554 research outputs found

    Architecture independent environment for developing engineering software on MIMD computers

    Get PDF
    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management

    Turbomachinery CFD on parallel computers

    Get PDF
    The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations

    Three Highly Parallel Computer Architectures and Their Suitability for Three Representative Artificial Intelligence Problems

    Get PDF
    Virtually all current Artificial Intelligence (AI) applications are designed to run on sequential (von Neumann) computer architectures. As a result, current systems do not scale up. As knowledge is added to these systems, a point is reached where their performance quickly degrades. The performance of a von Neumann machine is limited by the bandwidth between memory and processor (the von Neumann bottleneck). The bottleneck is avoided by distributing the processing power across the memory of the computer. In this scheme the memory becomes the processor (a smart memory ). This paper highlights the relationship between three representative AI application domains, namely knowledge representation, rule-based expert systems, and vision, and their parallel hardware realizations. Three machines, covering a wide range of fundamental properties of parallel processors, namely module granularity, concurrency control, and communication geometry, are reviewed: the Connection Machine (a fine-grained SIMD hypercube), DADO (a medium-grained MIMD/SIMD/MSIMD tree-machine), and the Butterfly (a coarse-grained MIMD Butterflyswitch machine)

    Dataflow development of medium-grained parallel software

    Get PDF
    PhD ThesisIn the 1980s, multiple-processor computers (multiprocessors) based on conven- tional processing elements emerged as a popular solution to the continuing demand for ever-greater computing power. These machines offer a general-purpose parallel processing platform on which the size of program units which can be efficiently executed in parallel - the "grain size" - is smaller than that offered by distributed computing environments, though greater than that of some more specialised architectures. However, programming to exploit this medium-grained parallelism remains difficult. Concurrent execution is inherently complex, yet there is a lack of programming tools to support parallel programming activities such as program design, implementation, debugging, performance tuning and so on. In helping to manage complexity in sequential programming, visual tools have often been used to great effect, which suggests one approach towards the goal of making parallel programming less difficult. This thesis examines the possibilities which the dataflow paradigm has to offer as the basis for a set of visual parallel programming tools, and presents a dataflow notation designed as a framework for medium-grained parallel programming. The implementation of this notation as a programming language is discussed, and its suitability for the medium-grained level is examinedScience and Engineering Research Council of Great Britain EC ERASMUS schem

    The exploitation of parallelism on shared memory multiprocessors

    Get PDF
    PhD ThesisWith the arrival of many general purpose shared memory multiple processor (multiprocessor) computers into the commercial arena during the mid-1980's, a rift has opened between the raw processing power offered by the emerging hardware and the relative inability of its operating software to effectively deliver this power to potential users. This rift stems from the fact that, currently, no computational model with the capability to elegantly express parallel activity is mature enough to be universally accepted, and used as the basis for programming languages to exploit the parallelism that multiprocessors offer. To add to this, there is a lack of software tools to assist programmers in the processes of designing and debugging parallel programs. Although much research has been done in the field of programming languages, no undisputed candidate for the most appropriate language for programming shared memory multiprocessors has yet been found. This thesis examines why this state of affairs has arisen and proposes programming language constructs, together with a programming methodology and environment, to close the ever widening hardware to software gap. The novel programming constructs described in this thesis are intended for use in imperative languages even though they make use of the synchronisation inherent in the dataflow model by using the semantics of single assignment when operating on shared data, so giving rise to the term shared values. As there are several distinct parallel programming paradigms, matching flavours of shared value are developed to permit the concise expression of these paradigms.The Science and Engineering Research Council
    corecore