since the schedules are non-trivial to
implement.

3.2.4 Message Passing and MPI

Message passing is an important communication method since it allows the
exchange of information between two logically or physically separate entities.
Message passing is commonly used to write parallel programs for computers
with physically distributed memories.

In its most basic form, data is transferred from a named sender to a named re-
cipient in a one-to-one exchange. The sender performs a send operation and the
recipient performs a receive. Some message passing implementations also offer
one-to-many (broadcast and scatter), or many-to-one (reduction and gather)
operations. The operations are typically available in both synchronous and
asynchronous versions. A synchronous pair of send/receive operations define
a synchronization point between the two entities. The operation requires no
buffering since the sender remains blocked until the transfer completes. If the
synchronous send/receive pair is not executed simultaneously, the sender or re-
ceiver must wait for the other party.

The message passing interface, MPI [149] is the de-facto standard API to im-
plement message passing. MPI was developed for supercomputers and therefore
emphasizes performance, scalability and portability. Several MPI implementa-
tions targets embedded systems [4, 142, 162].

While the message passing programming model allows very good scalability and
flexibility, it also requires more programmer effort than shared memory models.
Most importantly, the programmer must explicitly orchestrate communication.
This takes substantial effort and increases the code size at the cost of readabil-
ity [139, 32].



Chapter 4

Modeling Embedded Software

This chapter explains why and where task graphs are used to model embedded
software. Section 4.1 motivates the need to model embedded systems. Two ways
to automate embedded design are then discussed in section 4.2. Both techniques
use task graphs to model the parallelism, communication, and synchronization
in embedded software. Task graphs are discussed in section 4.3. Finally, section
4.4 explains the challenge of extracting task graphs from source code.

4.1 Embedded Systems

Embedded systems are seemingly similar to other types of computers. Most
computers, for instance, are programmed using similar languages and tools. The
focus on power efficiency and resulting transition toward parallel architectures
is another similarity. Raw performance has always been less important than
performance per watt for embedded systems. Now, power efficiency is a key
concern for personal computers, servers and super-computers as well [11]. Yet,
several aspects of embedded systems remain different from other computers.
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Mobility Embedded systems are often mobile and battery powered. In con-
trast, stationary computers are typically connected to a power grid and can
consume hundreds of watts. The power budgets of mobile devices are therefore
orders of magnitude smaller than stationary devices. Moreover, the size and
capacity of the battery contributes significantly to the weight and cost of the
device.

Real-time requirements Embedded systems typically interact with their
physical environment. Sensors collect data and actuators respond to stimuli.
For instance, an embedded device can visually inspect items on a conveyor belt
passing under a photo sensor. When detecting a faulty item, the embedded sys-
tem triggers a mechanism to remove it from the belt. Embedded systems must
therefore respond within limits imposed by their surroundings. Such systems
are called real-time systems. For hard real-time systems, the response is worth-
less once the deadline has passed. With soft real-time systems, results delivered
past the deadline are merely inconvenient. To ensure timely responses, upper
bounds on the program execution times must be established. Such a bound is
known as the worst-case execution time, WCET.

Specialization Embedded systems are often specialized to serve a single pur-
pose in a highly efficient manner. In the conveyor belt example, the system
needs only inspect items visually and remove faulty items. Media players, net-
work appliances and digital cameras are other examples of highly specialized
devices. In contrast, personal computers are sufficiently general and extensible
to serve numerous purposes.

Cost sensitivity The number of embedded processors manufactured each
year dwarfs the volume of desktop and server processors. Manufacturer of em-
bedded chips, ARM Holdings, estimates that 4 billion ARM processors were
sold during 2010. In comparison, the worlds largest maker of processors for
personal computers, Intel Corporation, sold hundreds of millions desktop and
server processors in the same year [160]. For high volume products, component
costs contribute significantly to the overall manufacturing cost. These forces
increase the specialization of processors for embedded systems. As a result, the
processors used in embedded systems vary significantly in terms of cost and
features.

Design window Consumer electronics have short product cycles and the com-
petition is intense. HTC, a taiwanese maker of smart-phones, launched eighteen
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new hand sets on four different mobile operating systems in 2010 [158]. In such
markets, shorter times to market equals higher returns on investment.

In summary, the design of embedded systems are subject to a wide range of
design goals. These include energy efficiency, short and predictable response
times and low component cost. Finding a good trade-off among these is a non-
trivial task. As difficult as the design task may be, market forces requires that
embedded systems have a short time to market. The next section, discusses
ways to accelerate embedded systems design. The idea is to use heuristics to
explore a search space and thereby find candidate designs faster.

4.2 Applications of Task Graphs

Researchers have sought to automate many aspects of embedded systems design.
Design automation is attractive since it potentially saves time, removes human
bias, generates reproducible results and scales to large problem sizes.

Analytical approaches to design automation often use task graphs as models
of the coarse-grain computation and communication within embedded software.
The following sections highlight two types of design automation which use task
graphs as models of embedded software. The first is design space exploration
at the system level and the second is static task scheduling.

4.2.1 Design Space Exploration

Embedded system designs are often quite complex. Cars, for instance, con-
tain between thirty and a hundred microprocessors and tens of millions lines of
source code to control the engine, brakes, airbags, windshields, etc. [34]. Within
the domain of network processors, studies have shown that a wide diversity of
designs have been used to implement the same type of system [144]. This variety
may be explained by the use of experience gained from prior, recently completed
project. This means that the range of feasible designs are trimmed based on
previous, beneficial decisions and the designers preferences, even if they are sub-
optimal for the current project. The quality of the design resulting from such
ad-hoc design approaches are likely to be inferior to systematic search for – and
evaluation of – feasible designs.
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Evaluating a design point There are several ways to evaluate a candidate
design. The evaluation can use benchmarking, simulation, analytical evalua-
tion or a combination of these. Each approach offers distinct advantages and
drawbacks. Benchmarks accurately show how select applications perform on a
specific hardware platform. However, evaluation via benchmarking is only feasi-
ble when the target platform is available. Actual hardware is often unavailable
early in the design process.

Simulators are typically available before the actual hardware. Simulators mimic
the target platform with varying degrees of accuracy. Simulation, however, is
orders of magnitude slower than hardware execution. This especially so for
parallel hardware designs which are often simulated by serializing work which
hardware would execute in parallel. Designers of embedded systems must choose
an acceptable tradeoff between the speed and fidelity of the simulation.

Analytical methods are suitable when building a simulator is either too costly or
impractical. They are also suitable when deterministic or worst-case behavior
is the reasonable assumption for the system under design. When applicable,
analytical methods can be used to make early design decisions by identifying
corner cases of candidate designs [68].

Contrary to benchmarking and simulation, analytical approaches do not oper-
ate on the actual software or hardware. Instead, they use abstract models. Due
to their high level of abstraction, the models can be evaluated quickly. The
challenge is to make sure that the models accurately reflect the relevant charac-
teristics of the hardware and software they represent – if not, the results of the
evaluation will be unreliable.

Exploring the design space The inspiration for design space exploration
originates from the field of logic synthesis. The idea is to search for solutions
in a design space by systematically altering the design parameters. By altering
synthesis constraints, for instance, hardware designers realized that the trade-off
between area and delay could be plotted as a curve in the design space defined
by area of silicon and monetary cost.

Design space exploration is used to solve high-level synthesis problems such
as resource allocation and mapping of computation and communication to re-
sources [148, 59]. During the exploration, design parameters are varied for a
fixed problem description. To support decisions early in the design process, the
exploration is often done at the system level [68]. Systematic exploration is of-
ten based on the Y-chart approach [89]. It is named after the Y-like appearance
of its flow chart which is shown in figure 4.1 on the next page.
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Figure 4.1: Y-chart approach to design space evaluation.

With an analytical approach to design space exploration, the description of
architectural building blocks and models of application workloads are stored
separately. Task graphs and variants thereof are often used to model the work-
loads [143, 52, 168, 108, 58, 167]. A mapping step binds tasks to the architectural
building blocks defined in the architectural description. Next, the mapping is
evaluated with respect to an objective function. This function may be a weighted
sum of individual objectives or a true multi-objective function. Objectives in-
clude power dissipation, throughput, latency and cost. Constraints from the
architecture and workload models may influence these steps. Results from the
evaluation step may cause the process to be repeated. In each iteration, de-
signers may adapt the workload descriptions, the mapping strategy and the
allocation (selection) of architectural building blocks. The feedback paths are
shown as dotted arrows in figure 4.1.

4.2.2 Task Scheduling and Feasibility Analysis

Allocating tasks to processors and determining their execution order is known
as task scheduling. Task graphs are the primary model in task scheduling [145].
A task graph is schedulable by an algorithm A if A can produce a valid sched-
ule for the task graph. Typically, scheduling algorithms tries to find a spatial
and temporal assignment of tasks onto a target platform which minimizes the
execution time of the corresponding program.
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The efficiency of parallelization is measured as the speedup relative to the equiv-
alent, sequential program. Multi-processor scheduling has a fundamental impact
on the efficiency of parallelization. Finding the schedule which minimizes the ex-
ecution time is NP-hard in its general form [157]. Consequently, heuristics that
compute near-optimal schedules have been the subject of much research [5, 92].

Task scheduling can either be dynamic or static. With dynamic scheduling, a
runtime system decides which task should execute next each time a process-
ing element finishes executing its current task. Static scheduling, in contrast,
performs processor allocation and ordering prior to execution. Static schedul-
ing has two advantages. First, the mapping and scheduling decisions can take
dependencies and communication between tasks into account. Second, since
scheduling is done ahead of time, the scheduling overhead does not affect the
runtime. Dynamic scheduling on the other hand, does not require that all tasks
are known a priori and allows the schedule to be changed during execution.

Feasibility analysis Task graphs or variants thereof are also used for feasibil-
ity analysis of hard real-time systems [48]. A schedule is feasible if the execution
of all tasks will always meet their deadlines at runtime under all permissible cir-
cumstances. A task graph tg is feasible if there exists a scheduling algorithm
which can compute a feasible schedule for tg. Many variations of this problem
have been studied in the literature [19, 18, 20].

4.3 Task Graphs

Parallel programs are composed of sequential parts or tasks. As mentioned in
section 1.1.1, a task graph is an abstract but accurate representation of paral-
lelism, communication, and synchronization in such programs. It allows tasks
to be described at many levels of detail - ranging from the execution time of a
task to the executable code implementing the task. A single task can represent
anything from a single instruction to long instruction sequences comprised out
of entire loops, basic blocks, etc. The only restriction is that there is no par-
allelism within a task – except among individual instructions. Communication
and synchronization form a dependence relation among tasks. The dependence
relation defines a partial ordering of the tasks. Respecting this order is necessary
to preserve the correctness of the program output.

Formally, a graph is a pair G = (V,E) where V is the set of vertices and
E is the set of edges. Tasks are associated with the vertices of the graph and
dependencies with its edges. The tasks and dependencies form a directed, acyclic
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Table 4.1: Sizes of non-synthetic task graphs. Sources [156, 143, 52]

Application Number of tasks Number of dependencies
GSM Encoder 53 80
GSM Decoder 34 55
MP3 Decoder 16 15
Robot control 88 131
Sparse matrix solver 96 67
SPEC fpppp 334 1145
Telecom transport sys. 1072 N.A.

graph, DAG [40]. Vertices and edges can be associated with computation and
communication costs respectively.

Strictness of tasks Tasks are said to be strict with respect to their input and
output [145]. This means that, conceptually, a task cannot begin its execution
before its input dependencies are satisfied. Likewise, the output generated by a
task is not available until all computation within the task has completed.

Unlike control-flow graphs, the basic task graphs model contains no notion of
branching. This means that a task does not control which of its successors are
part of the program execution. Control structures such as if...else statements
must therefore be encapsulated within tasks or control dependencies must be
converted into data dependence which is directly represented by edges.

4.4 From Source Code to Task Graphs

While useful, task graphs are not easy to obtain. As a testament to this, many
authors use synthetic task graphs such as those generated by the task graphs
for free tool [53] or from the standard task graph set [156].

Some authors argue that task graphs must be manually derived from application
specifications [145, 117, 166]. This approach is impractical, however. Even task
graphs extracted from simple programs contain a substantial number of tasks
and dependencies – see table 4.1. Others have using program analysis to extract
task graphs from source code [159, 47, 141, 6, 2].

Embedded programs are usually expressed in programming languages such as
C or C++. Source codes in these languages partition programs into modules,
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functions and basic blocks connected by control-flow. Task graphs, on the other
hand, are partitioned into tasks connected by edges representing dependencies.
Hence, it is non-trivial to convert source code into task graphs.

Most task graph extraction tools take sequential code as input [159, 47, 141, 6].
These approaches rely on simple automatic parallelization. These tools are
therefore restricted to programs where parallelism can be discovered via program
analysis. Adve and Sakellariou [2] present a tool which accepts explicitly parallel
programs. Specifically, the tool analyzes scientific code written with Fortran
and MPI. Starting from parallel programs makes sense since it decouples the
parallelization process from the task graph extraction process. This leaves the
choice of parallelization strategy – automatic or manual – with the programmer.

While Fortran is popular in scientific computing, embedded software is mostly
written in a combination of C, C++ and assembly [116, 17]. Hence, the research
in this thesis is concerned with programs written in C or C++ and parallelized
– manually or automatically – using OpenMP directives. The OpenMP par-
allel programming model is important for two reasons. First, high-end mobile
devices, such as smartphones and tablets, are now symmetric multiprocessors.
OpenMP is a natural fit for such devices and offers several advantages over hand-
threading as explained in section 3.2 on page 31. Second, unlike pthreads [33],
OpenMP specifies the memory semantics an OpenMP implementation must ad-
here to [152, sect. 1.4.2-1.4.3]. The importance of the second point is explained
in the following.

Memory consistency A memory consistency model [1] is a formal specifi-
cation of how the memory system appears to the programmer. Programmers
may reasonably expect that reads return the value that was last written to that
location. In sequential programs, last is defined by program order. In parallel
programs, however, instructions are only partially ordered – instructions exe-
cuting on different processors are not related by program order. The simplest
extension to the single processor model requires that memory operations appear
to execute one at a time - this is called sequential consistency [93]. Unfortu-
nately, this model prevents hardware and compilers from reordering memory
accesses to improve performance. Several relaxed memory consistency models
exist which allows increasingly more memory reordering.

The relaxed memory consistency model provided by OpenMP is weak order-
ing [1]. This model divides memory operations into synchronization operations
and data operations. Two memory operations are ordered with respect to each
other if and only if one of the operations is a synchronization operation – or a
flush in OpenMP terminology. The weak ordering model allows each OpenMP
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thread to have a temporary view of memory. Each threads view of memory
is not necessarily consistent with the main memory between memory synchro-
nization operations [152]. A thread’s view of memory is made consistent with
the main memory by a flush. Apart from explicit flush’es, many OpenMP
sections imply a flush operation on entry and/or exit.

OpenMP programs as sets of tasks A properly written OpenMP pro-
gram cannot rely on writes by one thread to become visible to another thread
before both threads have executed a flush. In effect, OpenMP programs can
be viewed as being partitioned into a set of of tasks, each of which is a sequence
of instructions delimited by implicit or explicit flush operations. The write
operations in a task does not become visible to its dependent tasks before it
finishes computing and executes a flush operation. This fits in with the task
strictness of the task graph model. It requires that task cannot execute before
all of its inputs are available and no outputs are available before its computation
has finished cf. section 4.3.

4.5 Summary

Embedded systems must be energy efficient, predictable, inexpensive among
other things. Finding a good trade-off between these conflicting goals within
a short time frame is challenging. Analytical approaches help designers evalu-
ate trade-offs and identify corner cases early in the design process. Application
workloads are often represented as task graphs with these approaches. Extract-
ing task graphs from source codes is challenging however. Prior work have relied
on simple detection of parallelism or assume a distributed memory programming
model. OpenMP is the natural programming model for embedded systems that
have symmetric multiprocessor architectures. Further, OpenMP programs can
be viewed as a collection of tasks delineated by memory synchronization op-
erations. One challenge remains, the dependencies among the tasks remains
implicit and must be approximated via program analysis. The approximation
leads to superfluous edges in the task graphs.
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Chapter 5

Motivation

The preceding chapters introduced and provided background material. This
chapter motivates the research presented in the three following chapters.

5.1 The Importance of Feedback

The scientific method use observation as a way to find things out. The central
idea is that observations test predictions. Observations that do not agree with
the predictions causes the latter to be refined or discarded. Observations that
do agree with predictions increases our confidence in the latter. Repeated ob-
servation and refinement can be thought of as a feedback loop. Feedback loops
work remarkably well as a way of finding out things about computer systems.

Figure 5.1 on the next page shows several feedback loops found in software en-
gineering [150]. The activities involve observations to determine non-functional
properties such as correctness, performance and utility to end users. The three
outer loops are widely practiced since they are essential to improve software. The
innermost loop represents annotation and refactoring of program code based on
analysis feedback. Regrettably, this process is currently reserved for expert
programmers.
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Modify Optimize

Analyze

Measure
Test

Deploy

Figure 5.1: Feedback loops in software engineering.

There are multiple reasons why this is so. The programmer may not be familiar
with annotations and their purpose. Also, incorrect use of annotations may
lead to subtle errors without warning. Further, determining when and where
to use annotations is tedious. The programmer may need to peruse lengthy
compilation reports to understand analysis issues. Finally, the reports may
require familiarity with compiler internals and intermediate code. This makes
the reported issues difficult to understand. This prevents non-experts from
removing obstacles to program analysis.

5.2 The Need for Program Annotation

The design of embedded systems is becoming increasingly complex. Similarly,
programming has recently become harder since programmers must also expose
parallelism. This thesis studies these two related problems for reasons given in
the introduction. Both are based on program analysis. All other things being
equal, increases in complexity leads to increases in development time. On the
other hand, any task that can be automated by tools has the potential to shorten
development time.
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Modify

Analyze

Refine

6: develop 
directives &

runtime checks

7: detect issues &
suggest modifications

      8: compare multiple
sets of feedback & 
categorize issues

Figure 5.2: Analysis feedback loop. Italicized text shows what the following
three chapters contributes to each step in the process.

Program analysis alone can only approximate properties of programs cf. section
2.3. Annotations and compiler options lets the programer mitigate limitations
of program analysis. This can avoids an automation impasse but raises another
problem: non-expert programmers will not use annotations effectively without
proper guidance.

5.3 Making Annotation Effective

This thesis demonstrates new techniques that helps programmers annotate pro-
grams. It extends the analysis feedback loop with a new step: refinement of
compilation feedback. It also improves the two existing steps. The extended
loop is shown in figure 5.2. The italicized text shows the main topics of chapters
6, 7 and 8.

Chapter 6 studies how to extract task graphs from source codes of programs
parallelized with OpenMP. Prior works on task graph extraction are based ei-
ther on program analysis and sometimes program profiling. A hybrid approach
where programmers also annotate programs is explored here. Annotation is
done via two directives that assist task graph extraction tools. It is shown how
annotation reduces assumed dependencies among tasks. The directives are sub-
ject to correctness checks at runtime. Catching errors early helps non-experts
insert annotations.

Chapter 7 studies how issues preventing analysis can be reported to the pro-
grammer. No suitable tool to generate task graphs via program analysis was
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identified. Instead, issues preventing automatic loop parallelization and vector-
ization were studied. A production compiler was extended to report i) where
issues prevent optimization; and ii) where optimization was successful. The re-
ports or code comments also suggest code annotation to resolve issues. Code
comments are presented as markers directly in the source code and do not ex-
pose the programmer to the compilers intermediate representation. This helps
the programmer relate code comments to the relevant source code expressions.

Analyzing large amounts of source code generates a large number of code com-
ments. Some code comments are false positives in the sense that programmer
intervention cannot remove the issue. Hence, the code comments must be re-
fined to avoid wasting programmer time. Chapter 8 refines code comments
by categorizing each comment according to its chance of representing a missed
opportunity for optimization. The first step is to generate multiple sets of feed-
back by varying the compilation options and compiling with different compilers.
Code comments from different builds are then correlated using their source code
locations. If a code comment reports an issue on a location where comment from
another build reports an optimization, the reported issue is likely to represent
a missed optimization.

In addition to the contributions that increase the accessibility of annotations and
analysis feedback, the thesis is also demonstrates the efficacy of the programmer-
in-the-loop approach. Chapter 6 shows that superfluous dependencies in a task
graph fragment can be reduced by 69% on average. Chapter 7 demonstrates that
resolving issues preventing automatic parallelization of two sequential kernels
produced best-case speedups of 6x and 12.5x respectively. The performance of
a JPEG decoding program was also increased by 12%. Finally, chapter 8 shows
that up to 60% (43% on average) of the issues reported by a production compiler
can be classified as potentially resolvable or unresolvable.



Chapter 6

Annotations for
Task Graph Extraction

Designers of embedded systems face tight constraints on resources, response
time and cost. The ability to analyze embedded systems is the key to timely
delivery of new designs. As explained in chapter 4, design space exploration
and scheduling tools often assume that application workloads are represented
as task graphs.

Program analysis is essential to extract task graphs from program source codes.
Ideally, one seeks analysis results which are precise and correct for all program
inputs. Here, a task graph is considered to be correct if it has an edge between
each pair of dependent tasks. A task graph is considered to be precise if it
does not contain edges between independent tasks. As explained in section 2.3,
static program analysis produces results which are conservatively correct but
not precise for all program inputs. Alternatively, dynamic program profiling
produces results which are precise but only correct for the program execution
that generated the result. This motivated the study of a hybrid approach based
on program analysis and programmer inserted annotations.

Section 1.2 described how it is possible to leverage the programmers under-
standing of the software annotation of the source code. Annotations provide
information that improves the precision of tools to extract task graphs [159, 2].
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When annotations are used correctly, runtime checks to verify this do not de-
grade program performance.

Modify

Analyze

Refine

develop 
directives &

runtime checks

This chapter relates to the modifi-
cation step in the analysis feedback
loop. It introduces two compiler di-
rectives, which lets the programmer
annotate source code with data de-
pendencies among tasks. The direc-
tives reduce the number of assumed
data dependencies that do not occur
at runtime. This increases the preci-
sion of task graphs.

The correct use of the directives cannot be verified at compile time. There-
fore, the correctness checks happen during execution. The intended workflow
is shown in figure 6.1. Directives are validated by instrumenting and execut-
ing the program to determine if all runtime checks pass for relevant program
inputs. The information in the directives can then be exploited by a task graph
extraction tool.

The material in this chapter was published in three research papers. The first
directive was presented at the 5th International Workshop on OpenMP[94] and
the second at the 3rd Workshop on Programmability Issues for Heterogeneous
Multicores [95]. Both directives are covered in an article to appear in a special
issue of IEEE Transactions on Industrial Informatics [96]. This chapter adds a
more precise evaluation of the number of dependencies excluded by the second
directive.

The following section introduces a directive to exclude superfluous dependencies
arising from approximate aliasing information. The second section, 6.2, intro-
duces a more specialized directive to exclude dependencies in a common albeit
more specific pattern of computation. Section 6.3 relates this research to prior
work on task graph extraction.

source 
code +

directives
instrumen-

tation execution
pass/
fail 
checks

task graph
extraction

DSE or 
scheduling

embedded
system
design

validation of directives exploitation of directives

Figure 6.1: Validation and exploitation of annotations to extract task graphs.
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1 int a, *b, *c, *d, *(*f)(void);

2 void first (int *, int *, int *);

3 void second(int *);

4 void third (int *);

5
6 void g(void) {

7 /* b, c and d may alias */

8 b = &a; c = f(); d = f();

9 #pragma omp parallel

10 {

11 #pragma omp task

12 first (b,c,d);

13 #pragma omp taskwait

14 #pragma omp task

15 second(c);

16 #pragma omp task

17 third (d);

18 }

19 }

Listing 6.1: Example demonstrating potential pointer aliasing. Since the be-
havior of the function f can be arbitrarily complex, points-to analysis must
conservatively assume that b, c and d may alias a. It is therefore unknown if
the tasks first, second and third actually share data.

6.1 Dependencies among Tasks

This section starts with a motivating example to demonstrate how potential
pointer aliasing leads to superfluous dependencies in a task graph. A directive
which lets the programmer exclude such dependencies is then introduced in
section 6.1.2. Runtime checks to detect incorrect annotations are then described
in section 6.1.3 and measurements of the runtime checking overhead is presented
in section 6.1.4.

6.1.1 Limitations of Alias-Analysis

Points-to analysis cannot, in general, determine if two tasks in a shared memory
program communicate or not. Listing 6.1 illustrates a situation in which alias-
analysis must pessimistically assume that pointers b, c and d may alias. This
forces task graph extraction tools to generate task graphs which are imprecise
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in the sense that tasks second and third are assumed to be dependent even
if they are not. The next section introduces a directive intended to reduce the
number of these dependencies.

6.1.2 The depends t Directive

Parallel programming models such as Jade [138] and SmpSs [55] let programmers
declare data dependencies of a task. The declarations capture what data is
needed by a task but not which task produced the data. The latter information
is required to generate task graphs via program analysis.

This section introduces an annotation to declare not only which pointers provide
input to a task but also which tasks produced the input. Similarly, a task that
writes output to other tasks via pointers must declare which tasks can read the
output.

In listing 6.2 on the facing page, the example has been updated by annotating
lines 6, 10 and 14. The proposed directive is named depends t. It is asserted
that the task first provides output to second and third. This implies that
that the task second does not provide output to third and that pointers c and
d do not alias. Without the directives, communication between tasks second

and third must be assumed due to potential aliasing of c and d.

The ability to determine which tasks communicate through pointers using the
directive requires that it is used correctly. Verification via program analysis
is infeasible by design so checking must be done at runtime. Pointers shared
between tasks are subject to runtime checking and these will be called checked
pointers. For efficiency reasons, certain restrictions are put upon checked point-
ers. As they are compared by their value, checked pointers should always hold
the address of the first element of the object they point to, which is also called
the pointee. Similarly, accesses via checked pointers must use indexing expres-
sions rather than pointer arithmetic. Finally, pointees of checked pointers must
not be or contain pointers themselves. This precludes the use of certain data
structures such as trees and linked lists with the directive in its current form.

The depends t directive must be placed on the line immediately before the be-
ginning of the task which the directive applies to. The syntax of the depends t

directive is given below using the informal notation of the OpenMP 3.0 specifi-
cation [152]:

#pragma depends_t (name) [clause[[,] clause]. . . ]
task-boundary
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1 void g(void) {

2 /* b, c and d may alias */

3 b = &a; c = f(); d = f();

4 #pragma omp parallel

5 {

6 #pragma depends_t first output(b,second) output(d,third)

7 #pragma omp task

8 first (b,c,d);

9 #pragma omp taskwait

10 #pragma depends_t second input(c,first) \

11 output(c,fourth)

12 #pragma omp task

13 second(c);

14 #pragma depends_t third input(d,first)

15 #pragma omp task

16 third (d);

17 }

18 }

Listing 6.2: Declaration of task dependencies using the proposed directive. The
output clause on line 6 states that the task named first provides data for the
second task via the pointer b while data for the third task is written via d.
Similarly, line 10 declares that that c provides the second task with input from
the first and output to the fourth (not shown).

where a valid task-boundary is at one of the following memory synchronization
points as defined by the OpenMP specification [152, p. 291]: i) a barrier; ii) a
flush with an empty flush-set; iii) an entry to or exit from parallel, critical
or ordered regions; iv) an exit from a work sharing region without a nowait

clause; v) an entry to or exit from a combined parallel work sharing region; vi)
before or after an omp task scheduling point; vii) an entry to or exit from a
region delineated by omp set lock and omp unset lock function calls.

name assigns a name to the task and clause is one of

input (checked-ptr, task-name[,task-name]. . . )

output(checked-ptr, task-name[,task-name]. . . )

inout (checked-ptr, task-name[,task-name]. . . )
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The input clause takes two arguments. The first, checked-ptr, is a checked
pointer. Each task-name is the name of a task that may have modified the
pointee of checked-ptr prior to the execution of the task which the input clause
applies to. The arguments of the output clause is similar except that each
task-name identifies a task that may read the pointee of checked-ptr after the
execution of the task which the output clause applies to. The inout clause is a
syntactic shorthand and inout(ptr,t1,t2) is equivalent to input(ptr,t1,t2)

output(ptr,t1,t2).

Any pointer that points to data shared between tasks must appear in the
depends t directive of these tasks. A task t is only allowed to dereference a
checked pointer p for reading when the following criteria are met:

• p appears in an input or inout clause in the depends t statement of t;
and

• any task twr, that writes to the shared pointee of p and can execute before
or in parallel with t, appears in an output or inout clause in the depends t

directive of t. If control-flow analysis [8] cannot determine that twr may
only execute after t it must appear in the depends t directive of t.

The conditions for dereferencing a checked pointer for writing are analogous.

To detect when the above criteria are violated, the address held by the checked
pointer is used as the index of a permission table which is initialized from all the
depends t statements in an annotated program. As previously mentioned, a
checked pointer must therefore point to the beginning of the shared object and
thus address arithmetic is disallowed on such pointers. An alternative solution
would be to represent checked pointers as two regular pointers: one which holds
first address of the task-shared object and one which can point to any part of the
object. However, the use of such pointers to shared objects doubles the storage
needed to hold a checked pointer and may cause problems when interoperating
with program libraries.

The depends t directive is assumed to be processed by a compiler like OpenMP
directives are. In the experiments, however, the directives were translated to
call runtime checking functions by hand. A full implementation of the necessary
run-time operations was completed and benchmarked however.
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Function Output
rd(p) the set of all tasks which may read shared objects pointed to by p
wr(p) the set of all tasks which may write shared objects pointed to by p
rddeps(p, t) the set of tasks which are declared as readers of shared objects

pointed to by p in the depends t statement of t
wrdeps(p, t) the set of tasks which are declared as writers of shared objects

pointed to by p in the depends t statement of t
rdpre(p, t) the set of tasks which may read shared objects pointed to by p but

never execute after or in parallel with t
wrpost(p, t) the set of tasks which may write shared objects pointed to by p but

never execute before or in parallel with t

Table 6.1: Auxiliary functions to explain the functioning of the runtime checks.

6.1.3 Runtime Checking the depends t Directive

The use of the directive must be runtime checked and this section describes
this effort. The checks ensure that a task will not dereference a checked pointer
which is not declared as dependence. This section will also discuss a set of
library calls which can be emitted by a compiler to detect such incorrect use of
the annotations.

Aliasing relationships between pointers can be inferred from the directives. In
listing 6.2 on page 53, for example, lack of communication between tasks second
and third requires that pointers c and d do not alias. For practical reasons,
runtime checks of aliasing was not studied. However, detecting if two pointers
alias is inexpensive as it amounts to a comparison of two scalars.

Let the function rd(p) map a checked pointer p to the set of all tasks which
declare that they may read input via p. Each task and pointer pair 〈t, p〉 is
mapped to the set of tasks which are declared as readers of input via p in
the depends t statement of t by the function rddeps(p, t). Finally, rdpre(p, t)
computes the set of tasks which are readers of shared objects through p but
may only execute before the first execution of t. Analogous definitions for writes
through checked pointers are shown in Table 6.1.

Before a task t reads the pointee of p it must be checked that

t ∈ rd(p) ∧ wr(p) = wrdeps(p, t) ∪ wrpost(p, t) (6.1)

and similarly, it must be checked that

t ∈ wr(p) ∧ rd(p) = rddeps(p, t) ∪ rdpre(p, t) (6.2)
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t0

input(p,tx)

t1

output(p,t2,t3)

t2

input(p,t1)

t3

input(p,t1)

t4

output(p,ty)

rd(p) = {t0, t2, t3} wr(p) = {t1, t4}
rdpre(p, t1) = {t0} wrpost(p, t3) = {t4}
rddeps(p, t1) = {t2, t3} wrdeps(p, t3) = {t1}

Output check of p before its pointee is written by t1:
t1 ∈ wr(p) ∧ rd(p) = rddeps(p, t1) ∪ rdpre(p, t1)→
t1 ∈ {t1, t4} ∧ {t0, t2, t3} = {t2, t3} ∪ {t0}

Input check of p before its pointee is read by t3:
t3 ∈ rd(p) ∧ wr(p) = wrdeps(p, t3) ∪ wrpost(p, t3)→
t3 ∈ {t0, t2, t3} ∧ {t1, t4} = {t1} ∪ {t4}

a b

Figure 6.2: a) Program fragment showing the control-flow between five tasks
that share data through a pointer p. b) Example runtime checks which apply
(6.1) to p in t3 and (6.2) to p in t1. Although both of tasks t1 and t4 write to
the pointee of p, tasks t2 and t3 need only declare an input dependency on t1
because t4 is always executed after t3. Similarly, the output clause of t1 need
not mention t0 as it always executes before t1.

before the pointee of p is written to by a task t. An concrete example is shown
in figure 6.2. Since the second part of the conjunction is the same for all tasks
which read or write p, the necessary dependency information is stored in a global
hash table in which each pair of bit-vectors 〈rd(p), wr(p)〉 is indexed by p.

A runtime check is simply a lookup on p in the dependency hash table followed
by one bit-vector membership test and one bit-vector comparison corresponding
to the left and right-hand side respectively of conjunction (6.1) or (6.2). Bit-
vectors are represented as machine word sized elements in a fixed size array
meaning that operations on bit-vectors can be supported efficiently.

To determine where runtime checks should be performed, the OpenMP memory
consistency model must be taken into account. The task-boundary points listed
in the section 6.1.2 implies a flush operation. Consequently, given a conforming
OpenMP program, a single runtime check inserted between each flush and
dereference of a runtime checked pointer p is sufficient to detect violations of a
task dependency declaration.

Besides the runtime checks themselves, the following operations, which update
the dependency hash table, was implemented.
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register input(p, input tasks) Sets the initial value of rd(p) in the de-
pendency table. Called at program start-up to register checked, file-scope
pointers. It is also called at runtime to set dependencies of runtime checked
pointers to dynamically allocated memory.

register output(p, output tasks) Sets the initial value of wr(p). Otherwise
it is similar to register input.

update input(p, input tasks) Updates rd(p) in the dependency table such
that the new value equals rd(p)∪ input tasks. Called to update the input
dependencies rd′(p1) ← rd(p1) ∪ rd(p2) when a runtime checked pointer
p1 is assigned the value of a runtime checked pointer p2.

update output(p, output tasks) Updates wr(p). Otherwise it is similar to
update input.

unregister(p) Removes rd(p) and wr(p) in the dependency table. Called
immediately after dynamic memory deallocation.

Accesses to the dependence table need to be synchronized to avoid data races.
We currently use a read/write lock [49] provided by the POSIX threads [78]
implementation on our platform. This means that the runtime checks can hap-
pen concurrently by acquiring the lock for reading. The register, update and
remove operations may need to update the dependency table and must therefore
acquire a write lock before doing so. The unregister operation always acquires
the lock for writing. Since the time to acquire the lock for reading is several
orders of magnitude slower than a lookup in the dependency table, the synchro-
nization overhead is amortized by only acquiring the lock for reading once for
all necessary runtime checks at a task-boundary.

6.1.4 Results for the First Directive

We evaluate three aspects of the first directive: i) the cost and scalability of each
of the runtime operations ii) the programmer effort required to insert directives
in a benchmark; and iii) the performance impact of adding runtime checks to
the benchmark.

Experimental setup Minimum, maximum and average execution times are
calculated from ten consecutive runs on an otherwise idle machine to compen-
sate for variations between benchmark runs. Only the parts of the benchmark
performing parallel work and which can contain runtime checks are included in
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the execution time. To determine if the cost of runtime checking has a statisti-
cally significant impact on the execution efficiency, the average execution times
of programs with and without runtime checks is compared using two-sided, un-
paired t-test using 95% confidence intervals.

The benchmarks were compiled with llvm-gcc version 2.5 whose front-end and
OpenMP implementation are based on gcc version 4.2.1. Optimization level
-O2 was used for all experiments.

The quality of the code generated by llvm-gcc was compared to that of gcc.
This was done to ensure that the use of the LLVM optimizer did not do a poor
job thus lowering the impact of the instrumentation. The experiments show
that the code generated by llvm-gcc is faster or as fast as code generated by
gcc 4.2.1.

Experiments were performed on a dual-socket server having two quad-core 2.93
GHz Intel Xeon 5570 CPUs and a total of 12 GB DDR3 RAM. It had 256 KB L2
cache per core and 8 MB shared L3 cache per CPU. The operating system was
Linux using the 2.6.36 kernel. The measurements we will present were obtained
using eight threads but similar results were observed for experiments with one,
two and four threads.

A secondary set of experiments were performed on a dual-core Intel Atom D525
powered machine with a clock frequency of 1.8 GHz and 2 GB DDR2 RAM.
It had 512 KB L2 cache per core and used Linux with the 2.6.32 kernel. The
Atom based measurements mirror the Intel Xeon based measurements. Only
the measurements obtained on the Xeon based system are presented.

Runtime operations The runtime operations for the depends t directive
were benchmarked and the results are shown in figure 6.3 on the next page.
Each operation was executed repeatedly to increase execution times well above
the timer resolution.

The measurements of the operations that may insert a key into the dependence
table are split into two cases: key present and key not present. To compare
the cost of the runtime operations with the cost of entry and exit of a task-
boundary, the performance of the OpenMP parallel construct is also included
in the graph. It was measured using the EPCC micro-benchmark suite [27].

The check input and check output takes at most two microseconds. Since the
cost is dominated by the time taken to acquire the lock for reading, this value is
also a good indicator of the total cost incurred by all checks at a task-boundary
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1 thread 2 threads 4 threads 8 threads 16 threads
parallel section
register_input *
register_input
register_output *
register_output
update_input *
update_input
update_output *
update_output
input_check
output_check
unregister

0.1635269 49.2261586 49.2261586 60.14173863 61.8798771
0.0953173 7.516480352 7.516480352 16.75687559 33.45279701
0.0377545 1.518063108 1.518063108 2.495760587 6.20867899
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Figure 6.3: Time in microseconds taken by a single execution of each runtime
operation for the depends t directive and the OpenMP parallel directive as
a function of the number of threads. All operations performing a hash table
lookup are dependent on the lookup key. The measurements where the lookup
key is not present in the hash table is marked with an asterisk (*).

such as entry to a parallel section. Thus, the added cost of performing runtime
checks at task-boundaries is most likely insignificant.

Replacing the read/write lock with read-copy-update synchronization [112] would
allow read operations to become lock-free. As read-only runtime checks typically
execute much more frequently than the other operations, this could significantly
lower the overhead and improve the scalability of the runtime checks.

The register and update operations which do not need to insert a key into
the dependence table take at most eight microseconds and reflect the costs
of modifying a checked pointer which is already registered with the runtime.
Unregistering a shared object takes slightly longer but is only necessary when
deallocating an object which itself is typically a costly operation.

Finally, the operations which need to insert a key into the dependence table
under a write-lock have the highest execution time. Updating the dependence
table takes up to thirty three microseconds when sixteen threads are used. How-
ever, these more costly operations occur only in context of memory allocation
which itself is a costly and thus infrequent operation.

Integer sort The depends t directive applied to the source code of the in-
teger sort kernel, IS, in the NAS parallel benchmarks [13, 85] to determine the
impact on programming effort and runtime performance. The IS program per-
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Figure 6.4: Comparison of the maximal, minimal and average running times of
checked and unchecked builds of the NPB integer sort with eight threads and
four different workload sizes as shown on the x-axis.

forms integer sort on a large array and tests integer computation as well as
communication performance [13]. The workload contains data-level parallelism
in several loops.

The set of task boundaries was first identified. Then the set of runtime checked
pointers was identified and depends t directives were added. Finally, the calls
required to register, update and check task dependencies were added by hand
as we have yet to automate this step.

The source contained 4 parallel sections, 5 work-sharing sections which cor-
responded to 13 task boundaries where depends t directives were inserted.
There were 8 runtime checked pointers. It was therefore necessary to insert
7 calls to register input, 8 to register output, 3 to update input, 1 to
update output and finally 19 and 11 calls to check input and check output

respectively. It was not necessary to call unregister as no memory deallocation
occurs. By a rough estimate, the effort to annotate the integer sort required
less than half a working day.

No statistically significant differences between the average running times of the
binaries with and without runtime checks were observed.
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6.2 Dependencies among Stencil Computations

The previous section introduced a directive to eliminate assumed dependencies
among tasks which arise from the approximate nature of alias analysis. This
section presents a directive which eliminate superfluous dependencies among
tasks representing a data-parallel pattern of computation known as a stencil
computation.

The section is organized as follows. Stencil computations are introduced in
section 6.2.1. An example stencil computation then described in section 6.2.2.
Generating task graphs from stencil computations and the challenges of doing
so is the subject of section 6.2.3. An annotation to addresses these challenges
is introduced in section 6.2.4 and the runtime support required to verify correct
use of this annotation is described in section 6.2.5. Section 6.2.6 presents ex-
perimental work that shows that the runtime checks have a neglible impact on
the execution time.

6.2.1 Stencil Computations

A stencil computation is a kernel – or computational pattern – which updates
a grid of elements by sampling neighbor elements according to a fixed pattern,
called a stencil. Several stencil computations are often performed one after
another. Each stencil computation is a sweep across a target grid whose non-
boundary elements are updated by combining neighboring values in the source
grid. The grid is commonly represented as a single or multi-dimensional array.
Each array element can be updated independently of other elements in the array.
Hence, stencil computations contain significant amounts of regular, data-level
parallelism.

Sequences of stencil computations are commonly found in embedded signal and
image processing codes. They typically apply a number of filters to raw or
previously encoded data streams. For instance, stencil computations are found
in four out of six kernels and in four out of twelve applications in the University
of Toronto Digital Signal Processing benchmark suite, UTDSP [102]. Stencil
computations are also of importance in scientific computing. For instance, they
are used to construct solvers of varying complexity and with a wide range of
applications. Examples include solvers of partial difference equations which
model heat diffusion, electronmagnetic or fluid dynamics problems [114].
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(1) (2) (3) (4)

(5) (6) (7) (8)
Figure 6.5: Stencils commonly encountered in embedded image processing codes.
The patterns were reported by Ramanujam et al. [135] except from (7) which
is from Bouchebaba et al. [26].

Stencil patterns The pattern of the stencil determines which elements are
included in the nearest neighbor-computation and the size of the grid bound-
aries. Figure 6.5 shows eight two-dimensional stencils which are commonly
encountered in source codes for embedded systems [135].

Stencil width A one-dimensional stencil accesses array elements in the order
of increasing array indices. In the following, the width of a one-dimensional
stencil is defined as the difference between the lowest and highest numbered
index of the elements accessed in a single iteration. Multi-dimensional stencils
sweep over grids that have rows, columns, planes, and so forth. The width of a
multi-dimensional stencil is defined as the width of the one-dimensional stencil
obtained by i) projecting the outermost dimension array dimension onto a line;
and ii) computing the width of the resulting, one-dimensional stencil.

The most narrow stencils are three elements wide. Such stencils are said to be
compact. In contrast, stencils having widths greater than three are classified as
non-compact. The source code of the UTDSP Benchmark Suite contains stencils
that are one and two-dimensional and symmetric. The stencil widths are 3, 4,
8, 15, 32 or 256 elements.
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6.2.2 An Example Stencil Computation

The challenge of extracting task graphs for codes consisting of stencil compu-
tations will be studied in the context of a concrete example. The example that
will be used is due to Mattson et al [110, p. 166]. The example and how it is
parallelized will be explained in this section.

The example stencil computation models temperature changes along an in-
finitely narrow pipe. The two ends of the pipe have different temperatures
which remain fixed throughout the computation. The program simulates the
gradual change in temperature over time for the rest of the pipe. The temper-
ature change in the pipe is captured by differential equation (6.3).

∂U

∂t
=

∂2U

∂x2
(6.3)

To solve the problem efficiently, the problem space is discretized by representing
the pipe, U as an array of values and simulating the progress of time as a
sequence of discrete time steps. Consequently, the program only needs to store
the state of U at time steps k and k + 1. These arrays are called uk and ukp1

respectively. A stencil computation is used to compute the change between two
successive time steps.

Each iteration in the stencil computation updates the value of a point in ukp1.
The updated value is computed by sampling five neighbor elements in uk in the
following way

ukp1[i]=uk[i]+(dt/(dx*dx))*

(-1/12*uk[i-2]+4/3*uk[i-1]-5/2*uk[i]+4/3*uk[i+1]-1/12*uk[i+2]);

where dt and dx are the differences between two discrete steps in time and space
respectively. The stencil width is five. The relevant parts of the heat diffusion
example are shown in listing 6.3 on the following page. The inner loop on lines
14-18 implements the stencil computation.

Parallelizing the stencil computation The heat diffusion example has
been parallelized using OpenMP directives to distribute work among multi-
ple threads. The iterations of the outer loop on line 8 represents time steps
in the simulation and must execute in sequence. The iterations of the inner
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1 double *uk = malloc(sizeof(double) * nx);

2 double *ukp1 = malloc(sizeof(double) * nx);

3 double *tmp , dx, dt;

4 /* further initialization omitted. */

5
6 #pragma omp parallel

7 {

8 for (int k = 0; k < nsteps; ++k) {

9 /* instruct compiler to distribute

10 * iterations among the available threads

11 * according one of the five schedule types.

12 */

13 #pragma omp for schedule(SCHEDULE)

14 for (int i = 2; i < nx - 2; ++i) {

15 ukp1[i] = uk[i] + (dt/(dx*dx)) *

16 ( -1/12 * uk[i-2] + 4/3 * uk[i-1] - 5/2 *

17 uk[i] + 4/3 * uk[i+1] - 1/12 * uk[i+2]);

18 }

19 /* "copy" ukp1 to uk by swapping pointers */

20 #pragma omp single

21 {

22 tmp = ukp1;

23 ukp1 = uk;

24 uk = tmp;

25 }

26 }

27 }

Listing 6.3: Heat diffusion example. The code was adapted from Mattson et al.
[110]

loop on line 14, however, are independent and may execute in any order. The
parallelization is based on data decomposition such that each thread operates
on separate parts of the iteration space. Each such part is called a chunk in
OpenMP parlance. As a thread executes a chunk of the iteration space, it ac-
cesses consecutive elements of the source and destination arrays and these are
also called chunks.

The #pragma omp parallel directive on line 6 causes the OpenMP runtime to
create a team of threads which then collaborate to execute the work enclosed in
the parallel region. Specifically, the runtime will create as many threads as there
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are logical processors in the system unless a specific thread count was requested
by the programmer.

When the team of threads reach the #pragma omp for directive on line 13,
the OpenMP runtime will distribute the loop iterations from 2 to nx-2 among
the available threads according to the thread identifiers and the schedule clause.
The choice of schedule is controlled via a preprocessor definition in the example.
The decision could also have been hard coded or deferred to the OMP SCHEDULE

environment variable by specifying schedule(runtime) on line 13.

Finally, the #pragma omp single protects a region that should only be executed
on a single thread. The directive causes the first thread to execute the region
swapping the pointers to the arrays; the remaining threads will simply skip the
region.

Parallelization of multi-dimensional stencil computations The heat
diffusion stencil computation in listing 6.3 on the preceding page is one-dimensional.
When the stencil computation has n dimensions, the source and target grids are
typically swept via n nested loops. For this work, it is assumed that only the
outermost loop of stencil computations parallelized. This is a reasonable as-
sumption whenever the outermost loop contains enough iterations to distribute
work to all processing elements.

6.2.3 Modeling Stencil Computations as Task Graphs

This section discusses i) how to compute the number of data dependencies be-
tween two successive stencil computations; ii) why a program analysis may
assume that more dependencies exist than may occur at runtime; and iii) how
that affects task graphs generated via program analysis.

Figure 6.6 shows two successive stencil computations named sc1 and sc2 respec-
tively. The loop iterations of each stencil computation are partitioned into a set
of tasks. When parallelized with the OpenMP for directive, the partitioning is
controlled via the schedule clause [152, p. 43]. A task t in sc2 writes a chunk
of elements. To do so, it reads elements which were written by tasks in sc1. The
task t is therefore dependent on one or more predecessor tasks in sc1.

The number of predecessor tasks in sc1 a task t in sc2 may depend on are
calculated as follows. Assume that sc2 performs nearest neighbor computations
using a stencil whose width is stencil width2. Each time a task t writes a single
value, it reads stencil width2 elements from the source array. If it writes two
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stencil computation 1
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Figure 6.6: A stencil computation sc1 followed by another sc2. During execution
of sc2 a task t writes a chunk of elements. To do so, it must read chunks which
were written during the execution of sc1.

elements it reads stencil width2 + 1 elements from the source array. Hence,
if t writes chunk size2 elements, it will read chunk size2 + stencil width2 − 1
elements.

The question is then how many predecessor tasks could have written the el-
ements read by t. In the worst case, the first element was written by one
predecessor task while the remaining chunk size2 +stencil width2−2 elements
were written by other predecessor tasks. If each predecessor task in sc1 wrote
at chunk size1 elements, a task t depends on at most
1 + d(chunk size2 + stencil width2 − 2)/chunk size1e predecessor tasks. The
ceiling operator is necessary to round up when division yields a fraction. The
result is rounded up since a task t in sc2 is data dependent on a task tpred in
sc1 even if the output of tpred is only partially read by t.

To compute the maximal number of dependencies from tasks in sc1 to a task t
in sc2, the equation must be updated to use the maximal chunk size in sc2 and
the minimal chunk size in sc1. Equation (6.4) calculates the maximal number
of data dependencies for a task t in sc2.

max dep = 1 +

⌈
max chunk size2 + stencil width2 − 2

min chunk size1

⌉
(6.4)

The following discussion is concerned with the calculation of the minimal and
maximal chunk sizes needed to evaluate equation (6.4). It will be assumed that
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two successive stencil computations, sc1 and sc2, are parallelized such that the
loops have unit strides, use the same OpenMP schedule and will be executed on
the same number of threads. These assumptions are reasonable as the workload
characteristics of the two stencil computations are similar. Both the maximal
and minimal chunk size depends on the schedule clause.

OpenMP schedules The OpenMP 3.0 specification defines five schedules [152,
p. 43–44]. They are: static, dynamic, guided, runtime and auto. The first
three schedule types allows the user to request a chunk size. For instance, the
clause schedule(static,4) causes the OpenMP runtime to distribute itera-
tions among threads in chunks of four if enough iterations are available.

Each OpenMP runtime may implement the schedules differently. Hence, the fol-
lowing discussion is necessarily implementation specific. It is based on libgomp

which is the OpenMP runtime library distributed with gcc.

In gcc, schedule(auto) is handled as schedule(static) internally and it will
therefore not be treated separately in the following. The schedules distribute
work as outlined in the following where thr is denotes the number of threads, n
the number of iterations and c is the requested chunk size:

static Distributes iterations among threads such that each thread receive a
single chunk. All chunks are of roughly the same size. If tr divides n
evenly, each chunk will contain n/thr iterations. If this is not the case,
the first thr − 1 chunks contain n/thr + 1 iterations and the last chunk
contains the remaining iterations which are n− ((n/thr + 1) ∗ (thr − 1)).

static, c When a chunk size is requested for the static schedule, the runtime
sizes each chunk accordingly as long as there are enough iterations to do so.
If c does not evenly divide n, the last chunk contains n mod c iterations.

dynamic, c Whereas the static schedule distributes work according to thread
IDs, the dynamic schedule distributes the iterations in the order they are
requested by the threads. If no chunk size is requested, the default is one.
The chunk sizes are calculated similarly to the static schedule.

guided, c The goal of this schedule is to divide the work into fewer chunks
than the dynamic schedule while retaining the ability to allocate work
to threads dynamically. Each chunk size is proportional to the number
of iterations remaining divided by the number of threads executing the
parallel region. If a chunk size c is requested, each chunk except the last
will contain at least c iterations. If no chunk size is requested, the default
is one.
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Unlike the preceding schedules, the size of each chunk computed by the
guided schedule is dependent on the size of the previous chunk. This
means that the minimal chunk size can only be found by computing the
size of all chunks distributed by the guided schedule.

runtime This is a pseudo-schedule that defers the choice of schedule until run-
time. The actual schedule must one of the preceding three or auto. It is
set using an environment variable a call to the OpenMP runtime. If no
schedule is specified via either of these mechanisms, the default is to use
a static schedule with chunk size one.

Maximal chunk size Equation (6.5) calculates the maximal chunk size max chunk size2
in sc2. It is assumed that the loop iterates n2 times and that iterations are dis-
tributed among thr threads according to a schedule sched.

max chunk size2 =



n2

thr
+ 1 when sched is static or auto

when sched is static,c or

c when sched is dynamic,c.

max(
n2 + thr − 1

thr
, c) when sched is guided,c

(6.5)

Equation (6.5) was obtained by inspecting how the libgomp runtime implements
the OpenMP schedules. When a chunk size is specified and the schedule is not
guided, no chunk is bigger than what was requested. When the schedule is
guided or static, the maximal chunk size is roughly in inverse proportion to
the number of threads.

Minimal chunk size Similar to the previous discussion, it is assumed that
the parallel loop in sc1 iterates n1 times and that these are distributed among
thr threads according to a schedule sched. Equation (6.6) computes the minimal
chunk size when sched is either static or dynamic. When sched1 is guided,
the chunk sizes depends on the order in which threads request iterations. The
minimal chunk size is therefore not known until sc1 completes execution.

Like the formula to compute the maximal chunk size, equation (6.6) was ob-
tained by inspecting the OpenMP schedule implementations in libgomp.
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min chunk size1 =



n1 − (
⌈ n1

thr

⌉
× (thr − 1)) iff sched is static

c iff sched has a chunk

size c which divides n1

n mod c otherwise
(6.6)

Why dependencies are approximated Equation (6.4) on page 66 calcu-
lates the maximal number of data dependencies for a task in a stencil com-
putation following a previous stencil computation. The source code properties
required to evaluate equation (6.4), (6.5), and (6.6) are:

stencil width2 The stencil width of the second stencil computation.

n1 and n2 The number of loop iterations in the first and second stencil computation.

thr The number of threads that loop iterations should be distributed among.

sched The value of the OpenMP schedule clause – including the chunk size
parameter c.

Each of these values are required to evaluate equation (6.4). However, the values
may or may not be known statically, i.e. at analysis time. What follows is a list
of reasons why one or more values are likely to be unavailable to a task graph
extraction tool:

Stencil width The stencil width may be dynamically adjustable unlike the
heat diffusion example where the stencil width was fixed. If the stencil
is used to blur an image for instance, it is practical to allow the user to
choose the amount of blurring. In such cases, the stencil width is likely
controlled by a variable whose purpose is only understood by humans. A
task graph analysis must conservatively assume that the stencil may be
arbitrarily wide. In that case, each task at step k + 1 will read all chunks
written in step k. Since these chunks were written cooperatively by the
set of tasks at step k each task at step k + 1 may depend on each tasks at
step k.
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Iteration counts The program is very likely to parameterized to perform sten-
cil computations on a grid with varying dimensions. In such cases, the
upper bounds of the loops that sweep across the grid must be held by
variables at runtime.

Thread count The #pragma omp parallel and #pragma omp parallel for

directives let the programmer request a specific number of threads. Seem-
ingly this clause can make thread counts available at compile time. How-
ever, a number of threads specified with this clause is just one of several
factors that determine the size of the team of threads which will execute
the parallel region [152, p. 35–36]. Other factors include the nesting level
of the parallel region. Furthermore, it is possible to dynamically adjust
the number of available threads or conditionally execute a parallel region
on a single thread. So even when present, the number of threads requested
does not necessarily reflect the actual number of threads.

Second, it may not be a good idea to hard code the thread count in the
source code as the number of available threads varies across hardware plat-
forms. The number of the threads which maximizes program performance
may also depend on the the program input.

Schedule It is possible to defer the choice of actual schedule by using the
runtime pseudo schedule. Choosing a schedule at runtime enables the pro-
grammer to vary schedule choices for different hardware platforms without
recompilation. It is also possible to leave the choice of schedule to the com-
piler by selecting the auto schedule.

Chunk size Finally, some schedule types takes an optional chunk size param-
eter. This parameter can be symbolic and therefore unknown before run-
time.

Task graph with and without approximation Figure 6.6 on page 66
showed how a task t in a stencil computation sc2 reads elements written by
tasks in a previous stencil computation sc1 to write a chunk of elements. The
task graph representing sc1 and sc2 therefore contains a number of dependen-
cies from t to tasks in sc1. Equation (6.4) computes the maximal number
such dependencies. As explained in the previous section, at least one of the
source code properties required to evaluate the equation is most likely unknown
before run time. A task graph extraction tool must therefore conservatively
over-approximate the number of dependencies.

The task graph which accurately reflects dependencies between two steps in a
stencil computation is shown in figure 6.7a on the next page. The task graph
resulting from over-approximation of dependencies among tasks and predecessor
tasks is show in figure 6.7b on the facing page.
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(a) Desired task graph for iterations k and k + 1 of heat diffusion
example when executed on four threads numbered from 1 to 4 when
using the static schedule. The dashed arrows are dependencies on
the task that initialized the arrays (not shown).
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(b) Same task graph fragment with over-approximation of depen-
dencies among tasks.

Figure 6.7: Task graph fragment which shows actual and over-approximated de-
pendencies among tasks. 6.7a: A fragment of the task graph corresponding to
two successive stencil computation steps in the heat diffusion simulation. The
dependencies shown are computed under the assumption that the number of
iterations is at least twice as big as the number of threads. Program analysis,
however, can usually not prove that each thread will receive more than one iter-
ation of the inner loop because the values necessary to do so are unavailable at
compile time. It must therefore produce the task graph fragment shown in 6.7b
which over-approximates dependencies between each task and its predecessors.

6.2.4 The depends sc Directive

The preceding section explained what source code properties must be known
to calculate dependencies between tasks in two stencil computations and that
these properties may not be known until runtime. However, the programmer
can make additional information available at compile time via annotations.

One could imagine an approach where the allowable ranges of the stencil width,
schedule choice, iteration and thread counts were specified individually. How-
ever, obtaining these values might be burdensome. The alternative is an annota-
tion where the programmer specifies only a single number: the maximal number
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of data dependencies from a task to predecessor tasks. This number is depen-
dent on the number of array chunks which a single task will read while writing
a new array chunk. By capturing this information, the over-approximation of
task dependencies shown in figure 6.7b on the previous page can be removed.

A variant of the depends t directive introduced in section 6.1.2 on page 52
can be extended to capture the highest number of source chunks a task will
access during a step of a parallelized stencil computation. The second directive
is called depends sc. The syntax of this directive in the informal notation of
OpenMP [152] is:

#pragma depends sc[ max dep(expr, ndep) . . . ]

The first argument, expr, must evaluate to an array or a pointer to an array and
ndep is the maximal number of data dependencies on predecessor tasks – equal
to the maximal number of chunks a task may read from expr. The directive
can only be used with an #pragma omp parallel for or #pragma omp for

directive and must be placed on a line directly before either of these directives.

6.2.5 Runtime Checking the depends sc Directive

Like the depends t directive, the use of the depends sc directive should be
checked to guard against human error. Section 6.2.3 argued that the source code
properties to evaluate equation (6.4) on page 66 are unlikely to be available at
compile time. Checks must therefore be performed at runtime. This section will
explain how checks are performed.

The programmer asserts the maximal number of data dependencies from a task
to predecessor tasks with the depends sc directive. To check the assertion,
equation (6.4), which computes the same number, is evaluated at runtime. To
detect when the directive is used correctly, it is checked if the number of depen-
dencies calculated via equation (6.4) is higher than the asserted number.

Incorrect assertions When the number of dependencies asserted with the
directive is lower than what is observable at runtime, an error is raised. The
program can be written to continue after an error is detected or simply termi-
nate, which is the default behavior. To avoid termination on runtime errors, the
programmer may register a callback function. It is invoked when an incorrect
use of the directive is detected. The callback can then take appropriate action,
e.g. the error can be logged and program execution can then continue.
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1 #pragma omp parallel

2 {

3 for (int k = 0; k < nsteps; ++k) {

4 #pragma depends_sc max_dep(uk ,3)

5 /* instruct compiler to distribute

6 * iterations among the available threads

7 * according one of the five schedule types.

8 #pragma omp for schedule(SCHEDULE)

9 for (int i = 2; i < nx - 2; ++i) {

10 ukp1[i] = uk[i] + (dt/(dx*dx)) *

11 ( -1/12 * uk[i-2] + 4/3 * uk[i-1] - 5/2 *

12 uk[i] + 4/3 * uk[i+1] - 1/12 * uk[i+2]);

13 }

14 /* "copy" ukp1 to uk by swapping pointers */

15 #pragma omp single

16 {

17 tmp = ukp1;

18 ukp1 = uk;

19 uk = tmp;

20 }

21 }

22 }

Listing 6.4: Parallel region of the heat diffusion code with the depends sc

directive added on line 4 such that it applies to the innermost loop on lines
10–14.

A runtime error implies that a task graph based on the information in the
directives does not match observable program behavior. Subsequent runtime
errors should be avoided by modifying the depends sc directive which caused
the runtime checks to fail. Any task graphs based on the incorrectly used
directive should also be updated to match the new use of the directive. This
scheme of dynamically checking a property of a program and raising an error
on detected violations is similar to the implementation of bounds checking in
Java, C# and many other languages. Likewise, an unhandled out-of-bounds
exception will terminate such programs.

The following sections will discuss how to determine stencil width, maximal
and minimal chunk size at runtime since these values are required to evaluate
equation (6.4)
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Determining stencil width The way to obtain the stencil width depends
on how the program is written. In the heat diffusion code, the stencil width
can be computed by analyzing the accesses to uk. The accesses are uk[i-2],
uk[i-1], uk[i], uk[i+1] and uk[i+2] respectively. Clearly, accesses are to five
contiguous elements so the stencil width can readily be determined by analyzing
the source code. In other cases, the stencil width is harder to determine from
the source code. Consider the two following sets of array accesses in a two
dimensional stencil computation:

1. a[i-1, j], a[i+1,j], a[i,j], a[i,j-1] and a[i,j+1]

2. a[idx-W], a[idx+W], a[idx], a[idx-1] and a[idx+1]

where idx = i * W + j

The stencil patterns are identical but expressed in different ways. The first set of
accesses is into a two dimensional array, and its clear that the stencil symmetric
and has width is three in either direction. The second set of accesses is into
a one dimensional array so the indexing expressions have been linearized. The
programmer knows that the variable W is the width of a row, so the expressions
a[idx-W] a[i-1,j] reference the same element. An automated analysis does
not know that the variable W holds the row width and therefore cannot accurately
compute the stencil width.

Furthermore, it may also be difficult to determine the stencil width when the
stencil computation uses a stencil, which is computed dynamically based on
user input. Listing 6.5 on the facing page shows a one dimensional stencil
computation with a user selectable stencil width. There, the stencil width equals
the number of iterations of the inner loop which is center − (−center) + 1 or
simply 2 × center + 1. Whether this kind of stencils and their widths can be
recognized and analyzed statically with reasonable effort is an open question.

There are two ways to ensure that stencil widths can be properly detected. One
is to guide the programmer to write code such that stencil widths are analyzable.
For instance the programmer could be asked to avoid linearizing array indexing
expressions. An alternative solution is to add a stencil width clause to the
depends sc directive. This also effectively sidesteps the difficulties of detecting
which variable control the width of dynamically sized stencils.

Determining maximal and minimal chunk size The minimal and maxi-
mal chunk sizes are either observed or calculated using equations (6.5) and (6.6)
depending on the schedule as follows:
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1 #pragma omp for

2 for(r=0;r<rows;r++){

3 for(c=0;c<cols;c++){

4 dot = 0.0;

5 sum = 0.0;

6 for(cc=(-center );cc <= center;cc++){

7 if(((c+cc) >= 0) && ((c+cc) < cols )){

8 dot += (float)image[r*cols+(c+cc)] *

9 kernel[center+cc];

10 sum += kernel[center+cc];

11 }

12 }

13 tempim[r*cols+c] = dot/sum;

14 }

15 }

Listing 6.5: A one dimensional stencil computation which smoothes an image us-
ing a user selectable stencil width. The code is part of a Canny edge detector[29]
implemented by M. Heath [72].

static min chunk1 and max chunk2 are observed since each thread is assigned
a single chunk of iterations when no chunk size is requested.

static, c min chunk1 and max chunk2 are calculated based on iteration counts and
chunk sizes.

dynamic, c Handled similar to the previous case.

guided, c In this case max chunk2 can be computed using equation (6.5) but min chunk1
cannot be calculated in a single step. Thus, each chunk size ncs calculated
by the OpenMP runtime is observed to find min chunk1.

runtime Both min chunk1 and max chunk2 are observed as chunk sizes are calcu-
lated requested by threads.

When the schedule is static or dynamic, the runtime check of a depends sc

directive takes constant time, whereas guided and runtime schedules incurs an
overhead proportional to the number of chunks.

Inserting runtime checks during compilation A plug-in for the llvm-gcc
compiler was developed to insert runtime checks. The llvm-gcc is a combina-
tion of the gcc front-end and the Low-Level Virtual Machine, LLVM, compiler
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back-end [101]. The LLVM compiler was selected since it was designed with
extensibility in mind.

With llvm-gcc, a compilation unit is translated into object code as follows.
First the source code is parsed and lowered into an intermediate representation,
IR. Second, the IR is transformed as OpenMP directives are processed. Code
in parallel sections is outlined and calls to the OpenMP runtime are inserted
to distribute loop iterations to threads. Finally, optimization passes are run on
the intermediate code and machine code is generated.

The runtime checks must use variables added to the code during the processing
of OpenMP directives. Therefore, the plug-in to insert runtime checks is run
after processing of the OpenMP directives and before subsequent optimization
passes.

Figure 6.8 on the next page illustrates how the compiler transforms code an-
notated with an OpenMP for directive and how runtime checks are inserted.
The modifications are shown as a simplified, source-to-source transformations
for clarity, but are implemented as transformations of the LLVM IR.

6.2.6 Results for the Second Directive

We evaluate three aspects of the depends sc directive: i) the programmer effort
required to insert the proposed directives; ii) the performance impact of the
runtime checks; and iii) the ability of the directive to exclude data dependencies
that would otherwise have been assumed to exist by a task graph extraction
tool. Three codes are used for the evaluation: the heat diffusion example from
section 6.2.2 on page 63, and two embedded image processing benchmarks.

The directives ability to exclude superfluous dependencies is estimated as fol-
lows. The number of dependencies asserted with the directive is compared to
a conservative estimate. The estimate is obtained by evaluating equation 6.4
under the assumption that min chunk1 is one – which is conservatively correct.
max chunk2 is computed via equation (6.5) for non-guided schedules with re-
quested chunk size c. Finally, stencil width2, did not need to be approximated
since the benchmark codes use fixed width stencils. The number of directives
added in the source code is used to approximate the required programming
effort.

The benchmarks were executed on the same two systems that were used to
evaluate the depends t directive – see 6.1.4. Once more, the graphs show the
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#pragma omp for schedule(static)

for(i=lb;i<ub;i+=incr)

/* <loop body> */

(a) Parallelized loop where iterations are dis-
tributed according to the static schedule
and no chunk size.

#pragma omp for schedule(ls,c)

for(i=lb;i<ub;i+=incr)

/* <loop body> */

(b) Parallelized loop where iterations are dis-
tributed according to any other schedule.

/* slice begin, slice end */

long sb, se;

if(loop_start(

lb,ub,incr,"static",0,&sb,&se) {

for(i=sb,i<se;i+=incr)

/* <loop body> */

}

}

loop_end();

(c) Code from figure 6.8a after the com-
piler processes an OpenMP directive with a
static schedule.

/* slice begin, slice end */

long sb, se;

if(loop_start(

lb,ub,incr,ls,c,&sb,&se)) {

do {

for(i=sb,i<se;i+=incr)

/* <loop body> */

}

while(loop_next(&sb,&se));

}

loop_end();

(d) Code from figure 6.8b after the compiler
processes an OpenMP for directive with any
schedule except static with no chunk size.

long sb, se;

if(loop_start(

lb,ub,incr,"static",0,&sb,&se) {

/* RUNTIME CHECK */

_check_chunk(sb, se, ndep);

for(i=sb,i<se;i+=incr)

/* <loop body> */

}

}

loop_end();

(e) Code from figure 6.8c instrumented
with a runtime check. Each thread calls
check chunk to check its chunk size.

long sb, se;

/* DYN. OR STATIC CHECK*/

if(loop_start_wrapper(lb,ub,

incr,ls,c,&sb,&se, ndep)) {

do {

for(i=sb,i<se;i+=incr)

/* <loop body> */

} /* GUIDED OR RUNTIME CHECK*/

while(loop_next_wrapper(&sb,

&se, ndep));

} loop_end();

(f) Code from figure 6.8d with runtime
checks. A call to either loop start or
loop next was wrapped.

Figure 6.8: Processing of OpenMP directives and subsequent insertion of run-
time checks. All schedules except static with no chunk size are handled in
the same way so two different cases must be handled. Variables sb and se are
OpenMP control variables and store the beginning and end of each chunk of
iterations. ndep is the maximal number of dependencies asserted by the pro-
grammer via the max deps clause of the depends sc directive.
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Table 6.2: Memory usage and speed-up of the benchmark applications when us-
ing the static loop schedule. All times are in seconds and memory consumption
is in megabytes.

Name Sequential time Relative speed-up Memory use
2 threads 4 threads

Heat diffusion 1.3781 1.9 3.1 2
Demosaicing 0.8980 1.9 3.5 221
Edge detection 0.0082 1.7 3.0 0.2
Corner detection 0.0047 1.7 2.6 0.3

performance for eight threads but similar results were observed for experiments
with one, two and four threads.

Like the experiments with the first directive, only the parts of the benchmark
performing parallel work and which can contain runtime checks were included
in the execution time. The scalability of the parallelized parts of the benchmark
applications is shown in Table 6.2.

Heat diffusion simulation The heat diffusion code was used as a micro-
benchmark. It executes the same stencil operation iteratively for a number of
time-steps so the inserted runtime checks are exercised repeatedly.

The inner loop of the heat diffusion example was annotated with a single
depends sc directive as shown in listing 6.4 on page 73. Using the directive
rather than a conservative estimate reduces the number of assumed dependen-
cies by 2 to 257 depending on the chunk size as shown in Table 6.3 on the facing
page. This corresponds to a relative improvement between 33% and 99% with
an average improvement of 74%.

The heat diffusion simulation was run for 2000 time steps with an array of
131072 double values. The array sizes were set such that all data structures fit
in the last-level caches of the CPU’s.

The running times of the heat diffusion simulation with and without runtime
checks inserted are shown in Figure 6.9 on page 80. There were no statistically
significant difference between the average running times of the binaries with and
without runtime checks inserted.

The executions using the dynamic schedule and small values of the chunk size
parameter have significantly higher execution times when compared to the other
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Table 6.3: Actual dependencies, dependencies asserted via directive and conser-
vative estimate of dependencies for the heat diffusion simulation with various
OpenMP schedules.

Schedule Dependencies Difference
Actual Asserted Estimated Abs. Rel.

static,2 dynamic,2 3 4 6 2 33%
static,4 dynamic,4 3 3 8 5 62%
static,8 dynamic,8 3 4 12 8 67%
static,16 dynamic,16 3 3 20 17 85%
static,64 dynamic,64 3 3 68 65 96%
static,256 dynamic,256 3 3 260 257 99%
Average 3.0 3.3 62.3 59.0 74%

executions. This is because the dynamic schedule incurs a synchronization over-
head each time a slice of iterations is mapped to a thread and the number of
slices is in inverse proportion to the chunk size for the dynamic schedule.

Figure 6.9 on the following page also shows a significantly higher worst-case
execution time for un-instrumented builds for runtime and static schedules.
Even when performing two or more warm-up runs before calculating average
execution times, we saw that whichever build was executed first was also most
likely to show a slightly higher worst-case execution time.

Image demosaicing A key digital photography workload is demosaicing which
interpolates sensor data from a color filter mosaic. We used code developed for
an embedded MPSoC [26]. It uses several two-dimensional stencils which are
from three to five elements wide.

Six successive stencil computations were annotated with a depends sc directive
each. The actual, asserted and estimated number of dependencies between a
single pair of stencil computations are shown in table 6.4 on page 81. When the
chunk size is two, the directive is no more precise than a conservative estimate
of the number dependencies. For all other chunk sizes, the number of assumed
dependencies is reduced by 3 to 257 depending on the chunk size as shown in
table 6.3. This corresponds to a relative improvement between 50% and 99%.
The average improvement for all tested chunk sizes is 65%.

A 21 mega-pixel image with a resolution of 5616x3744 pixels was used as input.
This input results in a memory consumption of approximately 221 MB, which
will not fit into the caches.
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Figure 6.9: Comparison of the maximal, minimal and average running times of
checked and unchecked builds of the heat diffusion simulation with eight threads
and various selections of schedule and chunk size. The labels on the x-axis refers
to the schedule clause.

The results are shown in figure 6.10 on the next page. There were no statistically
significant differences between the average running times of the binaries with
and without runtime checks inserted.

A slight increase in running time can be observed when increasing values of the
chunk size parameter from 16 to 64 to 256 for the static schedule. The effect
also increases slightly when using fewer threads. We used hardware performance
counters to measure cache misses for the different schedule settings. We found
that L2 cache misses increases with the chunk size which we believe is explained
by a corresponding increase in unsuccessful L2 hardware prefetches. Using chunk
size 16 shows around 200K unsuccessful prefetches whereas a chunk size of 256
results in more than 350K unsuccessful prefetches.

Edge and corner detection in images Detecting edges and corners in an
image is an important step in machine vision. Two benchmarks, susan.edges
and susan.corners, from the MiBench suite [69] was studied. The large reference
input consisted of 384x288 grayscale values which consume 108 KB of memory.
Since two buffers are used in susan.edge, its working set is approximately 216
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Table 6.4: Actual dependencies, dependencies asserted via directive and conser-
vative estimate of dependencies for the image demosaicing program with various
OpenMP schedules.

Schedule Dependencies Difference
Actual Asserted Estimated Abs. Rel.

static,2 dynamic,2 3 4 6 0 0%
static,4 dynamic,4 3 3 8 3 50%
static,8 dynamic,8 3 4 12 6 60%
static,16 dynamic,16 3 3 20 17 85%
static,64 dynamic,64 3 4 68 64 94%
static,256 dynamic,256 3 3 260 257 99%
Average 3.0 3.5 61.3 57.8 65%
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Figure 6.10: Comparison of the maximal, minimal and average running times
of checked and unchecked builds of the demosaicing program with eight threads
and various selections of schedule and chunk sizes.

KB. Susan.corners use three buffers and therefore has a working set of around
322 KB, which makes the large reference input fit within the L2 caches.

Both benchmark were annotated with two depends sc directives each. A rough
estimate of the time required to insert depends sc directives is about an hour
per benchmark or less. Table 6.5 on the following page shows that using the
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Table 6.5: Actual dependencies, dependencies asserted via directive and conser-
vative estimate of dependencies for susan.edges with various OpenMP schedules.

Schedule Dependencies Difference
Actual Asserted Estimated Abs. Rel.

static,2 dynamic,2 6 6 10 4 40%
static,4 dynamic,4 4 7 12 5 42%
static,8 dynamic,8 3 9 16 7 44%
static,16 dynamic,16 3 4 24 20 83%
static,64 dynamic,64 3 4 72 68 94%
static,256 dynamic,256 2 12 264 252 95%
Average 3.5 7.8 66.3 58.5 63%

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

runtim
e

static

static2

static4

static8

static16

static64

static256

dynam
ic2

dynam
ic4

dynam
ic8

dynam
ic16

dynam
ic64

dynam
ic256

guided2

guided4

guided8

guided16

guided64

guided256

ti
m

e
in

se
co

n
d
s

checked
unchecked

Figure 6.11: Comparison of the maximal, minimal and average running times
of checked and unchecked builds of susan running edge detection using eight
threads and various schedules and chunk sizes.

directive rather than a conservative estimate reduces the number of assumed
dependencies in susan.edges by 4 to 252 depending on the chunk size. This
corresponds to a relative improvement between 40% and 95% with an average
improvement of 63%. Similarly, table 6.6 on the next page shows that the di-
rective eliminates 5 to 252 assumed dependencies in susan.corners. The relative
improvement is between 42% and 95% with an average of 73% for susan.corners.
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Table 6.6: Actual dependencies, dependencies asserted via directive and conser-
vative estimate of dependencies for susan.corners with various OpenMP sched-
ules.

Schedule Dependencies Difference
Actual Asserted Estimated Abs. Rel.

static,2 dynamic,2 7 7 12 5 42%
static,4 dynamic,4 5 5 14 9 64%
static,8 dynamic,8 3 4 18 14 78%
static,16 dynamic,16 3 8 26 18 69%
static,64 dynamic,64 3 5 74 69 93%
static,256 dynamic,256 2 14 266 252 95%
Average 3.8 7.2 68.3 61.1 73%
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Figure 6.12: Comparison of the maximal, minimal and average running times
of checked and unchecked builds of susan running corner detection using eight
threads and various schedules and chunk sizes.

The results are shown in figure 6.11 and figure 6.12. Running times increase
sharply for chunk sizes 64 and 256 because the chunk size is close to the num-
ber of iterations in the parallelized loops – which causes load imbalance. The
imbalance disappears for larger inputs. There were no statistically significant
differences in the average execution time with or without runtime checks for
correct use of the directive for any of the inputs tested.
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6.3 Related Work

Vallerio et al. proposed an automated task graph extraction approach from
unmodified C code [159]. Parallelism is not considered and task dependencies
are computed using very conservative assumptions about the use of pointers and
arrays.

Adve et al. address task graph extraction in the context of high-performance
computing [2]. A distributed memory programming model, MPI, is assumed.
In contrast, this work targets shared memory programming. They also argue in
favor of generating task graphs from OpenMP programs.

Sinnen introduces an OpenMP tasking directive to describe dependencies be-
tween certain types of OpenMP regions [146]. The dependence information is
used for dynamic scheduling rather than task graph extraction, assign compu-
tational weights to tasks and is not runtime checked. Task names are used to
express dependence relations between tasks whereas this work use the combina-
tion of pointer names and task names to express dependencies. The depends t

directive captures which pointers are shared among tasks and which are not.
This allows runtime checks to ignore task private pointers.

Thies et al. and Vandierendonck et al. proposed annotations to target pro-
grams containing pipeline parallelism [155, 161]. With the former approach, the
programmer uses directives to delineate pipeline stages and profiling is used to
estimate the dependencies among those. The latter approach uses profiling to
detect pipeline parallelism and static analysis to suggest how annotations must
be used to eliminate potential dependencies for the parallelization to be legal.
In contrast to our work, incorrect use of annotations may go undetected.

Ha has proposed the HoPES programming environment for development and
mapping of embedded software to MPSoC’s [70]. OpenMP is used to express
data-parallelism in programs and task-parallelism is expressed in a synchronous
data-flow model. It is unclear if and how the challenges in determining data-
dependencies discussed here are handled in the HoPES environment.

Liu and Dick present a tool which can generate communication graphs by trac-
ing loads and stores during execution rather than compile time analysis [107].
The approach is independent on programming language and threading library.
Communication graphs accurately capture program behavior for given program
input, number of processing elements and operating system scheduler. Unlike
task graphs, communication graphs cannot be parameterized or composed hi-
erarchically to analyze application behavior across different program executions
and execution platforms.
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The hArtes project is an end-to-end framework for real-time embedded sys-
tems [22]. The approach to task graph extraction is based on automatic paral-
lelization of sequential C code. However, few types of code can be parallelized
automatically. Secondly, being able to derive a parallel program from a sequen-
tial program does not imply that an accurate task graph can be derived from
the program.

Schmitz et al. [143] determine inter-task dependencies by hand. It was argued
in section 4.4 that this approach is labour intensive and prone to errors.

6.4 Summary

This chapter presented two directives to express data-dependencies in pro-
grams parallelized with OpenMP. The directives provide dependence informa-
tion which is hard or impossible to obtain via program analysis. It reduces
the number of dependencies in task graphs. This i) allow DSE tools to find
more feasible designs and prevents over-provisioning of resources; and ii) lowers
the running time of task scheduling algorithms whose asymptotic complexity
increase with the number of dependencies.

The impact of the depends sc directive on task graph precision was evaluated
on four benchmark kernels. Between one and six directives were added to the
benchmarks. This decreased the average number of assumed dependencies be-
tween 63% and 74%.

The performance impact of runtime checking for correct use of the depends t

directive was evaluated using a parallel sorting benchmark and the depends sc

directive was evaluated using four codes containing stencils. All benchmarks
were compiled with optimization and measured on a dual socket Intel Xeon
based server with eight processing cores and an Intel Atom based machine having
two in-order cores. None of the benchmarked programs showed a statistically
significant increase in the average running times when adding runtime checks.

The estimated time required to insert depends sc directives was about an hour
per benchmark. Inserting the depends t directives took less than half a working
day. To lower the annotation effort, the directives should be combined with
static analysis suggesting which variables and loop nests should be annotated.
Static analysis could also catch simple errors such as inconsistent use of labels
and references to unresolved symbols.
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Chapter 7

Generating Compiler
Feedback

Parallel programming is one of the biggest challenges faced by the computing
industry today. Yet, applications are sometimes written in ways that prevent
automatic parallelization or vectorization by compilers [86]. Opportunities for
optimization are therefore overlooked. For instance, a recent study of the pro-
duction compilers from Intel and IBM found that 51 out of 134 loops were
vectorized by one compiler but not the other [65].

Several optimizing compilers can generate reports designed to give a general
idea of the issues encountered during compilation. The task to determine the
particular source code construct that prevents optimization is left to the pro-
grammer.

Modify

Analyze

Refine

detect issues &
suggest modifications

In this study, a production compiler
was extended to produce an interac-
tive compilation system. Feedback is
generated during compilation. This
corresponds to the second step in the
analysis feedback loop. The feed-
back helps the programmer refactor
the source code. This leads to code
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that is more amenable to automatic
parallelization and vectorization.

The research presented in this chapter was published in the proceedings of the
4th Workshop on Programmability Issues for Heterogeneous Multicores [97].
An expanded version was published as a technical report [98]. This chapter
adds an additional case study in which a JPEG decoder was modified to enable
automatic vectorization of a frequently executed function.

The following section introduces two benchmarks which exemplify the problems
faced by production compilers. The problems observed via the benchmarks
are then related to the steps in the auto-parallelization process in Section 7.2.
Section 7.3 describes the interactive compilation system to guide code refac-
toring and facilitate auto-parallelization. The refactoring which enabled auto-
parallelization of the two benchmarks is discussed in Sections 7.4 and 7.5 respec-
tively. Refactoring to allow auto-vectorization of a JPEG decoder is discussed
in section 7.6. Experimental results are presented in sections 7.7 and section 7.8
surveys related work.

7.1 Exposing Compiler Problems

Programs can be written in many ways. Some ways obstruct automatic par-
allelization and vectorization. Throughout this chapter, three kernels will ex-
emplify the problems production compilers face. The paragraphs below briefly
outlines the kernels.

The first kernel is a realistic image processing benchmark. It was kindly pro-
vided by STMicroelectronics Ottawa and Polytechnique Montreal [26]. The
kernel consists of 910 lines of C code1. it interpolates sensor data from a color
filter mosaic [104] in a process called demosaicing. Its execution time is concen-
trated in twelve loop nests whose iterations are independent. In addition to the
sequential code, STMicroelectronics wrote a hand-parallelized and optimized
pthreads version.

The edge detection kernel from the UTDSP benchmark suite [102] was also
studied. The kernel consists of 187 lines of C code. It detects edges in a grayscale
image and contains three loop nests that may be parallelized. A single loop nest
accounts for the majority of the execution time.

1All numbers were measured using David A. Wheelers SLOCCount.
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The JPEG decoding benchmark from the EEMBC benchmark suite [36] was
used to study issues preventing vectorization. It consists of 8592 lines of C code
– excluding headers used to embed image data.

The kernels are difficult to parallelize automatically. To test this, the kernels
were compiled with gcc [63] and opencc [35] – both open-source compilers.
Three commercial compilers – icc from Intel [80], pgcc [154] from Portland
Group and suncc [121] from Oracle – were also tested. The highest available
optimization levels and inter-procedural optimization were selected to produce
the best results. Level -O2 was tried in addition to -O3 for gcc since it has been
observed to produce better results.

None of the loop nests in the demosaicing code were parallelized by any of the
compilers. The results for the edge detection code were mixed as shown in Table
7.1. Only icc managed to parallelize the second loop nest where parameter-
aliasing is an issue. Interestingly, icc succeeds because it makes an inlining
decision which rules out aliasing among function parameters. If the function is
not inlined, aliasing also prevents icc from parallelizing the loop.

Finally, automatic vectorization of two loops in a performance critical function
in the JPEG decoder was tested. None of the five compilers could vectorize the
two loops.

The obstacles which prevents optimization of the benchmark kernels include:

• Potential aliasing among pointers and arrays.

• Function calls in loop bodies. These may have side effects that create
dependencies between loop iterations.

• Control-flow in loop bodies.

• Loop counters that may overflow or lead to out-of-bound array accesses.

• Loop bounds that cannot be analyzed by the compiler.

• Array access patterns that are too complex for the compiler to analyze.

• Loops that may contain insufficient work for parallelization to be prof-
itable.

• operations that cannot be vectorized.

To understand why a compiler may refrain from auto-parallelizing the bench-
marks, a single production compiler was studied. This work was based on the
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Table 7.1: Loop nests in the edge detection kernel that were auto-parallelized
by five different compilers. The compilers are unlikely to parallelize the second
or third loop nest.

Origin Compiler Loop nests
loop1 loop2 loop3

FOSS gcc X X
Intel icc X (X) X
FOSS opencc X X
PGI pgcc X
Oracle suncc X X

widely used, open-source gcc compiler which is being rigorously tested and en-
hanced by a vibrant and pragmatic developer community.

7.2 Automatic Parallelization with gcc

Automatic parallelization [164] involves numerous analysis steps. Every opti-
mizing compiler must perform a sequence of roughly similar steps. The concrete
implementations may vary and this leads to different strengths and weaknesses
among compilers. This section explains where and why the analysis steps in gcc

release 4.5.1 had problems parallelizing the benchmarks.

7.2.1 Alias Analysis

As explained in section 3.1.1 on page 25, alias analysis determines which storage
locations may be accessible in more than one way [74]. Aliasing of pointers
and function parameters may create dependencies among loop iterations so this
analysis is instrumental to auto-parallelization.

The alias analysis implemented in gcc is a fast variant. It does not account for
the context in which function calls are made nor does it take the control-flow in
functions into account. Hence, function parameters of array and pointer types
are conservatively assumed to alias. Also, if a statement aliases two pointers
at some point in a function, the pointers are assumed to alias not just in the
following statements but at all statements in the function. Both types of alias-
analysis inaccuracies prevented auto-parallelization of the benchmark kernels
studied. The interactive compilation system developed for this study can point
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to array accesses which are assumed to alias and suggest how annotation can
remove this assumption.

7.2.2 Loop Bounds and Strides

The number of loop iterations must be countable for auto-parallelization to
succeed. The compiler must therefore analyze the upper and lower bounds and
loop strides. If these values are not constant, it must discover which variables
will hold the values at runtime.

The demosaicing kernel contained several loops which have non-unit strides.
This prevented gcc from computing the number of iterations and was reported
by the interactive compilation system. The loop increment can be normalized
– or changed to one – by multiplying all uses of the loop counter with the
original increment. However, gcc did not normalize the loops in the demosaicing
benchmark so manual refactoring was required. Loop normalization is supported
by other compilers such as opencc so this may be added gcc in a future release.

7.2.3 Induction Variable Analysis

Induction variables are scalars whose values are functions of the loop counters
(section 3.1.1 on page 22). Induction and reduction operations lead to inter-
iteration dependencies that require special handling during automatic paral-
lelization. Dependencies caused by induction variables are eliminated by sub-
stituting these with functions of the enclosing loop counters [131].

In the demosaicing benchmark, gcc was either unable to determine which vari-
ables serve as induction variables or analyze how the values of induction vari-
ables evolve as the loop executes. This prevented auto-parallelization. The
problems were mostly due to the use of a one dimensional array to represent
two dimensional image data. This is known as linearization and is done since
dynamically-sized multi-dimensional arrays are not well supported in C. Index-
ing into a linearized array involves contributions from two or more loop counters
and the resulting expressions are harder to analyze. De-linearization replaces
the linearized array with a multi-dimensional one. This breaks each complex
indexing expression into several simpler ones which are easier to analyze [109].
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filter.h

main.c

filter.c

.
    z[i] = x[i] * y[i];
    sum += z[i];
  }
  return sum;
}

void fn(int *x, int *y, int *z) {
  int i, sum = 0;
  for (i = 0; i < N; i++) {

 z[i] = x[i] * y[i];
 sum += z[i];

  }
}

Eclipse

Problem: pointers 'z' and 'y' may alias. 
Loop can not be parallelized.

➥ Fix: add 'restrict' quantifier to 
pointers 'z' and 'y'

> gcc -O2 -fcode-comment main.c
Terminal

libcodecomments.a

main.c.parloops
main.c.tree-vect
main.c.matrix-reorg

filter.h

main.c

filter.c

code comments 
Eclipse plug-in

void fn(int *x, int *y, in
  int i, sum = 0;
  for (i = 0; i < N; i++) {

 z[i] = x[i] * y[i];
 sum += z[i];

  }
}

Problem: pointers 'z' and 'y' may 
alias. Loop can not be parallelized.

➥ Fix: add 'restrict' quantifier to 
pointers 'z' and 'y'

uses produces consumes used by

Figure 7.1: Illustration of the compilation feedback system. A library extends
gcc to generate code comments in its diagnostic dump files. A plug-in for the
Eclipse CDT environment provides Eclipse with the functionality to i) read the
code comments containing feedback ii) display them at appropriate places in
the source code and iii) provide refactoring support for the changes suggested
by the compiler feedback.

7.2.4 Data Dependence Analysis

Currently, gcc contains two different frameworks to analyze data dependencies.
The lambda framework is the oldest and most mature of the two. It represents
data dependencies as distance vectors and implements a multi-dimensional ver-
sion of the Banerjee test [105, 16]. Much functionality, including the lambda
framework is shared between the loop parallelization and vectorization opti-
mizations. Hence, code transformations which enable gcc to parallelize a loop
using the lambda framework can also help making it vectorizable.

Gcc is transitioning to Graphite which is a newer and more capable data de-
pendence framework [129]. The transition is advancing at slow but steady pace
and much work remains. In the 4.5 and 4.6 releases of gcc, auto-parallelization
with Graphite only handles innermost loops. The lambda framework was
therefore used in this study.

The goal of data dependence analysis is to determine if a loop has inter-iteration
dependencies. In such cases auto-parallelization is usually prohibited. Data is
often read and written from arrays or pointers and this may lead to dependencies
between loop iterations. Recall from section 3.1.1 on page 22 that each iteration
can be identified by a vector in the loop iteration space. Subtracting the iter-
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ation vectors of two dependent iterations yields a distance vector. The lambda
dependence analysis framework requires that all possibly dependent loop iter-
ations have the same distance vector. If is not the case, auto-parallelization
fails. The failure happens because the data access pattern is too complex to be
modeled, even if loop iterations are in fact independent. Some loop nests in the
demosaicing benchmark were not auto-parallelized for this reason.

7.3 Interactive Compilation Feedback System

The benchmark kernels exposed several coding patterns which obstructs auto-
parallelization in production compilers. The previous section then used gcc

to exemplify why a compiler may be prevented from auto-parallelizing a loop
nest. We can now explain how we provide feedback and suggestions on how the
programmer can make code amenable to auto-parallelization.

The interactive compilation feedback system is illustrated in Fig. 7.1. It has
two parts. The first part is a library, libcodecomments, and a set of patches
to gcc’s auto-parallelization subsystems. This extension of gcc generates code
comments containing compiler feedback. In contrast to stand-alone tools, the
code comments approach leverages the production-quality program analysis and
optimization functionality already present in the compiler.

The code comments are generated when one of the steps in the auto-parallelization
optimization encounters an issue which prevents further analysis. The function-
ality in libcodecomments is then used to produce a human understandable
problem description. This is important because program analysis often fail
while processing compiler generated, temporary variables that are meaningless
to the programmer. Most importantly, libcodecomments is used to reconstruct
source level expressions (after preprocessing) and their file locations from com-
piler generated temporaries.

The generation of diagnostic dump files are controlled via existing compiler flags
– the code comments are simply added to these dump files.

The second part of the system is a plug-in for the Eclipse C Development Tools,
CDT [153]. The code comments plug-in enables CDT to parse the compiler
feedback from dump files. The dump files are read by a custom step in the
Eclipse build process and requires no programmer intervention besides adding
the appropriate compiler flags. The raw code comments are subsequently con-
verted into markers, which are shown as icons in the left margin of the code
in the Eclipse source editor. The markers automatically track the source code
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Table 7.2: Types of issues reported by compilation feedback system. Second and
third columns indicate whether the comment includes guidance to help resolve
the issue and whether a refactoring is offered to fix the issue. The fourth column
estimates if a non-expert on compilation is likely to comprehend the issue.

type of issue guides fix non-expert example
pointer aliasing X X X fig. 7.2
side-effects of fun. call X X X
unsupported vector op. X X fig. 7.4
questionable profitability X X
side-effects of volatile var. X
side-effects of inline asm. X
control-flow X fig. 7.3
data reference issue X fig. 7.6
scalar carried dependence
loop nesting issue
data alignment issue
induction variable issue
reduction variable issue
unknown num. iterations

construct, say a loop or variable associated with the code comment. The com-
ment may include a quick fix – i.e. a refactoring that automates the suggested
transformation. For example, lines may be added or deleted around the con-
struct. The comment in the marker is shown in the Problems view in Eclipse,
and pops up when the cursor hovers over the marked code as shown in the call-
out in Fig. 7.1. Similar to compiler warnings and errors, the code comments
are automatically updated after each full or incremental build.

Not all the code comments which can be generated by our modified compiler con-
tain concrete advice on how to resolve a given issue. Furthermore, some issues
currently require some familiarity with the functioning of auto-parallelization
and auto-vectorization and thus must be considered unavailable to non-experts.
Table 7.2 gives an overview of issues that can be reported by the system and
marks the ones that may be comprehended programmers without a background
in compilers. The following three sections describe how the interactive compila-
tion system was used to resolve issues preventing optimization of the benchmark
kernels.
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7.4 Case Study: Demosaicing

Recall that gcc and the other compilers tested failed to parallelize any of the 12
original loop nests in the demosaicing kernel. The compilation feedback system,
however, succeeded in removing the issues preventing parallelization. It was
accomplished by iteratively modifying and compiling the code until all relevant
loop nests were auto-parallelized. The following sections describe how the code
was refactored to accomplish this.

7.4.1 Loop Iteration Counts

Most of the loops in the demosaicing code have a stride of two. This caused
gcc’s iteration count analysis to fail according to the compiler feedback. As a
workaround, the loops were normalized to use unit strides and array indexing
expressions were updated accordingly. For instance

1 int x, y, idx;

2 for(x=2+ offset_red;x<H-2;x+=2) {

3 for(y=2+ offset_blue;y<W-2;y+=2) {

4 idx=x*W+y; ... }}

was rewritten as:

1 unsigned int x, y, idx;

2 for(x=1;x<(H -2)/2;x++) {

3 for(y=1;y<(W -2)/2;y++) {

4 idx =(2*x+offset_red )*W+2*y+offset_blue;

5 ... }}

Additionally, the type of the loop counters, x and y were changed from signed
to unsigned integers. Finally, we observed that writing the loop upper bound
as H/2-1 rather than (H-2)/2 also caused number of iterations analysis to fail.
A more powerful analysis can surely digest both variants properly.

7.4.2 Aliasing

As mentioned in section 7.2.1, gcc employs a scalable but imprecise alias anal-
ysis. Most importantly, the analysis does not analyze how function arguments
are passed from callers to callees, which means that if a function contains sev-
eral arguments having pointer or array types, gcc must assume they may alias.
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This assumption is made even for parameters of incompatible types, due to the
weak type discipline employed in C. Its possible to change the assumption that
pointers to objects of different types alias with the -fstrict-aliasing flag. In
our experiments it eliminated potential aliasing in two out of the twelve loop
nests.

When potential aliasing prevents parallelization, a code comment contains feed-
back on the data references that are potential aliases. The code comment as
it appears in the IDE is shown in figure 7.2. The comment suggests that the
problem can be resolved by annotating the relevant pointers with the restrict

keyword. This type qualifier was added in the latest revision of the language
standard [84]. It also includes an option to automatically transform the code
such that the restrict type qualifier is added to the relevant pointers decla-
rations. Semantically, if memory addressed by a restrict qualified pointer is
modified, no other pointer provides access to that memory. It is left to the
programmer to determine if the restrict qualifier can be added. Based on the
suggestions provided by the code comments, we added restrict qualifiers to 6
pointer typed formal parameters in two function signatures.

A more precise, inter-procedural alias analysis is also available in gcc. It is en-
abled by the -fipa-pta flag. Contrary to our expectations, the inter-procedural
alias analysis did not diminish the need to restrict-qualify function parame-
ters.

7.4.3 Induction Variables

Normalizing loop strides to one and simplifying the expressions governing loop
bounds as described in section 7.4.1 in effect complicated the expressions for the
induction variables. For instance, an induction variable that was previously com-
puted as idx=x*W+y became idx = (2*x+offset_red)*W+ 2*y+offset_blue.
However, the compilation feedback helped us understand how to refactor the
loops so that induction variable analysis did not prevent auto-parallelization.
The original demosaicing kernel uses linearized arrays to represent variable
size, two-dimensional image data. The arrays are passed into the three ker-
nels as function parameters. Changing the types of these function parameters
allowed us to cast the linearized arrays as two-dimensional arrays. This in turn
allowed a simplification of the indexing expressions. By changing a parame-
ter int *restrict red_array to int (*restrict red_array)[W] where W is
scalar holding the image width, we changed the indexing expressions from

1 idx = (2*x+offset_red )*W+2*y+offset_blue;

2 red_array[idx]= RBK_3x3_1(
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3 red_array[idx -W-1], red_array[idx -W+1] ,...);

to

1 red_array [2*x+offset_red ][2*y+offset_blue] =

2 RBK_3x3_1(

3 red_array [2*x+offset_red -1][2*y+offset_blue -1],

4 red_array [2*x+offset_red -1][2*y+offset_blue +1],

5 ...);

De-linearizing the array accesses arguably increased the readability of the code.

It was also necessary to move the loop-invariant variables offset red and
offset blue out of the loop. This was accomplished by introducing a tem-
porary, restrict-qualified pointer defined as
tmp_red_array= red_array+W*offset_red+offset_blue

Finally, due to an analysis limitation when computing the scalar evolution of
expressions containing integers of different sizes we had to suffix the integer
literals with L’s since we used a 64-bit build environment. Eight loop nests had
to be refactored in this manner. Continuing the code example, we arrived at:

1 int (* restrict tmp_red_array )[W]=

2 red_array + W*offset_red + offset_blue;

3 for(x=1;x<(H -2)/2;x++) {

4 for(y=1;y<(W -2)/2;y++) {

5 tmp_red_array [2L*x][2L*y] =

6 RBK_3x3_1(

7 tmp_red_array [2L*x-1L][2L*y-1L],

8 tmp_red_array [2L*x-1L][2L*y+1L], ...

7.4.4 Data dependencies

After transforming the code to allow all preceding analysis steps to succeed,
gcc was able to perform data dependence analysis on the loop nests. Although
iterations of all loop nests in the benchmark are independent, eight of these loop
nests update elements in place to reduce memory requirements. The in-place
updates are possible when a loop nest writes only “odd” elements and reads
only “even” elements or vice versa. From the code comments, however, we
could determine that the data dependence analysis failed to discover this. For
instance, a possible data dependence was reported between the two following
memory reads:
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1 tmp_blue_array[x*2+1][y*2-1]

and

1 tmp_blue_array[x*2-1][y*2+1]

Data dependence analysis fails for this pair of references, because the lambda
framework cannot compute a distance vector which represents their dependence
relation. A possible dependence between these two references must therefore be
assumed in lieu of a more precise data dependence analysis.

To avoid reading and writing to the same array – the memory addressed by
tmp blue array in the example – a new temporary array was allocated to
hold the writes. This effectively sidesteps a compilers inability to analyze non-
overlapping accesses to the same array. However, it also means that updates are
no longer done in-place which decreases the locality of the kernel and increases
the memory consumption by approximately 8%. Finally, for each of the eight
loop nests with in-place updates, a simple “copy” loop was added to write data
from the new temporary array back to its original destination. These loops were
fairly easy to add and were readily parallelized due to their simplicity.

An alternative solution exists: the programmer could have introduced additional
restrict-qualified pointers until all potential data dependencies are ruled out.
This solution does affects neither the data access pattern nor the memory con-
sumption so performance would be unaffected. This shows that the programmer
may need to chose among several alternative ways to refactor – each having a
different performance impact. For the experiments, it was pessimistically as-
sumed that the programmer choose the refactoring that is most costly in terms
of performance.

The modifications described in this section required 50 source lines to be mod-
ified and another 35 to be added. The estimated effort to perform the modifi-
cations to allow auto-parallelization is approximately 2-3 working days.

7.4.5 Posix Threads Version

The pthreads code received from STMicroelectronics was subsequently opti-
mized to execute all relevant loops in parallel and to minimize synchronization
and thread management overhead. The parallelization strategy of the pthreads
version differs from the auto-parallelized version. Two of the twelve loop nests
in the sequential code were fused.
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The distribution of iterations among threads also differ. The auto-parallelized
version only distributes iterations of the outer loops among threads. The pthreads
version, however, divides the two-dimensional picture into a number of tiles and
assigns each tile to a single thread thereby increasing cache affinity.

Finally the pthreads version exploits the task-level parallelism that exists among
the eight computationally intensive loop nests. It does so by executing them
in pairs of two. The auto-parallelized version executes all loop nests one after
another so it only exploits data-level parallelism.

7.4.6 OpenMP Version

Temporary arrays and extra loop nests were introduced in the auto-parallelized
version to work around limitations in gcc’s data dependence analysis. Auto-
parallelization also uses the combined work-sharing construct omp parallel

for in OpenMP whereas an experienced OpenMP programmer may enclose
several loop nests with omp for directives in a single omp parallel region to
reduce synchronization among threads.

To measure the resulting performance if the above mentioned deficiencies were
removed, the demosaicing code was hand-parallelized with OpenMP pragmas.
Like the auto-parallelized version, the OpenMP version only exploits data-
parallelism but performs updates of the arrays in-place instead of using tempo-
rary arrays.

Furthermore, the entries and exits to and from parallel regions was minimized.
It was done using separate omp parallel and omp for directives in place of
the omp parallel for directive. This reduced the number of times a parallel
section was entered from twelve to five. Using the nowait clause on the omp

for directives finally allowed three implicit barriers to be removed.

7.5 Case Study: Edge Detection

The program consists of a main function which calls the function convolve2d

repeatedly with 3x3 Gaussian and Sobel kernels to do edge detection. The main

method contains two loop nests but the bulk of the computation takes place
in convolve2d’s second loop nest. During compilation, gcc can parallelize the
loop nests in the main method but not the work intensive loop in convolve2d.
The problem is aliasing between three arrays which are passed as parameters
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Figure 7.2: A code comment generated by our compilation feedback system and
shown in the Eclipse editor. Lines with comments are highlighted with an orange
background color and with small lightbulbs in the gutter area. Placing the cursor
on a source line with a comment will show an overlay with an explanatory
message and a list of available refactoring suggestions (if any). The problem
view in the bottom shows code comments in addition to regular warnings and
errors.

to the convolve2d function. Feedback from the compilation system reported
an aliasing problem between pairs of data references and is illustrated in Figure
7.2.

A programmer who understands the roles of the arrays in the edge detection
code knows that these will never refer to the same memory. As with the de-
mosaicing code, the lack of aliasing between the function parameters must be
communicated using the restrict keyword and again gcc’s inter-procedural
alias analysis did not help. The fact that only pointers can be qualified with
restrict complicates the situation. Before the restrict-qualifier can be used,
the parameters to the convolve2d function, must be changed as shown below:

1 void convolve2d(

2 int input_image[N][N],

3 int kernel[K][K],

4 int output_image[N][N])

to



7.6 Case Study: JPEG Decoding 101

1 void convolve2d(

2 int (* restrict input_image )[N],

3 int (* restrict kernel )[K],

4 int (* restrict output_image )[N])

The edge detection benchmark was subsequently parallelized by gcc without
further problems. The estimated effort to enable parallelization of the edge
detection benchmark is 1-2 hours.

7.5.1 OpenMP Version

To compare the auto-parallelized edge-detection code with a hand-parallelized
and optimized version, we inserted OpenMP directives in the sequential code.
Similar to demosaicing, separate omp parallel and omp for directives were
used to increase the performance.

7.6 Case Study: JPEG Decoding

The previous two case studies focused on automatic parallelization. This section
studies how the compilation feedback system can enable additional loops to be
vectorized in a JPEG decoder. Profiling was used to locate the function that
accounts for the largest fraction of the execution time. The JPEG decoder
was compiled with the highest level of optimization, O3, using gcc 4.5.1 and
profiled on an Intel Core 2 Duo laptop. The function implementing inverse
discrete cosine transform, IDCT step accounts for 22% of the total run time.
This function was neither parallelized nor vectorized. Since the IDCT function
process 8x8 blocks of pixels and is called via a function pointer, parallelization
seems unprofitable. Hence, the compilation feedback tool was used to refactor
the code until it was successfully vectorized.

Control-Flow in Loops The first issue reported is the existence of control-
flow in the two loops comprising the IDCT function. As mentioned in section
section 3.1.2 on page 27, if-conversion and loop unswitching can sometimes re-
move control-flow from loop bodies. However, the if-statements in the IDCT
function are too complicated to be handled by the former transformation and
the latter did not apply. Figure 7.3 on the next page shows the reporting of
this issue. The compilation feedback tool cannot determine how to resolve the
issue. However, source code comments are associated with both if-statements
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Figure 7.3: Compilation feedback reporting that control-flow prevents vector-
ization.

in the IDCT function. These explain in unambiguous terms that the conditional
statements “short-circuit” the following computations. Both if-statements were
removed from the code. This is a prime example of how programmer under-
standing can help modify code to facilitate analysis.

Pointer Aliasing Unlike the automatic parallelization pass in gcc, the vector-
izer support loop versioning and runtime checking of aliasing. With versioning,
the compiler creates two versions of a loop; one vectorized and one sequential.
If runtime checks determine that aliasing prevent vectorization, the sequential
version is executed. A runtime check is required among each unique pair of
potentially aliased memory accesses. The total number of runtime checks for n

accesses is n(n−1)
2 – corresponding to the number of edges in a complete graph.

A high number of checks degrades program performance so gcc will not emit
more than 10 runtime checks by default. Since this limit is exceeded in the IDCT
function, the compilation feedback system was used to annotate 5 pointers with
the restrict keyword.

Pointer Arithmetic Some compilers, such as IBM’s xlc compiler [83], can
handle limited forms of pointer arithmetic while several others, including icc

and gcc, cannot [65, 21]. Hence, all accesses to three pointers were changed as
follows:

1 for(ctr = 0; ... ; ctr ++) {

2 z2 = DEQUANTIZE(inptr[DCTSIZE *2],

3 quantptr[DCTSIZE *2]);

4 ...

5 inptr ++;
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6 quantptr ++;

7 }

to

1 for(ctr = 0; ... ; ctr ++) {

2 z2 = DEQUANTIZE(inptr[DCTSIZE *2+ ctr],

3 quantptr[DCTSIZE *2+ctr]);

4 ...

5 }

A total of 32 source statements were modified to remove pointer arithmetic.

Non-Vectorizable Operations Vectorization uses special instructions to ex-
press parallelism. Not all operations on scalars are available in vector form. The
compilation feedback reported one such issue. Without the compilation feedback
system, gcc emits the following message in a diagnostic file:

djpeg/jidctint.c:243: note: relevant stmt not supported:

D.5604_159 = D.5603_158 >> 11;

There are two problems with this message. First, It references two variables
D.5604 159 and D.5603 158 which are compiler generated and therefore has no
meaning to the programmer. Second, it makes it seem as if arithmetic right
shift operations cannot be vectorized with the Intel MMX and SSE2 vector
instructions. This is not the case [43, p. “4-237”]. Rather, the arithmetic
right shift cannot be supported for vectors of two 64-bit signed integers. This is
reported by the compilation feedback system as shown in figure 7.4 on page 105.
It shows the statement containing the unsupported operation The code comment
also shows other vector data types for which the right shift is in fact supported.

In the source code, the right shift operation is not visible due to the use of a
macro. However, the Eclipse IDE shows how macros expand when placing the
cursor over a macro. Figure 7.5 on page 105 shows that the expansion of the
DESCALE32 macro includes a right shift operation. The macro operates on data
types named e s32, which, to the programmer, signifies a 32-bit signed integer.
Yet, the code comment reported that right shift is not available for vectors of
two long int’s which are 64-bit long on the test machine.

Further investigation showed that e s32 is a type alias for the signed long

data type in C. This type is a 32-bit integer on windows systems but a 64-bit
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integer on 64-bit UNIX systems. Since the EEMBC benchmark suite contains
traces of being developed on the Windows operating system, this is most likely
a portability problem. The header file defining the e s32 type was therefore
changed from:

1 typedef unsigned long e_u32;

2 typedef signed long e_s32;

to

1 /* C99 header to allow more portable code */

2 #include <stdint.h>

3 ...

4 typedef uint32_t e_u32;

5 typedef int32_t e_s32;

Data Reference Analysis One final issue prevented vectorization of the sec-
ond loop in the IDCT function. The issue was related to data reference analysis
and was reported as shown in figure 7.6 on the facing page. The compilation
feedback system reports that the statement
outptr[7] = range_limit[wsptr[ctr*2+7*4]&1023] could not be analyzed.
The reported expression does not exactly match the source code because it has
been reconstructed from the compiler intermediate representation after prepro-
cessing and loop unrolling was performed. The programmer should have no
problem relating it to the source code as the relevant source statement is high-
lighted as shown in the figure.

The dependence analyzer requires that affine expressions are used to index into
arrays. This is not the case for accesses to the array range limit. There is no
obvious way to modify the statement to resolve this. However, the statement
can be moved out of the loop nest as shown in listing 7.1 and listing 7.2 on
page 106:

1 for (ctr = 0; ctr < DCTSIZE; ctr++) {

2 /* compute intensive stuff */

3 ...

4 /* write back results - prevents vectorization */

5 for(int i = 0; i < DCTSIZE; i++)

6 outptr[i] =

7 range_limit[wsptr[DCTSIZE*ctr+i]& RANGE_MASK ];

8 }

Listing 7.1: Structure of second loop in IDCT function before loop fission.
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Figure 7.4: Compilation feedback reporting unvectorizable operation.

Figure 7.5: Macro expansion in Eclipse IDE helped locate right shift operation
in code.

Figure 7.6: Compilation feedback reporting statement which cannot be handled
by dependence analysis.
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was changed to

1 for (ctr = 0; ctr < DCTSIZE; ctr++) {

2 /* compute intensive stuff - now vectorized */

3 }

4 /* write back step - still not vectorized */

5 for (ctr = 0; ctr < DCTSIZE; ctr++) {

6 outptr = output_buf[ctr] + output_col;

7 for(int i = 0; i < DCTSIZE; i++)

8 outptr[i] =

9 range_limit[wsptr[DCTSIZE*ctr+i]& RANGE_MASK ];

10 }

Listing 7.2: Structure of second loop in IDCT function after loop fission.

Loop fission allowed the majority of the second loop in the IDCT function to
be vectorized too.

In total, the refactoring described in this section added 4 lines, removed 38
and modified another 39 lines of the IDCT function – which was originally 217
lines of code. To resolve the portability issue, one line was added and two were
modified in the header file that define the e s32 datatype. The estimated time
to perform the modifications was one to two working days. If this study had
been limited to a 32-bit environment, the effort would have been significantly
lower as the portability problem would not have manifested itself.

7.7 Experimental Results

The differences in sequential performance between the original and modified
versions of the edge detection and demosaicing kernels were measured and found
to be negligible in both cases. The sequential performance of the JPEG decoder
will be discussed separately.

The reference input for the edge detect benchmark is an image with 128x128
pixels which was scaled to 4096x4096 to increase running times well above the
timing resolution. A large and a small color image was used as input to the
demosaicing kernel. The large image had 5616x3744, 24-bit pixels while the
small image consisted of 768x512, 24-bit pixels. The inputs are summarized in
Table 7.3.

Two different systems were used to evaluate the impact of our modifications
to the benchmarks. The Intel system was a dual-socket server equipped with
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(d) Demosaicing of high resolution image on
POWER
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Figure 7.7: Demosaicing speedups on x86 and POWER platforms. Three par-
allelized versions are compared to the original, sequential program version: a
version modified and auto-parallelized by gcc, a hand written version using
pthreads, and a hand written OpenMP version. The pthreads version does
not take advantage of all parallelism inherent in the benchmark. Also, it does
not support 12 threads, so this data point is unavailable. Figures 7.7a and 7.7c
speedups results for a image with a resolution of 768x512 and 7.7b and 7.7d
show speedups for an image with a resolution of 5616x3744 pixels.
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Table 7.3: Characteristics of the benchmark inputs.

Benchmark Large input Small input
Demosaicing 5616x3744, 24-bit color 768x512, 24-bit color
Edge Detection 4096x4096, 8-bit grayscale -

Table 7.4: Characteristics of the processing elements and memory hierarchies
in the systems used for benchmarking.

System #Processors #Cores #Threads Frequency
Intel 2 8 16 2.93 GHz
IBM 2 4 8 4.0 GHz
System L1D L2/Core L3/Core DRAM
Intel 32 KB 256 KB 2 MB 12 GB DDR3
IBM 64 KB 4 MB 8 GB DDR2

two quad-core 2.93 GHz Xeon 5570 CPUs and a total of 12 GB DDR3 RAM.
It contained eight cores each of which supports two hardware threads. It had
32 KB L1 instruction cache, 32 KB L1 data cache, 256 KB L2 cache per core
and 8 MB shared L3 cache per CPU. The operating system was Linux using
the 2.6.36 kernel. The IBM system was a JS22 (7998-61X) blade with two dual-
core 4.0 GHz POWER6 SCM processors. Like the Intel Xeon system, each core
supports two hardware threads. The system had 8 GB DDR2 RAM, 64 KB
L1 instruction cache, 64 KB L1 data cache and 4 MB L2 cache per core. The
operating system kernel was Linux 2.6.27. The characteristics of the processing
units are summarized in Table 7.4

Version 4.5.1 of gcc with our modifications to generate compiler feedback was
used for all experiments. The -O2 compilation flag was used for optimization
since the auto-parallelization does not always succeed at -O3. Measurements
were made for 2-16 threads on the x86 platform and 2-8 on the POWER plat-
form. Numbers were calculated as averages over three consecutive program
executions on an unloaded system. The time spent on IO was excluded from
the measurements.

7.7.1 Demosaicing Speedups for Intel Xeon

The speedups of parallelizing the modified demosaicing code was compared to
the performance of the original, sequential code. The speedups of the hand
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written pthreads and OpenMP versions were measured similarly. Finally, the
sequential performance of the modified demosaicing code was measured.

Two images were used as input for the demosaicing benchmark: a high resolution
21 mega-pixel image and a small image with 768x512 pixels. The speedups on
the x86-64 platform are summarized in Fig. 7.7a and Fig. 7.7b.

When auto-parallelizing the unmodified code no loops are parallelized so no
speedups are shown. When auto-parallelizing the modified code, the observed
speedups range from 1.9 to 6 for 2-16 threads for the low resolution image.
The highest speedup of 6.0 was obtained using 16 threads. A speedup of 5.6
is already obtained using 8 threads and the using 12 threads did not produce
more than a 5.3 speedup over the sequential code. The meager increases after
8 threads are most likely explained by the fact that no cache capacity is added
past 8 threads. Seemingly, the system uses symmetric multi-threading aware
scheduling. This means that it assigns one thread to each of the eight cores
before any of the cores receive an additional thread.

The high resolution image shows speedups ranging from 1.9 to 5.3 for 2-16
threads. The speedup using 8 threads, which is 5.1, is again close to the maximal
speedup of 5.3 on 16 threads. The weaker scaling when using a high resolution
image may be explained by the fact that the effect of the temporary arrays
become more pronounced once the working set sizes exceed the capacity of the
last level caches.

Performance relative to the OpenMP version Speedups for the OpenMP
version range from 1.8 to 7.2 for 2-16 threads for the low resolution image and
from 1.9 to 7.0 for the high resolution image. Performance increases steadily for
2,4,8 and 16 threads whereas there is little difference between 8 and 12 threads.
Interestingly, the auto-parallelized version outperforms the OpenMP version by
8% on 2 threads and performs similarly with 4 threads. It is outperformed by
4% and 17% on 8 and 16 threads respectively.

Performance relative to the pthreads version The speedups obtained by
the pthreads version were: 1.8-5.7 for the high resolution image and 1.3-3.2
for the low resolution image, executed by 2-16 threads. On the big image, the
auto-parallelized code performed within 93-108% of the pthreads code – outper-
forming it on all but 16 threads. With the small image, the auto-parallelized
version outperformed the pthreads code by 44%-239%.
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Sequential performance of modified demosaicing code As described in
section 7.4.4 on page 97, eight “copy” loops were added to work around an
issue preventing data dependence analysis. This decreases the temporal locality
of memory references and increases memory consumption. Without automatic
parallelization, the modified demosaicing code only ran 1% slower than the
original demosaicing code. Furthermore, retaining all modifications except the
eight “copy” loops increased the sequential performance by 9%.

7.7.2 Demosaicing Speedups for IBM POWER

An anomaly was encountered when compiling the demosaicing code on POWER.
Four of the 20 loop nests in the modified benchmark were not parallelized by
gcc. All loops are successfully parallelized with Linux or Mac OS X on Intel
platforms. It was also ensured that gcc were configured and built identically on
the two platforms. This leads us to believe that the differences are caused by
target dependent optimization decisions.

As a work-around, parallel for pragmas was manually inserted where the
auto parallelization step in gcc would have done the same. It was verified that
the workaround where 16 loops are auto-parallelized and 4 hand parallelized
performs identical to the version where all loops were auto-parallelized on the
Intel platform.

The experimental runs of the demosaicing benchmark were repeated on the
POWER platform using the same high and low resolution images and the same
compiler version. The speedups on this platform are summarized in Fig. 7.7c
and Fig. 7.7d. The demosaicing code generally scaled significantly worse on the
POWER platform which suggest that the benchmark needs additional tuning –
e.g. improving the use of the memory hierarchy though loop tiling – to make
the best use of this platform.

For the version modified to allow auto-parallelization, the speedups on the low
resolution image range from 1.7 to 2.5 for 2-8 threads with the best performance
observed for 4 threads. The speedups for the high resolution image were 1.7-3.1
and here the best result used all 8 threads.

The OpenMP code showed slightly better scaling with speedups ranging from
1.9-2.8 on 2-8 threads for the low resolution image and produced the best
speedup using 4 threads. For the high resolution image, speedups were from
1.5 to 3.8 and the best result was obtained using 8 threads similar to the auto-
parallelized version. Comparing the performance of the OpenMP and auto-
parallelized versions shows that the latter delivers 79-89% of the performance
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of the former with the low resolution image and 80-111% for the high resolu-
tion image. Again the auto-parallelized version compares most favorably to the
OpenMP version with 2-4 threads.

The pthreads version showed more modest speedups on the POWER platform.
With the low resolution image, speedups were 1.7 on 2 threads but only 1.5 and
1.4 on 4 and 8 threads respectively. With the high resolution image, speedups
were: 1.3 on 2 threads, 2.1 on 4 and 3.2 on 8 threads. With the small image,
the auto-parallelized code delivered the same performance on 2 threads and
111-167% on 4 and 8 threads. With the big image, auto-parallelization delivers
130-135% on 2 and 4 threads and the same performance on 8 threads.
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Figure 7.8: Edge detection speedups on x86 and POWER platforms. Speedups
for the modified and auto parallelized code is shown with respect to the sequen-
tial performance and with respect to the unmodified, auto-parallelized code. In
the version modified on the basis of comments, all three loop nests in the pro-
gram are parallelized by gcc, in the unmodified version, only the two loop nests
in the main function are parallelized.
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7.7.3 Edge Detection Speedups for Intel Xeon

We measured the speedups when gcc parallelized the original edge detection
code and the modified code relative to sequential execution and relative to the
performance of the unmodified, auto-parallelized code. Finally, the results of
auto-parallelization are compared with hand-parallelized OpenMP code. The
speedups on the Intel Xeon system are summarized in Fig. 7.8a.

When auto-parallelizing the unmodified edge detection code with gcc, speedups
are within 5%-10% since the most work intensive loop is not parallelized.

When auto-parallelizing the modified code, all three loop nests are transformed.
The highest speedup of 8.32 used 16 threads, but a speedup of 7.8 is already
obtained at 8 threads and 12 threads only resulted in a speedup of 7.0. Speedups
on 2 and 4 threads are 2.44 and 4.62 which is super-linear.

The speedups of the OpenMP version ranged from 1.92 on 2 threads to 7.67 on 16
threads. Super-linear scaling was not observed. In effect, the auto-parallelized
code outperformed the OpenMP code by 9-27% and the difference was greatest
on 2 threads. The reason, we discovered, was that gcc was able to unroll the
most frequently executed inner loop in the auto-parallelized version. The use of
manually inserted OpenMP pragmas on the other hand seems to prevent such
unrolling.

7.7.4 Edge Detection Speedups for IBM POWER

The speedups that were observed on the POWER6 machine are summarized in
Fig. 7.8b. When running the unmodified, auto-parallelized edge detection code,
we observed a performance improvement of 2% on 2-8 threads.

When auto-parallelizing the code with modification based on the code com-
ments, however, we observe speedups ranging from 4.9 on two threads and up
to 12.5 on 8 threads. In contrast, the OpenMP version saw speedups of 2.0
on 2 threads, 3.9 on 4 and 6.0 on 8 threads. Hence, the performance of the
auto-parallelized version was 210-242% relative to the OpenMP version. Again,
we attribute the difference to gcc’s unrolling of the inner loop in the auto-
parallelized version.
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Figure 7.9: JPEG Decoding Speedups on Intel and IBM architectures. Modifi-
cation 1 is the change from signed long int to int32 t. Modification 2 is the
changes to allow vectorization of the first loop of the IDCT and modification 3
allowed vectorization of both loops.

7.7.5 JPEG Decoding Speedups for Intel Xeon and IBM
POWER

The JPEG decoder was compiled in both 32 and 64-bit modes to determine how
changing the word size affects the performance.

The modifications were grouped in three sets as follows: mod1 is the redefini-
tion of the typedef e s32 from a 64-bit integer (on 64 bit systems) to a 32-bit
integer on all systems; mod2 extends mod1 with the modifications to allow
the first loop in the IDCT routine to be vectorized; and mod3 extends mod2
with the modifications to allow the second loop in the IDCT routine to be vec-
torized. Figure 7.9a and figure 7.9b shows the performance before and after the
three sets of modifications for the Intel and IBM systems. Unlike the previous
measurements, the x-axis shows number of images decoded per second.
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Intel Xeon platform Vectorizing the unmodified code increases performance
by 2 and 7% for 32 and 64-bit builds respectively. With and without vector-
ization, the 64-bit build shows just a slight performance increase from mod1.
Modifications to vectorize the first loop, mod2, increase 32-bit performance by
an additional 5% and 64-bit performance by 3%. The modifications to fully
vectorize the IDCT function, mod3, improve 32-bit performance by 12% and
64-bit performance by 10% relative to the original code with vectorization. Note
that the Xeon platform has 128-bits vector units whereas newer Intel platforms
– codenamed “Sandy Bridge” widens the vector units to 256-bit [79]. This
would allow a higher vectorization factor and, possibly, a greater impact of the
modifications.

IBM POWER Platform The first modification, mod1 resulted in a 2% im-
provement over the original 32-bit code when vectorizing. Further modification
to allow vectorization degraded the performance. It seems that the extra-work
introduced by removing the short-circuit if-statements was not outweighed by
the speedup from vectorizing the loops on this architecture.

7.8 Related Work

Early work which pioneered user interaction in an auto-parallelization process
include the ParaScope Editor, SUIF Explorer and PAT [87, 106, 10]. They
parallelize sequential Fortran codes based on stand-alone analysis and user-
interaction.

This work targets the C language whose properties complicate analysis com-
pared to Fortran. These properties include pointers, dynamic memory al-
location and others [12]. It leverages the extensive analysis capabilities of a
production compiler. This means that compiler feedback will adjust in response
to improvements in the compiler analysis and in response to the use of different
compiler flags. The integration with a production compiler is also important
since the analysis of loop nests benefits from scalar optimizations such as if-
conversion and function inlining and from optimizing at link time.

The mechanisms used to rule out potential data dependencies also differ. ParaS-
cope and PAT store information on potential data dependencies which the pro-
grammer has suppressed outside the source code so this information can be
obsoleted by changes to the source code. The compilation feedback system, on
the other hand, suggest that the restrict keyword is used to eliminate sets of
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dependencies. This is a standardized mechanism understood by most compilers.
It also works when the code is changed.

ReLooper is an Eclipse plug-in that can help the programmer parallelize regular
loop nests in Java code [151]. Parallelization is done using the ParallelArray

framework and not OpenMP. The former is limited to handle fewer kinds of
parallel loops. Like our tool, ReLooper also relies on static data-dependence
analysis to detect parallelism – but unlike in gcc the data-dependence analysis
is inter-procedural. Using ReLooper, the programmer picks a target array and is
then told if the loops which access the array can be parallelized safely. She can
then choose to parallelize unsafe loops as is or make changes before re-running
the analysis. This mode of interaction differs from our tool since we may also
give refactoring suggestions that increase amenability to parallelization. Also,
our approach is not data or array driven, but rather focuses on loops.

Sean Rul et al. proposed the Paralax infrastructure which also exploits pro-
grammer knowledge for optimization [161]. Paralax is comprised of three parts
i) a compiler for automatic parallelization of outer loops containing coarse-
grain pipeline-style parallelism, ii) a set of annotations which annotate data-
dependencies which cannot be eliminated via static analysis and which are ver-
ified dynamically and iii) a tool which suggests how the programmer may add
annotations to the program.

Paralax is complimentary to our work. It parallelizes irregular, pointer-intensive
codes whereas we focus on codes amenable to automatic parallelization after
some modification. The suggestions generated by the Paralax tool rely on both
static analysis and profiling information whereas our suggestions, so far, do not
require program profiling.

Suggestions for locality optimizations, SLO, provides refactoring suggestions
at the source level aiming to reduce reuse distances and thus the number of
cache misses [23]. The suggestions are based on cache profiling runs and are
complimentary to the types of refactoring suggested by our tool. For instance,
SLO does not help the programmer expose parallelism in the source code.

The latest releases of IBM XL C/C++ and Intel icc can generate compilation
reports and may suggest changes in response to code which cannot be analyzed
by the compiler. [54, 82]. This work is complimentary to ours and relies on
vendor specific pragmas. We used icc’s Guided Auto-Parallelism feature on
the demosaicing kernel by inserting icc-specific pragmas as suggested by the
compiler. This allowed icc to parallelize a minority of the loops. The resulting
performance varied from a marginal speedup to a sizable slowdown.
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7.9 Summary

Many source codes are written in ways that prevent auto-parallelization of loops.
A compilation feedback system was developed to address this. This infrastruc-
ture was evaluated on via two image processing kernels and a JPEG decoding
program that pose problems for current production compilers. By refactoring
application source code, more loops can be automatically parallelized and vec-
torized.

A demosaicing kernel delivered speedups of up to 6.0 on the Intel Xeon system
(and up to 3.1 on the IBM POWER6 system). A edge-detection kernel was
sped up by factors of up to 8.3 the Intel Xeon system and up to 12.5 on the
IBM POWER6 system. The performance of a JPEG decoder was improved by
10 and 12% on the Intel Xeon system and by 2% on the IBM POWER6 system.

Automatic parallelization was compared with with manual-parallelization across
different program inputs, systems and benchmark programs. Auto-parallelization
delivered the best result in 12 cases, while hand-parallelization was better in 11
remaining situations. At low and medium thread counts auto-parallelization
generally performed similar to or better than hand-parallelized and optimized
codes.

For all three benchmarks, the performance improvement varied considerably
between the two platforms. This shows that auto-parallelization and vectoriza-
tion must be combined with platform-specific tuning. The codes studied also
showed that programmer to chose among refactoring alternatives which affect
performance differently. Finally, the study showed that prioritization of com-
piler feedback remains important: information from the compilation feedback
system as well as other compilers are likely to consist of hundreds of individual
comments, even when the code contains only a handful of missed opportunities
for optimization.



Chapter 8

Refining Compiler Feedback

The compilation feedback mechanism discussed in the previous chapter emits
a code comment whenever an optimization succeeds or must be aborted. An
optimization may need to be aborted for several reasons. The optimization
may simply not be legal and should indeed be aborted. Alternatively, the pro-
grammer may inadvertently have written code in a way that prevents automatic
optimization. Often, the optimization may need to be aborted due to conser-
vative correctness checks during code analysis. Finally, it may be the case that
the analysis capabilities of the compiler lack the sophistication required to de-
termine whether the optimization is legal or not. The compiler does not know
which of these reasons explain the failure to optimize. It therefore outputs a
code comment in all cases.

This means that far from all code comments are indicators of missed opportu-
nities for optimization. The combination of large code bases and superfluous
comments make it difficult for the programmer to identify comments that lead
to improved program performance.

This study is based on compilation feedback from the EEMBC benchmark
suite [36], which consists of 214 thousand source lines of ANSI C code1. Four
production compilers report an average of 873 issues preventing parallelization

1When counted with SLOCCount by David A. Wheeler.
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or vectorization when compiling EEMBC. The exact number of code comments
depends on the compiler and compiler options. Expecting the programmer to
examine each individual issue does not seem realistic.

The previous chapter was only concerned with code comments that report is-
sues preventing optimization. This chapter is concerned with both back offs,
which report issues; as well as optimization comments, which report successes.
Further, a comment is said to be resolvable if it is likely to represent a missed
optimization. Whether or not the optimization itself is profitable is not im-
plied by this. Similarly, unresolvable comments are those which are unlikely to
represent a missed optimization.

As with all kinds of optimization, most effort should be spent on back offs that
improve program performance if resolved. Program profiling can identify code
comments which relate to code that is executed often. Knowing the execution
frequencies of program statements, however, can only rank a comment relative
to other comments. Execution frequencies do not indicate if an individual code
comment is likely to represent a missed optimization opportunity or not.

Modify

Analyze

Refine

      compare multiple
sets of feedback & 
categorize issues

This chapter closes the analysis feed-
back loop by examining the refine-
ment step which leads back to the
modification step. Two techniques
are examined which, unlike profil-
ing, do not require programs to be
executed. The techniques estimate
whether each individual comment is
likely to signify a missed optimization
or not. These techniques compliment,
rather than replace, profiling as a way
to prioritize compilation feedback.

The following section explains the approach used to refine compiler feedback.
Section 8.2 discusses implementation aspects and 8.3 presents the experimental
results. Section 8.4 surveys related work and section 8.5 summarizes.

8.1 Approach

This study refines compilation feedback by comparing multiple sets of feedback
generated by compiling the same source code. Different feedback is generated
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from each build by changing the compilation options or changing the compiler
itself. The process consists of four steps:

Assistance The first step is to generate compilation feedback from multiple
compilers. Compilers differ in their capabilities and their optimization
strategies. Hence, one compiler may successfully optimize where others
cannot. Compilation options that may increase performance or benefit
automatic parallelization and vectorization are enabled. This includes
inter-procedural analysis and link-time optimization.

Speculation The second step generates an additional set of compilation feed-
back for each compiler. Correctness checks that may otherwise block auto-
matic parallelization and vectorization are relaxed via compilation options
in these builds. The feedback generated in this step is speculative since
it is unknown whether the relaxed assumptions preserves the correctness
and performance of the compiled programs.

Pre-processing This step transforms all sets of compilation feedback into a
common format so feedback from different compilers can be compared.

Comparison The intuition behind this step is simple: if one set of feedback
contains a back off comment on a given code location and another set of
feedback contains an optimization comment on the same location, the back
off is potentially resolvable. If the optimization comment was generated
in the assistance step, then the back off may be caused by a compiler
limitation. If the optimization comment was generated in the speculation
step, then the back off may be caused by conservative correctness checks. If
a non-speculative build generated a back off and a speculative build using
the same compiler generated no code comment at the same location, the
compiler refrained from optimizing or providing further feedback. Such
back offs are most likely unresolvable.

After the refinement process, each back off falls in one of three categories: poten-
tially resolvable, potentially unresolvable or unknown. Ideally, the last category
is as small as possible as it provides no guidance to the programmer. The list of
potentially resolvable back offs can be further prioritized via program profiling.
It is then up to the programmer to determine which of the potentially resolvable
back offs are actually resolvable.
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Table 8.1: Names and versions of the compilers used in this study.

Compiler Product name Version
icc [80] Intel C++ Composer XE 2011 for Linux 12.0.2
xlc [83] IBM XL C/C++ for Linux 11.1
pgcc [154] PGI C/C++ Workstation for Linux 11.2
suncc [121] Oracle Solaris Studio 12.2

8.1.1 Speculative Feedback

Certain compilation options allow a compiler to perform optimizations that it
otherwise cannot. The options to relax correctness checks may also cause in-
correct behavior in the compiled programs or degrade their performance. The
compiled programs must therefore be discarded. However, the compilation feed-
back generated from speculation is potentially useful.

By assuming that no pointers are aliased in the code being compiled, for in-
stance, the compiler may report optimizations in places where back off com-
ments would otherwise appear. When an optimization comment appear in place
of back off, the latter is likely to represent a missed opportunity for optimization.

In addition to the existence of various forms of aliasing, several other assump-
tions can be made. Speculation can also alter assumptions about side-effects
from function calls, profitability of optimizations, conformance to language stan-
dards and the possibility of overflows in the intermediate computation of induc-
tion variables in loops [44]. By performing multiple speculative builds, which
relax different assumptions, the programmer can be told more about the nature
of the issue preventing optimization.

Last, the relaxed assumptions may allow the compiler to proceed past correct-
ness checks that would otherwise have generated a back off only to abort the
optimization at a later stage. Then, the compiler may or may not generate
another back off. In the latter case, the programmer has no way to understand
the issue, so the initial back off is considered unresolvable.

8.1.2 Assistive Feedback

Speculation can identify locations where conservative assumptions prevent op-
timization. However, when a single compiler is used to generate speculative and
non-speculative builds, the feedback cannot detect limitations of that particular



8.1 Approach 121

compiler. Using multiple compilers to generate compilation feedback from same
source code identifies locations where one compiler determines to optimize and
another generates a back off comment. The names and versions of the compilers
used in this study are shown in table 8.1 on the facing page. The gcc compiler
used in the previous study was not included since it does not support specula-
tive compilation. The opencc compiler [35] was not included since it does not
generate code comments. Finally, the pathcc compiler from PathScale [124]
was not included as source code locations are not reported accurately during
link-time optimization.

The idea is that all locations where one or more compilers optimize are safe to
optimize similarly by all other compilers – assuming no compiler makes an error
when determining to optimize. In addition, feedback from other compilers can
identify locations where a compiler neither optimizes nor generates a back off
comment. This too may be the result of a compiler limitation.

8.1.3 Pre-processing of Feedback

The syntax and semantics of code comments differ among compilers. Some
compilers write feedback to the console just like errors and warnings. Others
write feedback to files. Some compilers write all comments to a single file – others
write a file for each translation unit. Most compilers use a custom syntax while
xlc outputs XML. Finally, some files may be compiled more than once during
the same build, this creates duplicate comments, which must be ignored.

During a single invocation, a compiler may generate both back off comments
and optimization comments for the same source code location. For instance, the
icc compiler generates an optimization comment in the same location where it
emits one or more back off comments. These optimization comments do not
report to actual optimizations and must also be ignored.

For these reasons, compiler feedback from different compilers and even from
different compilation passes need to be pre-processed before feedback from mul-
tiple compilers and multiple builds can be analyzed in a unified fashion. For
each comment, pre-processing marks whether the comment is an optimization
or back off, whether it is speculative or not and the type of optimization that
generated the comment, etc.
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Figure 8.1: Refinement of compilation feedback. Feedback from multiple com-
pilers and multiple builds is pre-processed and analyzed to estimate which back
offs are potentially resolvable and which are not.

8.2 Implementation

The current implementation of the techniques outlined in the previous section is
shown in figure 8.1. It consists of a set of Python scripts. The compilation feed-
back from each build is then pre-processed via a set of feedback pre-processors.
One specialized to parse the feedback from a specific compiler as show by the
column of three rounded rectangles. This allows the subsequent analysis to be
compiler independent and makes it straightforward to add support for addi-
tional compilers. A separate set of scripts analyze the unified feedback. These
correspond to the rightmost rectangle in the figure.

8.2.1 Correlating Code Comments

Source code locations consisting of a file path and a line number are used to
correlate code comments. Code comments, which do not contain both of these,
are therefore discarded.

Even when locations are properly reported, care must be taken when correlating
code comments from different compilers. Consider the two code snippets shown
in figure 8.2 on the facing page showing two common coding styles. Compilers
may output code comments on the line which begins the loop or on the line
which contains the opening bracket. For the coding style on the left, this does
not matter. With the coding style on the right, however, different compilers
may place comments relating to the same loop on different lines.
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For the benchmark code and the compilers used in this study, this was not a
problem. The current implementation can detect but not automatically handle
situations where related code comments refer to adjacent lines.

1 for(i = 0; i < LEN; i++) {

2
(a) Opening brackets on first line of loops.

1 for(i = 0; i < LEN; i++)

2 {
(b) Opening brackets on second line of loops.

Figure 8.2: Differences in coding styles must be accounted for when correlating
code comments.

Correlating comments via loop hierarchies This study uses source code
locations to correlate code comments. Additional code comments could be com-
pared if the loop hierarchy is taken into account. Assume that compiler a reports
optimization at line l1 and that another compiler b reports an optimization at
line l2 where l1 6= l2. Without considering the nesting of the loops, it may seem
that the compilers compliment each other. Each finds an optimization opportu-
nity that the other one does not. Then assume that line l1 begins a loop nested
inside the loop starting on line l2 and that both compilers perform loop par-
allelization. In that case, the compilers do not compliment each other, rather,
compiler b does better than compiler a since parallelization of the outer loop
is likely to be more profitable. Using the loop hierarchy to correlate additional
code comments is left for future work.

8.2.2 Choosing Compiler Options

Modern compilers implement a large number of optimizations that interact in
intricate ways [38]. A pair of compiler optimizations may interfere in both posi-
tive and negative ways depending on the program being compiled [31]. Though
empirical evaluation, iterative compilation can find optimization strategies that
work well for a particular combination of compiler, program and dataset, etc.

It has been shown that iterative compilation significantly improves compilation
results (with respect to a single or multiple objectives) relative to compilers
that apply optimizations in a fixed order [39, 3, 30, 77]. The main drawback of
iterative compilation is the time required to repeatedly recompile and execute
the same program.

The number and type of code comments can be viewed as objectives to be
optimized through iterative compilation. Hence, iterative compilation could be
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used to find the empirical best set of compilation options for both assistive and
speculative builds.

The current implementation does not support automatic iterative compilation
to evaluate the effect of compilation options. Manual experimentation was used
to evaluate several compiler options. It was found that high optimization levels,
aggressive inline expansion and link-time optimization allows more loops to be
auto-parallelized and vectorized.

8.3 Experimental Results

This section evaluates four aspects related to the refinement of compiler feed-
back. First, it evaluates how the locations of code comments overlap among
different builds. Second, the amount of back offs that can be classified as poten-
tially resolvable or not via speculation. Third, the number of back offs that can
be classified by comparing compiler feedback generated from the four compilers
listed in table 8.1 on page 120. Finally, the synergies between the speculation
and assistance techniques are evaluated.

A non-speculative build and a speculative build of the EEMBC benchmark
for each compilers form the basis of the experimental evaluation. Table 8.2
on the facing page shows the compiler options used to control optimization,
feedback and speculation for the eight builds. Assistive builds use options in the
optimization and feedback categories. Speculative builds adds the options listed
in the speculation category. The compiler options were chosen experimentally
by observing the amount of feedback generated as mentioned in the previous
section. Inter-procedural analysis and link-time optimization were enabled in
all instances.

8.3.1 Overlap of Compiler Feedback

Table 8.3 on page 126 shows how the locations of 3490 non-speculative back offs
overlap with the locations of other code comments. The majority of the code
comments (94%) are co-located with other comments. This is important since
this study only compares code comments that reference the same source code
location.

Approximately 20% of the back offs are only co-located with code comments
generated by the same compiler. This means that only speculation can be
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Table 8.2: Compiler options used to generate feedback from speculative and
non-speculative builds.

Purpose Compiler Options

Intel C++ Composer XE 2011 for Linux
Optimization -fast -parallel -vec

Feedback -guide -opt-report 3 -vec-report5 -par-report5

Speculation -ansi-alias -no-ansi-alias-check -fargument-noalias

-fargument-noalias-global -opt-subscript-in-range

-par-threshold0 -vec-threshold0

IBM XL C/C++ for Linux
Optimization -O5 -qsimd -qsmp=auto -qthreaded -qhot

Feedback -qlistfmt=xml=all -qreport

Speculation -qalias=ansi:global:allptrs -qrestrict -qlibansi

-qinline=auto:level=10 -qassert=refalign

-qdebug=NSIMDCOST

PGI C/C++ Workstation for Linux
Optimization -fastsse -mp -Mvect -Mconcur -Mipa=fast -Minline

Feedback -Minfo -Mneginfo

Speculation -Mconcur=cncall,noaltcode -vect=noaltcode

-Msafeptr=all

Oracle Solaris Studio
Optimization -fast -xautopar -xparallel -xvector

-xipo -xtarget=native

Feedback -xloopinfo

Speculation -xrestrict=%all -xalias level=strong

used to address these back offs. About 29% of the back offs are co-located
with optimizations from the same or another compiler. This means that either
speculation or assistance can potentially address these back offs. Finally, 45%
of the back offs are co-located with back offs from other compilers. In absence
of evidence to the contrary, these back offs are categorized as unaddressable.

The percentages are shown as pie-charts in the left half of figure 8.3. The
right half shows the types overlap among locations with code comments rather
than percentage of overlapping back offs. Up to 92% of all locations with code
comments can be addressed by the techniques presented here. The percentage
differs from the percentage of back offs (94%) because several back offs can share
a single source code location.
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Table 8.3: Co-location of back offs and other code comments.

Correlation back offs back offs (%)
Single compiler, single build (isolated comments) 201 6%
Single compiler, multiple builds 704 20%
Multiple compilers, optimizations and back offs 998 29%
Multiple compilers, back offs only 1587 45%

Back-offs rel abs strategy
Single compiler, single build
Single compiler, multiple builds
Multiple compilers, optimizations and back-offs
Multiple compilers, only back-offs
Sum

5,76 % 201 need dynamic profiling (e.g. M. O´Boyle) dynamic
20,17 % 704 speculation may help suppress comments static
28,60 % 998 Assistance and speculation may help here static
45,47 % 1587 speculation may help suppress comments dynamic+static

100,00 % 3490 0 0

45 %

29 %

20 %
6 %

Overlap of Back-off's

Single compiler, single build
Single compiler, multiple builds
Multiple compilers, optimizations and back-offs
Multiple compilers, only back-offs

Locations rel abs
Single compiler, single build
Single compiler, multiple builds
Multiple compilers, optimizations and back-offs
Multiple compilers, only back-offs
Multiple compilers, only optimizations
Sum

7,55 % 122
34,98 % 565
21,80 % 352
35,42 % 572

0,25 % 4
100,00 % 1615

36 %

22 %

35 %

8 %

Overlap of Locations

Single compiler, single build
Single compiler, multiple builds
Multiple compilers, optimizations and back-offs
Multiple compilers, only back-offs

Figure 8.3: Types of overlap among back offs and among all locations with code
comments.

8.3.2 Refinement via Speculation

The type and degree of speculation depend on the compiler options available.
The compiler options added to enable speculation were specified in “Specula-
tion” category in table 8.2 on the preceding page. With icc, speculative builds
assume that no aliasing is possible (parameters containing alias), that compu-
tation of induction variables do not cause overflows (-opt-subscript-in-range)
and that vectorization and parallelization and vectorization is always profitable
(-par-threshold0 and -vect-threshold0).

With xlc, speculative builds also assume lack of aliasing (-qalias=...), that
pointers can be treated as restrict qualified (-qrestrict), that functions with
the name of ANSI C library functions in fact from the ANSI C library (-qlibansi).
It is also assumed that pointers point to naturally-aligned data (-qrefalign)
and that vectorization is always profitable (-qdebug=NSIMDCOST). Finally, the
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Table 8.4: Effect of speculation.

Optimizations back offs
Compiler Baseline Speculative Delta Baseline Speculative Delta
icc 126 577 451 224 68 156
xlc 58 82 24 671 724 -53
pgcc 75 103 28 1186 983 203
suncc 71 73 2 1409 1389 20

Compiler comments 
baseline

comments 
speculative

comments 
delta

optimizations 
baseline

optimizations 
speculative

optimizations 
delta

back-off’s 
baseline

back-off’s 
speculative

back-off’s 
diff

icc
xlc
pgcc
suncc

350 645 -295 126 577 451 224 68 156
729 806 -77 58 82 24 671 724 -53

1261 1086 175 75 103 28 1186 983 203
1480 1462 18 71 73 2 1409 1389 20
955 955 0 872,5 872,5

0

375

750

1125

1500

icc xlc pgcc suncc

Types of Comments

optimizations baseline optimizations speculative
back-off’s baseline back-off’s speculative

0

375

750

1125

1500

icc xlc pgcc suncc

Optimizations and back-offs in baseline build

optimizations baseline
back-off’s baseline

0

375

750

1125

1500

icc xlc pgcc suncc

Optimizations and back-offs in speculative build

optimizations speculative
back-off’s speculative

Figure 8.4: Optimization and back off comments in baseline and speculative
builds.

compiler is asked to perform inline expansion whenever possible
(-qinline=auto:level=10).

The last two compilers, pgcc and suncc, offer fewer compiler options to con-
trol speculation. Speculative builds using pgcc only assume absence of aliasing
(-Msafeptr=all) among pointers, that parallelization is profitable and that
calls in loops are safe to parallelize (-Mconcur=cncall). Also, when paral-
lelizing and vectorizing speculatively, the compiler should not generate alter-
nate serial code (-Mconcur=noaltcode -Mvect=noaltcode). Finally, specula-
tive builds with suncc only assume that pointers can be treated as being re-
strict qualified (-xrestrict=%all) and that type-based alias-analysis can be
used -xalias level=strong) to rule out aliasing between variables that have
incompatible types.

The effect of speculation is shown in table 8.4 and graphically in figure 8.4. As
expected, speculation enables more optimizations to be performed. When spec-
ulation converts a back off comment into an optimization, the back off is likely
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to represent an opportunity for optimization. The icc compiler reports 451
additional optimizations whereas suncc performs only two additional optimiza-
tions. The reasons are likely twofold: icc offers many ways to relax assumptions
whereas suncc can only relax assumptions about aliasing. Moreover, it seems
that loops parallelized by suncc include runtime checks for aliasing. This means
that with suncc aliasing is unlikely to be a major obstacle to parallelization or
vectorization in the first place. Except for xlc, all compilers generate fewer
back offs when compiling speculatively.

The effect of speculation for each of the compilers is detailed in figure 8.5 on
the next page. These are determined by counting how optimizations and back
offs correlated between baseline and speculative builds. Eight combinations are
possible:

1. baseline optimization → speculative optimization

2. baseline back off → speculative optimization

3. no comment in baseline build → speculative optimization

4. baseline optimization → speculative back off

5. baseline back off → speculative back off

6. no comment in baseline build → speculative back off

7. baseline optimization → no comment in speculative build

8. baseline back off → no comment in speculative build

Relations 2 and 8 are of particular interest since they indicate that a back off
can or cannot be addressed cf. section 8.1.1 on page 120. Relation 3 is also an
indicator of missed opportunities for optimization. However, it does not help
the programmer prioritize existing back offs, which is the goal of this study.

Out of a total 224 back offs generated by icc, 88 (39%) are likely to be resolvable
(relation 2) and an additional 30 (13%) back offs are unlikely to be resolvable
(relation 8). Overall 118 (53%) of the back offs produced by icc can therefore
be addressed by speculation.

Speculation with xlc identifies 14 (2%) of back offs as resolvable and 252 (38%)
as unresolvable – in combination this addresses 40% of all back off comments
generated by xlc.

For pgcc, speculation identifies 26 (2%) of back offs as resolvable and 195 (16%)
as unresolvable. This addresses 19% of the total back off comments generated
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Speculative
Optimizations Back offs Nothing

Baseline optimizations 114 0 6

Baseline back offs 88 106 30

Baseline nothing 254 6
Shared Unique Overlap

Locations 251 200 55.7%

(a) Effect of speculation with icc.

Speculative
Optimizations Back offs Nothing

Baseline optimizations 14 10 26

Baseline back offs 14 369 252

Baseline nothing 73 294
Shared Unique Overlap

Locations 229 307 42.7%

(b) Effect of speculation with xlc

Speculative
Optimizations Back offs Nothing

Baseline optimizations 73 0 2

Baseline back offs 26 895 195

Baseline nothing 4 21
Shared Unique Overlap

Locations 924 221 80.7%

(c) Effect of speculation with pgcc

Speculative
Optimizations Back offs Nothing

Baseline optimizations 56 1 0

Baseline back offs 8 1348 9

Baseline nothing 0 2
Shared Unique Overlap

Locations 1123 1083 50.9%

(d) Effect of speculation with suncc

Figure 8.5: Effect of speculation for the individual compilers. Back offs identified
as likely resolvable are highlighted with green and back offs that are unlikely
to be resolvable with red. Additional back offs generated by speculation are
highlighted with yellow.
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by pgcc. Finally, speculation with suncc merely identifies 8 of back offs as
resolvable and 9 as unresolvable – which constitutes little more than a percent
of the total back offs reported by suncc.

Speculation with icc is particularly suited to identify back offs that are likely to
be resolvable. This may be explained by icc’s many options to relax assump-
tions and its conservative cost model. With xlc and pgcc speculation is most
effective at finding back offs which are unlikely to be resolvable. Speculation
is mostly ineffective at addressing the back offs reported by suncc. Unsur-
prisingly, the compilers allowing several types of speculation did better than
suncc, which offers few options to relax assumptions. The next section eval-
uates the assistance technique which compares code comments generated by
different compilers.

8.3.3 Refinement via Assistance

The idea behind refinement via assistance is simple: if one compiler emits a back
off comment where another compiler emits an optimization comment, then the
back off comment is potentially resolvable. This section examines how each of
the four compilers can be assisted by the three others.

Refining icc feedback via assistance Tables 8.5-8.7 on page 131 compares
the number and types of code comments generated by icc with those generated
by the three other compilers used in this study. Table 8.5 shows that icc

generated 25 back off comments in locations where xlc optimized. This means
that xlc can be used to mark 11% of the comments generated by icc as likely
to be resolvable. Similarly, pgcc and suncc can mark 51 (23%) and 37 (17%)
of icc generated back offs as resolvable. When combined, the three compilers
allows 74 (33%) of the icc back offs to be marked as likely to be resolvable.

Refining xlc feedback via assistance Contrary to icc, assistance is mostly
ineffective at addressing back off comments generated xlc. Tables 8.8-8.10 on
page 132 compares the number and types of code comments generated by xlc

with those generated by icc, pgcc and suncc. Table 8.8 shows that xlc gen-
erated 14 back off comments in locations where icc optimized. The remaining
compilers did not optimize where xlc output a back off comment, which means
that they were not of assistance. In total, only 2% of the comments generated
by xlc can be marked as potentially resolvable by comparing with feedback
generated by the three other compilers.
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Table 8.5: Number of code comments generated by icc and xlc correlated by
location and categorized by the eight combinations of comment pairs. Back offs
generated by icc which may represent missed opportunities for optimization
are highlighted in green.

Opt.’s xlc back offs xlc Nothing xlc

Opt.’s icc 7 6 112

back offs icc 25 49 150
Nothing icc 25 567

Shared Unique Overlap
Locations 59 526 10.1%

Table 8.6: Number of code comments generated by icc and pgcc correlated and
categorized as table 8.5.

Opt.’s pgcc back offs pgcc Nothing pgcc

Opt.’s icc 24 73 29

back offs icc 51 107 66
Nothing icc 2 953

Shared Unique Overlap
Locations 206 994 17.2%

Table 8.7: Number of code comments generated by icc and suncc correlated
and categorized as table 8.5.

Opt.’s suncc back offs suncc Nothing suncc

Opt.’s icc 8 107 11

back offs icc 37 159 28
Nothing icc 21 1092

Shared Unique Overlap
Locations 247 921 21.1%
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Table 8.8: Number of code comments generated by xlc and icc correlated by
location and categorized by the eight combinations of code comment pairs. Back
offs generated by xlc which may represent missed opportunities for optimization
are highlighted in green.

Opt.’s icc back offs icc Nothing icc

Opt.’s xlc 7 24 25

back offs xlc 14 54 567
Nothing xlc 112 150

Shared Unique Overlap
Locations 59 526 10.1%

Table 8.9: Number of code comments generated by xlc and pgcc correlated and
categorized as table 8.8.

Opt.’s pgcc back offs pgcc Nothing pgcc

Opt.’s xlc 16 27 13

back offs xlc 0 225 410
Nothing xlc 59 941

Shared Unique Overlap
Locations 176 1126 13.5%

Table 8.10: Number of code comments generated by xlc and suncc correlated
and categorized as table 8.8.

Opt.’s suncc back offs suncc Nothing suncc

Opt.’s xlc 4 51 0

back offs xlc 0 341 294
Nothing xlc 63 1069

Shared Unique Overlap
Locations 240 1007 19.2%
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Refining pgcc feedback via assistance Tables 8.11-8.13 on page 134 com-
pares the number and types of code comments generated by pgcc with those
generated by the three other compilers. Table 8.11 shows that pgcc generated
90 back off comments in locations where icc optimized. Consequently, icc can
mark 8% of the comments generated by pgcc as likely to be resolvable. On the
other hand, xlc and suncc can only mark 23 and 27 (2% each) of pgcc gener-
ated back offs as resolvable. Assistance from the three other compilers allows
133 (11%) of the pgcc back offs to be marked as likely to be resolvable.

Refining suncc feedback via assistance Tables 8.14-8.16 on page 135 com-
pares feedback generated by pgcc with feedback generated by the other compil-
ers. Table 8.14 shows that suncc generated 141 back off comments in locations
where icc optimized. Hence, icc can be used to mark 10% of the comments
generated by suncc as likely to be resolvable. However, xlc and pgcc can only
mark 44 and 47 (3% each) of the back offs as resolvable. The combined assis-
tance of three other compilers lets 194 (14%) of the suncc back offs be classified
potentially resolvable.

The compiler that benefitted most from assistance was icc. One third of all
back offs reported by icc reference locations optimized by one of the other
compilers. Each compiler could address at least 11% of the back offs reported
by icc and pgcc alone could address more than twice as much. Recall that
speculative compilation with icc lead to a dramatic increase in the number of
reported optimizations. Together, these two observations suggest that icc uses
a conservative cost model relative to the other compilers. Two other compilers,
pgcc and suncc, also benefit from from assistance – primarily from icc. Finally,
xlc could address 11% of the back offs generated by icc but other compilers
were mostly unable to address the back offs generated by xlc.

Stand-alone optimizations The first row, third column in tables 8.5-8.16
shows that, in several instances, one compiler reports optimizations where an-
other compiler does not output a back off comment. For instance, icc optimizes
at 112 times at locations where xlc does not emit any comment according to
table 8.8 on the preceding page. Similarly, pgcc reports 59 optimizations in
places where xlc does not report failure to optimize.

This may happen for one of the following reasons:

1. Compilers emitted code comments in different locations. Consider opti-
mization of a loop in a function which was inlined. Comments from one
compiler may refer to the location of the call site. Another compiler may
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Table 8.11: Number of code comments generated by pgcc and icc correlated
by location and categorized by the eight combinations of code comment pairs.
Back offs generated by pgcc which may represent missed opportunities for op-
timization are highlighted in green.

Opt.’s icc back offs icc Nothing icc

Opt.’s pgcc 24 49 2

back offs pgcc 90 73 953
Nothing pgcc 29 66

Shared Unique Overlap
Locations 206 994 17.2%

Table 8.12: Number of code comments generated by pgcc and xlc correlated
and categorized as table 8.11.

Opt.’s xlc back offs xlc Nothing xlc

Opt.’s pgcc 16 0 59

back offs pgcc 23 152 941
Nothing pgcc 13 410

Shared Unique Overlap
Locations 176 1126 13.5%

Table 8.13: Number of code comments generated by pgcc and suncc correlated
and categorized as table 8.11.

Opt.’s suncc back offs suncc Nothing suncc

Opt.’s pgcc 28 46 1

back offs pgcc 27 719 370
Nothing pgcc 2 446

Shared Unique Overlap
Locations 775 699 52.6%
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Table 8.14: Number of code comments generated by suncc and icc correlated
by location and categorized by the eight combinations of code comment pairs.

Opt.’s icc back offs icc Nothing icc

Opt.’s suncc 8 41 21

back offs suncc 141 132 1092
Nothing suncc 11 28

Shared Unique Overlap
Locations 107 985 21.1%

Table 8.15: Number of code comments generated by pgcc and xlc correlated
by location.

Opt.’s xlc back offs xlc Nothing xlc

Opt.’s suncc 4 0 63

back offs suncc 44 252 1069
Nothing suncc 0 294

Shared Unique Overlap
Locations 225 867 19.2%

Table 8.16: Number of code comments generated by suncc and pgcc correlated
by location.

Opt.’s pgcc back offs pgcc Nothing pgcc

Opt.’s suncc 28 41 2

back offs suncc 47 872 446
Nothing suncc 1 370

Shared Unique Overlap
Locations 775 699 52.6%
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emit comments at the location of the loop as it appears in the source code
file.

2. Two compilers choose to optimize at different levels of a loop nest. One
compiler may optimize at the outermost level and one at the innermost
level – and neither generated back off comments for the levels not opti-
mized.

3. Compiler did not attempt to optimize because it did not discover an op-
portunity to do so.

4. Compiler attempted optimization but refrained and did not report why it
did so.

Cases 1 and 2 may be addressed by determining the nesting of loops as discussed
in section 8.2 on page 122 as well as the locations of loops, functions and function
calls in the source code.

Cases 3 and 4 help compiler writers identify areas where a particular compiler
underperforms. In case 3, stand-alone optimizations indicate places where a
compiler did not recognize an opportunity for optimization. This may be caused
by an unfortunate selection of compiler options or due to lack of sophistication
in the compiler itself. In the last case, the compilation feedback mechanism can
be improved. Clearly, if the compiler deliberately chooses not to optimize it
should at least report that optimizing seems unprofitable.

8.3.4 Combining Speculation and Assistance

Some back off comments may be categorized by either speculation or assistance.
Yet others can only be categorized by the combination of speculation and assis-
tance. The categories are as follows:

Assistance or speculation Back offs in this category can be addressed by
either of the two techniques evaluated in the preceding sections.

Assistance and speculation These back offs can only be addressed when
the two techniques are combined.

Assistance only Assistance is required to address such back offs.

Speculation only Only speculation can be used to categorize back offs as
resolvable.
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Suppressible Speculation can be used to categorize back offs as unresolvable.

Pseudo back off Back offs that appear in conjunction with optimization com-
ments from the same build are not considered to be as important as regular
back offs. Either the compiler overcame the issue initially preventing op-
timization – or it reported an additional opportunity for optimization.

Table 8.17 shows the breakdown of back offs generated by each of the four
compilers. The data is also shown graphically in figure 8.6 on page 139.

The ability of the techniques to classify back offs vary among the compilers.
With icc, assistance and speculation both work well and in most cases either
of the techniques expose resolvable back offs. Combining speculation and assis-
tance does not help much however. In total, 60% of the back offs icc can be
addressed by assistance and speculation.

With xlc, suppressing back offs via speculation is by far the most effective
technique. Only a modest number of back offs, 10%, can be categorized as
potentially resolvable. In total, 43% of xlc back offs are addressable.

For pgcc suppression of back offs via speculation is also most effective. Assis-
tance and the combination of assistance and speculation is also fairly effective
and categorized 22% of the back offs as potentially resolvable. The share of
addressable back offs is 37%.

Finally, suncc also benefits most from assistance combined with speculation and
assistance alone. On the other hand, self speculation is mostly ineffective with
suncc. This means that back offs are difficult to address if other compilers can-
not be used for assistance. Overall, 30% of all back suncc offs can be addressed

Table 8.17: Back offs by category. Pseudo back offs are not considered to be
addressable.

icc xlc pgcc suncc

assistance or speculation 62 0 3 0
assistance and speculation 6 37 109 215
assistance only 12 14 130 194
speculation only 26 14 23 8
suppressible 28 222 179 9
pseudo back off 0 36 70 44
unaddressable 90 348 672 939
total back offs 224 671 1186 1409
total addressable (%) 60% 43% 37% 30%
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Table 8.18: Feedback locations by category.

icc xlc pgcc suncc

assistance or speculation 58 0 3 0
assistance and speculation 2 18 100 148
assistance only 7 6 102 145
speculation only 22 8 23 5
suppressible 27 96 178 6
pseudo back off 0 25 69 20
unaddressable 50 190 639 768
total locations 116 343 1114 1092
total locs. addressable (%) 70% 37% 36% 28%

– the majority are categorized as potentially resolvable. This makes suncc the
compiler that responds least favorably to the techniques evaluated in this chap-
ter. However, suncc is also the compiler that generates the most feedback by
far. It generated 1409 back offs compared to only 166 back offs generated by
icc. This suggests that the fewer back offs a compiler generates, the more back
offs are addressable by the techniques evaluated here. In total, these techniques
can address 43% of the 3490 non-speculative back offs generated by the four
compilers.

Compilers often generate multiple back off comments on the same location.
These typically describe different issues preventing the same optimization. The
effects of assistance and speculation can therefore also be calculated by cate-
gorizing locations rather than individual back offs. Table 8.18 use the same
categories as table 8.17 on the previous page but it shows the number of loca-
tions rather than the number of individual back offs in each category. These
numbers supports the conclusions drawn from table 8.17. Up to 70% of loca-
tions containing back offs from icc can be addressed while this is only true for
28% of the locations where suncc reports a back off. The average percentage of
addressable locations is 43% – similar to the average percentage of addressable
back offs.

8.4 Related Work

Callahan et al. [28] describe 100 loops written in Fortran with the purpose of
testing the effectiveness of automatic vectorizing compilers. Their results show
which loops are fully or partially vectorized by 19 different compilers of varying
degrees of maturity. Like this study, it was found that the capabilities among
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Adresssability of Backoffs

backoffs icc xlc pgcc suncc average

unaddressable

assistance only

speculation only

assistance or speculation

assistance and speculation

suppressable

pseudo backoffs

total

addressable (%)

90 348 672 939 512.3

12 14 130 194 87.5

26 14 23 8 17.8

62 0 3 0 16.3

6 37 109 215 91.8

28 222 179 9 109.5

0 36 70 44 37.5

224 671 1186 1409 872.5
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Given the overlap in comments, the overall potential was to 
address 49% of all locations (sheet 2)

For ICC we manage to address 60% of comments.
For the rest we can address 33,43 and 48% of comments.

Or 46% of back-off comments on average!

Improvements can come from increased overlap (easy,fast), 
speculation (hard,slow) or more compilers (easy,fast)

Figure 8.6: Addressing back offs in each of the four compilers by classifying
them according to seven different categories based on their overlap with other
code comments.
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compilers varies significantly. On average 55% of the loops were vectorized
whereas the best compiler could vectorize as much as 80%. Only 4% of the
loops could not be vectorized by any of the compilers tested. The test suite was
later converted to C by Smith [147] and tested with four additional compilers.
Like the original study, this revealed significant differences in the vectorization
capabilities of the compilers. Whereas this study seeks to quantify the synergies
between different compilers, the works by Callahan et al. and Smith focus on
the quality of the compilers tested and on the quality of the test suite itself.

More recently, Garzarán et al. [65] studied the vectorization capabilities of
two of the compilers also studied here: xlc from IBM and icc from Intel. The
study used C versions of the loops described by Callahan et al. [28] as well
as additional loops contributed by the authors. It was found that out of 134
vectorizable loops, only 49 loops were vectorized by both compilers whereas 51
loops were vectorized by one compiler but not the other. Similar to this work,
the study demonstrates the existence of synergies between different compilers.

The techniques used in this study are related to interative compilation [39,
3, 30, 77, 64]. Recompiling the same code while varying the context – e.g.
optimization flags – is central to both approaches. As mentioned in section 8.2
on page 122, this work could use iterative compilation to find the empirical best
compilation options – e.g. those which allow the greatest number of loops to
be optimized in both speculative and non-speculative builds. Conversely, the
research on iterative compilation could also benefit from this effort to expose
additional optimization opportunities. Annotation and refactoring change the
relative impact of compiler optimizations. Hence, interactive compilation may
discover an improved optimization strategy after additional parallelism has been
exposed.

Fursin and Temam’s [64] work on collective optimization is perhaps closest to
this study. They compare optimization results between multiple builds on var-
ious architectures, programs and datasets and show that the resulting perfor-
mance is highly dependent on the compilation options. Similarly, this study
compared results between multiple builds obtained from different compilers and
show that the type and volume of code comments varies significantly with the
choice of compiler and compilation options.

8.5 Summary

Compilers generate back offs for several reasons. These include restrictive as-
sumptions about aliasing, profitability, etc. Compilers may also generate back
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offs due to lack of sophistication and when a given optimization is simply not
legal. This results in a high volume of comments and creates a “needle in a
haystack” problem for programmers.

This study explored compile time techniques that help programmers refine com-
pilation feedback. These techniques do not require program profiling to work.
Profiling, however, can be used to further prioritize compilation feedback. The
techniques used in this study can also help compiler writers understand strengths
and weaknesses of one compiler relative to others.

Four compilers, icc, xlc, pgcc and suncc, were used to evaluate how spec-
ulation and assistance help refine compilation feedback. The impact of the
techniques varied considerably between the compilers. For one compiler, assis-
tance was most effective. For another, speculation performed better. For yet
another, the combination of assistance and speculation was most effective. In
conclusion, both techniques are equally important and synergies exist between
them.

Both speculation and assistance worked well with icc and the majority of the
back offs generated were addressable by both techniques. On the other hand,
assistance had modest impact on back offs from xlc. However, speculation was
effective in finding xlc back offs that are not likely to be resolvable. With pgcc

assistance was quite helpful on its own and when combined with speculation.
Speculation on was also helpful in finding unresolvable back offs. Finally, suncc
generated the greatest amount of feedback and did not benefit from self spec-
ulation. Assistance on its own and when combined with speculation by other
compilers was able to address almost a third of the suncc back offs though.

Overall, 43% out of 3490 back offs generated collectively by the four compilers
can be categorized as potentially profitable or unprofitable. The study also
showed that speculation and assistance was most effective for the compiler that
generated fewest back offs and offered the most options for speculative builds.
Finally, it was observed that one compiler may report optimizations in places
where another compiler generates no code comments. This indicates that the
latter compiler can be improved – either it should generate a back off comment
explaining the lack of optimization or it should be enhanced to discover the
missed opportunities for optimization.
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Chapter 9

Conclusions

Limitations in our ability to analyze program source codes make it challenging to
discover parallelism in sequential programs and make it challenging to compute
the task graph representing a parallel program.

This thesis argues that software development relies on feedback loops; that the
interaction between program analyzers and the programmer forms a feedback
loop; and, finally, that addressing the challenges at each step in this feedback
loop increases our ability to analyze, model and optimize parallel programs.

9.1 Annotations for Task Graph Extraction

The first study in the thesis is motivated by the need to extract task graphs
from programs expressed in imperative programming languages. The data de-
pendencies among statements in such programs are implicit. On the other
hand, data dependencies in task graphs are explicit to capture precedence con-
straints among tasks. Manually extracting task graphs is tedious and error
prone whereas automated extraction via program analysis will conservatively
over-approximate dependencies among tasks. This suggested a hybrid approach.
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The study aimed to demonstrate that programmer inserted annotations com-
pliment information gathered from program analysis and affords more precise
task graphs. By design, the correct use of such annotations cannot be verified
via program analysis. Hence, the study also intended to show that incorrect use
of the annotations can be detected at runtime without impairing performance.

Two directives, depends t and depends sc, were introduced. Annotating pro-
grams with the directives reduces the number of assumed data-dependencies
among tasks in OpenMP programs. Unlike results from a dynamic analysis, in-
formation from the directives is valid across all program inputs assuming correct
use of the directive. Support to check that the runtime observable dependencies
match the claims of the directives was also developed.

Three aspects of the directives were evaluated: i) the programmer effort required
to insert the proposed directives; ii) the performance impact of the runtime
checks; and iii) the ability of the second directive to exclude data dependencies
that would otherwise have been assumed to exist between tasks in two different
stencil computations.

Thirteen depends t directives were added to a sorting benchmark. Between one
and six depends sc directives, less than four on average, were inserted in the
four remaining benchmarks. Annotating the integer sort required less than half
a working day. The estimated effort to insert depends sc directives was about
an hour per benchmark.

The number of estimated dependencies between two stencil computations with
annotations was compared to a conservative estimate. Four benchmarks saw
decreases between 50-99%. The average decrease across the benchmarks was
69%.

Two-sided, unpaired t-test was used to determine if the cost of runtime checking
had a statistically significant impact on the average execution times of instru-
mented programs. None of the benchmarks showed a statistically significant
decrease in execution time.

Valuable observations were made during the experimental work. Annotat-
ing programs require programmer effort, which is a valuable resource. The
depends t directive requires reasoning about data dependencies – not just lo-
cally inside a function, but across functions, which is harder. Likewise, the
depends sc directive requires reasoning about how two stencil computations
share data and reasoning about the scheduling of iterations in parallel loops.

This raised the following question: how can the annotation effort be lowered?
In the ideal case, the programmer only inserts annotations in places where they
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have significant impact. This lead to the hypothesis for the second study: when
further analysis is prevented, program analysis can generate feedback which
helps the programmer determine where and how to annotate the code.

To the best of my knowledge, no suitable task graph extraction tools are avail-
able to test this hypothesis. Focus was therefore shifted from dependencies in
task graphs to a related problem: automatic parallelization and vectorization.

9.2 Generating Compilation Feedback

Programs are often written in ways that prevent auto-parallelization and vec-
torization of loops. The second study thus sought to show that program anal-
ysis can generate feedback that guides the programmer to annotate a program.
Furthermore, resolving the issues preventing analysis allows the compiler to
optimize more loops and thereby increase program performance.

An interactive compilation system was implemented to help the programmer
annotate and refactor programs. For each issue, which prevents further anal-
ysis, and for each optimization performed, the system emits a code comment.
The system was used to perform an extensive performance evaluation. Three
benchmark kernels were studied on two parallel architectures. The evaluation
used three sequential kernel benchmarks that pose problems for current pro-
duction compilers. By annotating and refactoring application source code, ad-
ditional loop nests could be optimized automatically. The speedups from auto-
parallelization were compared with speedups after manual parallelization across
different program inputs, systems and benchmark programs.

The experimental results showed speedups of up to 6.0 for a demosaicing kernel
on an Intel Xeon system and up to 3.1 on an IBM POWER6 system after
automatic parallelization. An edge-detection kernel was also sped up by factors
of up to 8.3 the Intel Xeon system and up to 12.5 on the IBM POWER6 system.

Speedups from parallelization were measured for different numbers of threads
and input sets. Auto-parallelization delivered the best result in 12 cases, while
manual parallelization was better in 11 remaining situations. At low and medium
thread counts auto-parallelization performed similar to or better than hand-
parallelized and optimized codes.

An image decompression code was used to demonstrate the speedups after mod-
ifications to allow additional vectorization. On the Intel Xeon system, the code
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ran 10-12% faster. On the IBM POWER6 system, the modifications generally
degraded performance except in one case, which showed a 2% speedup.

The speedups demonstrate the opportunities to extract additional parallelism
from code containing regular loops. The differences in speedups on the two
platforms suggest that auto-parallelization and vectorization should be com-
bined with platform-specific tuning to extract additional performance. The ex-
perimental work also revealed that there are sometimes several ways to resolve
an issue preventing further analysis. The programmer must choose among the
alternatives and these choices may significantly affect the resulting performance.

This experimental work also led to interesting observations. Most importantly,
resolving a reported issue does not necessarily enable optimization. Resolving
one issue may reveal an additional issue that cannot be resolved. The second
observation concerns the volume of the feedback. Reporting a high number of
issues creates a “needle-in-the-haystack” problem for the developer. Not all code
comments can be examined, so which comments are worthy of the programmers
attention? Limiting the volume of feedback, on the other hand, runs the risk of
not reporting issues that would lead to additional optimization.

It is most effective to resolve reported issues that relate to hot code areas.
Profiling can find these areas and thereby help prioritize comments. However,
the execution frequencies of code do not help estimate if an individual comment
may lead to additional optimization or not. The question was then: besides
profiling - what techniques help determine which code comments should be
addressed?

9.3 Refining Compiler Feedback

The third and final study sought to identify code comments as potentially re-
solvable or unresolvable. The idea is as follows. The likelihood that a back
off comment represents a missed optimization can be determined by comparing
multiple sets of compilation feedback. Different sets of feedback are generated
by building the same program several times while varying the compiler and the
compilation options.

The experimental work used two approaches to estimate if back offs can be
resolved or not. The first is speculative compilation. It relaxes certain as-
sumptions during compilation and this lets the compiler perform optimizations
otherwise prevented under the default assumptions. The second technique, as-
sistance, compares feedback from multiple compilers. Compilers use different
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heuristics and differ in their optimization capabilities, so this can identify more
opportunities for optimization than a single compiler can. The effect of combin-
ing speculation and assistance was also studied. The techniques were evaluated
using four production compilers and an embedded benchmark suite.

The experimental results showed that speculation and assistance can categorize
up to 60% of the issues reported by a single compiler as potentially resolv-
able (47%) or unresolvable (13%). On average speculation and assistance could
categorize 43% out of a total of 3490 issues reported by the four compilers as
potentially resolvable (27%) or unresolvable (15%).

There was no single “best” technique to categorize the issues reported. Rather,
the efficiency of the approaches, alone and when combined, depends on the in-
dividual compiler. Besides the differences in optimization capabilities, this is
most likely explained by the differences in how feedback was generated. There
was more than a six-fold difference between the number of issues reported by
the least and most verbose compiler. Also, the four compilers offered varying
degrees of support for speculative compilation in terms of the number of relax-
able assumptions. Categorization of issues was most effective with the compiler
that reported the fewest issues and had the best support for speculation. This
suggests that the other compilers should extend the support for speculation and
perhaps limit the reported issues to those where a resolution can be suggested.

The third study used source code locations as a simple way to correlate the
code comments. Correlation could be improved by taking code structure into
account. This could identify when compilers emit related code comments at
different source code locations. Integration with profiling tools might also be
interesting. As previously mentioned, profiling can help prioritize code com-
ments relating to frequently executed code. Profiling may also categorize code
comments where no compiler is able to optimize even when optimization is pos-
sible. Such profiling would have to observe memory accesses in loops to find
inter-iteration dependencies and would be more intrusive than profiling to find
hot functions. However, such profiling would only be necessary for loops where
the static techniques cannot estimate if a code comment is resolvable or not.

9.4 Outlook

Regrettably, annotating programs and examining compiler feedback is currently
reserved for experts and compiler writers. A widespread adoption can only hap-
pen if these techniques become more accessible. This thesis demonstrates sev-
eral ways to increase the accessibility of feedback and annotations. Annotations
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may be checked at run-time without compromising performance and compiler
feedback can be shown directly in the source code editor via IDE integration.

Fully automatic parallelization may or may not increase application performance
– but wastes no programmer effort in either case. With the programmer-in-the-
loop approach, a human must spend effort to understand the reported issues
and to consider workarounds. This thesis shows two ways to reduce this effort.
The first combines the reported issues with suggestions explaining how the pro-
grammer can resolve these. The second way reduces the amount of feedback
that must be considered by estimating if a reported issue represents a missed
optimization or not.

Some may argue that improved compilers and runtimes will allow ample par-
allelism to be exploited without involving the programmer. If history is any
indicator, this seems unlikely. Others may argue that the relatively limited suc-
cess of automatic parallelization makes it largely irrelevant. In my opinion, both
views are too simplistic.

The programmer-in-the-loop approach advocated in this thesis reframes this
discussion. Rather than arguing over the merits of fully automatic or completely
manual approaches, this thesis explores how to get the best from both worlds.
For this to happen, existing tools and languages must evolve to allow better
interaction with the programmer.
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[65] Maŕıa J. Garzarán, Saeed Maleki, William Gropp, and David Padua.
Program optimization through loop vectorization. http://sc10.

supercomputing.org/schedule/event_detail.php?evid=tut140,
2010. Tutorial. Date accessed: December 19, 2010.

[66] P.P. Gelsinger. Microprocessors for the new millennium: Challenges, op-
portunities, and new frontiers. In IEEE International Solid-State Circuits
Conference. Digest of Technical Papers, ISSCC ’01, 2001.

[67] Gina Goff, Ken Kennedy, and Chau-Wen Tseng. Practical dependence
testing. In Proceedings of the ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’91, 1991.

http://gnu.gcc.org
http://gnu.gcc.org
http://sc10.supercomputing.org/schedule/ event_detail.php?evid=tut140
http://sc10.supercomputing.org/schedule/ event_detail.php?evid=tut140


BIBLIOGRAPHY 155

[68] Matthias Gries. Methods for evaluating and covering the design space
during early design development. Integr. VLSI J., 38(2):131–183, 2004.

[69] M. R. Guthaus et al. Mibench: A free, commercially representative embed-
ded benchmark suite. In Proceedings of the IEEE International Workshop
on Workload Characterization, WWC-4, 2001.

[70] Soonhoi Ha. Model-based programming environment of embedded soft-
ware for MPSoC. In Proceedings of the Asia and South Pacific Design Au-
tomation Conference, ASP-DAC ’07, Washington, DC, USA, 2007. IEEE
Computer Society.

[71] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd
Edition. Morgan and Claypool Publishers, San Rafael, CA, USA, 2nd
edition, 2010.

[72] Mikael T. Heath. Canny detector source code. ftp://figment.csee.

usf.edu/pub/Edge_Comparison/source_code/canny.src, 1996. Date
accessed: March 16, 2011.

[73] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[74] Michael Hind. Pointer analysis: Haven’t we solved this problem yet?
In Proceedings of the ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, PASTE ’01, 2001.

[75] Michael Hind and Anthony Pioli. Which pointer analysis should I use? In
Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’00, 2000.

[76] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to automata theory, languages, and computation, 2nd edition. SIGACT
News, 32:60–65, March 2001.

[77] Kenneth Hoste and Lieven Eeckhout. Cole: compiler optimization level
exploration. In Proceedings of the International Symposium on Code Gen-
eration and Optimization, CGO ’08, 2008.

[78] IEEE std. 1003.1c-1995 thread extensions. Technical report, Institute
of Electrical and Electronics Engineers, 1995. Formerly POSIX.4a. now
included in 1003.1-2004.

[79] Intel Corporation. Intel Advanced Vector Extensions Programming Refer-
ence. http://software.intel.com/file/35247/. Date accessed: June
8, 2011.

ftp://figment.csee.usf.edu/pub/Edge_Comparison/source_code/canny.src
ftp://figment.csee.usf.edu/pub/Edge_Comparison/source_code/canny.src
http://software.intel.com/file/35247/


156 BIBLIOGRAPHY

[80] Intel Corporation. Intel C++ Composer XE 2011 for Linux. http:

//software.intel.com/en-us/articles/intel-compilers/. Date ac-
cessed: March 13, 2011.

[81] Moore’s law: Raising the bar. Technical report, Intel Corpora-
tion, 2005. ftp://download.intel.com/museum/Moores_Law/Printed_

Materials/Moores_Law_Backgrounder.pdf.

[82] Intel Corporation. Guided auto-parallelism (GAP). http://software.

intel.com/en-us/articles/guided-auto-parallel-gap/, 2010. Date
accessed: March 16, 2011.

[83] International Business Machines. IBM XL C/C++ for Linux. http:

//www.open64.net/. Date accessed: March 13, 2011.

[84] International Organization for Standardization. ISO/IEC 9899:1999, De-
cember 1999.

[85] H. Jin, M. Frumkin, and H. Yan. NPB-OpenMP 3.0. Technical Report
NAS-99-011, NASA Ames Research Center, Moffett Field, CA 94035-1000,
1999.

[86] Arun Kejariwal, Alexander V. Veidenbaum, Alexandru Nicolau, Milind
Girkarmark, Xinmin Tian, and Hideki Saito. Challenges in exploitation
of loop parallelism in embedded applications. In Proceedings of the 4th
international conference on Hardware/software codesign and system syn-
thesis, CODES+ISSS ’06, 2006.

[87] K. Kennedy, K. S. McKinley, and C. W. Tseng. Interactive parallel pro-
gramming using the parascope editor. IEEE Trans. Parallel Distrib. Syst.,
2:329–341, July 1991.

[88] Ken Kennedy and John R. Allen. Optimizing compilers for modern ar-
chitectures: a dependence-based approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2002.

[89] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf.
An approach for quantitative analysis of application-specific dataflow ar-
chitectures. In Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures and Processors, ASAP ’97,
1997.

[90] Andreas Krall and Sylvain Lelait. Compilation techniques for multimedia
processors. Int. J. Parallel Program., 28:347–361, August 2000.

[91] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.
Introduction to parallel computing: design and analysis of algorithms.
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.

http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
ftp://download.intel.com/museum/Moores_Law /Printed_Materials/Moores_Law_Backgrounder.pdf
ftp://download.intel.com/museum/Moores_Law /Printed_Materials/Moores_Law_Backgrounder.pdf
http://software.intel.com/en-us/articles/guided-auto-parallel-gap/
http://software.intel.com/en-us/articles/guided-auto-parallel-gap/
http://www.open64.net/
http://www.open64.net/


BIBLIOGRAPHY 157

[92] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of the
task graph scheduling algorithms. J. Parallel Distrib. Comput., 59:381–
422, December 1999.

[93] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comput., 28, September
1979.

[94] Per Larsen, Sven Karlsson, and Jan Madsen. Identifying inter-task com-
munication in shared memory programming models. In Proceedings of the
5th International Workshop on OpenMP, IWOMP ’09, 2009.

[95] Per Larsen, Sven Karlsson, and Jan Madsen. Expressing inter-task depen-
dencies between parallel stencil operations. In Proceedings of 3rd Work-
shop on Programmability Issues for Heterogeneous Multicores, MULTI-
PROG ’10, 2010.

[96] Per Larsen, Sven Karlsson, and Jan Madsen. Expressing coarse-grain de-
pendences among tasks in shared memory programs. Special Issue of IEEE
Transactions on Industrial Informatics, 2011. Accepted for Publication.

[97] Per Larsen, Razya Ladelsky, Sven Karlsson, and Ayal Zaks. Compiler
driven code comments and refactoring. In Proceedings of 3rd Workshop
on Programmability Issues for Heterogeneous Multicores, MULTIPROG
’11, 2011.

[98] Per Larsen, Razya Ladelsky, Jacob Lidman, Sally A. McKee, Sven Karls-
son, and Ayal Zaks. Automatic loop parallelization via compiler guided
refactoring. Technical Report IMM-Technical Report-2011-12, DTU Infor-
matics, Technical University of Denmark, 2011. http://www2.imm.dtu.

dk/pubdb/views/publication_details.php?id=6041.

[99] Samuel Larsen and Saman Amarasinghe. Exploiting superword level par-
allelism with multimedia instruction sets. In Proceedings of the ACM SIG-
PLAN conference on Programming language design and implementation,
PLDI ’00, 2000.

[100] Samuel Larsen, Emmett Witchel, and Saman Amarasinghe. Techniques
for increasing and detecting memory alignment. Technical report, Mas-
sachusetts Institute of Technology, 2001. Technical Memo 621, MIT LCS.

[101] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the In-
ternational Symposium on Code Generation and Optimization, CGO ’04,
2004.

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6041
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6041


158 BIBLIOGRAPHY

[102] Corinna Lee et al. UTDSP benchmark suite. http://www.eecg.toronto.
edu/corinna/DSP/infrastructure/UTDSP.html, 1998. Date accessed:
July 4, 2009.

[103] Edward A. Lee. The problem with threads. Computer, 39:33–42, May
2006.

[104] Xin Li, Bahadir Gunturk, and Lei Zhang. Image demosaicing: a system-
atic survey. Visual Communications and Image Processing 2008, 6822,
2008.

[105] Zhiyuan Li, Pen-Chung Yew, and Chuag-Qi Zhu. Data dependence anal-
ysis on multi-dimensional array references. In Proceedings of the 3rd in-
ternational conference on Supercomputing, ICS ’89, 1989.

[106] Shih-Wei Liao et al. Suif explorer: an interactive and interprocedural
parallelizer. In Proceedings of the seventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, PPoPP ’99, 1999.

[107] Ai-Hsin Liu and Robert P. Dick. Automatic run-time extraction of com-
munication graphs from multithreaded applications. In Proceedings of the
4th international conference on Hardware/software codesign and system
synthesis, CODES+ISSS ’06, 2006.

[108] Shankar Mahadevan, Kashif Virk, and Jan Madsen. ARTS: A SystemC-
based framework for multiprocessor systems-on-chip modelling. Des Au-
tom Embed Syst, 11(4), 2007.

[109] Vadim Maslov. Delinearization: an efficient way to break multiloop de-
pendence equations. In Proceedings of the ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’92, 1992.

[110] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Program-
ming. Addison-Wesley, Boston, MA, USA, 2004.

[111] Steve McConnell. Code Complete, Second Edition. Microsoft Press, Red-
mond, WA, USA, 2004.

[112] Paul E. McKenney and John D. Slingwine. Read-copy update: Using ex-
ecution history to solve concurrency problems. In Proceedings of The 20th
IASTED International Conference on Parallel and Distributed Computing
and Systems, PDCS ’98, 1998.

[113] Gordon E. Moore. Readings in computer architecture. In Mark D. Hill,
Norman P. Jouppi, and Gurindar S. Sohi, editors, Readings in computer
architecture, chapter Cramming more components onto integrated circuits,
pages 56–59. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2000.

http://www.eecg.toronto.edu/corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/corinna/DSP/infrastructure/UTDSP.html


BIBLIOGRAPHY 159

[114] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differen-
tial Equations: An Introduction. Cambridge University Press, New York,
NY, USA, 2005.

[115] Steven S. Muchnick. Advanced compiler design and implementation. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[116] Richard Nass. Annual study uncovers the embedded mar-
ket. http://www.eetimes.com/design/embedded/4007166/

Annual-study-uncovers-the-embedded-market, 2007. Date accessed:
June 5, 2011.

[117] Peter Newton and James C. Browne. The code 2.0 graphical parallel
programming language. In Proceedings of the 6th international conference
on Supercomputing, ICS ’92, 1992.

[118] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
program analysis (2. corr. print). Springer, Heidelberg, Germany, 2005.

[119] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-vectorization of inter-
leaved data for SIMD. In Proceedings of the ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’06, 2006.

[120] Dorit Nuzman and Ayal Zaks. Outer-loop vectorization: revisited for short
SIMD architectures. In Proceedings of the 17th international conference
on Parallel architectures and compilation techniques, PACT ’08, 2008.

[121] Oracle Corp. Oracle Solaris Studio. http://www.oracle.com/

technetwork/server-storage/solarisstudio. Date accessed: March
13, 2011.

[122] David A. Padua and Michael J. Wolfe. Advanced compiler optimizations
for supercomputers. Commun. ACM, 29:1184–1201, December 1986.

[123] Joseph C. H. Park and Mike Schlansker. On predicated execution. Tech-
nical Report HPL-91-58, HP Software and Systems Laboratory, 1991.
www.hpl.hp.com/techreports/91/HPL-91-58.html.

[124] PathScale Corporation. PathScale EKOPath 4 Compiler Suite. http:

//www.pathscale.com/ekopath-compiler-suite. Date accessed: June
21, 2011.

[125] David A. Patterson and John L. Hennessy. Computer architecture: a
quantitative approach 4th Edition. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, September 2006.

[126] Paul M. Petersen and David A. Padua. Static and dynamic evaluation of
data dependence analysis techniques. IEEE Trans. Parallel Distrib. Syst.,
7:1121–1132, November 1996.

http://www.eetimes.com/design/embedded/4007166/ Annual-study-uncovers-the-embedded-market
http://www.eetimes.com/design/embedded/4007166/ Annual-study-uncovers-the-embedded-market
http://www.oracle.com/technetwork/server-storage/solarisstudio
http://www.oracle.com/technetwork/server-storage/solarisstudio
www.hpl.hp.com/techreports/91/HPL-91-58.html
http://www.pathscale.com/ekopath-compiler-suite
http://www.pathscale.com/ekopath-compiler-suite


160 BIBLIOGRAPHY

[127] Andy D. Pimentel, Louis O. Hertzberger, Paul Lieverse, Pieter van der
Wolf, and Ed F. Deprettere. Exploring embedded-systems architectures
with artemis. Computer, 34:57–63, November 2001.

[128] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesus Labarta. Hi-
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