
•

A Survey of Parallel Programming Constructs

Michael van Biema

Columbia University

Dept. of Computer Science

New York, N.Y. 10027

Tel: (212)280-2736

MICHAEL@CS.COLUMBIA.EDU

CUCS-CS-312-87

Table of Contents
1. Introduction
2. Parallelism in Functional Programming Languages

2.1. Introduction
2.2. Discussion

3. Parallelism in Lisp
3.1. Introduction
3.2. Case Studies

3.2.1. Multilisp
3.2.2. QLISP
3.2.3. Connection Machine Lisp

3.3. Discussion
4. Parallelism in Object-Oriented Programming Languages

4.1. Introduction
4.2. Encapsulation, Sharing, and Polymorphism
4.3. Parallelism
4.4. Discussion

5. Conclusion

1
1
1
6
8
8

11
11
14
16
19
22
22
24
25
30
32

1. Introduction

This paper surveys the types of parallelism found in Functional, Lisp and Object-Oriented

languages. In particular, it concentrates on the addition of high level parallel constructs to these

types of languages. The traditional area of the automatic extraction of parallelism by a compiler

[39] is ignored here in favor of the addition of new constructs, because the long history of such

automatic techniques has shown that they are not sufficient to allow the massive parallelism

promised from modem computer architectures [26. 58].

The problem then, simply stated. is given that it is now possible for us to build massively parallel

machines and given that our current compilers seem incapable of generating sufficient

parallelism automatically, what should the language designer do? A reasonable answer seems to

be to add constructs to languages that allow the expression of additional parallelism in a natural

way. Indeed that is what the designers of the the Functional, Lisp, and Object-Oriented

languages described below have attempted to do.

The three particular programming formalisms were picked because most of the initial ideas seem

to have been generated by the designers of the functional languages and most of the current

activity seems to be in the Lisp and Objected-Oriented domains. There is also a great deal of

activity in the Logic programming area, but this activity is more in the area of executing the

existing constructs in parallel as opposed to adding constructs specifically designed to increase

parallelism.

2. Parallelism in Functional Programming Languages

2.1. Introduction

In his now classic paper "Can programming be Liberated from the von Neuman Style",

[6] Backus argues strongly in favor of the use of functional languages (known also as

applicative or reduction languages) as opposed to traditional or imperative languages. Now,

almost ten years later, the debate still rages on, and although the ultimate use of functional

languages is still in question. there is no doubt that functional languages have been the origin of

many original and elegant language constructs.

2

The basic concept behind functional languages is quite simple: To allow a language to consist

only of expressions and function applications and to disallow all forms of assignment and side

effects. This can be accomplished either by disallowing assignment entirely - as in languages

such as FP [6] - or by allowing only so called single assignments as in VAL [49]. In other

words, either assignment is disallowed entirely or. once a variable is bound to a value. it keeps

that value for the remainder of its life time. Single assignment actually represents no more than

a notational convenience for the programmer.

In a sense, functional languages have served as the starting point for the design of parallel

languages. Most of the parallel constructs that are used by the Lisp and Object-Oriented

languages that we examine later were either inspired or directly taken from earlier work done on

functional languages. It is also fair to say that the addition of parallel constructs to functional

languages is easier than the addition to non-functional ones. The functional language designer is

free from the major concern of side effects that constrains and complicates the life of the

designer of non-functional languages. The absence of side effects in functional languages makes

them inherently parallel since their order of evaluation is constrained only by the actual data

dependencies of the program. This is known as the Church-Rosser propeny [17]. Thus the

implementor of a functional language is free to reorder the evaluation of a program in any way as

long as he maintains its data dependencies. Quite a large number of methods of evaluation of

functional languages have been proposed: data flow, demand driven, graph reduction, string

reduction, and combinators [68]. The majority of these methods can be classified into one of

two camps: data flow or reduction. The two approaches differ in the way they treat the program

graph. In the case of the data flow approach the program graph is mapped onto the hardware and

the data of the program flows through iL Functions (nodes of the graph) are evaluated when the

data necessary for the execution has arrived at the node. In the case of reduction, the entire

program graph is treated as the object of computation and pieces of it are reduced by a given set

of reduction rules. The process is continued until the entire graph is reduced to an atomic value.

This piecewise reduction may of course be perfonned in parallel. The actual translation of the

program text into the program graph determines to a large extent the degree of parallelism

possible.

3

The actual method of evaluation of a functional program may be either sequential, data driven, or

demand driven [68]. In the demand driven case the amount of parallelism may be reduced due to

the fact that functions are only evaluated when actually needed to continue the computation, but

the total amount of computation may be reduced as well. It must be kept in mind that the goal of

the parallel language designer is to reduce the overall computation time which is not necessarily

the same as creating the maximum amount of parallelism nor is it the same as reducing the total

amount of computation. Demand driven evaluation corresponds to lazy evaluation where a

function is never evaluated until its value is actually required to complete the computation. Lazy

evaluation brings with it two major advantages. The first is that the total amount of computation

may be significantly reduced. The second is that it makes possible the representation of infinite

data structures. It has also been pointed out [14] that lazy evaluations can take the place of the

co-routine or iterators seen in earlier imperative languages, by producing data only when it is

needed to be consumed. Hybrid schemes of evaluation combining the data flow and demand

driven models have been proposed as well [5].

Rather than discuss the pros and cons of these various implementation techniques here, we will

discuss those additional constructs that have been added to Functional Languages in order to

increase the available concurrency. The techniques that have been suggested to increase the

available parallelism include: For Alls, Reduction Operators, Lazy Evaluation, Eager Evaluation,

argument binding by Pattern Matching. and Distributed Data structures. One can see how these

various features have been combined by the languages studied in fig. 2-1.

As can be seen, most of the languages have a forall type of operator that always comes along

with a set of reduction operators. These forall and reductions operators operate on either lists or

vectors or in the case of FLudd a explicitly distributed data structure know as a Ferd. A Ferd is

a data structure that can be thought of as being equivalent to a stream, but distributed in space as

opposed to time. Space is defined here as being a set of processing elements. Ferds bear a close

resemblance to the Xappings of Connection Machine Lisp [58] that we will examine later.

The forall and reduction operators take somewhat different syntactic forms among the various

languages, but the semantics are almost identical. Some of the languages allow the programmer

ForAll Reduct Pattern Lazy Eager DistData

1) FP x x

2) SASL x x I

3) VAL x x x

4) HOPE x x x x I

5) SISAL x x

6) SAL x x x

7) ML x x x

8) FLucid I X X X

Figure 2·1: Functional Languages and
their Parallel Constructs

to specify the particular order in which the reduction is to be done [7,50]. The choice is

generally between left, right. and tree order which may be performed in log as opposed to linear

time on a parallel machine with tree connections. Some languages limit the operators that may

be used for reduction to a predefined set of associative operators. The set generally includes:

plus, times, max, min. and, or [16,49]. Other languages allow the use of any function along with

the reduction operator. If the operatOr is not associative it is up to the programer in ensure the

results returned are meaningful

Pattern matching is a method of binding arguments to functions that allows for more parallelism

and better compilation than the traditional method of passing arguments and then dispatching on

their value within the function using either a case or an if statement For example the function to

reverse a list would be written as:

rever~e(nil) - nil
rever~e(a:l) - rever~e(l) : [aJ

using pattern matching (: is the cons operator) as opposed to its usual form of:

5

reverse(l) =
if null(l) then nil

else (reverse (cdr 1) : (aJ)

The delayed evaluation of the constructor function cons allows for the creation of arbitrary

amounts of potential parallelism and the possibility for reduced overall computation [19]. By

delaying the evaluation of the car and cdr pans of the cons until they are actually needed, a great

deal of computation may be saved. In addition such "lazy" evaluation allows the definition of

infmite data structures since only the pans that are actually accessed will ever be created. For

example:

zeros a 0 : zeros

represents an infInite string of zeros. If additional processing power is available it may be used

to evaluate these delayed constructs and replace them with their actual values.

It is also possible to pre or eagerly evaluate expressions. The semantics of SAL, for example,

allow for the eager evaluation of the various branches of an if or case statement. Notice that

such eager evaluation is "safe" in a functional language due to the absence of side effects,

whereas the side effects might have to be undone in a traditional imperative language.

There are also some more subtle design decisions that affect the available parallelism in a

language. Within a let or a where clause, for example, the restrictions placed on the ordering of

the binding affects the degree of sequentiality necessary in their evaluation. So, for example, in

a language such as SASL [53] where no ordering is specified the binding may be carried out in

parallel, whereas this is not the case when some specific ordering dependencies are introduced

[16]. Perhaps the most interesting addition to the SASL language is the use of Zermelo-Frankel

(ZF) [67] set abstraction to express list formation. Syntactically, ZF-expression has the form:

(expression; qualifier; ... ;qualifier]

A qualifier is either a boolean expression or a generator. A generator has the form:

<name> <- <list expression>

<name> is a local variable whose scope is that of the expression. So, for example, a map

6

function might be deflned as:

map f x - [f a: a<-x]

where a takes successive values from the list x. Another example is the definition of a function

that generates the permutations of a list which uses both ZF-notation and panern matching:

perms [] = [[]]
perms x = [a:p: a<-x; p<-perms(x--[a])]

(The -- operator represents list difference) ZF-notation presents interesting possibilities for

parallel compilation.

There are several other places one can exploit parallelism in an applicative environment. The

most obvious is the collateral evaluation of arguments to a function call. Recursion with more

than one internal recursive call leads to a tree of calls, all the leaves of which may be evaluated

in parallel. We have already seen the application of the same function to a large number of

arguments (Le. ForAll or mapping [15]), but it is also possible to perform the application of a

large number of functions to the same argument (i.e. construction [7]) or the application of a

large number of functions to a large number of arguments (Le. combination [20]).

2.2. Discussion

From the above language descriptions it should be clear that the basic parallel constructs that

have been used in functional languages do not vary greatly from one language to another except

in syntax.

Although most of the current interest in functional languages seems to have concentrated on their

type systems [13, 14, IS], experimentation has been done with adding notations to functional

programs for bodl specifying which processor a function should execute on and for specifying

which expressions should be evaluated eagerly. As an example, the ParAlfl base language for

Para-Functional Programming [28] has been elttended with mapping annotations that specify the

processor on which a function should be executed. Programs written in this way can still be

executed on a uniprocessor by ignoring the annotations, and the results will be equivalent due to

the Church-Rosser property. ParAlfl also allows the programmer to annotate functions that he

7

wishes to be executed in an eager fashion.

It is important to point out that it is also quite possible to have too much parallelism for a

particular architecture to execute efficiently. Ideally, there should be just enough tasks spawned

to keep all of the processors busy all of the time. If more than this "ideal" number of tasks are

spawned, some tasks will need to queued and this will waste space and processing resources.

This has been seen on BBN Bunerl1y machine, and as a result BBN is developing a semi

applicative language which allows annotations such as precedence that limit the degree of

parallelism [57]. The other interesting feature of this language is annotations which indicate that

particular results should be cached as opposed to being recomputed.

Another addition that has been made to applicative languages with some success is the use of

logical unification for parameter binding. Unification is useful because it provides an implicit

form of synchronization (the unification of the variable) as well as a mechanism to pass

information both into and out of a function invocation (the unification can occur either before or

during the function's evaluation) [43, 57].

Others have experimented with the addition of imperative sections of code to an applicative

language. This has been found to yield great gains in efficiency and when done in a structured

way does not destroy the semantics of the applicative part of the language. In Rediflow [37], for

example, the exchange of data between applicative and imperative sections of code is done by

mapping a stream data structure to a von Neuman stream of tokens and performing the inverse

mapping when passing the processed data tokens back. Keller also introduces the interesting

notion of using pressure as a analog to load. By allowing each processor to keep some measure

of its internal and external pressures (loads), tasks are allowed to flow along pressure gradients

to new less-loaded sites of execution.

Interesting work has also been done in the graphical programming of functional languages [46].

Such work is useful in that the programmer can get an idea of the amount of parallelism by

looking directly at the dataflow graph itself.

The basic fonn of functional languages varies significantly, but the parallel constructs are

8

remarkably similar. The basic notions of lazy evaluation, eager evaluation, "for all" constructs

and reduction operators appear in only slightly different forms in most of the languages studied.

As we will see in the second and third chapters. these constructs, in different forms and

combinations. fonn much of the basis for the parallel constructs in imperative languages as well.

3. Parallelism in Lisp

3.1. Introduction

As with functional languages there are two main approaches to executing Lisp in parallel. One is

to use existing code and clever compiling methods to parallelize the execution of the code

[26,37,47]. This approach is very attractive because it allows the use of already existing code

without modification. and it relieves the programmer from the significant conceptual overhead of

parallelism. This approach, known as the "dusty deck" approach. suffers from a simple problem:

it is very hard to do. This is particularly true in a language such as Lisp that shows a much less

well defined flow of conttol than languages such as FORTRAN where such techniques have

been applied relatively successfully [39]. A result of this is that. given the current compiler

techniques. the amount of parallelism that can be achieved is limited.

The other approach to the problem is the addition of so-called explicit parallel constructs to Lisp.

The idea is to allow the programmer to help the compiler out. by specifying the parallelism using

special. added language constructs. This. depending on the constructs used. places a significant

additional conceptual burden on the programmer. The degree of the burden depends directly on

the level or the elegance and simplicity of the constructs used. The higher the level of the

constructs. the lighter conceptual burden on the programmer. To put it another way. the more the

constructs are able to hide and protect the programmer from the problems inherent in the parallel

execution of a language with side effects such as Lisp. the better. This approach suffers from the

additional problem that existing code may not be executed as is, but rather must be rewritten

using these added constructs in order to take advantage of any parallelism. Finally. there is the

problem of defining a set of constructs that fulfills the goals of placing the minimal conceptual

overhead on the programmer while providing a complete set. in the sense that all the parallelism

in any given problem may be suitably expressed using only this set.

9

In this paper, we focus on the second of the two approaches, because it is in this area that most

recent progress has been made. We study in depth three current attempts to define a useful set of

parallel consaucts for Lisp and discuss exactly where the opportunities for parallelism in Lisp

really seem to lie. The three attempts are very interesting, in that two are very similar in their

approach but very different in the level of their constructs, and the third takes a very different

approach. We do not study the so called "pure Lisp" approaches to parallelizing Lisp since these

are applicative approaches and do not present many of the more complex problems presented by

a Lisp with side-effects [19,20].

The first two attempts [21, 24] concentrate on what we call control parallelism. Control

parallelism is viewed here as a medium or course-grained parallelism on the order of a function

call in Lisp or a procedure call in a traditional, procedure-oriented language. A good example of

this type of parallelism is the parallel evaluation of all the arguments to a function in Lisp, or the

remote procedure call or fork of a process in some procedural language. Notice that within each

parallel block of computation, there may be encapsulated a significant amount of sequential

computation.

The third attempt [58] exploits what we call data parallelism. Data parallelism corresponds

closely to the vector parallelism in numerical programming. The basic idea is that. given a large

set of data objects on which to apply a given function, that function may be applied to all the

data objects in parallel as long as there are no dependencies between the data. Here, rather than

distributing a number of tasks or function calls between a set of processors, one distributes a set

of data and then invokes the same function in all processors.

These two forms of parallelism have been described as the MIMD (Multiple Instruction stream,

Multiple Data stream) and SIMD (Single Instruction stream, Multiple Data stream) approaches

[18]. These terms are generally used in classifying parallel architectures based on the type of

computation for which they are particularly suited. Generally, it is felt that the fmer the grain of

an architecture, i.e. the simpler and the more numerous the processors, the more SIMD in nature,

and conversely, the larger the grain, i.e. the larger and fewer the processors, the more MIMD the

architecture. The terms are also frequently used to distinguish between distributed- and shared-

10

memory machines, but it is important to remember that they actually refer to particular models of

computation rather than any given particular architectural characteristics.

The case studies described in this paper deal exclusively with one or the other of these two forms

of parallelism. Interestingly, the compiler, or dusty deck approaches that we have seen [26,47],

also seem to deal exclusively with one or the other of the two fonns of parallelism. Some work

has been done in the functional programming area in combining the two fonns of parallelism

[37] and the need to do so has been recognized by parallel Lisp designers [58], but to date very

little work has been done in this area. This is surprising given that the distinction between the

two forms is, in reality, quite weak. This is especially true in a language such as Lisp, where

there is a continuum between what might be considered code and what might be considered data.

To see this more clearly, let us take the case of the parallel evaluation of a function's arguments.

We have seen this is generally considered a form of control parallelism. Assuming each

argument involves the evaluation of a function, for example:

(faa (bar a) (car b) (dar c»

We generally view this as each argument being bundled up with its environment and sent off to

some processor to be evaluated. What about the case where the same function is applied to each

argument?

(faa (f a) (f b) (f c»

This is generally viewed as an occasion for exploiting data parallelism. The arguments (the data

in this case) are distributed to a number of processors and then the common function is called on

each. In the case of moving from a data to a control point of view, consider a vector, each

element of which resides in its own processor. Invoking a given function on each member of the

vector involves first disttibuting one member of the vector to each processor (this step is often

ignored in descriptions of SIMD execution), and then, broadcasting the code for that function to

each processor, or if the code is already stored in the processor, broadcasting the function pointer

and a command to begin execution. In the control model. instead of broadcasting the function to

all the processors at one time. one must distribute the function along with a particular element of

the vector to each processor and immediately begin execution. This could just as well be viewed

11

as first distributing the code and the corresponding data element to each processor and then

broadcasting the instruction to eval that fonn in each processor. The synchronization is different

in the two models, but the actual steps in the execution may be viewed as being the same.

3.2. Case Studies

We will return to the subject of the distinction between control and data parallelism later. when

we discuss where the opportunities for parallelism in Lisp actually lie. First. we present three

case studies of the approaches already mentioned. The current effons concentrate on adding

some additional constructs to a dialect of Lisp. They are, therefore, extensions to Lisp rather

than completely new parallel languages based on Lisp. In the text we refer to them as languages,

but the meaning should be taken as: Lisp and the additional constructs used to express

parallelism. In the case studies new constructs are indicated by italics and normal Lisp

constructs are indicated by a t ypewr i t e r font

3.2.1. Multilisp .

The fIrst extended Lisp language we present is Multilisp [24, 25] which is based on Scheme [1],

a dialect of Lisp which treats functions as fIrst class objects, unlike Common Lisp [61], but is

lexically scoped, like Common Lisp. In this paper, we do not distinguish Lisp based languages

by the panicular dialect of Lisp on which they are based, but rather by the constructs that have

been added to the language and the effect, if any, that the base dialect has on these constructs.

Multilisp is notable both for the elegance and the economy of the constructs through which it

introduces parallelism. In fact. a single construct, the jurure. is used for the expression of all

parallelism in the language. A jurure is basically a promise or an IOU for a particular

computation. In creating afurure. the programmer is implicitly stating two things: One is that it

is okay to proceed with the computation before the value of the jurure is calculated, but that the

value will have been calculated or will be calculated at the time it is needed. The other is that the

computation of the jurure is independent of all other computation occurring between the time of

creating and before its use, and thus may be carried out at any time. in no panicular order, with

the rest of the computation or other jurures that may have been created. The danger here, of

course, is any side effects caused by the jurure must not depend on their ordering in relation to

12

the rest of these computations. It is the responsibility of the programmer to ensure that these side

effects do not cause any "unfonunate interactions". It is this responsibility that places additional

conceptual overhead on the programmer. The overhead is reduced by having only one basic

construct to deal with. but should not be underestimated. This overhead may be funher reduced

by what Halstead [24] describes as a data abstraction and modular programming discipline. An

example of the use of afuture is:

(setq cc (cons (future (foo a»
(future (bar b»»

Here we build a cons cell. both the car and cdr of which arefutures, representing respectively the

future or promised evaluation of (foo a) and (bar b). This cons will return immediately

and be assigned to the atom c c. If we later pass c c to the function p r in teo n s below,

(defun printcon~ (conscell)
(print (car con~cell»
(print (cdr con~cell»)

there are four possibilities:

1. both futures will have already been evaluated. in which case the futures will have
been coerced into their actual values and the computation will proceed just as if it
was dealing with a regular cons cell.

2. (foo a) has not yet been evaluated in which case printcons will have to wait
for it to be evaluated before proceeding.

3. (bar b) has not yet been evaluated in which case print cons will have to wait
for it to be evaluated before proceeding.

4. both (foo a) and (bar b) have not yet been evaluated in which case
pr intcons must wait for the evaluation of thejulures before continuing.

Multilisp has an additional construct known as a tU/ay or delayed future that corresponds to a

regular furure, except that the evaluation of the julure is expressly delayed until the value is

required. This additional construct allows the expression of infinite data structures and

nonterminating computation. For example, suppose we wished to represent the list of all prime

numbers greater than some prime number n. We could do this using a deLay as follows:

(defun prime~(n)
(con~ n (delay (primes (next-prime n) »»

\1ultilisp allows the computation of non-strict functions (functions whose arguments may not

13

tenninate) through the use of both the delay and of the future. However, in the case of futures,

significant amounts of resources may be tied up or lost if the results are not used, and ultimately

storage will be exhausted for any non-fmite data structure. By using delays, one only computes

what is needed. All futures may be removed from a program without changing the resources

used by the program, but the same is not true for delays, since removing a delay may cause the

computation of infinite data structures, since the recursion or iteration does not pause after each

cycle. Delays thus represent a form of lazy evaluation, whereas the future represents a reduction

in the ordering constraints of a computation.

Multilisp includes one additional construct which is the peaJl. PeaJl provides for the

simultaneous evaluation of the arguments to a function. but does not continue the evaluation of

the function itself until all the arguments have finished evaluating. Notice how this differs from

a function call in which all the arguments are jurures. PeaJl may of course be simulated by a

function call, all of whose arguments are futures, provided the first act of the function is to

access the values of all its arguments. Multilisp provides a primitive identity operator touch

which causes ajurure to be evaluated and which is in fact used to implement the peaJl construCL

PeaJl thus provides a much more limited form of parallelism than futures, but is useful as

midway point between the completely undefmed flow of control between futures and the

complete order of sequential execution.

The implementation of Multilisp calls for a shared-memory mUltiprocessor, and two

implementations are underway [25, 62]. Each processor maintains its own queue of pending

futures, and a processor that has no current task may access another processor pending queue to

find a fWuu to execute. An unfair scheduling algorithm is necessary to ensure that constant

computational progress is made and the system does not deadlock since the future at the begining

of the queue will not be the same as the next process to be executed if the program were being

executed sequentially. The scheduling strategy has been chosen so that a saturated system

behaves like a group of processors executing sequentially, i.e. as if all future calls had been

removed from the code. Once a future has been evaluated, it is coerced to its return value by

changing a flag bit stored among the tag bits of the Lisp item that represents it. This causes one

extra level of indirection (one pointer traversal) in references to values that are the result of

14

future calculations. These indirect references are removed by the garbage collector when a

collection occurs after evaluation of the future has tenninated.

3.2.2. QLISP

The additional constructs in Qlisp [21] are quite similar in semantics to those of Multilisp. but

very different in fonn. There are a much larger number of constructs in Qlisp. although the

increase in the expressive power of the language is not great except for the ability to express

eager evaluation. Multilisp does not provide such eager constructs or any construct that allows a

computation to be halted prematurely. Constructs. which allow computations to begin. but are

later able to halt them, are useful in freeing the computational resources of an eager computation,

once it has been determined that its result is not needed [2]. An alternate technique is to allow

such a process to run until it can be determined that the result being returned is no longer needed

at which time it may be garbage collected by the system.

There are two primary constructs that allow the expression of parallelism in Qlisp. They are qlet

and qlambda.

Qler does much what one might expect. It performs the bindings of a let in parallel. Qler takes

an extra predicate as an argument along with its usual binding pairs. When this extra predicate

evaluates to nil, qlet behaves exactly like let. When the predicate evaluates to the atom

eager, the qlet spawns a process to evaluate each of its arguments and continues the execution of

the following computation. Finally, if the predicate evaluates to neither nil nor eager the qlet

spawns processes for each of its arguments as before, but waits for all of them to finish

evaluating before continuing with the subsequent computation. These last semantics for qlet

closely resemble those of pcall in Multilisp and may be easily used to mimic its semantics

exactly (by placing the function call within the qlet that assigns the value of the functions

arguments to temporaries). Funher, a qlet where the predicate evaluates to eager may be used

[0 simulate a function call where all the arguments were passed asjurW'es:

(qlet 'eager
((x (foo a» (y (bar b» (z (car c»)

(f x y z»

Qlambda takes the same additional predicate as qlet and forms a closure in the same way as its

15

namesake lambda. If the predicate evaluates to nil, then q/ambda behaves exactly as a

lambda does. If the predicate evaluates to eager, the process representing the closure is

spawned as soon as the closure is created. If the predicate evaluates to something other than

nil or eager, the closure is run as a separate process when it is applied. When a process

closure defined by a q/ambda is applied in a non- value requiring position, such as in the middle

rather than at the end of a prog, it is spawned, and the subsequent computation continues.

Upon return of the spawned process, its return value is discarded. If a process closure is

spawned in a value requiring position the spawning process waits for the return value. In

addition. two operators are supplied to alter this behavior. The wail construct ensures that the

computation will wait for the spawned process to complete before continuing even if it appears

in a non-value requiring postion and the process no-wail tells the computation to proceed without

waiting for the return value. The constructs that have been defined up to this point give the

language the same semantic power as Multilisp' s future mechanism.

Qlisp deals with an issue not handled in Multilisp, which is what happens if a spawned process

throws itself out. that is, what happens if a spawned process throws to a catch outside its

scope? When a catch returns a value in Qlisp, all the processes that were spawned in the scope

of that catch are immediately killed The additional construct qcalch behaves slightly

differently. If the qcalch returns nonnally (Le. it is not thrown to). it waits for all the processes

spawned below it to complete before returning its value. Only if it is thrown to does it kill its

subprocesses. In addition. Qlisp defInes the semantics of an unwind-protect form over spawned

processes which ensures the evaluation of a cleanup form upon a non-local exit. These

additional constructs allow the programmer the power to begin and later kill processes, and

therefore give him the power to perform the type of eager evaluations not available in Multilisp.

Qlisp has more of a process-oriented flavor to it than Multilisp and, although its constructs have

similar power to those of Multilisp they appear to be on a much lower level. A similar statement

may be made for the C-lisp language [64].

In Qlisp, processes are scheduled on the least busy processor at the time of their creation. Unlike

Multilisp, more than one process is run on a nngle processor and processes are time shared in a

16

round robin fashion. The predicates of qlet and qlambda allow for dynamic tuning of the

number of processes created at run-time. For example, the predicate might be set to eager if

some measure of the system wide load is less than a certain threshold. There is no method of

performing this type of dynamic load balancing in Multilisp.

3.2.3. Connection Machine Lisp

Connection Machine Lisp [58], unlike the previous two languages, introduces parallelism in the

form of data rather than control. The basic parallel data structure in Connection Machine Lisp is

a xapping (a distributed mapping). A xapping is a set of ordered pairs. The first element of each

pair is a domain element of the map. and the second is the corresponding range element. The

mapping representing the square of the integers 1, 2, 3 would be denoted in Connection Machine

Lisp as:

{ 1->1 2->4 3->9 }

If the domain and range elements of all the pairs of the xapping are the same (Le. an identity

map), this is represented as:

{ 1 2 3 } - { 1->1 2->2 3->3 }

and is called a xet. Finally, a xapping in which all of the domain elements are successive

integers is known as a xector and is represented as:

john tom andy] -
{ l->john 2->tom 3->andy }

Connection Machine Lisp also allows the definition of infmite xappings. There are three ways to

define an infinite xapping. Constant xapping takes all domain elements (or indices as they are

also called in Connection Machine Lisp) and maps them into a constant This is denoted:

{ ->v }

Where v is the value all indices are mapped into. The universal xapping may also be defmed. It

is written (->) and maps all Lisp objects into themselves. Finally, there is the concept of lazy

xappings which yield their values only on demand. For example the xapping that maps any

number to its square root may be defmed by:

17

(. sqrt)

and (xref {. sqrt} 100) would return 10. Notice that xappings may be thought of as a

type of Common Lisp sequence and many of the common sequence operators are available and

may be meaningfully applied to them.

Connection Machine Lisp defines two main operators that can be applied to xappings. The a

operator is the apply-to-all elements ofaxapping operator. It takes a function and applies it to

all of the elements of the xapping in parallel. If the function to be applied is n-ary, it takes n

xappings as arguments and is applied in parallel to the n elements of each xapping sharing a

common index. If the correct number of arguments to the function are not available, that index

is omitted from the result element. For example:

(aeons (a->l b->2 c->3 d->4 e->5)
(b->6 c->4 e->5) ->

(b->(2.6) c->(3.4) e->(5.5»)

Notice that the domain of the result is the intersection of the domains of the function and

argument xappings. The a operator is the main source of parallelism in Connection Machine

Lisp.

The other main operator is the ~ or reduction operator. It takes a xapping and a binary function

and reduces the xapping to a value by applying the binary function to all the elements of the

xapping in some order. Since the order in which the function is applied to the xapping is

undefined, the functions used are generally limited to being associative and commutative. For

example:

(~+ (l 2 3)

always rerums 6, but

(~- (l 2 3)

may rerum 0,-2, 2, 4 or -4. A non-commutative or non-associative function may be useful on

occasion however. for example, ~ applied to the function (1 ambda (x y) y) will return

some arbitrary element of the xapping to which it is applied. This particular function has been

found to be so useful in Connection Machine Lisp that it has been made into a regular operator

18

called choice. The ~ operator has a second fonn in which it may serve as a generalized

communication operator. When the ~ operator is passed a binary function and twO xappings, the

semantics are that the operator returns a new xapping whose indices are specified by the value of

its first argument and whose values are specilled by the values of the second argument. If more

than one pair with the same index would appear in the resulting xapping (which is, of course, not

allowed), the xector of values of these pairs is combined using the binary function supplied with

the ~ operator. For example:

(~max
'(john->old tom->young phil->dead

joe->young al->22}
'(john->66 tom->12 phil->120 joe->ll}) ~>

(old->66 young->12 dead->120}

In this example, we are using a database of xappings about people to generate some new

knowledge. Given a qualitative measure of some people's age (old. young, and dead) and their

actual age, we generate a value for the qualitative measures. Notice that when two indices

collide, the results are combined by max, our heuristic being that it is best to represent an age

group by its oldest member (not a terribly good heuristic in the general case). The interprocessor

communication aspect of the ~ operator becomes clearer if one considers that all the information

for one person (one index) is stored in one processor. In order to generate our new xapping, we

cransfer all the information about each age group to a new processor and do the necessary

calculation there. In the above example, the information from Tom and Joe is transferred to the

processor with label "young" and combined with the max operator there.

The parallelism in Connection Machine Lisp may be compared with the parallelism of the peall

construct of Multilisp. As pointed out by Guy Steele [581, the distinction between the two is due

to the MTh1D nature of peaLl and the SIMD nature of the (l operator in Connection Machine

Lisp. To be more specific. although in the peaLJ all the arguments are evaluated in parallel, their

synchronous execution is not assured. In fact. in both Multilisp and Qlisp the proposed

implementations would almost guarantee that the evaluation would occur asynchronously. In

Connection Machine Lisp. when a function is applied to a xapping. the function is executed

synchronously by all processors. In the case of Connection Machine Lisp. the control has been

centralized, whereas in the case of Multilisp~ it is distributed. This centralization of control or

19

synchronous execution defInitely reduces the conceptual overhead placed on the programmer. as

well as reducing the computational overhead by requiring only a single call to eval rather than

many calls occurring in different processors. The price paid for this reduced overhead is that the

opportunity for exploiting the control parallelism that exists in many problems is lost. Steele

comments on this [58], suggesting that some of the lost control parallelism may be reintroduced

by allowing the application of xectors of functions. For example, the following construct in

Connection Machine Lisp:

(afuncall '[sin cos tan] [x y z])

is equivalent to the Multilisp construct:

(pcall .' xector (sin x) (cos y) (tan z»

As of yet, this aspect of the language has not been defmed.

3.3. Discussion

In the languages presented above we have seen two different methods of providing parallelism in

Lisp. In one case, there is a process style of parallelism where code and data are bundled

together and sent off to a processor to be executed In the other, there is a distributed data

structure to which sections of code are sent to be executed synchronously. The major question

that remains is whether these two methods of exploiting parallelism can be merged in some

useful way, or is there a different model that can encompass both methods. Before exploring this

question further it is interesting to examine Lisp itself in order to see where the opponunities for

parallelism actually lie.

An obvious place to apply control parallelism in Lisp is in its binding constructs. We have seen

examples of this both in the pcaJl of Multilisp and the qlet of Qlisp. In addition to this form of

parallelism, any function application may be executed in parallel with any other provided that

there are no "unfonunate interactions" between them. We have seen this in the furures of

Multilisp and the qlambda of Qlisp. A different approach often taken in traditional block

structured languages is to have a parallel block. or a parallel prog in the case of Lisp, in which

all function calls may be evaluated in parallel. An interesting approach that has been taken along

20

these lines is to treat each function application as a nested transaction and attempt to execute all

applications in parallel, redoing the application when a conflict is detected [36]. A hardware

version of this is also being investigated [38]. Yet another very interesting approach to control

parallelism is that of making environments flrst class objects which may be created and

evaluated in parallel [22].

Logical connectives may also be executed in parallel. In particular, and and or are natural

places for expressing eager evaluation. In a parallel and or or, one might imagine all of the

arguments being spawned in parallel and then killed as soon as one of them returns with a false

or a true value respectively. This, of course, results in very different semantics for these special

forms, which must be made clear to the progra:-: "nero Conditionals and case statements may also

be executed in parallel in an eager fashion. In _c.:dition to evaluating their antecedents in parallel,

if more parallelism is des~ the evaluation of the consequents may be commenced before the

evaluation of the predicates has termina~ and it has been determined which value will actually

be used. These eager evaluation methods bring with them a number of problems. Computations

that once halted may no longer do so, side effects may have to be undone, and the scheduling

mechanism must ensure that some infmite computation does not use up all of the resources.

In order to understand the potential for data parallelism in Lisp, we must look at both the data

structures themselves and the control structures used to traverse them. The data structures that

provide the potential for parallelism fall under the type known as sequences in Common Lisp.

They are lists, vectors and sets. Sets are implemented as lists in Common Lisp, but need not be

in a parallel implementation. The elements of the sequence may be of any data type. The

control structures that operate on these data structures in a way that may be exploited are

iterative constructs, mapping constructs and recursion. The parallelism available from sequences

and iterative constructs is much the same as the parallelism that has been exploited in numerical

processing [39]. The flow of control in Lisp, as has already been mentioned, is generally more

complex than that in numerical programs, complicating the compile time analysis. Mapping

functions, on the other hand. are easily parallelized. Since a mapping construct applies the

function passed to it to every element of a list, it can be modeled after the a construct in

Connection ~achine Lisp.

21

Recursion in the simplest case reduces to iteration (tail recursion) and the same comments that

were made above apply. Notice also that in the general case the structure of recursion is very

similar to that of iteration. There is the body of the recursion and the recursion step. just as in

iteration there is the body of the iteration and the iteration step. This similarity is taken

advantage of by some compilers [26]. Recursion is also frequently used in the same way as the

mapping constructs to apply a function to a sequence. What distinguishes recursion is that it

may also be applied to more complex data sttuctures. such as tree structured data. In traversing

these more complex data structures, the parallelism available is often dependent on the actual

structure of the data. For example. much more parallelism is available in a balanced rather than

an unbalanced tree [21]. This type of parallelism is generally exploited as control rather than

data parallelism, but there is no reason that this must be so. The only thing that is necessary to

enable a data point of view is the distribution of the tree structured data to a set of processors in

such a way that its previous structure may be inferred. Such distribution of tree structures may,

in fact, be accomplished through the use of nested xappings in Connection Machine Lisp.

Finally. there are some problems that are recursive in nature and do not lend themselves to any

iterative or parallel solution; the Tower of Hanoi is the classic example (although an iterative

solution does exist it is much less "natural").

By examining Lisp itself. we have seen exactly where the opponunities for parallelism are and

we can judge the extent to which each of the languages studied is successful in allowing its

expression. One thing that is immediately clear is that none of the languages allows for the

expression of control and data parallelism within a single coherent model of parallel execution.

It is quite possible that no single such model exists, but it should be the goal of future effons to

provide at least for the convenient expression of both fonns of parallelism within a single

language.

22

4. Parallelism in Object-Oriented Programming Languages

4.1. Introduction

A number of definitions have been given for Object-Oriented programming. Rather than

attempting yet another, we set forth the minimal characteristics that an Object-Oriented

programming language must exhibit in order to be true to its name. The primary characteristic of

an Object-Oriented programming language is that of encapsulation or information hiding. An

object provides a framework by which the programmer may keep certain pans of his

implementation private, presenting only a certain interface to the user. Yet there are a number of

languages that provide such information hiding, but cannot be considered true Object-Oriented

programming languages. Examples of such languages are Ada [29], Modula [69], and CLU [45].

In order to properly be considered an Object-Oriented programming language a language must

have two additional characteristics besides information hiding. The first such property is the

ability to share pans of the implementation of one object with another. This is most frequently

implemented as some fonn of inheritance. It is important to note that inheritance is by no means

the only way to implement such sharing, but is the most commonly used method in current

Object-Oriented programming languages. Other methods are mentioned later in the text. The

final characteristic is the polymorphism of functions. Functional polymorphism means that a

function' s invocation is detennined by the type or types of its arguments not only by its name.

This polymorphism is usually implemented within a message passing framework, but as with

inheritance, this is not essential. In some languages, such as Ada [29], it is implemented as

operator overloading.

To make these characteristics more concrete let us examine the fonn they take in two specific,

but very different, Object-Oriented programming languages: Smalltalk and Actors.

Smalltalk [23] is the language that for many is the representative Object-Oriented programming

language. This is not without foundation since Smalltalk is one of the earliest and most

sustained effons at implementing and popularizing the Object-Oriented approach. In Smalltalk

all objects are instances or instantiations of some abstraction or class. A class is a specification

of the local storage and the behavior of the objects that are its members. The behavior of the

23

members of the class is defined by the the class' methods (procedures). Methods may be

declared to be either private to the instances of the class or public and therefore accessible by

objects outside the class. The public methods of a class present the external view of an object to

the rest of the world. The private methods hide the internal workings of the object. In Smalltalk,

classes are structured into class hierarchies and one class may be defmed as a subclass of

another. By default a subclass inherits all the attributes of its parent. If the subclass does not

wish to inherit a particular attribute, as is, from its parent it may explicitly redefme that attribute.

In Smalltalk everything is an object, including the classes themselves, which are instances of

their meta-class. All meta-classes are instances of the special class meta-class which ends this

recursion. If a message is sent to an object and that object's class has no method that implements

the message, the message is looked up in object's parent class to see if the message is

implemented there. This passing on of messages is continued until the top of the inheritance

chain is reached. Since every class is defined to be a subclass of the predeftned class Object, all

unresolved messages will end up there, where they are either handled or an error is signaled.

The class Object thus serves as the location for all default system methods such as printing and

error handling.

Although the base defmition of Smalltalk does not allow multiple inheritance (the inheritance of

attributes from more than one parent class) [10] most Smalltalk systems implement some fonn of

multiple inheritance. These schemes differ mainly in the way conflicts are resolved. A conflict

arises when more than one parent defines the same attribute or method. Typical schemes for

resolving such conflicts are to place some ordering on the inheritance lattice and to resolve the

conflict on the basis of that ordering. Other techniques combine the attributes in some way

specified either by the system or the user. Still others merely signal the conflict and leave its

resolution up to the user [9, 521 .

In contrast to Smalltalk, we examine the Actor [2, 40, 42, 66] model of Object-Oriented

programming. In the Actor formalism there is no class-instance hierarchy. Uniformity is

maintained by viewing everything as an actor. Sharing is implemented by viewing actors as

"prototypes". For example the actor represcnting a bicycle may serve as a prototype for a

unicycle except that the number of wheels attribute (acquaintance, see below) would be changed.

24

Actors maintain their local state by naming a set of acquaintance actors: other actors of which

they are composed. An actor also has a script (list of methods) which defmes its behavior in

response to messages. An actor may pass a message on to another actor at will. This allows for

dynamic sharing as opposed to the static sharing provided by inheritance. When a message is

sent. no reply is expected. Rather, a continuation (as implemented in [59]) may be sent along as

part of the message if a reply is desired. The actor sending the message does not wait for a reply,

but rather continues its computation. It is the responsibility of the receiver to return a response

to the continuation if a response is required. As we will discuss in more depth later, these are

very different semantics from the usual procedure-return semantics seen in traditional languages

and closely modeled by the message passing semantics of Smalltalk.

4.2. Encapsulation, Sharing, and Polymorphism

As we have just seen, the model of computation presented by Smalltalk and Actors is quite

different. Yet both may be considered true Object-Oriented programming languages as they

both possess the characteristics of encapsulation, sharing and functional polymorphism. A large

number of other Object-Oriented programming languages have also been designed

[8,9,31,32,52,54,56,55,70,71]. It is interesting to examine how they vary along these three

defining dimensions.

Sharing is the dimension along which the greatest variance is seen. Some languages provide a

static inheritance lattice while others provide for a more dynamic form of sharing [42]. The way

in which conflicts are resolved also varies widely among languages, ranging from complex

automatic resolution schemes to those in which the user must resolve all conflicts himself. The

degree of encapsulation also varies a great deal mainly in the method used to implement sharing.

In an inheritance-based system. for example. the means by which a subclass inherits from its

parent class can have a major effect on the encapsulation and therefore on the modifiability of

the system. Systems that permit direct access to inherited instance variables, or to the local

storage of a parent object. tie subclasses to the implementations of their super classes. By

pennitting such access only through message passing. a system is not only more consistent. but

provides encapsulation between sulr and su~-classes [42. 56].

25

Functional polymorphism in message passing is usually implemented based only on the type of

the object to which the message is passed. It is also possible to make the function determination

based on the types of any or all of the arguments. This scheme closely resembles generic

function calls, but differs in that the code describing a function is distributed as a set of methods,

rather than being centralized in a single generic function which dispatches on type [9, 51].

Although this effect can be easily simulated in languages providing only dispatching on the first

argument by embedding the rest of the dispatches within additional methods [30] there are

advantages to making it a pan of the language definition, as in New Flavors [52] and

CommonLoops [9].

Another factor which affects the polymorphism of the language is the degree to which it is type

checked at compile time. One fmds Object-Oriented programming languages occupying most

points along the type checking dimension. They range from Smalltalk. which is not checked at

compile time, to a number of strictly type checked languages [54, 63] and languages which

allow, but do not require. the user to provide type information (this group includes all of the

Common Lisp based languages) [9,52.55] as well as other mixed schemes [51]. Although,

these features of an Object-Oriented language do not have a direct effect on the amount of

parallelism exhibited at the language level. which we examine next. they do play an important

role in the parallelism at the implementation level.

4.3. Parallelism

The founh dimension along which Object-Oriented languages vary is the way they deal with

concurrent computation. Again. as with the characteristics discussed above, a number of points

along this dimension are occupied. There are systems which allow for no parallelism within

their model, systems that provide only the most primitive facilities. and those in which

parallelism is an integral pan of their specification. Srnalltalk, for example, provides two classes

- the process and the semaphore - which allow the programmer to express parallelism at the most

basic level. Unlike the Actor model described above, all message passing in Smalltalk follows

the procedure return model where the object that initiates the message waits for a reply.

Smalltal.lc provides no special parallel conso:ucts and its basic execution mcxiel is sequential.

26

Thus Smalltalk provides a significant contrast to Actors where all message passing 1S

asynchronous, and a number of powerful parallel consnucts are provided.

The Object-Oriented approach would at fIrst seem to lend itself very naturally to the expression

of parallelism. Objects being well encapsulated and communicating only through some form of

message passing would seem to be easily modeled as units of computation. Two models are

possible. In the fIrst objects are passive as they are in current sequential systems and only "wake

up" when they are sent a message. In the second an object may be associated with a process or a

number of processes which are always active. Hence an object is always involved in some

computation from which it must be distracted when it receives a message. The problems caused

by concurrency in both these models are largely the same, however. The difficulties come, as

with all parallel models, in maintaining consistency while handling multiple simultaneous

messages.

An obvious solution is to provide each object with a queue and process messages from it in a

FIFO manner. This simple approach gives an object much the same semantics as a monitor

[12] and has the drawback that it may significantly limit the amount of parallelism. A more

flexible approach is to provide some type of priority system so that messages of higher priority

may interrupt lower priority messages. A third approach is for all incoming messages to suspend

the current computation as long as it is not protected by a critical section. More complex mixes

of these traditional strategies are possible as well, as we will see below. Early distributed object

systems were based on little more than the concept of the remote procedure call [65]. More

recent systems are significantly more sophisticated. both in the number and types of their parallel

features. It should also be noted here that we have chosen to deal with the question of

parallelism in Object-Oriented languages on a rather high level. There is ample opportunity for

the exploitation of parallelism in Object-Oriented languages on lower levels as well, for

example, such things as method lookup and instance variable access, but this lower level form of

parallelism is not discussed funher here.

Parallelism is implicit in the Actor model. All requests are executed in parallel except in the

case when an actor is explicitly' specified as being a serializer. A serializer behaves like a

27

regular actor except that it handles its messages in a FIFO fashion and stores messages on a

queue while they are waiting to be processed. In addition. all actors (including serializers)

assume no explicit ordering in the arrival of messages. This cenainly increases the available

parallelism. but may place a large conceptual overhead on the programmer or force him to

include ordering information in his messages. Finally. as we have already seen. actors pass

continuations rather than providing the usual call-return semantics to message passing. If a

return value is needed it must be explicitly returned to the continuation by the receiver of a

message.

Emerald [8]. which evolved out of Eden [3], is a strongly typed language which allows its

objects to be always active by having their own subprocesses. Protection of internal state is

accomplished by means of monitors, and objects have two additional parallel properties:

mutability and location. Objects that are immutable may be duplicated freely around the system.

The location of an object is provided so the user may explicitly fix object locations or perform

relocation for efficiency reasons. Finally, the compiler assigns to each object one of three types

that vary in their semantics and efficiency. Global objects may be moved freely around the

system. They are accessed via a location table and forwarding pointers. Local objects are objects

that are always local to other objects and move with them. They are heap allocated. Direct

objects are generally like Local objects, but may be allocated directly along with their enclosing

object at compile time. These are generally built in types and record structures whose storage

may be deduced at compile time. Eden also provides a call-by-move primitive. This retains the

usual call-by-reference semantics, and adds the additional semantics that the parameter objects

are relocated to the same site as the object on which the method is called. The effectiveness of

this type of location optimization is not yet known and is probably very system dependent.

In the language ABCUI [71] the seiter construct allows arbitrary guards [44] or constraints to be

placed on sections of code involved in the receiving of messages, and messages are kept in a

queue until these guards are satisfied The queue discipline is FIFO, but all messages are first

checked against the guards and executed if a match is found. The messages in the queue are then

rechecked against the guards in a FIFO manner. This technique allows a message somewhere in

the middle of the queue to be chosen for execution. ABCUI also provides a priority scheme

28

based on two modes of messages: ordinary and express. Express mode messages may interrupt

ordinary mode messages unless they are in a critical section as described below. In addition

there are 3 types of message passing: past type message passing where the sender continues

without waiting for a response, now type message passing which has the usual call-return

semantics, andfuture [19] message passing in which the sender continues without waiting for a

return value, but the return value may be accessed later through a special variable or future. The

concept of the future is discussed further below. ABCl.Jl also provides critical sections through

its atomic construct which causes the enclosed region to be uninterruptable.

In the Yokote and Tokoro paper on Concwrent Smalltalk [70], they identify four ways of

increasing the parallelism of traditional message passing semantics:

1. to let the receiver object continue execution after it returns a reply

2. to initiate many message sends at one time and wait for all the reply messages

3. to send a message and proceed with its execution without waiting for a reply
message

4. to send many messages at one time without waiting for a reply

In Concurrent Smalltalk they have chosen to use meth<Xis 1 and 3 after flnding that using

methods 1 and 2 provided only limited concurrency in an earlier version of the language. A

construct known as a Cbox is also introduced that may be coupled with the third mode of

message passing to implement afuture. The founh form of message passing allows a method to

continue execution after sending a reply. Two types of objects are provided by Concurrent

Smalltalk as well. Normal objects have the same LIFO behavior as Smalltalk objects: a new

context being created every time a message is received. This type of object is provided for

compatibility with Smalltalk. The other type of object provided by Concurrent Smalltalk is the

Atomic object. Atomic objects are implemented using FIFO queues in the same way as the

objects in ABCl./l.

Recently. a number of mixed formalism Object-Logic languages have been deflned [32]. In

these languages consistent variable instantiation under unification is generally used to provide

synchronization. The language Oil [4] being designed in conjunction with the FAIM-l computer

borrows some notions from dataflow prognimming as well. In Oil an object has a number of

29

pons rather than methcxis and these ports may be grouped together into entries. An entry may

only fIre when all its pons have messages pending. The execution of an entry is called a

behavior and is atomic and mutually exclusive. Objects may alter their behavior by closing

down certain ports. An object may be given either a procedural or a logical behavior.

Procedural objects are written in a Lisp-like language and logical objects in a declarative Prolog

like language. Finally, Oil allows the programmer to add pragmas to his ccxie to assert the

probability that a certain branch will be taken, estimate the size of dynamic data structures, and

provide hints about allocation decisions. These pragmas are intended to help the compiler make

intelligent allocation decisions for the various objects. Orient841K [31] is another Object-Logic

based language that provides much the same synchronous and asynchronous message passing as

Concurrent Smalltalk. Additional Or-wait and And-wait constructs are provided for

synchronization allowing the programmer to choose between waiting for the fIrst reply or all the

replies to a group of concurrent requests. Orient84/K also provides a standard priority scheme

which may be used to define critical sections (by giving them the highest priority). It also

provides mutual exclusion by allowing the activation and deactivation of methcxis and access

control to methcxis through a permission mechanism.

Several Object-Oriented languages provide additional constructs to the user in order to increase

the potential parallelism and simplify its use. The concept of a fUruu is commonly used to

increase potential parallelism. Instead of a message to another object returning a value, it returns

a special object known as a future which represents the promise to compute the actual value

needed. The message sender or client may then continue its computation carrying along the

future instead of the actual value. and if resources are available, the value or the future may be

computed in parallel If all goes well. the value will be computed by the time the on-going

computation actually needs iL If the on-going computation needs the value before it has been

computed. it will be necessary to suspend the computation and wait for the value. Once the

value is calculated the future is generally replaced with the actual value transparently by the

system.

Additional constructs may be built upon that of the future. For example, in ACfl [41] a race

construct is a list forming construct that returns the results of its arguments in the list in the time

30

order in which their values are computed. This construct in turn is then used to implement a

parallel or which returns as soon as one of its arguments returns a positive truth value. In the

Actor language it is interesting to note that there is no explicit method for halting a computation.

A computation is garbage collected when it is determined that the value it is computing is no

longer required. It is not yet known what effects on efficiency and resource utilization this will

have. but its benefits to the programmer are probably much the same as those of garbage

collecting storage. In Oil there is the addition of a parallel condition statement whose semantics

are that the first temporally satisfied condition is chosen for execution. A recent Object-Oriented

language. MELD [33, 34, 35] which is based on some ideas developed for constraint languages

[10, 11,60) and specification languages [13], introduces the notion of programming with

constraints as opposed to statements. A constraint comes with an implicit assertion about the

system which must be true in order for the constraint to be satisfied. Thus the computation

performed by the constraint is exactly that computation necessary to maintain the truth of the

assertion. There is no explicit ordering between the constraints of a system; they are ordered

only by their implicit data dependencies. This allows for maximal amounts of parallelism in the

execution of these constraints; however, it is not yet known if an efficient implementation can be

achieved.

~.4. Discussion

As we have seen, despite the fact that a community of concurrently processing objects

interacting through message passing appears to be a natural environment for the exploitation of

parallelism. major unresolved difficulties remain. These difficulties center around how an object

can receive multiple simultaneous messages and process those messages without compromising

its internal sta~ while still maintaining maximal concurrency. A number of the approaches,

discussed above, are being implemented. but it is too early to give any concrete evidence for the

success of any of these methods.

Since it is hoped that a collection of objects will provide a way of modeling the real world and

make some kind of joint progress against its entropy. it seems reasonable to propose a model of

communication based on a real system that demonstrates such behavior. A corporate entity

31

(more commonly known as a company) might serve as such a model. Let us briefly explore the:

types of interactions found in a typical (hopefully successful) company and see how they may be

used as a model for an Object-Oriented programming language.

We are not interested in the hierarchical structure of the company. but rather the modes of

communication embedded in it. We use the term workers here for all objects both animate and

inanimate that perform tasks in this corporate setting. So. for example. both the CEO of the

company and its timeclock are considered workers. Certain workers have changeable internal

state. Others may nOL Those that do not may be freely replicated and may handle multiple

simultaneous messages as is done in the Actor model. It is. therefore, those with changeable

state that concern us here. Let us take a typical worker. He is generally busy with some task.

He may be interrupted from that task by a boss or a subordinate or someone on the same level.

In the case of a boss, he is out of luck and must stop whatever he is doing and listen to the boss's

request. In the case of the subordinate, he has the option of listening to the request then and

there or telling the subordinate to wait. In the final case of someone on the same level he can

either listen to the request or tell the person to come back later. If the worker is working on

something very important, he might put up a "do not disturb" sign on his door that would prevent

workers of a lower level or the same level from interrupting him at all. Finally, if more complex

protocols are necessary, a worker may delegate to a secretary or receptionist the responsibility of

handling his interactions for him. When a worj(er is interrupted by a peer or a subordinate he

should have control over the interruption. He should be able to decide if the interruption is

sufficiently important for him to stop what he was doing and deal with the interruption or to put

off the interruption to some other time. The concept of a meeting is also very useful. It is

efficient for a worker to be able to call together a group of subordinates or peers and give them

orders all at one time (a broadcast). A number of the ideas presented above necessitate some

form of negotiation between the objects. Negotiation in this setting and some ideas similar to the

ones above are currently under investigation by Carl Hewitt and his group at MIT [27].

It would seem that this model offers reasonably complete and natural semantics in a message

passing environment. Some of these modes of interaction are already encompassed in the

languages we have examined; others are not. In addition, higher level language constructs such

32

as the future, parallel conditionals. parallel OR, parallel AND, FOR ALL. and others perhaps nO[

yet known are necessary to aid the programmer in the expression of parallelism within the

Object-Oriented environment. It should be the goal of current parallel language designers to

attempt to provide both a complete and convenient set of these constructs. The model of

communication given above should provide a basis for this search.

5. Conclusion

Having examined the types of parallel constructs that have been added to three very different

programming formalisms, it is fair to say that one is struck more by their similarity than by their

differences. The notions of futures, eager evaluation, foraUs, reduction operators, and distributed

data structures reappear in slightly different forms in both Functional and Lisp languages. This

is not that surprising since Lisp is a derivative of pure Lisp which was defined as a functional

language [48]. This is less true for Object-Oriented languages where the main parallel construct

seen is the future, and the remainder of most parallel implementations has to do with controlling

parallelism and the safe access to objects.

What is perhaps the most startling result of this study is that there does not, in fact, appear to be a

large and diverse set of parallel constructs. but rather a relatively small and well defmed set.

Whether this set is complete is not at all clear. but it does seem to represent a set of parallel

constructs that programmers fInd natural for expressing parallelism. Whether other or better

parallel constructs exist remains an open question. What is clear, is that a well chosen set of

parallel constructs can greatly increase the amount of parallelism that can be extracted from a

program and can significantly improve its ease of expression.

A consistent set of constructs that allow the expression of both control and data parallelism

should be the current goal of the parallel language designer.

33

References

[1] Abelson, H., Sussman, G. J.
Structure and Interpretation o/Computer Programs.
N1IT Press, Cambridge, Mass., 1985.

[2] Agha. G.
An Overview of Actor Languages.
In SIGPLAN Notices, pages 58-67. ACM, October, 1986.

[3] Almes, G. T., Black, A. P., Lazowska. E.D., Noe, J. D.
The Eden System: A technical Review.
IEEE Transactions on Software Engineering SE-ll(1):43-59, January, 1985.

(4] Anderson, J. M., Davis, A. L., Hon, R. W., Robinson, I. N., Robison, S. V., Stevens,
K.S.
The Architecture of the F AIM-I.
CompUJer 20(1):55-66, January, 1987.

[5] Ashcroft, E.A.
Ferds -- Massive Parallelism in Lucid.
In Phoenix Conference on CompUJation and Communication. ACM, Phoenix, AZ,

March, 1985.

[6] Backus, J.
Can Programmming Languages be Liberated from the von Neuman style?
Communications Of The ACM 21:613-641, August. 1978.

[7] Baden, Scott.
Berkeley FP User s Manual
4.1 edition, University of Calif at Berkeley, Berkeley, CA, 1984.

(8] Black, A., Hutchinson, N., Jul, E., Levy, H. .
Object Structure in the Emerald System.
In ACM Conference on Object-Oriented Programming Systems. ACM, Ponland,

Oregon, October. 1986.

[9] Bobrow, D. et al.
CommonLoops:Merging Lisp and Object Oriented Programming.
In Meyrowitz. Norman (editor), OOPSLA'86. pages 17-29. ACM, Ponland, Oregon,

September. 1986.

[10 1 Borning. Alan.
The Programming Language Aspects of ThingLab. a Constraint-Oriented Simulation

Laboratory .
ACM Tran.sacrion.s 011 Programming Languages aM Systems 3(4):353-387. October,

1981.

[11] Borning, Alan.
Constraints aM Functional Programming.
Technical Repon 85-09-05, University of Washington, Seattle, Wash, September, 1985.

34

[12] Brinch Hansen, P.
Operating Sysrem Principles.
Prentice-Hall, Englewood Cliffs, N.J., 1973.

[13] Burstall, R. M., Goguen, J. A.
Putting Theories Together to Make Specifications.
In 5th International Joint Conference on Ani/iciallnrelligence. ACM, Cambridge, MA,

1077.

[14] Burstall, R.M., MacQueen, D.B., Sannella. D.T.
HOPE: An Experimental Applicative Language.
In Conference Record ofrhe 1980 Usp Conference, pages 136-143. ACM, Palo Alto,

CA, August, 1980.

[15] Cardelli, Luca
ML under Unix
Bell Laboratories, Murray Hill, NJ, 1983.

[16] Celoni, J.R. and Hennessy J.L.
SAL: A Single-Assignmenr Language.
Technical Repon, Stanford University, Stanford, CA, Septembe, 1983.

[17] Church, A.
A Calculi of Lambda Conversion.
Princeton University Press, Princeton. NJ, 1941.

[18] AynnM.J.
Some Computer Organizations and Their Effectiveness.
The InstilUle of ElecTrical and Electronic Engineers Transactions on Compurers v-21,

September, 1972.

[19] Friedman, D., Wise, D.
CONS should not evaluate its arguments.
In Michaelson, S., Milner, R. (editors), Automara, Languages and Programming, pages

257-284. Edinburgh University Press, Edinburgh, 1976.

[20] Friedman, D. P.
Aspects of Applicative Programming for Parallel Processing.
IEEE TrallSacriollS on CompWeTS c-27(4):289-296, April. 1978.

[21 J Gabriel, R. P., McCarthy. J.
Queue-based Multi-processing Lisp.
In Symposium on Lisp and Function Programming, pages 25-44. ACM, Pittsburgh, PA,

August. 1984.

[22] Gelernter. D .• Jagannathan, S., London, .T, .
Environments as First Class Objects.
In Proceedings of rhe ACM Symposium onrhe Principles of Programming Languages.

ACM. Jan, 1987.

[23] Goldberg, A., Robson, D.
Smalltalk-80.
Addison-Wesley, Reading, Mass., 19~3.

35

[24] Halstread, R. H.
Implementation of Multilisp: Lisp on a Multiprocessor.
In Symposium on Lisp and Function Programming, pages 9-18. ACM, Pittsburgh, PA,

August, 1984.

[25] Halstead, R. H.
Multilisp: A Language for Concurrent Symbolic Computation.
ACM Transactions on Programming Languages and Systems 7(4):501-538, October,

1985.

[26] Harrison, W. L.
Compiling Lisp for Evaluation on a Tightly Coupled Multiprocessor.
PhD thesis, University of Illinois, 1986.

[27] Hewitt, Carl.
Personal Communication.
1987

[28] Hudak, Paul.
Para-Functional Programming.
Technical Report. Yale University, New Haven, CT, April, 1986.

[29] Ichbiah et al.
Ada Programming Lnaguage Reference.
Technical Repon MIL-SID-I8IS, Department of Defense, December, 1980.

[30] Ingalls, Daniel.
A Simple Technique for Handling Multiple Polymorphism.
In Meyrowitz, Norman (editor), OOPSLA' 86, pages 347-349. ACM, Ponland, Oregon,

September, 1986.

[31] Ishiwkawa. Y., Tokoro, M.
A Concurrent Object-Oriented Knowledge Representation Language.
In Meyrowitz, Norman (editor), OOPSLA' 86, pages 232-241. ACM, Ponland, Oregon,

September, 1986.

[32] Kahn, K., Tribble, E., Miller, M.,
A Concurrent Object-Oriented Knowledge Representation Language.
In Meyrowitz, Norman (editor), OOPSLA'86, pages 232-241. ACM, Ponland, Oregon,

September, 1986.

[33] Kaiser, G. a, Garlan. D.
MELDing Data Aow and Object-Oriented Programming.
In OOPSLA '87 Proceedings, pages 254-267. ACM. Orlando, FL. October, 1987.

[34] Kaiser, G. a, Feiler, P. H.
An Architecture for Intelligent Assistance in Software Development.
In Proceedings oftM Ninth International Conference on Software Engineering, pages

180-188. IEEE, Monterey, CA, March, 1987.

36

[35] Kaiser, G. E., Garlan, D.
MELD: A Declarative Language for Writing Methods.
In 6th Annual Phoenix Conference on Computers and Communications. 6th Annual

Phoenix Conference on Computers and Communications, Scottsdale, AZ, Febuary,
1987.

[36] Katz, M. J.
A Transparent Transaction Based Runtime Mechanismfor the Parallel Execution of

Scheme.
PhD thesis, MIT, May, 1986.
Master Thesis.

[37] Keller, R.
Rediflow Multiprocessing.
In IEEE COMPCON, pages 410-417. IEEE Compeon, Feb, 1984.

[38] Knight, Tom.
An Architecture for Mostly Functional Languages.
In Conference on Lisp and Functional Programming, pages 105-112. ACM, Cambridge,

Mass., August. 1986.

[39] Kuck, D., Muraoka, Y., Chen, S.
On the number of operations executable simultaneously in Fortran like programs and

their resulting speedup.
IEEE Transactions on Computing C-21(2):1293-131O, December, 1972.

[40] Liberman, Henry.
A Preview of Act 1.
Technical Repon 625, MIT, June, 1981.

[41] Liberman, Henry.
Thinking AboUl Lots Of Things At Once WirhoUl Getting Confused.
Technical Repon 626, MIT, May, 1981.

[42] Liberman, Henry.
Using Prototypical Objects to Implement Shared Behavior in Object-Oriented Systems.
In Meyrowitz, Norman (editor), OOPSLA'86, pages 214-223. ACM, Ponland, Oregon,

September, 1986.

[43] Lindstrom, Gary.
Functional Programming and the Logical Variable.
In 12th ACM Symp. 011 Principles of Programming Languages, pages 266-280. ACM,

New Orleans, LA, January, 1985.

[-+4] Liskcov, B.
Overvi~ of tM Argw Language System.
Programming Methodology Group 40, Massachusetts Institute Technology for Computer

Science, Febuary, 1984.

[-+5] Liskov, B., Snyder. A., Atkinson, R., Schaffert. C.
Abstraction Mechanisms in CLU.
Communications of tM ACM 20(8):564-576, August, 1977.

37

[46] Maguire, G. Q., Jr.
A Graphical Workstation and Programming Environment/or Data Driven Computation.
PhD thesis, University of Utah, March, 1983.

[47] Marti, J., Fitch, J.
The Bath Concurrent Lisp Machine.
In EUROCAM '83, pages 78-90. EUROCAM, Springer Verlag, New York, N.Y., 1983.

[48] McCarthy, 1.
Recursive Functions of Symbolic Expressions.
Communications o/the ACM 3(4):184-195, April, 1960.

[49] McGraw,1.R.
The VAL Language: Description and Analysis.
ACM Transactions on Programming Languages and Systems 4(1):44-82, January, 1982.

[50] McGraw, James.
SISAL - Streams and Iteration in a Single Assignment Language
1.1 edition, Lawrence Livermore National Laboratory, Davis, CA, 1983.

[51] Meyer, Bertrand.
Genericity vs Inheritance.
In Meyrowitz, Norman (editor), OOPSLA' 86, pages 391-405. ACM, Portland, Oregon,

September, 1986.

[52] Moon, David.
Object-Oriented Programming with Flavors.
In Meyrowitz, Norman (editor), OOPSLA' 86, pages 1-8. ACM, ACM, Portland, Oregon,

September, 1986.

[53] Richards, H.
An Overview of ARC SASL.
SIGPlAN Notices 19(10):40-45, October, 1984.

[54] Schaffert. C. et al.
An Introduction to Trellis/Owl.
In Meyrowitz, Norman (editor), OOPSU' 86, pages 9-16. ACM, ACM, Portland,

Oregon, September, 1986.

[55] Snyder, Alan.
CornmonObjects: An Overview.
In SIGPUN Notices. pages 19-28. ACM, October, 1986.

[56] Snyder. Alan.
Encapsulation and Inheritance in Object Oriented Programming Languages.
In Meyrowitz. Norman (editor), OOPSLA' 86, pages 38-45. ACM, Portland, Oregon,

September, 1986.

[57] Sridharan,N.S.
Semi-App/icative Programming: £Xlll71plAs of Context Free Recognizers.
Technical Repon 6135, BBN Laboratories, Cambridge, MA, January, 1986.

38

[58] Steele, G. L., Hillis W. D.
Connection Machine Lisp.
In Conference on Lisp and Functional Programming, pages 279-297. AC~, Cambridge,

Mass., 1986.

[59] Steele, G., Sussman, G.
Revised Repon on Scheme.
Technical Report 472. MIT. 1978.

[60] Steele. G.L.
The Definition and Implementation of A Computer Programming Language Based on

Constraints.
PhD thesis, Massachusetts Institute Technology, August. 1980.

[61] Guy L. Steele.
Common Lisp: The Language.
Digital Press, Burlington, M.A., 1984.

[62] Steinberg, S. A .• et al.
The Butterfly Lisp System.
In AAA/-86 , pages 730-734. AAAl, Philadelphia. PA, August. 1986.

[63] Stroustrup, B.
An Overview of C++.
In SIGPLAN Notices, pages 7-18. ACM. October, 1986.

[64] Sugimoto, S., Agu~ K.. Ohno, Y.
A Multi-Microprocessor System for Concurrent USP.
In International Conference on Parallel Processing, pages 135-143. IEEE, June, 1983.

[65] Teitelman. W.
A Tour through CEDAR.
In Proceeding of tM 7th International Conference on Software Engineering. ACM,

Orlando, FL. March. 1984.

[66] Theriault, Daniel.
Issues in tM Design and ImplelUntarion of Act2.
PhD thesis. MIT, June, 1983.
Tech Report 728.

[67] Turner, D. A.
The Semantic Elegance of Applicative Languages.
In FunctioNJJ Programming Languages and Compuzer Architectures, pages 85-92.

ACM. Portsmouth. NH. 1981.

[68] Vegdahl. S. R.
A Survey of Proposed Architectures for the Execution of Functional Languges.
IEEE Transactions on CompUZeTS c-33(12): 1050-1071, December, 1984.

[69] Wirth. Niklaus.
Programming in ModuJa-2.
Springer-Verlag, New York, N.Y., 1983.

39

(70] Yokote, Y., Tokora, M.
The Design and Implementation of Concurrent Smalltalk.
In Meyrowitz, Norman (editor), OOPSU'86, pages 331-340. ACM, Portland, Oregon,

September, 1986.

[71] Yonezawa. Akinori, Briot, Jean-Pierre, Shibayama, Etsuya.
Object-Oriented Concurrent Programming in ABCUl.
In Meyrowitz, Norman (editor), OOPSLA' 86, pages 258-268. ACM, Portland. Oregon.

September, 1986.

