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Abstract This paper presents a novel method for detect-
ing and localizing objects of a visual category in cluttered
real-world scenes. Our approach considers object catego-
rization and figure-ground segmentation as two interleaved
processes that closely collaborate towards a common goal.
As shown in our work, the tight coupling between those two
processes allows them to benefit from each other and im-
prove the combined performance.

The core part of our approach is a highly flexible learned
representation for object shape that can combine the infor-
mation observed on different training examples in a proba-
bilistic extension of the Generalized Hough Transform. The
resulting approach can detect categorical objects in novel
images and automatically infer a probabilistic segmentation
from the recognition result. This segmentation is then in turn
used to again improve recognition by allowing the system
to focus its efforts on object pixels and to discard mislead-
ing influences from the background. Moreover, the informa-
tion from where in the image a hypothesis draws its support
is employed in an MDL based hypothesis verification stage
to resolve ambiguities between overlapping hypotheses and
factor out the effects of partial occlusion.
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An extensive evaluation on several large data sets shows
that the proposed system is applicable to a range of differ-
ent object categories, including both rigid and articulated
objects. In addition, its flexible representation allows it to
achieve competitive object detection performance already
from training sets that are between one and two orders of
magnitude smaller than those used in comparable systems.
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1 Introduction

Object recognition has reached a level where current ap-
proaches can identify a large number of previously seen and
known objects. However, the more general task of object
categorization, that is of recognizing unseen-before objects
of a given category and assigning the correct category label,
is still less well-understood. Obviously, this task is more dif-
ficult, since it requires a method to cope with large within-
class variations of object colors, textures, and shapes, while
retaining at the same time enough specificity to avoid mis-
classifications. This is especially true for object detection in
cluttered real-world scenes, where objects are often partially
occluded and where similar-looking background structures
can act as additional distractors. Here, it is not only neces-
sary to assign the correct category label to an image, but also
to find the objects in the first place and to separate them from
the background.

Historically, this step of figure-ground segmentation has
long been seen as an important and even necessary precursor
for object recognition (Marr 1982). In this context, segmen-
tation is mostly defined as a data driven, that is bottom-up,
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process. However, except for cases where additional cues
such as motion or stereo could be used, purely bottom-up
approaches have so far been unable to yield figure-ground
segmentations of sufficient quality for object categorization.
This is also due to the fact that the notion and definition of
what constitutes an object is largely task-specific and can-
not be answered in an uninformed way. The general failure
to achieve task-independent segmentation, together with the
success of appearance-based methods to provide recognition
results without prior segmentation, has led to the separation
of the two areas and the further development of recognition
independent from segmentation. It has been argued, how-
ever, both in computer vision (Bajcsy et al. 1990) and in
human vision (Peterson 1994; Vecera and O’Reilly 1998;
Needham 2001) that recognition and segmentation are heav-
ily intertwined processes and that top-down knowledge from
object recognition can and should be used for guiding the
segmentation process.

In our work, we follow this inspiration by addressing
object detection and segmentation not as separate entities,
but as two closely collaborating processes. In particular, we
present a local-feature based approach that combines both
capabilities into a common probabilistic framework. As our
experiments will show, the use of top-down segmentation
improves the recognition results considerably.

In order to learn the appearance variability of an ob-
ject category, we first build up a codebook of local appear-
ances that are characteristic for (a particular viewpoint of)
its member objects. This is done by extracting local features
around interest points and grouping them with an agglom-
erative clustering scheme. As this initial clustering step will
be applied to large data sets, an efficient implementation is
crucial. We therefore evaluate different clustering methods
and describe an efficient algorithm that can be used for the
codebook generation process.

Based on this codebook, we then learn an Implicit Shape
Model (ISM) that specifies where on the object the code-
book entries may occur. As the name already suggests, we
do not try to define an explicit model for all possible shapes
a class object may take, but instead define “allowed” shapes
implicitly in terms of which local appearances are consis-
tent with each other. The advantages of this approach are its
greater flexibility and the smaller number of training exam-
ples it needs to see in order to learn possible object shapes.
For example, when learning to categorize articulated objects
such as cows or pedestrians, our method does not need to see
every possible articulation in the training set. It can com-
bine the information of a front leg seen on one training in-
stance with the information of a rear leg from a different
instance to recognize a test image with a novel articulation,
since both leg positions are consistent with the same object
hypothesis. This idea is similar in spirit to approaches that
represent novel objects by a combination of class prototypes

(Jones and Poggio 1996), or of familiar object views (Ull-
man 1998). However, the main difference of our approach is
that here the combination does not occur between entire ex-
emplar objects, but through the use of local image features,
which again allows a greater flexibility.

Directly connected to the recognition procedure, we de-
rive a probabilistic formulation for the top-down segmen-
tation problem, which integrates learned knowledge of the
recognized category with the supporting information in the
image. The resulting procedure yields a pixel-wise figure-
ground segmentation as a result and extension of recogni-
tion. In addition, it delivers a per-pixel confidence estimate
specifying how much this segmentation can be trusted.

The automatically computed top-down segmentation is
then in turn used to improve recognition. First, it allows
to only aggregate evidence over the object region and dis-
card influences from the background. Second, the informa-
tion from where in the image a hypothesis draws its support
makes it possible to resolve ambiguities between overlap-
ping hypotheses. We formalize this idea in a criterion based
on the Minimum Description Length (MDL) principle. The
resulting procedure constitutes a novel mechanism that al-
lows to analyze scenes containing multiple objects in a prin-
cipled manner. The whole approach is formulated in a scale-
invariant manner, making it applicable in real-world situa-
tions where the object scale is often unknown.

We experimentally evaluate the different components of
our algorithm and quantify the robustness of the resulting
approach to object detection in cluttered real-world scenes.
Our results show that the proposed scheme achieves good
detection results for both rigid and articulated object cate-
gories while being robust to large scale changes.

This paper is structured as follows. The next section dis-
cusses related work. After that, Sect. 3 introduces our un-
derlying codebook representation. The following three sec-
tions then present the main steps of the ISM approach for
recognition (Sect. 4), top-down segmentation (Sect. 5), and
segmentation-based verification (Sect. 6). Section 7 exper-
imentally evaluates the different stages of the system and
applies it to several challenging multi-scale test sets of dif-
ferent object categories, including cars, motorbikes, cows,
and pedestrians. A final discussion concludes our work.

2 Related Work

In the following, we give an overview of current approaches
to object detection and categorization, with a focus on the
structural representations they employ. In addition, we docu-
ment the recent transition from recognition to top-down seg-
mentation, which has been developing into an area of active
research.
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2.1 Structure Representations for Object Categorization

A large class of methods match object structure by com-
puting a cost term for the deformation needed to transform
a prototypical object model to correspond with the image.
Prominent examples of this approach include Deformable
Templates (Yuille et al. 1989; Sclaroff 1997), Morphable
Models (Jones and Poggio 1998), or Shape Context Match-
ing (Belongie et al. 2002). The main difference between
them lies in the way point correspondences are found and
in the choice of energy function for computing the defor-
mation cost (e.g. Euclidean distances, strain energy, thin
plate splines, etc.). Cootes et al. (1998) extend this idea and
characterize objects by means and modes of variation for
both shape and texture. Their Active Appearance Models
first warp the object to a mean shape and then estimate the
combined modes of variation of the concatenated shape and
texture models. For matching the resulting AAMs to a test
image, they learn the relationship between model parame-
ter displacements and the induced differences in the recon-
structed model image. Provided that the method is initial-
ized with a close estimate of the object’s position and size,
a good overall match to the object is typically obtained in a
few iterations, even for deformable objects.

Wiskott et al. (1997) propose a different structural model
known as Bunch Graph. The original version of this ap-
proach represents object structure as a graph of hand-defined
locations, at which local jets (multidimensional vectors of
simple filter responses) are computed. The method learns
an object model by storing, for each graph node, the set
(“bunch”) of all jet responses that have been observed in
this location on a hand-aligned training set. During recogni-
tion, only the strongest response is taken per location, and
the joint model fit is optimized by an iterative elastic graph
matching technique. This approach has achieved impressive
results for face identification tasks, but an application to
more object classes is made difficult by the need to model
a set of suitable graph locations.

In contrast to those deformable representations, most
classic object detection methods either use a monolithic ob-
ject representation (Rowley et al. 1998; Papageorgiou and
Poggio 2000; Dalal and Triggs 2005) or look for local fea-
tures in fixed configurations (Schneiderman and Kanade
2004; Viola and Jones 2004). Schneiderman and Kanade
(2004) express the likelihood of object and non-object ap-
pearance using a product of localized histograms, which
represent the joint statistics of subsets of wavelet coeffi-
cients and their position on the object. The detection deci-
sion is made by a likelihood-ratio classifier. Multiple detec-
tors, each specialized to a certain orientation of the object,
are used to achieve recognition over a variety of poses, in-
cluding frontal and profile faces and various views of pas-
senger cars. Their approach achieves very good detection re-

sults on standard databases, but is computationally still rela-
tively costly. Viola and Jones (2004) instead focus on build-
ing a speed-optimized system for face detection by learning
a cascade of simple classifiers based on Haar wavelets. In re-
cent years, this class of approaches has been shown to yield
fast and accurate object detection results under real-world
conditions (Torralba et al. 2004). However, a drawback of
these methods is that since they do not explicitly model lo-
cal variations in object structure (e.g. from body parts in dif-
ferent articulations), they typically need a large number of
training examples in order to learn the allowed changes in
global appearance.

One way to model these local variations is by represent-
ing objects as an assembly of parts. Mohan et al. (2001) use
a set of hand-defined appearance parts, but learn an SVM-
based configuration classifier for pedestrian detection. The
resulting system performs significantly better than the orig-
inal full-body person detector by (Papageorgiou and Poggio
2000). In addition, its component-based architecture makes
it more robust to partial occlusion. Heisele et al. (2001)
use a similar approach for component-based face detection.
As an extension of Mohan et al.’s approach, their method
also includes an automatic learning step for finding a set of
discriminative components from user-specified seed points.
More recently, several other part-classifier approaches have
been proposed for pedestrian detection (Ronfard et al. 2002;
Mikolajczyk et al. 2004; Wu and Nevatia 2005), also based
on manually specified parts.

Burl et al. (1998) learn the assembly of hand-selected
(appearance) object parts by modeling their joint spatial
probability distribution. Weber et al. (2000) build on the
same framework, but also learn the local parts and estimate
their joint distribution. Fergus et al. (2003) extend this ap-
proach to scale-invariant object parts and estimate their joint
spatial and appearance distribution. The resulting Constel-
lation Model has been successfully demonstrated on several
object categories. In its original form, it modeled the rel-
ative part locations by a fully connected graph. However,
the complexity of the combined estimation step restricted
this model to a relatively small number of (only 5–6) parts.
In later versions, Fergus et al. (2005) therefore replaced the
fully-connected graph by a simpler star topology, which can
handle a far larger number of parts using efficient inference
algorithms (Felzenszwalb and Huttenlocher 2005).

Agarwal et al. (2004) keep a larger number of object parts
and apply a feature-efficient classifier for learning spatial
configurations between pairs of parts. However, their learn-
ing approach relies on the repeated observation of cooccur-
rences between the same parts in similar spatial relations,
which again requires a large number of training examples.
Ullman et al. (2002) represent objects by a set of fragments
that were chosen to maximize the information content with
respect to an object class. Candidate fragments are extracted
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at different sizes and from different locations of an initial set
of training images. From this set, their approach iteratively
selects those fragments that add the maximal amount of in-
formation about the object class to the already selected set,
thus effectively resulting in a cover of the object. In addi-
tion, the approach automatically selects, for each fragment,
the optimal threshold such that it can be reliably detected.
For recognition, however, only the information which model
fragments were detected is encoded in a binary-valued fea-
ture vector (similar to Agarwal and Roth’s), onto which
a simple linear classifier is applied without any additional
shape model. The main challenge for this approach is that
the complexity of the fragment selection process restricts the
method to very low image resolutions (e.g. 14 × 21 pixels),
which limits its applicability in practice.

Robustness to scale changes is one of the most impor-
tant properties of any recognition system that shall be ap-
plied in real-world situations. Even when the camera loca-
tion is relatively fixed, objects of interest may still exhibit
scale changes of at least a factor of two, simply because
they occur at different distances to the camera. It is therefore
necessary that the recognition mechanism itself can com-
pensate for a certain degree of scale variation. Many cur-
rent object detection methods deal with the scale problem
by performing an exhaustive search over all possible ob-
ject positions and scales (Papageorgiou and Poggio 2000;
Schneiderman and Kanade 2004; Viola and Jones 2004;
Mikolajczyk et al. 2004; Dalal and Triggs 2005; Wu and
Nevatia 2005). This exhaustive search imposes severe con-
straints, both on the detector’s computational complexity
and on its discriminance, since a large number of potential
false positives need to be excluded. An opposite approach
is to let the search be guided by image structures that give
cues about the object scale. In such a system, an initial in-
terest point detector tries to find structures whose extent can
be reliably estimated under scale changes. These structures
are then combined to derive a comparatively small number
of hypotheses for object locations and scales. Only those hy-
potheses that pass an initial plausibility test need to be ex-
amined in detail. In recent years, a range of scale-invariant
interest point detectors have become available which can
be used for this purpose (Lindeberg 1998; Lowe 2004;
Mikolajczyk et al. 2005b; Kadir and Brady 2001; Tuytelaars
and van Gool 2004; Matas et al. 2002).

In our approach, we combine several of the above ideas.
Our system uses a large number of automatically selected
parts, based on the output of an interest point operator, and
combines them flexibly in a star topology. Robustness to
scale changes is achieved by employing scale-invariant in-
terest points and explicitly incorporating the scale dimen-
sion in the hypothesis search procedure. The whole ap-
proach is optimized for efficient learning and accurate de-
tection from small training sets.

2.2 From Recognition to Top-Down Segmentation

The traditional view of object recognition has been that
prior to the recognition process, an earlier stage of percep-
tual organization occurs to determine which features, loca-
tions, or surfaces most likely belong together (Marr 1982).
As a result, the segregation of the image into a figure and
a ground part has often been seen as a prerequisite for recog-
nition. In that context, segmentation is mostly defined as
a bottom-up process, employing no higher-level knowledge.
State-of-the-art segmentation methods combine grouping of
similar image regions with splitting processes concerned
with finding most likely borders (Shi and Malik 1997;
Sharon et al. 2000; Malik et al. 2001). However, grouping
is mostly done based on low-level image features, such as
color or texture statistics, which require no prior knowledge.
While that makes them universally applicable, it often leads
to poor segmentations of objects of interest, splitting them
into multiple regions or merging them with parts of the back-
ground (Borenstein and Ullman 2002).

Results from human vision indicate, however, that ob-
ject recognition processes can operate before or intertwined
with figure-ground organization and can in fact be used to
drive the process (Peterson 1994; Vecera and O’Reilly 1998;
Needham 2001). In consequence, the idea to use object-
specific information for driving figure-ground segmentation
has recently developed into an area of active research. Ap-
proaches, such as Deformable Templates (Yuille et al. 1989),
or Active Appearance Models (Cootes et al. 1998) are typi-
cally used when the object of interest is known to be present
in the image and an initial estimate of its size and loca-
tion can be obtained. Examples of successful applications
include tracking and medical image analysis.

Borenstein and Ullman (2002) represent object knowl-
edge using image fragments together with their figure-
ground labeling (as learned from a training set). Class-
specific segmentations are obtained by fitting fragments to
the image and combining them in jigsaw-puzzle fashion,
such that their figure-ground labels form a consistent map-
ping. While the authors present impressive results for seg-
menting side views of horses, their initial approach includes
no global recognition process. As only the local consistency
of adjacent pairs of fragments is checked, there is no guar-
antee that the resulting cover really corresponds to an ob-
ject and is not just caused by background clutter resem-
bling random object parts. In more recent work, the ap-
proach is extended to also combine the top-down segmen-
tation with bottom-up segmentation cues in order to obtain
higher-quality results (Borenstein et al. 2004).

Tu et al. (2003) have proposed a system that integrates
face and text detection with region-based segmentation of
the full image. However, their focus is on segmenting im-
ages into meaningful regions, not on separating objects of
interest from the background.
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Yu and Shi (2003) and Ferrari et al. (2004) both present
parallel segmentation and recognition systems. Yu and Shi
formulate the segmentation problem in a graph theoretic
framework that combines patch and pixel groupings, where
the final solution is found using the Normalized Cuts crite-
rion (Shi and Malik 1997). Ferrari et al. start from a small set
of initial matches and then employ an iterative image explo-
ration process that grows the matching region by searching
for additional correspondences and segmenting the object in
the process. Both methods achieve good segmentation re-
sults in cluttered real-world settings. However, both systems
need to know the exact objects beforehand in order to extract
their most discriminant features or search for additional cor-
respondences.

In our application, we cannot assume the objects to be
known beforehand—only familiarity with the object cate-
gory is required. This means that the system needs to have
seen some examples of the object category before, but those
do not have to be the ones that are to be recognized later. Ob-
viously, this makes the task more difficult, since we cannot
rely on any object-specific feature, but have to compensate
for large intra-class variations.

3 Codebook Representations

The first task of any local-feature based approach is to de-
termine which features in the image correspond to which
object structures. This is generally known as the correspon-
dence problem. For detecting and identifying known ob-
jects, this translates to the problem of robustly finding ex-
actly the same structures again in new images under varying
imaging conditions (Schmid and Mohr 1996; Lowe 1999;
Ferrari et al. 2004). As the ideal appearance of the model
object is known, the extracted features can be very spe-
cific. In addition, the objects considered by those approaches
are often rigid, so that the relative feature configuration
stays the same for different images. Thus, a small num-
ber of matches typically suffices to estimate the object
pose, which can then in turn be used to actively search for
new matches that consolidate the hypothesis (Lowe 1999;
Ferrari et al. 2004).

When trying to find objects of a certain category, how-
ever, the task becomes more difficult. Not only is the feature
appearance influenced by different viewing conditions, but
both the object composition (i.e. which local structures are
present on the object) and the spatial configuration of fea-
tures may also vary considerably between category mem-
bers. In general, only very few local features are present
on all category members. Hence, it is necessary to employ
a more flexible representation.

In this section, we introduce the first level of such a rep-
resentation. As basis, we use an idea inspired by the work

of (Burl et al. 1998; Weber et al. 2000), and (Agarwal et al.
2004). We build up a vocabulary (in the following termed
a codebook) of local appearances that are characteristic for
a certain viewpoint of an object category by sampling lo-
cal features that repeatedly occur on a set of training im-
ages of this category. Features that are visually similar are
grouped together in an unsupervised clustering step. The
result is a compact representation of object appearance in
terms of which novel images can be expressed. When pur-
suing such an approach, however, it is important to repre-
sent uncertainty on all levels: while matching the unknown
image content to the known codebook representation; and
while accumulating the evidence of multiple such matches,
e.g. for inferring the presence of the object.

Codebook representations have become a popular tool
for object categorization recently, and many approaches use
variations of this theme (Burl et al. 1998; Weber et al. 2000;
Fergus et al. 2003; Li et al. 2003; Agarwal et al. 2004;
Borenstein and Ullman 2002; Ullman et al. 2002; Felzen-
szwalb and Huttenlocher 2005). However, there are still
large differences in how the grouping step is performed, how
the matching uncertainty is represented, and how the code-
book is later used for recognition. In the following, we de-
scribe our codebook generation procedure and review two
popular methods for achieving the grouping step, namely
k-means and agglomerative clustering. As the latter usu-
ally scales poorly to large data sets, we present an efficient
average-link clustering algorithm which runs at the same
time and space complexity as k-means. This algorithm is
not based on an approximation, but computes the exact re-
sult, thus making it possible to use agglomerative clustering
also for large-scale codebook generation. After the remain-
ing stages of our recognition method have been introduced,
Sect. 7.3 will then present an experimental comparison of
the two clustering methods in the context of a recognition
task.

3.1 Codebook Generation

We start by applying a scale-invariant interest point de-
tector to obtain a set of informative regions for each im-
age. By extracting features only from those regions, the
amount of data to be processed is reduced, while the in-
terest point detector’s preference for certain structures as-
sures that “similar” regions are sampled on different ob-
jects. Several different interest point detectors are available
for this purpose. In this paper, we use and evaluate Harris
(Harris and Stephens 1988), Harris-Laplace (Mikolajczyk
et al. 2005b), Hessian-Laplace (Mikolajczyk et al. 2005b),
and Difference-of-Gaussian (DoG) (Lowe 2004) detectors.
We then represent the extracted image regions by a local
descriptor. Again, several descriptor choices are available
for this step. In this paper, we compare simple Greyvalue



264 Int J Comput Vis (2008) 77: 259–289

Fig. 1 Local information used in the codebook generation process:
(left) interest points; (right) features extracted around the interest
points (visualized by the corresponding image patches). In most of our
experiments, between 50 and 200 features are extracted per object

Patches (Agarwal et al. 2004), SIFT (Lowe 2004), and Lo-
cal Shape Context (Belongie et al. 2002; Mikolajczyk and
Schmid 2005) descriptors. In order to develop the different
stages of our approach, we will abstract from the concrete
choice of region detector and descriptor and simply refer
to the extracted local information by the term feature. Sec-
tions 7.5 and 7.6 will then systematically evaluate the differ-
ent choices for the detectors and descriptors. Figure 1 shows
the extracted features for two example images (in this case
using Harris interest points). As can be seen from those ex-
amples, the sampled information provides a dense cover of
the object, leaving out only uniform regions. This process is
repeated for all training images, and the extracted features
are collected.

Next, we group visually similar features to create a code-
book of prototypical local appearances. In order to keep the
representation as simple as possible, we represent all fea-
tures in a cluster by their mean, the cluster center. Of course,
a necessary condition for this is that the cluster center is a
meaningful representative for the whole cluster. In that re-
spect, it becomes evident that the goal of the grouping stage
must not be to obtain the smallest possible number of clus-
ters, but to ensure that the resulting clusters are visually
compact and contain the same kind of structure. This is an
important consideration to bear in mind when choosing the
clustering method.

3.2 Clustering Methods

3.2.1 K-means Clustering

The k-means algorithm (MacQueen 1967) is one of the
simplest and most popular clustering methods. It pursues
a greedy hill-climbing strategy in order to find a partition of
the data points that optimizes a squared-error criterion. The
algorithm is initialized by randomly choosing k seed points

for the clusters. In all following iterations, each data point
is assigned to the closest cluster center. When all points
have been assigned, the cluster centers are recomputed as the
means of all associated data points. In practice, this process
converges to a local optimum within few iterations.

Many approaches employ k-means clustering because of
its computational simplicity, which allows to apply it to very
large data sets (Weber et al. 2000). Its time complexity is
O(Nk�d), where N is the number of data points of dimen-
sionality d ; k is the desired number of clusters; and � is the
number of iterations until the process converges. However,
k-means clustering has several known deficiencies. Firstly,
it requires the user to specify the number of clusters in
advance. Secondly, there is no guarantee that the obtained
clusters are visually compact. Because of the fixed value
of k, some cluster centers may lie in-between several “real”
clusters, so that the mean image is not representative of all
grouped patches. Thirdly, k-means clustering is only effi-
cient for small values of k; when applied to our task of find-
ing a large number (k ≈ N

10 ) of visually compact clusters, its
asymptotic run-time becomes quadratic. Last but not least,
the k-means procedure is only guaranteed to find a local op-
timum, so the results may be quite different from run to run.

3.2.2 Agglomerative Clustering

Other approaches therefore use agglomerative clustering
schemes, which automatically determine the number of
clusters by successively merging features until a cut-off
threshold t on the cluster compactness is reached (Agar-
wal et al. 2004; Leibe and Schiele 2003). However, both
the runtime and the memory requirements are often sig-
nificantly higher for agglomerative methods. Especially the
memory requirements impose a practical limit. The standard
average-link algorithm, as found in most textbooks, requires
an O(N2) similarity matrix to be stored. In practice, this
means that the algorithm is only suitable for up to 15–25,000
input points on today’s machines. After that, its space re-
quirements outgrow the size of the available main memory,
and the algorithm incurs detrimental page swapping costs.

Given the large amounts of data that need to be processed,
an efficient implementation of the clustering algorithm is
therefore not only a nice extension, but indeed crucial for its
applicability. Fortunately, it turns out that for special choices
of the clustering criterion and similarity measure, including
the ones we are using, a more efficient algorithm is avail-
able that runs in O(N2d) and needs only O(N) space. Al-
though the basic components of this algorithm are already
more than 25 years old, it has so far been little known in the
Computer Vision community. The following section will de-
scribe its derivation in more detail.
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3.3 RNN Algorithm for Agglomerative Clustering

The main complexity of the standard average-link algorithm
comes from the effort to ensure that clusters are merged
in the right order. The improvement presented in this sec-
tion is due to the insight by de Rham (1980) and Benzécri
(1982) that for some clustering criteria, the same results can
be achieved also when specific clusters are merged in a dif-
ferent order.

The algorithm is based on the construction of reciprocal
nearest neighbor pairs (RNN pairs), that is of pairs of points
a and b, such that a is b’s nearest neighbor and vice versa
(de Rham 1980; Benzécri 1982). It is applicable to clus-
tering criteria that fulfill Bruynooghe’s reducibility property
(Bruynooghe 1977). This criterion demands that when two
clusters ci and cj are agglomerated, the similarity of the
merged cluster to any third cluster ck may only decrease,
compared to the state before the merging action:

sim(ci, cj ) ≥ sup(sim(ci, ck), sim(cj , ck)) ⇒
sup(sim(ci, ck), sim(cj , ck)) ≥ sim(ci ∪ cj , ck). (1)

The reducibility property has the effect that the agglom-
eration of a reciprocal nearest-neighbor pair does not al-
ter the nearest-neighbor relations of any other cluster. It
is easy to see that this property is fulfilled, among oth-
ers, for the group average criterion (regardless of the em-
ployed similarity measure) and the centroid criterion based
on correlation (though not on Euclidean distances). Let X=
{x(1), . . . , x(N)} and Y = {y(1), . . . , y(M)} be two clusters.
Then those criteria are defined as

group avg.: sim(X,Y ) = 1

NM

N∑

i=1

M∑

j=1

sim(x(i), y(j)), (2)

centroid: sim(X,Y ) = sim

(
1

N

N∑

i=1

x(i),
1

M

M∑

j=1

y(j)

)
. (3)

As soon as an RNN pair is found, it can be agglomerated
(a complete proof that this results in the correct clustering
can be found in (Benzécri 1982)). The key to an efficient
implementation is thus to ensure that RNNs can be found
with as little recomputation as possible.

This can be achieved by building a nearest-neighbor
chain (Benzécri 1982). An NN-chain consists of an arbi-
trary point, followed by its nearest neighbor, which is again
followed by its nearest neighbor from among the remain-
ing points, and so on. It is easy to see that each NN-chain
ends in an RNN pair. The strategy of the algorithm is thus to
start with an arbitrary point (Algorithm 1, step (1)) and build
up an NN-chain (2,3). As soon as an RNN pair is found,
the corresponding clusters are merged if their similarity is

Algorithm 1 The RNN algorithm for Average-Link cluster-
ing with nearest-neighbor chains.

// Start the chain L with a random point v ∈ V .
// All remaining points are kept in R.
last ← 0; lastsim[0] ← 0
L[last] ← v ∈ V ; R ← V\v (1)

while R �= ∅ do
// Search for the next NN in R and retrieve its similarity sim.
(s, sim) ← getNearestNeighbor(L[last], R) (2)

if sim > lastsim[last] then
// No RNNs → Add s to the NN chain
last ← last + 1
L[last] ← s; R ← R\{s}
lastsim[last] ← sim (3)

else
// Found RNNs → agglomerate the last two chain links
if lastsim[last] > t then

s ← agglomerate(L[last],L[last − 1])
R ← R∪ {s}
last ← last − 2 (4)

else
// Discard the current chain.
last ← −1

end if
end if

if last < 0 then
// Initialize a new chain with another random point v ∈ R.
last ← last + 1
L[last] ← v ∈R; R ← R\{v} (5)

end if
end while

above the cut-off threshold t ; else the current chain is dis-
carded (4). The reducibility property guarantees that when
clusters are merged this way, the nearest-neighbor assign-
ments stay valid for the remaining chain members, which
can thus be reused for the next iteration. Whenever the cur-
rent chain runs empty, a new chain is started with another
random point (5). The resulting procedure is summarized in
Algorithm 1.

An amortized analysis of this algorithm shows that a full
clustering requires at most 3(N − 1) iterations of the main
loop (Benzécri 1982). The run-time is thus bounded by the
time required to search the nearest neighbors, which is in the
simplest case O(Nd). For low-dimensional data, this can
be further reduced by employing efficient NN-search tech-
niques.

When a new cluster is created by merging an RNN pair,
its new similarity to other clusters needs to be recomputed.
Applying an idea by (Day and Edelsbrunner 1984), this can
be done in O(N) space if the cluster similarity can be ex-
pressed in terms of centroids. In the following, we show that
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this is the case for group average criteria based on correla-
tion or Euclidean distances.

Let 〈· · ·〉 denote the inner product of a pair of vectors and
μx,μy be the cluster means of X and Y . Then the group
average clustering criterion based on correlation can be re-
formulated as

sim(X,Y ) = 1

NM

N∑

i=1

M∑

j=1

〈x(i), y(j)〉 = 〈μx,μy〉, (4)

which follows directly from the linearity property of the in-
ner product.

Let μx,μy and σ 2
x , σ 2

y be the cluster means and variances
of X and Y . Then it can easily be verified that the group av-
erage clustering criterion based on Euclidean distances can
be rewritten as

sim(X,Y ) = − 1

NM

N∑

i=1

M∑

j=1

(x(i) − y(j))2

= −(σ 2
x + σ 2

y + (μx − μy)
2). (5)

Using this formulation, the new distances can be obtained
in constant time, requiring just the storage of the mean and
variance for each cluster. Both the mean and variance of the
updated cluster can be computed incrementally:

μnew = Nμx + Mμy

N + M
, (6)

σ 2
new = 1

N + M

(
Nσ 2

x + Mσ 2
y + NM

N + M
(μx − μy)

2
)

.

(7)

Taken together, these steps result in an average-link clus-
tering algorithm with O(N2d) time and O(N) space com-
plexity. Among some other criteria, this algorithm is ap-
plicable to the group average criterion with correlation or
Euclidean distances as similarity measure. As the method re-
lies heavily on the search for nearest neighbors, its expected-
time complexity can in some cases further be improved by
using efficient NN-search techniques.

As a side note, we want to point out that for the cases
considered in our experiments, where the number k of clus-
ters is almost of the same order as N , average-link clustering
and standard k-means have the same asymptotic time com-
plexity. Since in our experiments between 10 and 25 itera-
tions were necessary for k-means to converge, this number
combines with the value of k to form an effective time com-
plexity of O(N2d).

Which clustering method is better suited for our applica-
tion can only be evaluated in the context of an entire system.
In Sect. 7.3, we therefore compare codebooks generated by
k-means and agglomerative clustering for an object detec-
tion task. The results suggest that, although very similar de-
tection performance can be achieved with both clustering

methods, the lesser compactness of k-means clusters makes
it more costly for later stages of the system to represent the
matching uncertainty sufficiently well. In the following sec-
tions, we therefore use agglomerative clustering for code-
book generation.

4 Object Categorization with an Implicit Shape Model

4.1 Shape Representation

As basic representation for our approach we introduce the
Implicit Shape Model ISM(C) = (C,PC), which consists of
a class-specific alphabet C (the codebook) of local appear-
ances that are prototypical for the object category, and of
a spatial probability distribution PC which specifies where
each codebook entry may be found on the object.

We make two explicit design choices for the probabil-
ity distribution PC . The first is that the distribution is de-
fined independently for each codebook entry. This results in
a star-shaped structural model, where the position of each
local part is only dependent on the object center. The ap-
proach is flexible, since it allows to combine object parts
during recognition that were initially observed on different
training examples. In addition, it is able to learn recogni-
tion models from relatively small training sets, as our ex-
periments will demonstrate. The second constraint is that
the spatial probability distribution for each codebook entry
is estimated in a non-parametric manner. This enables the
method to model the true distribution in as much detail as
the training data permits instead of making a possibly over-
simplifying Gaussian assumption.

4.2 Learning the Shape Model

Let C be the learned appearance codebook, as described in
the previous section. The next step is to learn the spatial
probability distribution PC (see Fig. 2 and Algorithm 2).
For this, we perform a second iteration over all training im-
ages and match the codebook entries to the images. Here,
we activate not only the best-matching codebook entry, but
all entries whose similarity is above t , the cut-off thresh-
old already used during agglomerative clustering. For every
codebook entry, we store all positions it was activated in,
relative to the object center.

By this step, we model the uncertainty in the codebook
generation process. If a codebook is “perfect” in the sense
that each feature can be uniquely assigned to exactly one
cluster, then the result is equivalent to a nearest-neighbor
matching strategy. However, it is unrealistic to expect such
clean data in practical applications. We therefore keep each
possible assignment, but weight it with the probability that
this assignment is correct. It is easy to see that for similarity
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Fig. 2 The training procedure. Local features are extracted around interest points and clustered to form an appearance codebook. For each
codebook entry, a spatial occurrence distribution is learned and stored in non-parametric form (as a list of occurrences)

Algorithm 2 The training procedure.

// Create an appearance codebook C.
F ← ∅ // Initialize the set of feature vectors F
for all training images do

Apply the interest point detector.
for all interest regions �k = (�x, �y, �s) with descriptors fk

do
F ← F ∪ fk

end for
end for
Cluster F with cut-off threshold t and keep cluster centers C.

// Compute occurrences Occ.
for all codebook entries Ci do

Occ[i] ← ∅ // Initialize occurrences for codebook entry Ci

end for
for all training images do

Let (cx, cy) be the object center at a reference scale.
Apply the interest point detector.
for all interest regions �k = (�x, �y, �s) with descriptors fk

do
for all codebook entries Ci do

if sim(Ci , fk) ≥ t then
// Record an occurrence of codebook entry Ci

Occ[i] ← Occ[i] ∪ (cx − �x, cy − �y, �s)

end if
end for

end for
end for

scores smaller than t , the probability that this patch could
have been assigned to the cluster during the codebook gen-
eration process is zero; therefore we do not need to consider
those matches. The stored occurrence locations, on the other
hand, reflect the spatial distribution of a codebook entry over
the object area in a non-parametric form. Algorithm 2 sum-
marizes the training procedure.

4.3 Recognition Approach

Figure 3 illustrates the following recognition procedure.
Given a new test image, we again apply an interest point

detector and extract features around the selected locations.
The extracted features are then matched to the codebook to
activate codebook entries using the same mechanism as de-
scribed above. From the set of all those matches, we col-
lect consistent configurations by performing a Generalized
Hough Transform (Hough 1962; Ballard 1981; Lowe 2004).
Each activated entry casts votes for possible positions of the
object center according to the learned spatial distribution
PC . Consistent hypotheses are then searched as local max-
ima in the voting space. When pursuing such an approach,
it is important to avoid quantization artifacts. In contrast to
usual practice (e.g. Lowe 1999), we therefore do not dis-
cretize the votes, but keep their original, continuous values.
Maxima in this continuous space can be accurately and ef-
ficiently found using Mean-Shift Mode Estimation (Cheng
1995; Comaniciu and Meer 2002). Once a hypothesis has
been selected, all patches that contributed to it are collected
(Fig. 3(bottom)), thereby visualizing what the system re-
acts to. As a result, we get a representation of the object
including a certain border area. This representation can op-
tionally be further refined by sampling more local features.
The backprojected response will later serve as the basis for
computing a category-specific segmentation, as described in
Sect. 5.

4.3.1 Probabilistic Hough Voting

In the following, we cast the voting procedure into a prob-
abilistic framework (Leibe and Schiele 2003; Leibe et al.
2004). Let f be our evidence, an extracted image feature
observed at location �. By matching it to the codebook,
we obtain a set of valid interpretations Ci with probabili-
ties p(Ci |f, �). If a codebook cluster matches, it casts votes
for different object positions. That is, for every Ci , we can
obtain votes for several object categories/viewpoints on and
positions x, according to the learned spatial distribution
p(on, x|Ci , �). Formally, this can be expressed by the fol-
lowing marginalization:

p(on, x|f, �) =
∑

i

p(on, x|f,Ci , �)p(Ci |f, �). (8)
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Fig. 3 The recognition procedure. Local features are extracted around
interest points and compared to the codebook. Matching patches then
cast probabilistic votes, which lead to object hypotheses that can op-

tionally be later refined by sampling more features. Based on the back-
projected hypotheses, we then compute a category-specific segmenta-
tion

Since we have replaced the unknown image feature by a
known interpretation, the first term can be treated as inde-
pendent from f . In addition, we match patches to the code-
book independent of their location. The equation thus re-
duces to

p(on, x|f, �) =
∑

i

p(on, x|Ci , �)p(Ci |f ), (9)

=
∑

i

p(x|on,Ci , �)p(on|Ci , �)p(Ci |f ). (10)

The first term is the probabilistic Hough vote for an object
position given its class label and the feature interpretation.
The second term specifies a confidence that the codebook
cluster is really matched on the target category as opposed
to the background. This can be used to include negative ex-
amples in the training process. Finally, the third term reflects
the quality of the match between image feature and code-
book cluster.

When casting votes for the object center, the object scale
is treated as a third dimension in the voting space (Leibe
and Schiele 2004). If an image feature found at location
(ximg, yimg, simg) matches to a codebook entry that has been
observed at position (xocc, yocc, socc) on a training image, it
votes for the following coordinates:

xvote = ximg − xocc(simg/socc), (11)

yvote = yimg − yocc(simg/socc), (12)

svote = (simg/socc). (13)

Thus, the vote distribution p(x|on,Ci , �) is obtained by cast-
ing a vote for each stored observation from the learned oc-
currence distribution PC . The ensemble of all such votes to-

gether is then used to obtain a non-parametric probability
density estimate for the position of the object center.

In order to avoid a systematic bias, we require that each
sampled feature have the same a-priori weight. We there-
fore need to normalize the vote weights such that both the
p(Ci |f ) and the p(x|on,Ci , �) integrate to one. In our ex-
periments, we spread the weight p(Ci |f ) uniformly over all
valid patch interpretations (setting p(Ci |f ) = 1

|C∗| , with |C∗|
the number of matching codebook entries), but it would also
be possible to let the p(Ci |f ) distribution reflect the rela-
tive matching scores, e.g. by using a Gibbs-like distribution
p(Ci |f ) = 1

Z
exp{−d(Ci , f )2/T } with a suitable normaliza-

tion constant Z. The complete voting procedure is summa-
rized in Algorithm 3.

4.3.2 Scale-Adaptive Hypothesis Search

Next, we need to find hypotheses as maxima in the voting
space. For computational efficiency, we employ a two-stage
search strategy (see Fig. 4 and Algorithm 4). In a first stage,
votes are collected in a binned 3D Hough accumulator ar-
ray in order to quickly find promising locations. Candidate
maxima from this first stage are then refined in the second
stage using the original (continuous) 3D votes.

Intuitively, the score of a hypothesis h = (on, x) can be
obtained by marginalizing over all features that contribute to
this hypothesis

p(on, x) =
∑

k

p(on, x|fk, �k)p(fk, �k), (14)

where p(fk, �k) is an indicator variable specifying which
features (fk, �k) have been sampled by the interest point de-
tector. However, in order to be robust to intra-class variation,
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Fig. 4 Visualization of the scale-invariant voting procedure. The
continuous votes (a) are first collected in a binned accumu-
lator array (b), where candidate maxima can be quickly de-

tected (c). The exact Mean-Shift search is then performed only
in the regions immediately surrounding those candidate max-
ima (d)

Algorithm 3 The ISM vote generation algorithm.

// Initialize the set of probabilistic votes V .
V ← ∅
Apply the interest point detector to the test image.
for all interest regions �k = (�x, �y, �s) with descriptors fk do

// Initialize the set of matches M
M ← ∅
// Record all matches to the codebook
for all codebook entries Ci do

if sim(fk,Ci ) ≥ t then
M ← M∪ (i, �x, �y, �s) // Record a match

end if
end for
for all matching codebook entries C∗

i
do

p(C∗
i
|fk) ← 1

|M| //Set the match weight

end for

// Cast the votes
for all matches (i, �x, �y, �s) ∈M do

for all occurrences occ ∈ Occ[i] of codebook entry Ci do
//Set the vote location
x ← (�x − occx

�s
occs

, �y − occy
�s

occs
,

�s
occs

)

//Set the occurrence weight
p(on, x|Ci , �) ← 1

|Occ[i]|
// Cast a vote (x,w,occ, �) for position x with weight w

w ← p(on, x|Ci , �)p(Ci |fk)

V ← V ∪ (x,w,occ, �)

end for
end for

end for

we have to tolerate small shape deformations. We therefore
formulate the search in a Mean-Shift framework with the
following kernel density estimate:

p̂(on, x) = 1

Vb

∑

k

∑

j

p(on, xj |fk, �k)K

(
x − xj

b

)
(15)

Algorithm 4 The scale-adaptive hypothesis search algo-
rithm.

// Sample the voting space V in a regular grid to obtain
// promising starting locations.
for all grid locations x do

score(x) ← applyMSMEKernel(K,x)

end for

// Refine the local maxima using MSME with a scale-adaptive
// kernel K . Keep all maxima above a threshold θ .
for all grid locations x do

if x is a local maximum in a 3 × 3 neighborhood then
// Apply the MSME search
repeat

score ← 0, xnew ← (0,0,0), sum ← 0
for all votes (xk,wk, occk, �k) do

if xk is inside K(x) then
score ← score + wkK(

x−xk
b(x)

)

xnew ← xnew + xkK(
x−xk
b(x)

)

sum ← sum + K(
x−xk
b(x)

)

end if
end for
score ← 1

Vb(x)
score

x ← 1
sumxnew

until convergence
if score ≥ θ then

Create hypothesis h for position x.
end if

end if
end for

where the kernel K is a radially symmetric, nonnegative
function, centered at zero and integrating to one; b is the
kernel bandwidth; and Vb is its volume. From (Comaniciu
and Meer 2002), we know that a Mean-Shift search using
this formulation will quickly converge to local modes of the
underlying distribution. Moreover, the search procedure can
be interpreted as kernel density estimation for the position
of the object center.
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Fig. 5 Intermediate results during the recognition process. (a) orig-
inal image; (b) sampled interest regions; (c) extracted features that
could be matched to the codebook; (d) probabilistic votes; (e) sup-

port of the strongest hypothesis. (Note that the voting process takes
place in a continuous space. The votes are just discretized for visual-
ization)

From the literature, it is also known that the perfor-
mance of the Mean-Shift procedure depends critically on
a good selection for the kernel bandwidth b. Various ap-
proaches have been proposed to estimate the optimal band-
width directly from the data (e.g. Comaniciu et al. 2001;
Collins 2003). In our case, however, we have an intuitive in-
terpretation for the bandwidth as a search window for the
position of the object center. As the object scale increases,
the relative errors introduced by (11–13) cause votes to be
spread over a larger area around the hypothesized object
center and thus reduce their density in the voting space. As
a consequence, the kernel bandwidth should also increase
in order to compensate for this effect. We can thus make
the bandwidth dependent on the scale coordinate and obtain
the following balloon density estimator (Comaniciu et al.
2001):

p̂(on, x) = 1

Vb(x)

∑

k

∑

j

p(on, xj |fk, �k)K

(
x − xj

b(x)

)
.

(16)

For K we use a uniform ellipsoidal or cuboidal kernel with a
radius corresponding to 5% of the hypothesized object size.
Since a certain minimum bandwidth needs to be maintained
for small scales, though, we only adapt the kernel size for
scales greater than 1.0.

4.4 Summary

We have thus formulated the multi-scale object detection
problem as a probabilistic Hough Voting procedure from
which hypotheses are found by a scale-adaptive Mean-Shift
search. Figure 5 illustrates the different steps of the recog-
nition procedure on a real-world example. For this example,
the system was trained on 119 car images taken from the La-
belMe database (Russell et al. 2005). When presented with
the test image, the system applies a DoG interest point de-
tector and extracts a total of 437 features (Fig. 5(b)). How-
ever, only about half of them contain relevant structure and
pass the codebook matching stage (Fig. 5(c)). Those features
then cast probabilistic votes, which are collected in the vot-
ing space. As a visualization of this space in Fig. 5(d) shows,

Fig. 6 Visualization of the top-down segmentation procedure. For
each hypothesis h, we compute a per-pixel figure probability map
p(figure|h) and a ground probability map p(ground|h). The final seg-
mentation is then obtained by building the likelihood ratio between
figure and ground

only few features form a consistent configuration. The sys-
tem searches for local maxima in the voting space and re-
turns the correct detection as strongest hypothesis. By back-
projecting the contributing votes, we retrieve the hypothe-
sis’s support in the image (Fig. 5(e)), which shows that the
system’s reaction has indeed been produced by local struc-
tures on the depicted car.

5 Top-Down Segmentation

The backprojected hypothesis support already provides a
rough indication where the object is in the image. As the
sampled patches still contain background structure, how-
ever, this is not a precise segmentation yet. On the other
hand, we have expressed the a-priori unknown image con-
tent in terms of a learned codebook; thus, we know more
about the semantic interpretation of the matched patches for
the target object. In the following, we will show how this
information can be used to infer a pixel-wise figure-ground
segmentation of the object (Fig. 6).

In order to learn this top-down segmentation, our ap-
proach requires a reference figure-ground segmentation for
the training images. While this additional information might
not always be available, we will demonstrate that it can be
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used to improve recognition performance significantly, as
our experimental results in Sect. 7 will show.

5.1 Theoretical Derivation

In this section, we describe a probabilistic formulation for
the segmentation problem (Leibe and Schiele 2003). As a
starting point, we take an object hypothesis h = (on, x) ob-
tained by the algorithm from the previous section. Based
on this hypothesis, we want to segment the object from the
background.

Up to now, we have only dealt with image patches. For
the segmentation, we now want to know whether a certain
image pixel p is figure or ground, given the object hypoth-
esis. More precisely, we are interested in the probability
p(p = figure|on, x). The influence of a given feature f on
the object hypothesis can be expressed as

p(f, �|on, x) = p(on, x|f, �)p(f, �)

p(on, x)
, (17)

=
∑

i p(on, x|Ci , �)p(Ci |f )p(f, �)

p(on, x)
(18)

where the patch votes p(on, x|f, �) are obtained from the
codebook, as described in the previous section. Given these
probabilities, we can obtain information about a specific
pixel by marginalizing over all patches that contain this
pixel:

p(p = figure|on, x)

=
∑

p∈(f,�)

p(p = figure|on, x, f, �)p(f, �|on, x) (19)

where p(p = figure|on, x, f, �) denotes some patch-specific
segmentation information, which is weighted by the influ-
ence p(f, �|on, x) the patch has on the object hypothesis.
Again, we can resolve patches by resorting to learned patch
interpretations C stored in the codebook:

p(p = fig.|on, x)

=
∑

p∈(f,�)

∑

i

p(p = fig.|on, x, f,Ci , �)p(f,Ci , �|on, x)

=
∑

p∈(f,�)

∑

i

p(p = fig.|on, x,Ci , �)

×p(on, x|Ci , �)p(Ci |f )p(f, �)

p(on, x)
. (20)

This means that for every pixel, we effectively build a
weighted average over all segmentations stemming from
patches containing that pixel. The weights correspond to the
patches’ respective contributions to the object hypothesis.
We further assume uniform priors for p(f, �) and p(on, x),

Algorithm 5 The top-segmentation algorithm.

// Given: hypothesis h and supporting votes Vh.
for all supporting votes (x,w,occ, �) ∈ Vh do

Let imgmask be the segmentation mask corresponding to occ.
Let sz be the size at which the interest region � was sampled.
Rescale imgmask to sz.
u0 ← (�x − 1

2sz)

v0 ← (�y − 1
2sz)

for all u ∈ [0,sz− 1] do
for all v ∈ [0,sz− 1] do

imgpf ig(u − u0, v − v0)+= w · imgmask(u, v)

imgpgnd(u − u0, v − v0)+= w · (1 − imgmask(u, v))

end for
end for

end for

so that these elements can be factored out of the equations.
For the ground probability, the result is obtained in a similar
fashion:

p(p = ground|on, x)

=
∑

p∈(f,�)

∑

i

(1 − p(p=fig.|on, x,Ci , �))p(f,Ci , �|on, x).

(21)

The most important part in this formulation is the per-
pixel segmentation information p(p = figure|on, x,Ci , �),
which is only dependent on the matched codebook entry,
no longer on the image feature. In Borenstein and Ullman’s
approach (Borenstein and Ullman 2002) a fixed segmen-
tation mask is stored for each codebook entry. Applied to
our framework, this would be equivalent to using a reduced
probability p(p = figure|Ci , on). In our approach, however,
we remain more general and keep a separate segmentation
mask for every recorded occurrence position of each code-
book entry (extracted from the training images at the loca-
tion and scale of the corresponding interest region and stored
as a 16 × 16 pixel mask). We thus take advantage of the full
probability p(p = figure|on, x,Ci , �). As a result, the same
local image structure can indicate a solid area if it is in the
middle of e.g. a cow’s body, and a strong border if it is part of
a leg. Which option is finally selected depends on the current
hypothesis and its accumulated support from other patches.
However, since at this point only votes are considered that
support a common hypothesis, it is ensured that only consis-
tent interpretations are used for the segmentation.

In order to obtain a segmentation of the whole image
from the figure and ground probabilities, we build the like-
lihood ratio for every pixel:

L = p(p = figure|on, x) + ε

p(p = ground|on, x) + ε
. (22)

Figure 6 and Algorithm 5 summarize the top-down segmen-
tation procedure. As a consequence of our non-parametric
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Fig. 7 An example where object knowledge compensates for missing edge information

Fig. 8 Segmentation result of a partially occluded car. The system is able to segment out the pedestrian, because it does not contribute to the car
hypothesis

representation for PC , the resulting algorithm is very simple
and can be efficiently computed on the GPU (in our current
implementation taking only 5–10 ms per hypothesis).

Figures 7 and 8 show two example segmentations of
cars,1 together with p(p = figure|on, x), the system’s con-
fidence in the segmentation result (the darker a pixel, the
higher its probability of being figure; the lighter it is, the
higher its probability of being ground). Those examples
highlight some of the advantages a top-down segmentation
can offer compared to bottom-up and gradient-based ap-
proaches. At the bottom of the car shown in Fig. 7, there
is no visible border between the black car body and the dark
shadow underneath. Instead, a strong shadow line extends
much further to the left of the car. The proposed algorithm
can compensate for that since it has learned that if a code-
book entry matches in this position relative to the object cen-
ter, it must contain the car’s border. Since at this point only
those patch interpretations are considered that are consistent
with the object hypothesis, the system can infer the miss-
ing contour. Figure 8 shows another interesting case. Even
though the car in the image is partially occluded by a pedes-
trian, the algorithm correctly finds it. Backprojecting the hy-
pothesis yields a good segmentation of the car, without the
occluded area. The system is able to segment out the pedes-
trian, because the corresponding region does not contribute
to the car hypothesis. This capability is very hard to achieve
for a system purely based on pixel-level discontinuities.

1For better visualization, the segmentation images in Figs. 7(c)
and 8(c) show not L but sigmoid(logL).

6 Segmentation-Based Hypothesis Verification

6.1 Motivation

Up to now, we have integrated information from all features
in the image, as long as they agreed on a common object
center. Indeed, this is the only available option in the ab-
sence of prior information about possible object locations.
As a result, we had to tolerate false positives on highly tex-
tured regions in the background, where many patches might
be matched to some codebook structure, and random peaks
in the voting space could be created as a consequence.

Now that a set of hypotheses H = {hi} = {(on, xi)} is
available, however, we can iterate on it and improve the
recognition results. The previous section has shown that we
can obtain a probabilistic top-down segmentation from each
hypothesis and thus split its support into figure and ground
pixels. The basic idea of this verification stage is now to
only aggregate evidence over the figure portion of the im-
age, that is over pixels that are hypothesized to belong to the
object, and discard misleading information from the back-
ground. The motivation for this is that correct hypotheses
will lead to consistent segmentations, since they are backed
by an existing object in the image. False positives from ran-
dom background clutter, on the other hand, will often result
in inconsistent segmentations and thus in lower figure prob-
abilities.

At the same time, this idea allows to compensate for a
systematic bias in the initial voting scheme. The probabilis-
tic votes are constructed on the principle that each feature
has the same weight. This leads to a competitive advantage
for hypotheses that contain more matched features simply
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Fig. 9 (Color online) (left) Two examples for overlapping hypothe-
ses (in red); (middle) p(p = figure|h) probabilities for the correct and
(right) for the overlapping hypotheses. The overlapping hypothesis in
the above example is almost fully explained by the two correct detec-
tions, while the one in the lower example obtains additional support
from a different region in the image

because their area was more densely sampled by the inter-
est point detector. Normalizing a hypothesis’s score by the
number of contributing features, on the other hand, would
not produce the desired results, because the corresponding
image patches can overlap and may also contain background
structure. By accumulating evidence now over the figure
pixels, the verification stage removes this overcounting bias.
Using this principle, each pixel has the same potential in-
fluence, regardless of how many sampled patches it is con-
tained in.

Finally, this strategy makes it possible to resolve ambi-
guities from overlapping hypotheses in a principled manner.
When applying the recognition procedure to real-world test
images, a large number of the initial false positives are due to
secondary hypotheses which overlap part of the object (see
Fig. 9). This is a common problem in object detection that is
particularly prominent in scenes containing multiple objects.
Generating such secondary hypotheses is a desired prop-
erty of a recognition algorithm, since it allows the method
to cope with partial occlusions. However, if enough support
is present in the image, the secondary detections should be
suppressed in favor of other hypotheses that better explain
the image. Usually, this problem is solved by introducing
a bounding box criterion and rejecting weaker hypotheses
based on their overlap. However, such an approach may lead
to missed detections, as the second example in Fig. 9 shows.
Here the overlapping hypothesis really corresponds to a sec-
ond car, which would be rejected by the simple bounding
box criterion.

Again, using the top-down segmentation our system can
improve on this and exactly quantify how much support the
overlapping region contains for each hypothesis. In particu-
lar, this permits us to detect secondary hypotheses, which
draw all their support from areas that are already better
explained by other hypotheses, and distinguish them from
true overlapping objects. In the following, we derive a crite-
rion based on the principle of Minimal Description Length
(MDL), which combines all of those motivations.

6.2 MDL Formulation

The MDL principle is an information theoretic formalization
of the general notion to prefer simple explanations to more
complicated ones. In our context, a pixel can be described
either by its grayvalue or by its membership to a scene ob-
ject. If it is explained as part of an object, we also need to
encode the presence of the object (“model cost”), as well
as the error that is made by this representation. The MDL
principle states that the best encoding is the one that mini-
mizes the total description length for the image, given a set
of models.

In accordance with the notion of description length, we
can define the savings (Leonardis et al. 1995) in the encod-
ing that can be obtained by explaining part of an image by
the hypothesis h:

Sh = K0Sarea − K1Smodel − K2Serror . (23)

In this formulation, Sarea corresponds to the number N of
pixels that can be explained by h; Serror denotes the cost for
describing the error made by this explanation; and Smodel

describes the model complexity. Since objects at different
scales take up different portions of the image, we make the
model cost dependent on the expected area As an object oc-
cupies at a certain scale.2 As an estimate for the error cost
we collect, over all pixels that belong to the segmentation of
h, the negative figure log-likelihoods:

Serror = − log
∏

p∈Seg(h)

p(p = fig.|h))

= −
∑

p∈Seg(h)

logp(p = fig.|h)

=
∑

p∈Seg(h)

∞∑

n=1

1

n
(1 − p(p = fig.|h))n

≈
∑

p∈Seg(h)

(1 − p(p = fig.|h)). (24)

Here we use a first-order approximation for the logarithms,
which we found to be more stable with respect to outliers
and unequal sampling, since it avoids the logarithm’s singu-
larity around zero. In effect, the resulting error term can be
understood as a sum over all pixels allocated to a hypothe-
sis h of the probabilities that this allocation was incorrectly
made.

2When dealing with only one object category, the true area As can be
replaced by the simpler term s2, since the expected area grows quadrat-
ically with the object scale and the constant K1 can be set to incorpo-
rate the proportionality factor. However, when multiple categories or
different views of the same object category are searched for, the model
cost needs to reflect their relative size differences.
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The constants K0, K1, and K2 are related to the average
cost of specifying the segmented object area, the model, and
the error, respectively. They can be determined on a purely
information-theoretical basis (in terms of bits), or they can
be adjusted in order to express the preference for a particu-
lar type of description. In practice, we only need to consider
the relative savings between different combinations of hy-
potheses. Thus, we can divide (23) by K0 and, after some
simplification steps, we obtain

Sh = −K1

K0
+

(
1 − K2

K0

)
N

As

+ K2

K0

1

As

∑

p∈Seg(h)

p(p = fig.|h)

= −κ1 + (1 − κ2)
N

As

+κ2
1

As

∑

p∈Seg(h)

p(p = fig.|h), (25)

= −κ1 + 1

As

∑

p∈Seg(h)

((1 − κ2) + κ2p(p = fig.|h)). (26)

This leaves us with two parameters: κ2 = K2
K0

, which encodes
the relative importance that is assigned to the support of a
hypothesis, as opposed to the area it explains; and κ1 = K1

K0
,

which specifies the total weight a hypothesis must accumu-
late in order to provide any savings. Essentially, (26) for-
mulates the merit of a hypothesis as the sum over its pixel
assignment likelihoods, together with a regularization term
κ2 to compensate for unequal sampling and a counterweight
κ1. In our experiments, we leave κ2 at a fixed setting and
plot the performance curves over the value of κ1.

Using this framework, we can now resolve conflicts be-
tween overlapping hypotheses. Given two hypotheses h1

and h2, we can derive the savings of the combined hypothe-
sis (h1 ∪ h2):

Sh1∪h2 = Sh1 + Sh2 −Sarea(h1 ∩ h2) + Serror (h1 ∩ h2).

(27)

Both the overlapping area and the error can be computed
from the segmentations obtained in Sect. 5. Sarea(h1 ∩ h2)

is just the area of overlap between the two segmentations.
Let h1 be the higher-scoring hypothesis of the two in terms
of the optimization function. Under the assumption that h1

opaquely occludes h2, we can adjust for the error term
Serror (h1 ∩ h2) by setting p(p = figure|h2) = 0 wherever
p(p = figure|h1) > p(p = ground|h1), that is for all pixels
that belong to the segmentation of h1.

The goal of this procedure is to find the combination
of hypotheses that provides the maximum savings and thus
best explains the image. Leonardis et al. have shown that

this can be formulated as a quadratic Boolean optimiza-
tion problem as follows (Leonardis et al. 1995). Let mT =
(m1,m2, . . . ,mM) be a vector of indicator variables, where
mi has the value 1 if hypothesis hi is present, and 0 if it is
absent in the final description. In this formulation, the objec-
tive function for maximizing the savings takes the following
form:

S(m̂) = max
m

mT Qm = mT

⎡

⎢⎣
q11 · · · q1M

...
. . .

...

qM1 · · · qMM

⎤

⎥⎦m. (28)

The diagonal terms of Q express the savings of a particular
hypothesis hi

qii = Shi
= −κ1 + (1 − κ2)

N

As

+ κ2

As

∑

p∈Seg(hi)

p(p = fig.|hi) (29)

while the off-diagonal terms handle the interaction between
overlapping hypotheses

qij = 1

2As∗

(
−(1 − κ2)|Oij | − κ2

∑

p∈Oij

p(p = figure|h∗)
)

(30)

where h∗ denotes the weaker of the two hypotheses hi and
hj and Oij = Seg(hi) ∩ Seg(hj ) is the area of overlap be-
tween their segmentations. As the number of possible com-
binations grows exponentially with increasing problem size,
it may become intractable to search for the globally optimal
solution. In practice, however, we found that only a rela-
tively small number of hypotheses interact in most cases, so
that it is usually sufficient to just compute a greedy approxi-
mation. Algorithm 6 summarizes the verification procedure.

7 Experimental Evaluation

7.1 Test Datasets and Experimental Protocol

In order to evaluate our method’s performance and compare
it to state-of-the-art approaches, we apply our system to sev-
eral different test sets of increasing difficulty.

UIUC Cars(side) The UIUC single-scale test set consists
of 170 images containing 200 side views of cars of approx-
imately the same size. The UIUC multi-scale test set con-
sists of 108 images containing 139 car side views at different
scales. Both sets include instances of partially occluded cars,
cars that have low contrast with the background, and images
with highly textured backgrounds. For all experiments on
these datasets, we train our detector on an own training set
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Algorithm 6 The MDL verification algorithm.

Input: hypotheses H = {hi} and corresponding segmentations{
(img(i)

pf ig
, img(i)

pgnd
)
}

.

Output: indicator vector m of selected hypotheses.

// Build up the matrix Q = {
qij

}

for all hypotheses hi ∈H do
sum ← 0, N ← 0
Let Ai be the expected area of hi at its detected scale.

// Set the diagonal elements
for all pixels p ∈ img do

if img(i)
pf ig

(p) > img(i)
pgnd

(p) then

sum ← sum + img(i)
pf ig

(p)

N ← N + 1
end if

end for
qii ← −κ1 + (1 − κ2) N

Ai
+ κ2

1
Ai

sum

// Set the interaction terms
for all hypotheses hj ∈H, j �= i do

sum ← 0, N ← 0
Let k ∈ {i, j} be the index of the weaker hypothesis.
for all pixels p ∈ img do

if img(i)
pf ig

(p) > img(i)
pgnd

(p)∧
img(j)

pf ig
(p) > img(j)

pgnd
(p) then

sum ← sum + img(k)
pf ig

(p)

N ← N + 1
end if

end for
qij ← 1

2 (−(1 − κ2) N
Ak

− κ2
1

Ak
sum)

end for
end for

// Greedy search for the best combination of hypotheses
m ← (0,0, . . . ,0), finished ← false
repeat

for all unselected hypotheses hi do
m̃ ← m, m̃(i) ← 1
Si ← m̃T Qm̃ − mT Qm // Savings when hi is selected

end for
k ← arg maxi (Si)

if Sk > 0 then
m(k) ← 1

else
finished ← true

end if
until finished

of only 50 hand-segmented images3 (mirrored to represent
both car directions) that were originally prepared for a dif-
ferent experiment. Thus, our detector remains more general

3All training sets used in our experiments, as well as executables of
the recognition system, are made available on the following webpage:
http://www.vision.ee.ethz.ch/bleibe/ism/.

and is not tuned to the specific test conditions. Since the
original UIUC sets were captured at a far lower resolution
than our training images, we additionally rescaled all test
images by a constant factor prior to recognition (Note that
this step does not increase the images’ information content).

All experiments on these sets are performed using the
evaluation scheme and detection tolerances from (Agarwal
et al. 2004) based on bounding box overlap: a hypothesis
with center coordinates (x, y, s) is compared with an an-
notation rectangle of size (width,height) and center coordi-
nates (x∗, y∗, s∗) and accepted if

|x − x∗|2
(0.25width)2

+ |y − y∗|2
(0.25height)2

+ |s/s∗ − 1|2
(0.25)2

≤ 1. (31)

In addition, only one hypothesis per object is accepted as
correct detection; any additional hypothesis on the same ob-
ject is counted as false positive.

CalTech Cars(rear) In addition to side views, we also test
on rear views of cars using the 526 car and 1,370 non-car
images of the CalTech cars-brad data set. This data set
contains road scenes with significant scale variation, taken
from the inside of a moving vehicle. The challenge here is
to reliably detect other cars driving in front of the camera
vehicle while restricting the number of false positives on
background structures. For those experiments, our system
is trained on the 126 (manually segmented) images of the
CalTech cars-markus data set.

In order to evaluate detection accuracy with possibly
changing bounding box aspect ratios, we adopt a slightly
changed evaluation criterion for this and all following ex-
periments (Leibe et al. 2005). We still check whether the de-
tected bounding box center is close enough to the annotated
center using the first two terms of (31), but we additionally
demand that the mutual overlap between the hypothesis and
annotation bounding boxes is at least 50%. Again, at most
one hypothesis per object is counted as correct detection.

TUD Motorbikes Next, we evaluate our system on the
TUD Motorbikes set, which is part of the PASCAL collec-
tion (Everingham 2006). This test set consists of 115 images
containing 125 motorbike side views at different scales and
with clutter and occlusion. For training, we use 153 motor-
bike side views from the CalTech database which are shown
in front of uniform background allowing for easy segmen-
tation (a subset of the 400 images (Fergus et al. 2003) used
for training).

VOC’05 Motorbikes In order to show that our results also
generalize to other scenarios, we apply our system to the
VOC motorbike test2 set, which has been used as a local-
ization benchmark in the 2005 PASCAL Challenge (Ever-
ingham 2006). This data set consists of 202 images contain-
ing a total of 227 motorbikes at different scales and seen
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from different viewpoints. For this experiment, we use the
same training set of 153 motorbike side views as above, but
since only 39% of the test cases are shown in side views, the
maximally achievable recall for our system is limited.

Leeds Cows The above datasets contain only relatively
rigid objects. In order to also quantify our method’s robust-
ness to changing articulations, we next evaluate it on a data-
base of video sequences of walking cows originally used for
detecting lameness in livestock (Magee and Boyle 2002).
Each sequence shows one or more cows walking from right
to left in front of different, static backgrounds. For train-
ing, we took out all sequences corresponding to three back-
grounds and extracted 113 randomly chosen frames, for
which we manually created a reference segmentation. We
then tested on 14 different video sequences showing a to-
tal of 18 unseen cows in front of novel backgrounds and
with varying lighting conditions. Some test sequences con-
tain severe interlacing and MPEG-compression artifacts and
significant noise. Altogether, the test suite consists of a total
of 2217 frames, in which 1682 instances of cows are visible
by at least 50%. This provides us with a significant number
of test cases to quantify both our method’s ability to deal
with different articulations and its robustness to (boundary)
occlusion.

TUD Pedestrians Last but not least, we evaluate our
method on the TUD pedestrian set. This highly challeng-
ing test set consists of 206 images containing crowded street
scenes in an Asian metropolis with a total of 595 annotated
pedestrians, most of them in side views (Leibe et al. 2005).
The reason why we only speak of “annotated” pedestrians
here is that in the depicted crowded scenes, it is often not
obvious where to draw the line and decide whether a pedes-
trian should be counted or not. People occur in every state
of occlusion, from fully visible to just half a leg protruding
behind some other person. We therefore decided to anno-
tate only those cases where a human could clearly detect
the pedestrian without having to resort to reasoning. As a
consequence, all pedestrians were annotated where at least
some part of the torso was visible. For this experiment, our
detector was trained on use 210 training images of pedes-
trian side views, recorded in Switzerland with a static cam-
era, for which a motion segmentation was computed with a
Grimson-Stauffer background model (Stauffer and Grimson
1999).

7.2 Object Detection Performance

In order to demonstrate the different stages of our system,
we first apply it to the UIUC single-scale cars dataset. Since
this dataset contains only very limited scale variation, we
use Harris interest points and simple 25 × 25 patch fea-
tures compared by normalized correlation. Figure 10 shows

Method Agarwal Garg Fergus ISM, ISM + Mutch
(2004) (2002) (2003) no MDL MDL (2006)

EER ∼79% ∼88% 88.5% 91.0% 97.5% 99.9%

Fig. 10 Comparison of our results on the UIUC single-scale car data-
base with others reported in the literature

a recall-precision curve (RPC) of our method’s performance
before and after the MDL verification stage. As can be seen
from the figure, the initial voting stage succeeds to gener-
alize from the small 50-image training set and achieves al-
ready good detection results with an Equal Error Rate (EER)
performance of 91% (corresponding to 182 out of 200 cor-
rect detections with 18 false positives). When the MDL cri-
terion is applied as a verification stage, the results are signif-
icantly improved, and the EER performance increases from
91% to 97.5%. Without the verification stage, our algorithm
could reach this recall rate only at the price of a reduced
precision of only 74.1%. This means that for the same recall
rate, the verification stage manages to reject 64 additional
false positives while keeping all correct detections. In addi-
tion, the results become far more stable over a wider para-
meter range than before.

The same figure and the adjacent table also show a com-
parison of our method’s performance with other results re-
ported in the literature. With an EER performance of 97.5%,
our method presents a significant improvement over previ-
ous results. In very recent work, Mutch and Lowe (2006)
reported even better performance with 99.94% EER us-
ing densely sampled features and a biologically motivated
multi-level representation. This indicates that there may still
be some potential for improvement in the feature extraction
stage. In the following sections, we will therefore examine
different choices for the feature detector and descriptor.

Some example detections in difficult settings and the cor-
responding top-down segmentations can be seen in Fig. 11.
Those results show that our method still works in the pres-
ence of occlusion, low contrast, and cluttered backgrounds.
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Fig. 11 Example object detections, figure probabilities, and segmentations automatically generated by our method

Fig. 12 All error cases (missing detections and false positives) our
algorithm returned on the UIUC single-scale car test set

At the EER point, our method correctly finds 195 of the
200 test cases with only 5 false positives. All of those error
cases are displayed in Fig. 12. The main reasons for missing
detections are combinations of several factors, such as low
contrast, occlusion, and image plane rotation, that push the
object hypothesis below the acceptance threshold. The false
positives are due to richly textured backgrounds on which a
large number of spurious object parts are found.

In addition to the recognition results, our method auto-
matically generates object segmentations from the test im-
ages. Even though the quality of the original images is rather
low, the segmentations are reliable and can serve as a basis
for later processing stages, e.g. to further improve the recog-
nition results using global methods. In particular, the exam-
ples show that the system can not only detect cars despite

partial occlusion, but it is often even able to segment out the
occluding structure.4

7.3 Experimental Comparison of Clustering Algorithms

Next, we evaluate the different clustering methods by apply-
ing them to the same data set and comparing the suitability
of the resulting codebooks for recognition. The evaluation
is based on two criteria. One is the recognition performance
the codebook allows. The other is its representational qual-
ity, as measured by the number of occurrences that need to
be stored, which determines the effective cost of the recog-
nition process.

Starting from the 50-image training set, a total of 6,413
patches are extracted with the Harris interest point opera-
tor. Average-link clustering with normalized correlation as
similarity measure and a cut-off threshold of t = 0.7 pro-
duces 2,104 visually compact clusters. However, 1,241 of
these clusters contain only one patch, which means that they
do not correspond to any repeating structure. We therefore
discard those clusters and keep only the remaining 863 pro-
totypes. In comparison, k-means clustering is executed with
different values for k ranging from 100 to 2,000. In addition
to the original codebooks, we also try the codebook reduc-
tion step and measure the performance when single-patch
clusters are removed.

Figure 13 shows the results of this experiment. In the left
diagram, the recognition performance is plotted as a func-
tion of the codebook size. The codebook obtained by k-
means reaches approximately the same performance as the

4In the presented examples, our method is also able to segment out the
car windows, since those were labeled ground in the training data.
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Fig. 13 Comparison of codebooks built with k-means and average-
link clustering. (left): Recognition performance on the UIUC car data-
base. (right): Number of stored activations needed to represent the
matching uncertainty. As can be seen from the plots, the k-means code-

book achieves nearly the same performance as the one built by average-
link clustering, but it requires more than twice as many activations to
be stored

one obtained by average-link clustering when k is set to
a similar number of clusters. This is the case for both the
original and the reduced k-means codebook (without single-
patch clusters). However, as can be seen from the right dia-
gram, the number of occurrences for this codebook size is
more than twice as high for k-means as for average-link
clustering. All in all, the k-means codebook with k = 800
clusters generates 42,310 occurrences from the initial 6,413
training patches, while the more specific average-link code-
book can represent the full appearance distribution with only
17,281 occurrences.

We can thus draw the following conclusions. First, the ex-
periment confirms that the proposed uncertainty modeling
stage can indeed compensate for a less specific codebook.
As can be seen from Fig. 13(left), the recognition perfor-
mance degrades gracefully for both smaller and larger values
of k. This result has important consequences for the scala-
bility of our approach, since it indicates that the method can
be applied even to cases where no optimal codebook is avail-
able. Second, the experiment indicates that the visually more
compact clusters produced by average-link clustering may
be better suited to our problem than the partition obtained by
k-means and may lead to tighter spatial occurrence distrib-
utions with fewer entries that need to be stored. Ideally, this
result would have to be verified by more extensive experi-
ments over several test runs and multiple datasets. However,
together with the additional advantage that the compactness
parameter of agglomerative clustering is only dependent on
the selected feature descriptor, whereas the k of k-means has
to be adjusted anew for every new training set, the experi-
ment already provides a strong argument for agglomerative
clustering.

7.4 Effect of the Training Set Size

Next, we explore the effect of the training set size on de-
tection performance. Up to now, all detectors in this section
have been trained on the original 50 car images. We now
compare their performance when only a subset of those im-
ages is considered. In addition to the single-scale Harris de-
tector, we also apply a scale-invariant DoG detector (Lowe
2004). Figure 14 shows the resulting performance for differ-
ent training set sizes from 5 to 50 images. As can be seen
from the plot, both the Harris and the DoG codebook reach
90% EER performance already with 20 training examples.
When more training images are added, the Harris codebook
further improves to the known rate of 97.5%. In contrast, the
performance of the DoG detector reaches a saturation point
and increases only to 91% for the full training set. Here the
advantage of seeing more training images is offset by the
increased variance in patch appearance caused by the addi-
tional scale dimension.

Apart from this evaluation, the figure also compares the
performance for the original codebooks with the reduced
codebooks that are obtained when all single-patch clusters
are discarded. It can be observed that the two versions show
some differences for the initial voting stage, which however
level out when the MDL verification stage is applied. Con-
sidering that the original codebooks typically contain more
than twice as many clusters as the reduced versions, the re-
duction step can thus be safely advised in order to increase
run-time performance.
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Fig. 14 EER performance on the UIUC database for varying training
set sizes: (left) for the Harris detector; (right) for the DoG detector.
The plots show the performance for the original codebooks and for the
reduced codebooks when all single-patch clusters are discarded. As

can be seen from the plots, both detectors achieve good performance
already with 20 training examples. Moreover, the experiment shows
that the codebook reduction step does not lead to a decrease in perfor-
mance

7.5 Comparison of Different Interest Point Detectors

In the next experiment, we evaluate the effect of the interest
point detector on recognition performance. In previous stud-
ies, interest point detectors have mainly been evaluated in
terms of their repeatability. Consequently, significant effort
has been spent on making the detectors discriminant enough
that they find exactly the same structures again under dif-
ferent viewing conditions. However, in our case, the task
is to recognize and localize previously unseen objects of a
given category. This means that we cannot assume to find
exactly the same structures again; instead the system needs
to generalize and find structures that are similar enough to
known object parts while still allowing enough flexibility to
cope with variations. Also, because of the large intra-class
variability, more potential matching candidates are needed
to compensate for inevitable mismatches. Last but not least,
the interest points should provide a sufficient cover of the
object, so that it can be recognized even if some important
parts are occluded. Altogether, this imposes a rather differ-
ent set of constraints on the interest point detectors, so that
their usefulness for our application can only be determined
by an experimental comparison.

In the following experiment, we evaluate three different
types of scale-invariant interest point operators: the Harris-
Laplace and Hessian-Laplace detectors (Mikolajczyk et al.
2005b) and the DoG (Difference of Gaussian) detector
(Lowe 2004). All three operators have been shown to yield
high repeatability (Mikolajczyk et al. 2005b), but they differ
in the type of structures they respond to. The Harris-Laplace
and Hessian-Laplace detectors look for scale-adapted max-
ima of the Harris function and Hessian determinant, re-

spectively, where the locations along the scale dimension
are found by the Laplacian-of-Gaussian (Mikolajczyk et al.
2005b). The DoG detector (Lowe 2004) finds regions at 3D
scale-space extrema of the Difference-of-Gaussian.

In a first step, we analyze the different detectors’ robust-
ness to scale changes. In particular, we are interested in the
limit to the detectors’ performance when the scale of the test
images is altered by a large (but known) factor and the frac-
tion of familiar image structures is thus decreased. In the
following experiment, the UIUC single-scale car database
images are rescaled to different sizes and the performance
is measured as a function of the scaling factor relative to
the size of the training examples. Figure 15(left) shows the
EER performances that can be achieved for scale changes
between factor 0.4 (corresponding to a scale reduction of
1:2.5) and factor 2.2. When the training and test images
are approximately of the same size, the single-scale Harris
codebook is highly discriminant and provides the good per-
formance described in the previous sections. However, the
evaluation shows that it is only robust to scale changes up to
about 20%, after which its performance quickly drops. As a
result of its scale selection step, the Harris-Laplace code-
book performs more stably over a larger range of scales.
However, with 69% at the EER, its absolute performance
is far below that of the single-scale version. The main rea-
son for this poor performance is that the Harris-Laplace de-
tector returns a smaller absolute number of interest points
on the object, so that a sufficient cover is not always guar-
anteed. Although previous studies have shown that Harris-
Laplace points are more discriminant individually (Dorko
and Schmid 2003), their smaller number is a strong disad-
vantage. The Hessian-Laplace and DoG detectors, on the
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Fig. 15 (left): EER performance over scale changes relative to the
size of the training examples. While optimal for the single-scale case,
the Harris codebook is only robust to small scale changes. The DoG
and Hessian-Laplace codebooks, on the other hand, maintain high
performance over a large range of scales. (right): A comparison of

the performances with and without the scale-adaption mechanism. As
can be seen from the plot, the adapted search window size is neces-
sary for scales greater than 1.0, but reduces performance for smaller
scales, since a certain minimum search window size needs to be main-
tained

other hand, both find enough points on the objects and are
discriminant enough to allow reliable matches to the code-
book. They start with 92.5% and 91%, respectively, for test
images at the same scale and can compensate for both en-
largements and size reductions of more than a factor of two.
If only one type of points shall be used, they are thus better
suited for use in our framework. Figure 15(right) also shows
that the system’s performance quickly degrades without the
scale adaptation step from Sect. 4.3.2, confirming that this
step is indeed important.

7.6 Comparison of Different Local Descriptors

In the previous experiments, we have only considered sim-
ple image patches as basic features of our recognition sys-
tem. While this has been a straightforward choice, it is not
necessarily optimal. However, our approach is not restricted
to patches, but can in principle be operated with any type
of local feature. Recently, a vast array of different local de-
scriptors have become available, and several studies have in-
vestigated their suitability for object categorization (Miko-
lajczyk et al. 2005a; Seemann et al. 2005). In the follow-
ing experiment, we evaluate two of those region descriptors.
SIFT descriptors (Lowe 2004) are 3D histograms of gradi-
ent locations and orientations with 4 × 4 location and 8 ori-
entation bins, resulting in 128-dimensional feature vectors.
Local Shape Context (Belongie et al. 2002) descriptors are
histograms of gradient orientations sampled at edge points
in a log-polar grid. Here we use them in the implementa-
tion of (Mikolajczyk and Schmid 2005) with 9 location and
4 orientation bins and thus 36 dimensions. For comparison,
we include our previous choice of 25 × 25 pixel Patches

(Agarwal et al. 2004; Leibe et al. 2004), which lead to a
descriptor of length 625. The evaluation is performed with
an own implementation of the DoG detector and Patch de-
scriptor. For all other detectors and descriptors, we use the
implementations publicly available at the Oxford Interest
Point Webpage (http://www.robots.ox.ac.uk/~vgg/research/
affine). Patches are compared using Normalized Correla-
tion; all other descriptors are compared using Euclidean dis-
tances.

One open parameter has to be adjusted for each cue,
namely the question how much the clustering step should
compress the training features during codebook generation.
When using agglomerative clustering, this translates to the
question how to set the cut-off and matching threshold t for
optimal performance. Clearly, this parameter depends on the
choice of descriptor. In order to find good values for this
parameter and analyze its influence on recognition perfor-
mance, we applied all 9 detector/descriptor combinations to
the TUD motorbikes set and compared their EER detection
performance for 5–8 different threshold settings. Figure 16
shows the results of this experiment, separated per descrip-
tor. We can make two observations. First, when comparing
descriptors across different detectors, a clear performance
optimum can be found at certain similarity values for all
three descriptors. Those threshold settings can thus serve
as default values whenever the descriptors are used in fu-
ture experiments. Second, the results allow to rank the de-
tector/descriptor combinations based on their performance.
For the descriptors, SIFT and Shape Context perform con-
sistently best over all three detectors. For the detectors,
Hessian-Laplace and DoG perform best in all but one case.
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In terms of combinations, DoG+SIFT and DoG+Shape
Context obtain the best performance with 87% EER.

7.7 Results for Other Test Sets

In the following, we evaluate the system on more difficult
scenes, containing multiple objects at different scales. In ad-
dition to cars, we apply our algorithm to three additional
categories: motorbikes, cows, and pedestrians.

7.7.1 UIUC Multi-Scale Cars

First, we present results on the UIUC multi-scale database
(Agarwal et al. 2004). Figure 17(a) shows the results of this
experiment. The black line corresponds to the performance
reported by (Agarwal et al. 2004), with an EER of about
45%. In contrast, our approach based on DoG interest points
and Patch features achieves an EER performance of 85.6%,
corresponding to 119 out of 132 correct detections with 20
false positives. Using Hessian-Laplace interest points and
local Shape Context features, this result is again signifi-
cantly improved to an EER performance of 95%. This num-
ber also compares favorably to the performance reported by
Mutch and Lowe (2006), who obtained 90.6% EER with
their method.

7.7.2 Motorbikes

Next, we show our system’s results on motorbikes. Fig-
ure 17(b) summarizes the results from Sect. 7.6 on the TUD
motorbike set. The best performance is achieved by the com-
binations of DoG and SIFT/Shape Context, both with an
EER score of 87%. Figure 18 shows example detections on
difficult images from this test set that demonstrate the ap-
pearance variability spanned by the motorbike category and
the segmentation quality that can be achieved by our ap-
proach. As these results show, our method manages to adapt
to different appearances and deliver accurate segmentations,
even in scenes with difficult backgrounds and partial occlu-
sion. Due to the larger appearance variability of motorbikes,
however, it is in general not possible anymore to segment out
the occluding structure (as was the case for the car category
in the previous experiments).

In order to ensure that the results generalize also to dif-
ferent settings, we apply our approach to the more challeng-
ing VOC motorbikes set using the same parameter settings
as for the previous experiment. Figure 17(c) shows the re-
sults of this experiment. Since only about 39% of the test
cases are visible in the side views our detector was trained
on, the EER performance is not as meaningful; instead, we
compare recall in the high-precision range. From this, it can
be seen that the best recognition performance is achieved by
the combinations of DoG+SIFT and DoG+Shape Context,
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Fig. 18 Examples for the variety of motorbike shapes and appearances
that are still reliably detected and segmented

which both find half the available side views at a precision
of 90%. Considering the difficulty of the test set, this is still
a very good result. The best recall is achieved by the fea-
ture combination DoG+Patch with an EER performance of
48%. For comparison, we also show the performance curves
for two other approaches from the 2005 PASCAL Challenge
(Everingham 2006): the one from Garcia and Delakis (2004)
and the one from Dalal and Triggs (2005). (For fairness it
must be said, however, that only our DoG+Patch version
was entered into the original competition and trained on the
slightly smaller training set provided there; the other feature
combinations were produced afterwards).

7.7.3 Rear Views of Cars

Next, we apply our system to the detection of rear views
of cars, using the cars-brad set of CalTech database.
Figure 17(d) displays the detection results for two feature
types: DoG+Patch and Hessian-Laplace+Shape Context.
The dashed curves show the detection performance on the
526 positive images; the solid lines show the performance
taking also the 1370 background images into account. Since
many of the annotated cars are strongly occluded, only about
82% recall can be reached. However, the results show that

Table 1 Performance comparison on a present/absent classification
task for two of the CalTech categories with other methods from the
literature, according to the evaluation scheme in (Fergus et al. 2003)

Data Set Motorbikes Cars Rear

Weber (2000) 88.0% –

Opelt (2004) 92.2% –

Thureson (2004) 93.2% –

Fergus (2003) 93.3% 90.3%

J. Zhang (2007) 98.5% 98.3%

Deselaers (2005) – 98.9%

W. Zhang (2005) 99.0% –

ISM (Patch) 94.0% 93.9%

ISM (SC) 97.4% 96.7%

Fig. 19 Examples for (a) correct detections of rear views of cars on
the CalTech data set and for some typical problem cases: (b) alignment
of the detection bounding box on the car’s shadow; (c) incorrect scale
estimates; (d) spurious detections caused by similar image structures

our approach yields very accurate detections. Looking at the
90% precision level, our approach achieves 74.4% recall on
the positive set, which only reduces to 70.9% recall when
the 1370 negative images are added (corresponding to 0.103
and 0.027 false positives per image, respectively).

Since no other localization results on this data set have
been reported in the literature so far, we also evaluate our
method on an object present/absent classification task, ac-
cording to the evaluation scheme in (Fergus et al. 2003). In
order to decide whether or not a test image contains a rear
view of a car, we apply our scale-invariant detector with a
scale search range of [0.3,1.5] and classify an image with
the label present if at least one detection can be found. Ta-
ble 1 shows the results of this experiment. With DoG+Patch
features, our approach achieves an EER classification per-
formance of 93.9%. Using Hessian-Laplace+Shape Con-
text, this result improves to 96.7%. Both results compare
favorably with (Fergus et al. 2003). Similar results can
be achieved for the CalTech motorbikes, as also shown in
the same table. As a comparison with other more recent
approaches shows, however, discriminative methods using
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densely sampled features and SVM classifiers seem to be
generally more suited to this classification task.

Figure 19(a) presents some examples of correct detec-
tions on the test set. As can be observed, the approach is
able to find a large variety of car appearances at different
scales in the images. Some typical problem cases are shown
in the bottom part of the figure. As the car’s shadow proves
to be an important feature for detection, a displaced shadow
sometimes leads to a misaligned bounding box (Fig. 19(b)).
Another cause for incorrect detections are self-similarities
in the car structure at different scales that sometimes lead to
a wrong scale estimate (Fig. 19(c)). Finally, some spurious
detections are found on regions with similar image structure
(Fig. 19(d)).

7.7.4 Cows

Up to now, we have only considered static objects in our ex-
periments. Even though environmental conditions can vary
greatly, cars and motorbikes are still rather restricted in their
possible shapes. This changes when we consider articulated
objects, such as walking animals. In order to fully demon-
strate our method’s capabilities, we therefore apply it to the
Leeds cows set. The 2217 frames from this test suite pro-
vide us with a significant number of test cases to quantify
both our method’s ability to deal with different articulations
and its robustness to (boundary) occlusion. Using video se-
quences for testing also allows to avoid any bias caused by
selecting only certain frames. However, since we are still
interested in a single-frame recognition scenario, we apply
our algorithm to each frame separately. That is, no tempo-
ral continuity information is used for recognition, which one
would obviously add for a tracking scenario.

We apply our method to this test set using exactly the
same detector settings as before to obtain equal error rate
for the single-scale car experiments. Using Harris interest
points and Patch descriptors, our detector correctly finds
1535 out of the 1682 cows, corresponding to a recall of
91.2%. With only 30 false positives over all 2217 frames, the
overall precision is at 98.0%. Figure 17(e) shows the preci-
sion and recall values as a function of the visible object area.
As can be seen from this plot, the method has no difficul-
ties in recognizing cows that are fully visible (99.1% recall
at 99.5% precision). Moreover, it can cope with significant
partial occlusion. When only 60% of the object is visible,
recall only drops to 79.8%. Even when half the object is oc-
cluded, the recognition rate is still at 69.0%. In some rare
cases, even a very small object portion of about 20–30% is
already enough for recognition (such as in the leftmost im-
age in Fig. 21). Precision constantly stays at a high level.
False positives mainly occur when only one pair of legs is
fully visible and the system generates a competing hypothe-
sis interpreting the front legs as rear legs, or vice versa. Usu-
ally, such secondary hypotheses are filtered out by the MDL

Fig. 20 Example detections and automatically generated segmenta-
tions from one cow sequence. (middle row) segmentations obtained
from the initial hypotheses; (bottom row) segmentations from refined
hypotheses (with additional features sampled in a uniform grid)

Fig. 21 Example detections and automatically generated segmenta-
tions from another cow sequence. Note in particular the leftmost im-
age, where the cow is correctly recognized and segmented despite a
large degree of occlusion

stage, but if the correct hypothesis does not have enough
support in the image due to partial visibility, the secondary
hypothesis sometimes wins.

Figures 20 and 21 show example detection and segmen-
tation results for two of the sequences used in this evalu-
ation. As can be seen from these images, the system not
only manages to recognize unseen-before cows with novel
texture patterns, but it also provides good segmentations for
them. Again, we want to emphasize that no tracking infor-
mation is used to generate these results. On the contrary,
the capability to generate object segmentations from single
frames could make our method a valuable supplement to
many current tracking algorithms, allowing to (re)initialize
them through shape cues that are orthogonal to those gained
from motion estimates.

7.7.5 Pedestrians

Finally, we apply our approach to pedestrian detection in
crowded street scenes using the challenging TUD pedes-
trian set. Figure 17(f) shows the results of this experiment.
Using DoG+Patches, our approach achieves an EER perfor-
mance of 64% (corresponding to 363 correct detections with
204 false positives) (Leibe et al. 2005). Applying Hessian-
Laplace and SIFT/Shape Context features, this performance
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Fig. 22 (Color online) Example detections of our approach on difficult crowded scenes from the TUD Pedestrian test set (at the EER). Correct
detections are shown in yellow, false positives in red

is again improved to 80% EER (476 correct detections with
119 false positives).

As already pointed out before, these quantitative results
should be regarded with special consideration. Many pedes-
trians in the test set are severely occluded, and it is often
difficult to decide whether a pedestrian should be annotated
or not. As a consequence, our detector still occasionally re-
sponded to pedestrians that were not annotated. On the other
hand, a significant number of the annotated pedestrians are
so severely occluded that it would be unrealistic to expect
any current algorithm to reach 100% recognition rate with
only a small number of false positives. In order to give a bet-
ter impression of our method’s performance, Fig. 22 there-
fore shows obtained detection results on example images
from the test set (at the EER). As can be seen from those ex-
amples, the proposed method can reliably detect and localize
pedestrians in crowded scenes and with severe overlaps.

7.7.6 Results on Other Datasets

To conclude, we present some example results on images
from the LabelMe database (Russell et al. 2005) to demon-
strate that our system can also be applied when dealing with
very large images, where a large number of potential false
positives need to be rejected. Those results are however only
intended to give a visual impression of our method’s perfor-
mance, not as a systematic evaluation (which the LabelMe

dataset also wouldn’t permit due to its dynamically changing
nature). Figure 23 shows example detections on several such
images, processed at their original resolution of 2048×1536
pixels, and combining both a car and a pedestrian detector.
As can be seen from those results, the system yields accurate
detections even under those conditions while keeping only a
small number of false positives.

8 Discussion and Conclusion

In this paper, we have proposed a method for learning the
appearance and spatial structure of a visual object category
in order to recognize novel objects of that category, localize
them in cluttered real-world scenes, and automatically seg-
ment them from the background. We have provided efficient
algorithms for each of those step and evaluated the result-
ing recognition performance on several large data sets. Our
results show that the method scales well to different object
categories and achieves good object detection and segmen-
tation performance in difficult real-world scenes.

A main contribution of our work is the integration of ob-
ject category detection and figure-ground segmentation into
a common probabilistic framework. As shown in our exper-
iments, the tight coupling between those two processes al-
lows both to benefit from each other and improve their indi-
vidual performances. Thus, the initial recognition phase not
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Fig. 23 Example detections on difficult test images from the MIT La-
belMe data set (Russell et al. 2005). All images were processed at their
original resolution of 2048 × 1536 pixels. The results confirm our ap-

proach’s ability to yield accurate detections in such complex scenes
with only very few false positives, as the enlargements in the bottom
rows show

only initializes the top-down segmentation process with a

possible object location, but it also provides an uncertainty

estimate of local measurements and of their influence on

the object hypothesis. In return, the resulting probabilistic

segmentation permits the recognition stage to focus its ef-

fort on object pixels and discard misleading influences from

the background. Altogether, the two processes collaborate

in an iterative evidence aggregation scheme which tries to
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make maximal use of the information extracted from the im-
age.

In addition to improving the recognition performance
for individual hypotheses, the top-down segmentation also
allows to determine exactly where a hypothesis’s support
came from and which image pixels were responsible for
it. We have used this property to design a mechanism that
resolves ambiguities between overlapping hypotheses in a
principled manner. This mechanism constitutes a fundamen-
tal novelty in object detection and results in more accu-
rate acceptance decisions than conventional criteria based
on bounding box overlap.

The core part of our approach is the Implicit Shape Model
defined in Sect. 4.3. This implicit representation is flexi-
ble enough that it can combine the information of local ob-
ject parts observed on different training examples and in-
terpolate between the corresponding objects. As a result,
our approach can learn object models from few examples
and achieve competitive object detection performance al-
ready with training sets that are between one and two or-
ders of magnitude smaller than those used in comparable
approaches. Taking a broader view, this implicit model can
be seen as a further generalization of the Hough Transform
to work with uncertain data. In our approach, we have used
this capability to represent the uncertainty from intra-class
variation, but it would also be possible to use it with dif-
ferent sources of uncertainty, e.g. for the identification of
known objects under lighting variations.

The run time of the resulting approach mainly depends
on three factors: model complexity (the number of code-
book entries and occurrences), image size, and the selected
search scale range. Using our current implementation, the
single-scale car detector based on Harris points takes be-
tween 2–3 s for a typical 320 × 240 test image. Typical run-
times of the pedestrian detector (without our more recent
GPU-based top-down segmentation) range between 4–7 s
for the same image size, including feature extraction, detec-
tion, top-down segmentation, and MDL verification. We ex-
pect that both run-times can still be considerably improved
by a more efficient implementation.

The system can still be extended in several ways. For
very large scale changes such as the ones encountered in
the last experiment, it can be advantageous to work on sev-
eral rescaled versions of the image, simply because of com-
putational efficiency. Other possible extensions include the
integration of multiple cues and the combination of several
detectors for multi-category discrimination. Finally, many
real-world applications require that objects be recognized
from multiple viewpoints. While this can in principle be
achieved by simply stacking several single-view detectors,
such an approach would not take advantage of the possibility
to share features (Torralba et al. 2004). Extending the ISM
approach towards this goal will be a topic of future work.
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