374 research outputs found

    Multi-Level Visual Alphabets

    Get PDF
    A central debate in visual perception theory is the argument for indirect versus direct perception; i.e., the use of intermediate, abstract, and hierarchical representations versus direct semantic interpretation of images through interaction with the outside world. We present a content-based representation that combines both approaches. The previously developed Visual Alphabet method is extended with a hierarchy of representations, each level feeding into the next one, but based on features that are not abstract but directly relevant to the task at hand. Explorative benchmark experiments are carried out on face images to investigate and explain the impact of the key parameters such as pattern size, number of prototypes, and distance measures used. Results show that adding an additional middle layer improves results, by encoding the spatial co-occurrence of lower-level pattern prototypes

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Look Further to Recognize Better: Learning Shared Topics and Category-Specific Dictionaries for Open-Ended 3D Object Recognition

    Get PDF
    Service robots are expected to operate effectively in human-centric environments for long periods of time. In such realistic scenarios, fine-grained object categorization is as important as basic-level object categorization. We tackle this problem by proposing an open-ended object recognition approach which concurrently learns both the object categories and the local features for encoding objects. In this work, each object is represented using a set of general latent visual topics and category-specific dictionaries. The general topics encode the common patterns of all categories, while the category-specific dictionary describes the content of each category in details. The proposed approach discovers both sets of general and specific representations in an unsupervised fashion and updates them incrementally using new object views. Experimental resultsshow that our approach yields significant improvements over the previous state-of-the-art approaches concerning scalability and object classification performance. Moreover, our approach demonstrates the capability of learning from very few training examples in a real-world setting. Regarding computation time, the best result was obtained with a Bag-of-Words method closely followed by a variant of the Latent Dirichlet Allocation approach

    CNN Features off-the-shelf: an Astounding Baseline for Recognition

    Full text link
    Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful. This paper adds to the mounting evidence that this is indeed the case. We report on a series of experiments conducted for different recognition tasks using the publicly available code and model of the \overfeat network which was trained to perform object classification on ILSVRC13. We use features extracted from the \overfeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the \overfeat network was trained to solve. Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets. For instance retrieval it consistently outperforms low memory footprint methods except for sculptures dataset. The results are achieved using a linear SVM classifier (or L2L2 distance in case of retrieval) applied to a feature representation of size 4096 extracted from a layer in the net. The representations are further modified using simple augmentation techniques e.g. jittering. The results strongly suggest that features obtained from deep learning with convolutional nets should be the primary candidate in most visual recognition tasks.Comment: version 3 revisions: 1)Added results using feature processing and data augmentation 2)Referring to most recent efforts of using CNN for different visual recognition tasks 3) updated text/captio

    Semantic-enriched visual vocabulary construction in a weakly supervised context

    Full text link
    © 2015 - IOS Press and the authors. All rights reserved. One of the prevalent learning tasks involving images is content-based image classification. This is a difficult task especially because the low-level features used to digitally describe images usually capture little information about the semantics of the images. In this paper, we tackle this difficulty by enriching the semantic content of the image representation by using external knowledge. The underlying hypothesis of our work is that creating a more semantically rich representation for images would yield higher machine learning performances, without the need to modify the learning algorithms themselves. The external semantic information is presented under the form of non-positional image labels, therefore positioning our work in a weakly supervised context. Two approaches are proposed: the first one leverages the labels into the visual vocabulary construction algorithm, the result being dedicated visual vocabularies. The second approach adds a filtering phase as a pre-processing of the vocabulary construction. Known positive and known negative sets are constructed and features that are unlikely to be associated with the objects denoted by the labels are filtered. We apply our proposition to the task of content-based image classification and we show that semantically enriching the image representation yields higher classification performances than the baseline representation

    Robust Object Detection with Interleaved Categorization and Segmentation

    Get PDF
    This paper presents a novel method for detecting and localizing objects of a visual category in cluttered real-world scenes. Our approach considers object categorization and figure-ground segmentation as two interleaved processes that closely collaborate towards a common goal. As shown in our work, the tight coupling between those two processes allows them to benefit from each other and improve the combined performance. The core part of our approach is a highly flexible learned representation for object shape that can combine the information observed on different training examples in a probabilistic extension of the Generalized Hough Transform. The resulting approach can detect categorical objects in novel images and automatically infer a probabilistic segmentation from the recognition result. This segmentation is then in turn used to again improve recognition by allowing the system to focus its efforts on object pixels and to discard misleading influences from the background. Moreover, the information from where in the image a hypothesis draws its support is employed in an MDL based hypothesis verification stage to resolve ambiguities between overlapping hypotheses and factor out the effects of partial occlusion. An extensive evaluation on several large data sets shows that the proposed system is applicable to a range of different object categories, including both rigid and articulated objects. In addition, its flexible representation allows it to achieve competitive object detection performance already from training sets that are between one and two orders of magnitude smaller than those used in comparable system

    Compositional Model based Fisher Vector Coding for Image Classification

    Full text link
    Deriving from the gradient vector of a generative model of local features, Fisher vector coding (FVC) has been identified as an effective coding method for image classification. Most, if not all, FVC implementations employ the Gaussian mixture model (GMM) to depict the generation process of local features. However, the representative power of the GMM could be limited because it essentially assumes that local features can be characterized by a fixed number of feature prototypes and the number of prototypes is usually small in FVC. To handle this limitation, in this paper we break the convention which assumes that a local feature is drawn from one of few Gaussian distributions. Instead, we adopt a compositional mechanism which assumes that a local feature is drawn from a Gaussian distribution whose mean vector is composed as the linear combination of multiple key components and the combination weight is a latent random variable. In this way, we can greatly enhance the representative power of the generative model of FVC. To implement our idea, we designed two particular generative models with such a compositional mechanism.Comment: Fixed typos. 16 pages. Appearing in IEEE T. Pattern Analysis and Machine Intelligence (TPAMI
    corecore