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1. Introduction 

Although parallel computers have existed for many years, recently there has been a surge of 

academic, industrial and governmental interest in parallel computing. Commercially 

manufactured parallel computers have started to become available. Many new experimental 

parallel architectures are reported in the literature every year. Software for many types of 

applications, from scientific number crunching to artificial intelligence, is being written to run on 

parallel machines. 

Perfonnance is an essential consideration both in the design of new systems and the deployment 

of existing systems. Users of computers wish to utilize their hardware and software systems as 

efficiently as possible. Over the years, a field known as computer performance evaluation has 

arisen to address the problem of quantifying and predicting computer performance. Methods 

exist that can detennine how efficiently a system's resources are being used. These can help 

track down the probable causes of performance problems. 

There exists a large body of literature on computer performance evaluation in general. Most 

treatments of the field (see for example [Kobayashi 78], [Svobodova 76a], [Heidelberger 84]) 

agree that the work can be classified into three major categories: 

1. Analytic performance modeling: mathematical techniques that yield the steady 
state (long tenn) behavior of systems modeled as queueing networks. 

2. Simulation performance modeling: the writing of programs that mimic the 
behavior of the systems being modeled. These procedural models are more 
flexible and can express more detail than the mathematical models used in analytic 
perfonnance modeling. There are three kinds of simulation: 

• Stochastic simulation: probability distributions describing the likelihood of 
various types of events are used to drive a model (usually a queueing model) . 

• Trace driven simulation: a history, called a "trace," of actual events 
collected from a running program is used to drive a model of the system. 
The model reacts to the same sequence of events as the program did . 

• Emulation: programs written for the architecture being modeled are 
interpreted at the machine instruction level. 

3. Measurement: empirical methods for assessing perfonnance. Benchmark 
programs which exercise specific functions of a system can be timed. Hardware or 
software devices called instrumentation can be used to probe the state and record 
the actions of a running program, in order to detennine its behavior and resource 
consumption. 
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This paper will survey the application of performance evaluation techniques to the study of 

parallel processing. We will be concerned primarily with research problems and not practical 

problems such as system performance tuning. The paper will emphasize simulation performance 

modeling, since we believe that this technique has the greatest potential for studying proposed 

parallel systems at a level of detail sufficient for understanding their intricacies. Measurement 

techniques can achieve the same level of detail, but are more expensive and cumbersome to 

apply. They also require the availability of the physical hardware being measured, which 

precludes the use of these techniques while an architecture is still being designed. We will show 

how analytical techniques break down when applied to typical problems in parallel processing. 

An outline of the remainder of the paper follows. Section 2 takes a brief look at analytical 

performance evaluation methods. Section 3 presents detailed descriptions of simulation 

performance modeling methods, with numerous case studies of how they have been used to learn 

about parallel systems. Section 4 discusses instrumentation and benchmarking methods for the 

measurement of running programs, and how they can be used to validate performance models. 

The final section summarizes the most important results and techniques covered in this paper and 

speculates about future trends in performance evaluation of parallel systems. 

2. Analytic Performance Modeling 

2.1. Introduction 

Analytic performance modeling is the use of mathematical techniques to solve systems of 

equations which express the steady-state behavior of computer systems. The systems are 

generally represented as queueing models in which processes are placed on queues when waiting 

for system resources. Although a general introduction to queueing theory is beyond the scope of 

this paper, we will explain how parallel computers or their subsystems can be represented as 

queueing models and what the limitations of this approach are. Understanding these limitations 

will motivate the design of the more flexible simulation models, which we cover in the next 

section. 
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2.2. Queueing Models 

A computer system has various allocatable entities which are called resources. A typical 

resource might be a CPU or a disk drive. Various processes running on the system contend for 

the use of these resources. A common assumption in queueing models is that only one process 

may use a resource at a time, and that other processes requiring the use of that resource must 

wait their turn. In a queueing model, the resources are called servers and the waiting processes, 

called jobs, reside in queues. 

Although the thought of multiple processes may bring to mind parallel processing, these models 

were first designed to represent uniprocessor systems running multitasking operating systems in 

which computation and lIO can be overlapped. Thus, a process PI waiting for the completion of 

some liD operation would be suspended, and another process P2 which was subsequently 

granted the CPU could request the same 110 device which was currently serving P 1. Thus in 

order to proceed with its lIO, P2 would have to wait for PI to release the liD device. In the 

meantime, another process P3 could be scheduled, etc. 

Extensive work has been done using queueing models to predict the perfonnance of multitasking 

systems under various scheduling strategies, or to optimize system configurations for maximal 

throughput Such analytic techniques have been successfully employed to tune commercial 

computer systems. For example, the VMJ370 Perfonnance Predictor is a program used by IBM 

to analytically model the operation of the VMl370 operating system and the hardware it 

controls [Bard 78]. 

Systems with multiple processors have also been described using queueing models. However, 

these models tend to be more complex than uniprocessor models, and applying analytical 

solutions becomes more difficult For example, [Browne 75] describes the analytic modeling of 

a system consisting of two CDC Cyber 70 CPUs and several disk and tape units. Although the 

analytical solution was a useful first order approximation, the model it used did not represent the 

system in as much detail as was ultimately required since it ignored the system's multiple 

peripheral processing units (lIO processors), The complete, detailed model proved to be 

mathematically intractable, and had to be solved by stochastic simulation methods. 
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2.3. Problems in Analyzing Parallel Computers 

The bulk of the literature on analytic performance modeling deals with queueing networks which 

satisfy a condition called product form. The performance of such networks can be determined 

very economically, without explicitly solving for the probability of each possible state. Sauer 

and Chandy [Sauer 80] show, however, that many features generally found in queueing network 

models of parallel processors cause violations of product form. Examples of such features 

include simultaneous resource possession (e.g., a process holding a processor and memory 

simultaneously) and simultaneous job activities (e.g., a process spawning an independent 

subprocess). Queueing networks which are not in product form must be solved numerically, 

which for even modest networks, might involve solving a system of tens of thousands of linear 

equations. The only analytic method considered feasible for large networks not in product form 

is approximate numerical solution. The most common technique for doing this is aggregation, 

in which subnetworks of the model are replaced by single "composite" queues which 

approximate the flow through the subnetworks. This reduces the number of possible states of the 

system, resulting in a feasible numerical solution. 

Using approximate models involves tradeoffs between the accuracy of the representation and the 

accuracy of the solution. On one hand, a model must include enough detail to convincingly 

account for the system behavior we wish to study: if a resource is ignored in a model, that model 

cannot be used to reason about that resource and its contributions to the overall behavior of the 

system. On the other hand, realistic models of parallel systems can only be solved analytically 

by employing approximations which introduce indeterminate errors into the solution. Analytical 

techniques have the additional drawback of only being able to model the steady state behavior of 

systems. Real systems exhibit frequent transitions between phases having different characteristic 

behaviors. 

2.4. Advantages of Analytic J\lodels 

Although analytic models are severely restricted in the kind of constructs they can represent. 

they do have a tremendous cost advantage over simulation models. Once a queueing network 

model is solved mathematically, performance results can easily be re-evaluated for different 
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values of the input parameters (e.g., the average amount of time that a process uses a CPU can be 

varied). Simulations must be rerun in their entirety for each new set of parameters. Thus, 

whenever a problem can be adequately solved using analytic methods, such methods should be 

used. 

Although analytic techniques may not be able to model entire parallel systems in sufficient 

detail, they may be employed to study individual components of these systems, such as 

interconnection networks or 110 subsystems. They can also be used to determine a quick first 

order approximation of a system's behavior. 

2.S. Summary 

Although analytical performance modeling techniques can provide mathematical solutions to 

many significant problems related to conventional multitasking systems, the modeling of true 

parallel computers by these means poses considerable problems. These problems arise because 

many of the characteristics of parallel systems violate the assumptions which allow exact 

solution of queueing networks, forcing solutions to be numerical approximations of unknown 

accuracy. Even numerical approximations can be expensive for complex systems having large 

numbers of states. It is therefore not surprising that there have been very few methods developed 

for the analytical solution of parallel computer systems [Heidelberger 84]. The next section 

discusses simulation models, which have the potential for much more flexibility, but at increased 

cost. 

3. Simulation Performance Modeling 

3.1. Introduction 

Simulation performance modeling uses programs called simulators, whose behavior reflects the 

behavior of the systems being modeled. Simulation is more flex.ible than analytical performance 

analysis because the model can be represented by an arbitrary computer program rather than a set 

of equations which describe a queueing network model. Thus, simulations can be performed at 

almost any level of detail. Although simulations frequently do use queueing network models, 

the characteristics which make such models analytically intractable pose no significant obstacle 
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to simulation. Furthermore, although analytical models can only be used to study steady state 

behavior, simulation models can reflect dynamic behavior of systems. Thus, simulation is a 

powerful technique which can provide insights into the detailed behavior of parallel computing 

systems. 

If simulation techniques can solve any queueing model, why bother with analytical techniques at 

all? The answer is that simulation techniques are much more computationally expensive than 

analytical techniques, making analytical techniques preferable when they can be used. 

Unfortunately, most of these techniques are not applicable to the detailed study of the behavior 

of parallel systems. 

Simulators can be categorized based on how they represent the system's workload. Two major 

types of simulators are generally recognized: stochastic and trace driven. We find it useful to 

include emulators as a third category, although they can be thought of as variants of trace driven 

simulators. We will define these types of simulation in turn. 

1) Stochastic simulath,. generally uses a random number generator with a given probability 

distribution to drive a queueing model. The statistics which are the output of the simulation 

reflect the steady-state behavior of the system. (In order to insure accurate results, data collected 

before the steady state is reached should be discarded.) 

Since stochastic simulations are driven by random numbers, they are statistical experiments. 

Careful application of statistical techniques must be used to insure valid results. For example, 

successive runs of the same simulation may yield different results if the random number 

generator is given a different seed, or starting value. If the distributions driving these runs are, in 

the terminology of probability, independent and identically distributed (iid), conventional 

statistical techniques can be used to determine the expected values of the output parameters and 

their confidence intervals. Discussion of such statistical techniques is beyond the scope of this 

paper, and can be found in a simulation textbook such as [Mize 71]. 

2) Trace driven simulation: Although stochastic simulations can yield such overall performance 

statistics as throughput or response time, they cannot provide a detailed understanding of what 
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exactly happens when a real program is executed. For example, Smith points out that there 

exists no believable mathematical model of program behavior which accounts for phenomena 

that influence cache memory perfonnance [Smith 85]. To analyze such problems, it is necessary 

to have a technique that is based on the behavior of real programs, not random number 

generators. 

Trace driven simulation' captures a sequence of events, or trace, from the actual execution of a 

program. This trace is then used as the workload model of a detenninistic simulation of the 

system. Since the trace reflects the actual execution of some program, specific properties of that 

program can be discovered. A trace can be produced by running a program which is suitably 

instrumented to output trace records when significant events in the execution occur. For 

example, a parallel program may output trace data whenever a message is sent by one processor 

to another; such a trace can be examined to discover patterns of message traffic in that program. 

Once produced, the file containing the saved trace data can be used as input to a variety of 

analysis programs which examine the data in different ways or under a range of assumptions and 

parameters. To continue our example, the message trace file could be analyzed first assuming a 

communication model in which the cost of all messages was identical, and again under the 

assumption that certain communication paths are more expensive than others. Although the 

initial production of the trace may be very time-consuming, subsequent analyses do not require 

the replication of this work. 

3) Emulation is the process whereby one computer perfonns a simulation of another computer. 

A program written for the emulated machine and executed on the emulator is a very detailed 

simulation of how the program would behave if actually run on the emulated architecture. 

Emulation is usually done by software programs, although emulators have been implemented in 

microcode for increased perfonnance. 

Having defined the various methodologies for simulation, we will now show how they have been 

used to study parallel processing systems. 
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3.2. Stochastic Simulation 

This section presents some examples of how stochastic simulation has been used to model the 

behavior of parallel computer systems or their components. As we have already mentioned, 

stochastic simulations are appropriate when the information needed is a characterization of 

steady-state behavior of a system rather than details of its internal operation. We will see that 

stochastic simulations are also sometimes used to approximate more detailed deterministic 

simulations in order to improve simulation performance. 

The most frequent use use of stochastic simulation in computer performance modeling is the 

modeling of system throughput as a function of CPU and I/O device parameters. Such systems 

are generally represented by a queueing network in which the CPU and various I/O devices each 

have queues to hold processes waiting to use them. Stochastic simulations are used to model the 

many kinds of queueing networks which cannot be feasibly solved using analytical methods. For 

example, Browne et al. used a stochastic simulation with a queueing model to study the 

performance of a computer system consisting of multiple CDC Cyber 70 mainframes, multiple 

VO processors and about 100 disk drives [Browne 75].1 Various distributions specified the paths 

of processes through the different parts of the queueing network, the amount of time they utilized 

system resources, and their priorities. The simulation was used to predict the performance of the 

system were it to be reconfigured to contain, for example, more powerful CPUs or a larger 

number of disk drives. This is a very frequent application of simulation in both research and 

production environments. 

Stochastic simulation has also been used extensively to study the performance of interconnection 

networks. Such networks, which are used to connect processors and memories together in many 

tightly coupled parallel computers, are of great interest since they are frequently a factor which 

limits performance. Some types of interconnection networks are very costly to construct. Thus, 

it is important to be able to simulate what the communication requirements of a parallel 

processor will be before designing its network. As with the previous examples, the important 

point is that by using simulation, a space of design options can be explored and potential 

problems can be uncovered without having to build and measure actual hardware. 

IThe analytical modeling of a portion of this system was presented in the previous section. 
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Reed used stochastic simulation to study which classes of interconnection network best 

supported various types of workloads [Reed 84]. Two types of workloads he considered were 

static assignments of large tasks to processors and dynamic creation of small tasks at run-time. 

He modeled the workloads using probability distributions to determine parameters such as task 

running time and task creation time. He simulated five types of interconnection networks, and 

determined that a designer's choice of network topology should be dependent on the types of 

workloads that the machine was intended to process. 

Snir wrote a program called NETSIM [Snir 81] to simulate the interconnection network of the 

l'ory{j Ultracomputer [Gottlieb 83], a shared-memory parallel processor. Because a detailed 

functional simulation of this network was deemed to be too expensive for everyday use, 

stochastic methods were used to approximate network behavior. The network used in the 

Ultracomputer is a buffered Omega network, which has queues at each of its switch points to 

buffer packets of data waiting to travel to the next stage of the network. The simulation is based 

on a queueing system model in which the probability of a packet moving from one stage to 

another is given by a theoretically derived distribution. This distribution is based on the 

assumption that memory references are uniformly distributed among the system's memory 

modules. The results of the simulation were in general agreement with those produced by a 

detailed deterministic simulation. 

Pfister and Norton [Pfister 82a] simulated the interconnection network of RP3, an MIMD 

parallel computer under construction at IBM [Pfister 85]. The purpose of their study was to 

determine whether their network should support message combining, the merging of requests 

destined for the same address; if a non-combining network could perform acceptably well, it 

would be much cheaper to build than a combining network. The network they simulated was a 

variant of the design used for the NYU Ultracomputer. They constructed a deterministic 

simulation of the proposed networks, and subjected them to a sequence of requests whose 

addresses were uniformly distributed with the exception of a single spike, which they called a 

"hot spot," at one particular address; this corresponded to a frequently accessed global lock 

variable. The non-combining network suffered significant global performance degradation as 

the result of the hot spot, whereas the combining network did not. As a result of these 

simulations, they decided to build a combining network. 
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[Hillyer 86] studied the processing of the relational database join algorithm on the NON-VON 4 

architecture [Shaw 84]. His goal was to determine whether the bottleneck in the algorithm was 

disk performance or interconnection network bandwidth. While the network simulations 

described above aimed at understanding properties of the interconnection networks themselves, 

Hillyer's work used a network simulation along with a disk simulation to understand a particular 

algorithm. The network was simulated with a very detailed and accurate deterministic algorithm. 

The disk drives, one of which was attached to each processing element of the NON-VON 4 

machine, were simulated using a stochastic simulation in which the rotational delays and track 

seek times of the disks were determined by a uniform distribution. The two simulators were 

interfaced to each other so as to model the effects of reading database records and sending their 

contents to other processing elements by means of the interconnection network, the destinations 

being uniformly distributed to simulate hashing on the database keys of the records. Hillyer 

finally determined that the disk transfer rate was the bottleneck in the system. 

Examination of the work we have presented on stochastic simulation suggests that in the 

modeling of parallel sYl'tems, the expressive power of simulation models is indeed superior to 

that of analytical models. We are now starting to see models which include limited knowledge 

about the behavior of the software as well as the hardware. For example, Reed's work examined 

different kinds of process creation patterns, and Hillyer's studied the dynamics of a particular 

algorithm. Even more detailed information about software behavior can be captured by trace 

driven simulation, which is the next topic. 

3.3. Trace Driven Simulation 

Trace driven simulation, which was fIrst considered in [Cheng 69], has been used to study many 

different aspects of computer system behavior. The earliest uses of this technique were for 

studying operating system scheduling algorithms. Later, it was used to evaluate the performance 

of demand paging algorithms. Smith maintains that trace driven simulation has been used in 

almost every research paper which analyzes cache memory performance [Smith 85]. 

Communication in distributed systems has been analyzed by examining traces of message­

passing events. Trace driven simulation has also been extensively utilized to measure many of 

these effects in parallel computer systems. 
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Some fundamental properties of trace driven simulation are illustrated by Shennan, who 

describes the use of event traces to study operating system scheduling policies [Sherman 72]. A 

trace was produced by instrumenting an operating system to collect records of CPU usage 

duration and I/O service times. This trace was then run through a system model under each of 

the various scheduling algorithms to detennine their relative merits. The trace provided a 

reproducible series of demands on the system; previous work had merely changed the scheduling 

algorithms, and required a great deal of analysis to account for the different job streams under 

which the different algorithms were tested. The authors concluded that trace driven modeling 

was' 'an excellent vehicle for perfonning controlled scientific experiments to evaluate resource 

allocation policies in computer systems." 

More recently, trace driven simulations have been used to evaluate the performance of parallel 

computer hardware. We will consider two parallel computer systems: RP3 and Cedar. 

The RP3 computer [Pfister 85] consists of several powerful processing units among which global 

memory is shared by routing memory references through a log-stage interconnection network. 

[So 86] describes the software system, called PSTh1UL, used to simulate the RP3. Trace driven 

simulation was used to simulate RP3's cache and network. Memory reference traces (Le., files 

containing one record specifying each memory reference made by the parallel program) are 

produced from parallel programs running under an emulation program called SEMUL. These 

traces are run through a cache simulation model, which allows the user to vary certain cache 

parameters, such as the size of the cache. This simulation yields statistics about cache 

performance, e.g. the percentage of references which were satisfied from the cache (called cache 

hits). Furthermore, it produces a new trace which contains only cache misses. This trace can be 

used to drive a simulation model of the interconnection network, which reports the network 

utilization and total running time of the parallel program. 

PSIMUL is notable for its ability to exploit multiple real CPUs, if available, to speed up the 

simulation process. For example, a simulation running on an IDM 3081, a dual CPU system, 

simulating an eight CPU parallel machine, produced a trace of over 150 million instructions in 

about one hour. Sophisticated buffering schemes are used to increase the I/O throughput of the 



12 

simulation. Other researchers have also discovered the utility of using multiple CPU s to speed 

up the computationally demanding task of simulation. See, for example, [Misra 86]. 

Trace driven simulation has also been used extensively in the design of the Cedar parallel 

computer [Abu-Sufah 85]. A program whose execution on Cedar is to be simulated is fIrst run 

through a restructuring program which automatically generates parallel code. The restructured 

program is then run through a trace generator, TRGEN, which extracts traces from it. 

Information recorded in the trace flie includes global memory references and process creations. 

The traces are used as input into a variety of simulation models, including a global memory 

simulator (MEMSIM) and a global interconnection network simulator (NETSIM). These 

simulators produce a variety of statistics about the performance of the parallel program. 

The preceding examples illustrated the use of general purpose simulators which could determine 

the performance characteristics of an arbitrary program running on some simulated machine. 

We now turn our attention to more specialized work which uses trace driven simulation to study 

in detail the performance of specific software systems. We present simulation examples of three 

AI applications running on parallel computers and of an object oriented system running on a 

conventional machine. 

[Fennell 75] and [Fennell 77] describe the simulation of Hearsay II, a speech understanding 

system designed to run on parallel machines such as C.mmp [Wulf 72]. A multiprocessor 

simulator running on a DECsystem-lO collected detailed trace information about calls to system 

service routines (such as those for synchronization and process creation). The traces were post­

processed by a collection of programs which determined multiprocessing overhead, degree of 

parallelism and interference between processors. 

Further work on C.mmp was done by McCracken, who built a version of Hearsay called HSP 

which used a production system as its control paradigm [McCracken 81]. Since McCracken 

anticipated that HSP would have more parallelism than could be exploited by the then existing 

16 processor C.mmp prototype, he developed a trace driven simulator which, given trace data 

from HSP running under C.mmp produced timing projections for a 50 to 100 processor machine. 

The simulation captures enough detail to account for short critical sections in the code and for 

processor idle time at the end of each production system cycle. 
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[Miranker 86] studied the execution of OPS5 production systems on DADO [Stolfo 83], a tree 

structured parallel computer. Due to hardware limitations of the DADO machine, he had to 

derive the performance characteristics of the parallel execution for some algorithms by 

simulation. (Other algorithms were executed directly on DADO and timed.) To do this, he 

instrumented a serial version of his production system interpreter to produce traces containing 

detailed information about its operation. The trace fIle was fed into a postprocessing program 

which, given the number of available DADO processing elements and a partitioning of the 

production rules among processing elements, simulated the parallel execution of the traced 

production system on DADO, and provided an estimate of what the execution time on DADO 

would be. 

Miranker reports that the traces produced for his research have been useful to other researchers 

as well. The traces were used for preliminary studies of the HerbAl set oriented production 

system language [vanBiema 86] by modifying them to reflect the state of the execution had the 

production rules been written in HerbAl rather than OPS5. The modified traces were then run 

through the simulator as described above. In fact, it is frequently the case that trace data, once 

gathered, can be used repeatedly for a large variety of different applications. 

Zorn, who is studying garbage collection algorithms for parallel Lisp programs [Zorn 86], uses 

trace driven simulation to model the perfonnance of those algorithms. Lisp programs are 

instrumented to produce traces containing infonnation about the creation of objects and 

references to objects. A variety of garbage collection algorithms can be compared by writing 

simulators for the algorithms, and running traces of benchmark programs through them. 

Stamos studied the effects of various schemes for the placement of Smalltalk objects in virtual 

memory systems [Stamos 84]. His traces were produced by a novel method: instead of recording 

the virtual or physical addresses of the referenced objects as was done by previous researchers 

who studied virtual memory, he recorded references to the objects in a symbolic form, which 

included the name of the object and the field of the object that was referenced. This trace, along 

with a memory map which gave the address of each object, was used as input into a variety of 

simulators for different memory models, including a conventional demand paged virtual memory 
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and an object-oriented memory. Because the reference trace contained no addresses, different 

initial placements of the objects could be simulated using the same trace; only a new memory 

map was required. Stamos also used a trace compression algorithm which removed sequential 

references to objects on the same page. This resulted in improved perfonnance of the 

simulation, and preserved the original sequence of page faults. 

3.4. Emulation 

Emulation methods, which interpret programs at the machine instruction level, have been used 

quite successfully in the development of parallel hardware and software. While trace driven 

simulations usually postprocess previously collected trace flies that reflect certain events in some 

program's execution, emulation closely resembles the actual execution of programs and can thus 

provide even more detailed infonnation about the software, the hardware and their interactions. 

Some researchers have actually built small operating systems to run on their emulators, and have 

found these emulated environments so useful for debugging and measurement that they continue 

to use them even after they have working hardware prototypes available. The chief drawback to 

emulation is the massiv~ amount of CPU power required to perfonn emulation at speeds high 

enough to support the emulation of non-trivial programs. 

Two decades ago, in a survey of parallel processing hardware and software, Lehman advocated 

the use of simulation as a design tool for parallel processors [Lehman 66]. He described his own 

work on an emulation program, which he called an executing simulator, that modeled a parallel 

processor, interleaved memory modules and a processor-memory switch. The simulated 

processing elements were modeled after the IBM 360 and executed IBM 360 machine language 

augmented with special multiprocessing instructions. Lehman emulated the execution of 

numerical analysis programs, studying their perfonnance as more memory modules were made 

available to them. Statistics about instruction execution as well as overall program execution 

were maintained. For example, it was detennined that 67 percent of memory fetches were for 

instructions and the remaining 33 percent for data. 

Svobodova and Mattson built a parallel microcoded emulation machine called the M11P from 

seven CDC-5600 series processors [Svobodova 76b]. This machine was specifically designed 
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for the high-speed emulation of other computer architectures. Instructions of the emulated 

machine were described by coding them in M:MP microcode. The execution environment 

included extensive measurement and debugging facilities. The application described was the 

emulation of the U.S. Army TACFILE system, including an AN/GYK-12 processor and its 

assorted peripherals. More recently, a number of other microcoded emulation engines have been 

built The use of such a machine to emulate the BELLMAC-32A microprocessor is described by 

[Salomon 82], who reports that such an emulator was used to provide a software development 

environment for the microprocessor before the real hardware was available. The emulation 

microcode was heavily instrumented to provide performance monitoring and debugging 

facilities. Commercial microcoded emulation engines have been produced by such companies as 

Microdata and N anodata. 

The WASHCLOTH parallel program simulator [Gottlieb 80a] is used to develop programs for 

the NYU Ultracomputer [Gottlieb 83]. WASHCLOTH runs on a CDC-6600 computer; it 

interprets CDC-6600 instructions produced by standard CDC compilers. The instructions are 

executed on a round robin basis, one instruction from each simulated processor in turn. The 

original WASHCLOTH program simulated a paracomputer [Gottlieb 83] rather than an 

Ultracomputer,2 a paracomputer being an idealized machine in which memory can be 

simultaneously read and written by multiple processors without contention. Various additions to 

the software, such as the NETSIM network simulator (which we discussed in Section 3.2), 

allowed for more realistic simulations of the Ultracomputer hardware. WASHCLOTH was used 

as a parallel program development environment before the Ultracomputer hardware was 

operational, and is still used because of its flexibility. A rudimentary operating system called 

~fOP has been implemented on top of WASHCLOTH [Gottlieb 80b]. MOP has primitives for 

allocation, de allocation and suspension of processors, but doesn't support processor preemption 

or dynamic process creation. 

The PSIMUL [So 86] simulation environment for the development of the RP3 parallel computer 

2The Ultracomputer is acrually built from Motorola 680<Xl microprocessors, not the COC-6600 processors which 
WASHCLOTII simulates. This introduces some degree of inaccuracy. 
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provides two emulation methods. The underlying method is YMlEPEX, an environment for 

executing parallel programs running on multiple virtual IDM 370 machines created by the 

VMl370 operating system. VMJEPEX provides shared memory and various synchronization 

primitives. The parallel programs running under VMlEPEX can use a facility called SEMlJL, 

which interprets the opcodes in a specified subroutine. SEMUL is the program which actually 

produces the reference traces which we described in the previous section. SEMUL can interpret 

IBM 370 machine instructions produced by nonnal IBM compilers. It collects extensive 

execution statistics including total instruction counts, instruction counts by opcode and number 

of memory references. Although these tools emulate IBM 370 processors rather than the RO~1P 

processors used in the actual RP3 prototype, the instruction traces they produce can be run 

through RP3 network and cache simulators. The tools provide a convenient and powerful 

environment in which parallel programs can be developed. 

The P ARSINI simulation facility supports various types of parallel program execution [Board 

83]. The architecture which PARSIM models is specified by naming the functional units and 

specifying the connections between them. A parallel program emulator is provided, as well as 

facilities for executed uninterpreted instruction streams and statistically generated instruction 

streams. P ARSINI also provides process creation and interprocess communication facilities. 

[Liebennan 83] simulated a proposed parallel, object-oriented architecture called the 

Apiary [Hewitt 80]. He represented processing elements and connections between them as 

objects, using the Flavors facility [Moon 86] on a Lisp Machine. A processing element object 

would simulate one primitive machine operation upon receiving a message called TICK. The 

simulator was very flexible, allowing any object to be replaced with one that was instrumented 

for debugging or measurement, so long as it had the same message passing behavior. The entire 

machine could be single-stepped by manually issuing TICK messages. A window-oriented 

machine language debugger was also written. 
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3.5. Summary 

We have surveyed the three major types of simulators: stochastic simulators, trace driven 

simulators and emulators. We have shown several applications of each of these techniques. 

These types of simulators were presented in order of increasing level of model detail. The 

models ranged from simple queueing models with randomly generated inputs to detailed 

emulations of parallel programs at the machine instruction level. 

4. Measurement 

4.1. Introduction 

Measuring the running time of an program on a particular machine is the most obvious way to 

quantify performance. However, there are many statistics about a program's execution that we 

would like to obtain, which can not be obtained using only a stopwatch. In some cases, we can 

not even run the program on the intended architecture since the architecture has not yet been 

built but still wish to measure the performance of that program on that architecture. Accurate 

emulation techniques can provide such performance data. Measurement is, however, the most 

robust way to validate the results of analytical or simulation models. Validation, or the 

measurement of the accuracy of models, will be discussed in detail. 

4.2. Benchmarks 

Perhaps the most straightforward way of detennining how a system behaves is to directly 

measure it For example, one could run a typical program, or benchmark, on a given machine 

and time its execution. However, the only data this exercise will ultimately provide is the 

running time of the program. Careful experimental design can yield further insight. For 

example, knowing exactly what resources our benchmark consumes, and the running times for 

the identical benchmark program on other architectures allows us to deduce which particular 

features of our machine could account for the performance patterns we observed. An excellent 

illustration of this "an" of benchmarking is [Gabriel 85], in which the author devised a 

collection of benchmarks to test various important performance aspects of Lisp systems, and 

compared their performance on several different machines. Gabriel's benchmarks have become 

widely adopted as a standard for evaluating Lisp compilers and architectures, to the extent that 
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manufacturers will tune their Lisp systems specifically to get high performance on those 

benchmarks. 

Benchmarking is probably the most common technique used to evaluate the relative performance 

of hardware and software products. Related techniques include kernels and synthetic 

programs [Bauer 77]. Kernels are representative programs whose exact execution parameters 

are known (e.g., a kernel may be designed to read 10,000 records of a given size from a disk 

file), but whose implementation details (e.g., the exact operating system calls used to read the 

file) are left to be optimized for a given system. Kernels can potentially give more accurate 

information about a particular machine than benchmarks, since they don't rely on a program 

which may have been written with some particular system in mind. Synthetic programs are 

programs that don't perform any specific function, but are used to exercise all possible functions 

of a piece of hardware, sometimes under extreme conditions. 

Although benchmarks and the related techniques discussed above are very useful In many 

situations, they have major drawbacks which have motivated the design of alternate 

measurement techniques. A series of benchmarks which exercise a variety of system features 

can be run to identify general areas of good and poor performance, but the only quantitative 

results which are produced are the running times of the benchmarks. Such results cannot explain 

why certain operations are efficient and others are not To understand why a system performs the 

way it does, it is necessary to understand it at a finer level of detail. For example, we may wish 

to determine what percentage of the memory references in a parallel program are to shared data, 

and how much synchronization overhead is associated with these references. Thus, we now tum 

our attention to more detailed measurement techniques. 

~.3. Instrumentation 

Both hardware and software can be equipped with measuring devices which monitor and collect 

information about significant events or parameters. Such devices are known collectively as 

instrwnentation. Hardware and software monitoring can be employed separately, but since each 

of these methods has its own set of advantages and limitations, they are frequently used together. 

rn the section on simulation we mentioned that trace driven techniques used data collected from 
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running systems to drive simulations. The instrumentation techniques described in this section 

are the means whereby such data is collected. 

1) Hardware monitors are electronic devices which can be attached to computers in order to 

collect operational data. A monitor has a number of high-impedance connectors, called probes, 

which are attached at significant locations, or probe points, in the circuitry of the computer. 

These probes send information back to the hardware monitor, which typically contains the high­

speed logic necessary to capture this information in real time, as well a small computer to control 

the acquisition, recording and reporting of the data. For some commercial computers, libraries 

of probe points for observing a variety of interesting signals are available from the manufacturer; 

for custom designed prototypes, the designer can locate the probe points. The advent of VLSI 

microprocessors, however, has made it increasingly difficult to gain access to signals which 

divulge a processor's internal state. 

Hardware monitors can record such events as context switches, page faults, cache hits, I/O 

operations to selected channels or devices, execution of specific instructions, suspension of CPU 

activity to wait for I/O, loading of selected registers, etc. They generally do not have access to 

knowledge of what is occurring at the software level. For example, they cannot know which me 

is being read from a disk or the name of the subroutine currently executing. 

The greatest advantage of hardware monitors is that they are non-intrusive. Use of the monitor 

does not degrade system performance, as contrasted with the execution of software monitor 

code. Hardware monitors can also record events such as cache memory hits, which are 

inaccessible to software monitors. Their disadvantages include the high cost of the additional 

monitoring hardware, the inconvenience of locating probe points and physically attaching probes 

to a computer, and the inability to access software information. The practice of hybrid 

monitoring, or using hardware and software monitors concurrently, compensates for the 

hardware monitor's inability to sense software events. In fact, most recent uses of hardware 

monitors have been in hybrid monitoring situations. 

Although the literature abounds with references to hardware monitoring studies, very few of 

these studies have had parallel computers as their object. One exception is [Fromm 83], which 
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describes the use of hardware and software monitors with the Erlangen General Purpose Array, a 

tightly coupled parallel computer. A hardware monitor called Zahlmonitor III collects trace data 

from each of the processing elements, merging it into a single trace. The software monitor 

places process IDs into a special register, where they can be read by the hardware monitor. 

2) Software monitors collect information about a system by means of software probes, which are 

sections of code added to a program to collect trace data and statistics pertaining to the 

program's execution. Many large programs, especially operating systems, have monitor code 

built into them to facilitate the gathering of performance data. Examples are ffiM's 

VMJ370 [Bard 78] and the ARPANET interface processor (IMP) control programs [Kleinrock 

74]. Other programs have been modified to incorporate software probes. 

One advantage of using software monitors is their flexibility. Whereas hardware probes are 

difficult to relocate, a new software probe can be added by simply modifying and recompiling 

the code. Furthermore, software monitors have access to high-level software information 

unavailable to hardware monitors; the inclusion of such information in monitor trace output 

makes the output much easier to analyze. The only major disadvantage of software monitors is 

that they are intrusive. Since the monitoring instructions inserted in the programs take time to 

execute, software monitoring degrades system performance, sometimes significantly. This 

overhead must be accounted for to improve the accuracy of the measurements. 

We have already seen extensive examples of the utilization of trace data from software monitors 

in the section on trace driven simulation. Thus, we will present only one additional case study 

here, with emphasis on the process of software instrumentation itself, and not its results. 

[Dritz 86] describes the performance evaluation of simple parallel Lisp programs running on the 

Encore Multimax and the Denelcor HEP, two commercial parallel processors. The initial 

instrumentation consisted of a single software probe to measure the time which processes spent 

acquiring locks for shared data structures. The insights from this experiment led to refinement of 

both the algorithms (to reduce lock contention) and the monitoring code (to reduce monitoring 

overhead). Software probes for monitoring processor idle time were subsequently added. The 

inherent flexibility of software instrumentation allowed it to be used incrementally, in an 

exploratory manner. 
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4.4. ~teasurement of Emulated Architectures 

Simulators which perfonn software emulation of parallel machines were previously surveyed. 

Such emulators are usually extensively instrumented to collect perfonnance data, and can be a 

substitute for measurement of the real hardware if the hardware is not yet operational. The 

accuracy of the performance data is a function of the level of detail of the emulation. 

Some emulation programs, such as W ASHCLOTIi for the NYU Ultracomputer and PSIMUL for 

the IBM RP3 can provide only approximate timing data. since the processors they emulate are 

not the processors of the actual target architectures (recall that WASHCLOTH emulates 

CDC-6600 processors and PSIMUL emulates IBM 370 processors). 

Generally, microcoded emulation machines collect more accurate timing infonnation. For 

example, the MMP machine, described in the emulation section, maintains a virtual clock which 

accurately reflects execution time on the emulated architecture. This allows true perfonnance 

measurements of the emulated architecture to be made. 

~.5. Model Validatbr. 

Measurement is frequently used to check the results of analytical or simulation models for 

accuracy. Since a model is an abstraction of some real system, it doesn't perfonn all of the 

system's functions. Validation is the process of detennining whether the model accurately 

reflects the behavior of the system it was designed to represent. This is usually done by using 

the model to predict the performance of a configuration of the system whose perfonnance can 

also be directly measured. If significant differences exist between the model and the real system, 

the model must be corrected. [Rose 77] is an example of empirical validation of a analytical 

model. 

Measurements of real systems can also be the initial sources of vanous parameters for a 

simulation or analysis [Rose 78]. For example, the average time a process waits for a disk drive 

can be measured by hardware or software monitoring. This value can then be used to specify the 

corresponding parameter in an abstract model of a disk drive. Increasing the accuracy of the 

input parameters of the model will make its predictions more reliable. Thus, it is desirable to 
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check the assumed parameters of the system model against the real system or a similar one. A 

good example of interaction between analytical models and measurement is the VM/370 

Perfonnance Predictor [Bard 78], which uses a software monitor built into VMJ370 to gather 

data used by the analytical model. 

If a real system is not available for validation measurements, the best alternative is to check the 

model against a more detailed model. Emulation models are good choices, since they capture a 

large amount of the detail of the real hardware. If an emulator is not available, comparing the 

results of two different types of models, for example an analytical solution and stochastic 

simulation results, could help. If the results disagree, at least one of the models is defective. If 

the results agree, there is a higher probability that both are reasonable. [Browne 75], for example, 

compared the predictions of an analytical model with those of a more detailed stochastic 

simulation and found them to be similar. [Lazos 81] studied the validation of models by other 

models, and concluded that models could differ quite significantly from the real system and still 

produce fairly similar results. This suggests that even fairly simple models could be used for 

quick validations in situations where very high accuracy is not required. 

4.6. Summary 

A variety of methods for the performance measurement of parallel computers have been 

presented. These include benchmarking, hardware and software monitoring, and use of 

emulation software or hardware. In many cases the decision as to which method to employ is 

quite easy. For example, if no hardware implementation of an architecture exists, one can only 

measure the perfonnance of a simulated machine. If the probe points for a machine cannot be 

determined, then it is impossible to use a hardware monitor. In the remaining cases, the decision 

is driven by the cost of the measurement method and the degree of accuracy required. Software 

instrumentation is usually more economical and flexible than hardware instrumentation, but not 

as accurate since it imposes monitoring overhead on the machine. 

Measurement is frequently used to validate the results of analytical or simulation models. 

Validation serves a crucial role in performance modeling, since without actually comparing the 

projections of models against measured results it is impossible to know how trustworthy the 
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models are. Sometimes, when measurement of the real hardware is not possible, increased 

confidence in a model can result from comparing it with a different class of model. 

5. Conclusions 

This paper has surveyed the major classes of computer performance evaluation techniques and 

shown how they have been used to study parallel computer systems. Simulation plays a much 

greater role in this context than do analytical techniques because of the flexibility and 

expressiveness of simulation models. Emulation techniques, although relatively expensive to 

use, seem to be the method of choice for achieving a detailed understanding about the operation 

of parallel software. A table summarizing the work we presented appears at the end of this 

section. 

One big limitation of detailed simulation is the huge amount of CPU time required. Increased 

use of parallel machines to simulate other parallel machines may speed up this process by orders 

of magnitude. Such simulation facilities would provide the ability to do more significant 

simulation work prior to designing new architectures. Currently. only small pieces of software 

can be exhaustively analyzed. Perhaps in the future, the performance of large software systems 

on a proposed architecture could be evaluated without actually implementing the architecture. 

This would significantly decrease the costs and increase the productivity of parallel hardware 

and software research. Various parallel architectures for simulation have already been built. 

some of them very powerful. We have already mentioned certain microcoded emulation 

machines. Another interesting architecture is IBM's Yorktown Simulation Engine (YSE), a 

massively parallel machine used for gate level simulation of logic [pfister 82b]. It has been 

estimated that it could emulate an IDM 3081 computer at the rate of 1000 instructions per 

second, and some commercial microprocessors at rates faster than their normal execution. The 

YSE also has extensive diagnostic and trace facilities built into its software. Such machines may 

prove useful for the simulation of parallel architectures. 

Innovative software techniques may make the job of parallel computer performance evaluation 

easier. For example, [Ishida 75] built a graphical tool for monitoring the execution of a four 

CPU multiprocessor. [Steinberg 86] describes a graphical interface which monitors execution of 
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parallel Lisp programs on the BBN Butterfly parallel computer. Such techniques could enable 

researchers to better understand the behavior of systems in which many events are happening 

simultaneously. 

Performance evaluation techniques have been, and will probably continue to be, an integral part 

of the design process for parallel machines. Advances in hardware and software technology will 

make possible the performance evaluation of increasingly larger systems with greater ease and 

efficiency. 

Table 5-1: Summary of Work Surveyed 

Reference What Studied Methods Used3 Comments 
Bard 78 VMl370 operating system performance APM,SMON Used monitor data as input to simulation 
Browne 75 2 CDC Cyber CPUs and peripherals APM. SSIM APM couldn' t represent VO processors 
Sauer 80 Queueing nerworD in general APM Approximate solutions to queuing models 
Reed 84 Various interconnection topologies SSIM 
Snir 81 Ultracomputer interconnection network SSIM 
Pfister 82a RP3 interconnection network SSIM Found hot-spot phenomenon 
Hillyer 86 Relational joins on NON-VON 4 SSIM 
Smith 85 Cache memories in general TDSIM TDSIM used for most studies of caches 
Sherman 72 0.5. scheduling policies TDSIM 
5086 Execution of programs on RP3 TDSIM Used PSIMUL program 
Abu-Sufah 85 Execution of programs on Cedar TDSIM 
Fennell 75 Hearsay II on L.mmp TDSIM 
McCracken 81 HSPonC.mmp TDSIM 
~1 iranker 86 Productions systems on DADO TDSIM 
van Biema 86 Production systems on DADO TDSIM 
Zom86 Parallel garbage collection TDSIM 
Stamos 84 Paging in object oriented systems TDSIM Trace compaction sped up simulation 
Lehman 66 Execution of parallel programs EMUL 
5vobodova 76b Execution of T ACFlLE system EMUL Microcoded emulation engine 
Salomon 82 BELLMAC-32A microprocessor EMUL Microcoded emulation eogioe 
Gottlieb 80a Execution of Ultracomputer programs EMUL 
SO 86 Execution of RP3 programs EMUL 
Board 83 Parallel program execution EMUL, SSlM User describes architecture 
Lieberman 83 Apiary object-oriented machioe EMUL 
Gabriel 85 Lisp programs on uniprocesson BENCH These benchmarks now widely adopted 
Fromm 83 Erlangen General Purpose Array HMON 
Kleinrock 74 ARPANET control program SMON 
Oritz 86 Execution of parallel Lisp programs SMON 
Lazes 81 Validation of models using other models 
Misra 86 Distributed simulation algorithms 

3APM = Analytic performance modeling. SSIM ~ Stochastic simulation. mSIM '" Trace dri~en simulation. 
EMUL = Emulation, BENCH = Benchmarking or related technique. iThlON :a Hardware mOnitor. SMON = 

Software monitor. 
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