4 research outputs found

    Combining similarity in time and space for training set formation under concept drift

    Get PDF
    Concept drift is a challenge in supervised learning for sequential data. It describes a phenomenon when the data distributions change over time. In such a case accuracy of a classifier benefits from the selective sampling for training. We develop a method for training set selection, particularly relevant when the expected drift is gradual. Training set selection at each time step is based on the distance to the target instance. The distance function combines similarity in space and in time. The method determines an optimal training set size online at every time step using cross validation. It is a wrapper approach, it can be used plugging in different base classifiers. The proposed method shows the best accuracy in the peer group on the real and artificial drifting data. The method complexity is reasonable for the field applications

    Learning Concept Drift Using Adaptive Training Set Formation Strategy

    Get PDF
    We live in a dynamic world, where changes are a part of everyday ‘s life. When there is a shift in data, the classification or prediction models need to be adaptive to the changes. In data mining the phenomenon of change in data distribution over time is known as concept drift. In this research, we propose an adaptive supervised learning with delayed labeling methodology. As a part of this methodology, we introduce an adaptive training set formation algorithm called SFDL, which is based on selective training set formation. Our proposed solution considered as the first systematic training set formation approach that take into account delayed labeling problem. It can be used with any base classifier without the need to change the implementation or setting of this classifier. We test our algorithm implementation using synthetic and real dataset from various domains which might have different drift types (sudden, gradual, incremental recurrences) with different speed of change. The experimental results confirm improvement in classification accuracy as compared to ordinary classifier for all drift types. Our approach is able to increase the classifications accuracy with 20% in average and 56% in the best cases of our experimentations and it has not been worse than the ordinary classifiers in any case. Finally a comparison study with other four related methods to deal with changing in user interest over time and handle recurrence drift is performed. Results indicate the effectiveness of the proposed method over other methods in terms of classification accuracy

    Learning in the presence of sudden concept drift and measurement drift

    Get PDF
    The current availability of vast data storage and the computational power to enact algorithms for interpreting that data in real time leads to the possibility of real time adaptive systems. Because change is nearly always inevitable, companies must strive to increase the adaptability of their manufacturing or service systems. To accomplish this, the methods for correcting the system and determining the correct change point must be studied. The motivation of this thesis is advancing the ability of proper prediction and classification model learning on data streams containing change. This problem is known as concept drift. Motivation also stems from a study on a system with these properties, at an active manufacturing facility. After reviewing articles relating to the specific problem in the study, a similarity between the study and the studies performed in the research area of advanced process control became clear. The underlying cause for the change in the manufacturing system is identified as measurement drift. The identification of measurement drift is explained. A discussion of the mathematical model representing measurement drift is provided. Existing concept drift algorithms are adapted to fit the needs of the measurement drift problem. Their performance on the data from the study and synthetic data sets mimicking varying levels of drift magnitude and frequency is assessed. The results are compared to a popular advanced process control method, exponential weighted moving average adapting intercept (EWMA-I). The advanced process control literature inspired the development of two new methods for learning in the presence of concept drift. The methods, ADMEAN and CD-EWMA (ADaptive MEAN and Concept Drift Exponential Weighted Moving Average), make changes to the incoming stream of independent variables. The performance of these algorithms on the measurement drift datasets and synthetic concept drift datasets is provided

    Improving decision tree and neural network learning for evolving data-streams

    Get PDF
    High-throughput real-time Big Data stream processing requires fast incremental algorithms that keep models consistent with most recent data. In this scenario, Hoeffding Trees are considered the state-of-the-art single classifier for processing data streams and they are widely used in ensemble combinations. This thesis is devoted to the improvement of the performance of algorithms for machine learning/artificial intelligence on evolving data streams. In particular, we focus on improving the Hoeffding Tree classifier and its ensemble combinations, in order to reduce its resource consumption and its response time latency, achieving better throughput when processing evolving data streams. First, this thesis presents a study on using Neural Networks (NN) as an alternative method for processing data streams. The use of random features for improving NNs training speed is proposed and important issues are highlighted about the use of NN on a data stream setup. These issues motivated this thesis to go in the direction of improving the current state-of-the-art methods: Hoeffding Trees and their ensemble combinations. Second, this thesis proposes the Echo State Hoeffding Tree (ESHT), as an extension of the Hoeffding Tree to model time-dependencies typically present in data streams. The capabilities of the new proposed architecture on both regression and classification problems are evaluated. Third, a new methodology to improve the Adaptive Random Forest (ARF) is developed. ARF has been introduced recently, and it is considered the state-of-the-art classifier in the MOA framework (a popular framework for processing evolving data streams). This thesis proposes the Elastic Swap Random Forest, an extension to ARF that reduces the number of base learners in the ensemble down to one third on average, while providing similar accuracy than the standard ARF with 100 trees. And finally, a last contribution on a multi-threaded high performance scalable ensemble design that is highly adaptable to a variety of hardware platforms, ranging from server-class to edge computing. The proposed design achieves throughput improvements of 85x (Intel i7), 143x (Intel Xeon parsing from memory), 10x (Jetson TX1, ARM) and 23x (X-Gene2, ARM) compared to single-threaded MOA on i7. In addition, the proposal achieves 75% parallel efficiency when using 24 cores on the Intel Xeon.Procesar grandes flujos de datos (Big Data Streams, BDS) en tiempo real requiere el uso de algoritmos incrementales rápidos que mantengan los modelos consistentes con los datos más recientes. En este escenario, los Hoeffding Trees (HT) se consideran el clasificador simple más avanzado para procesar BDS, razon por la cual son ampliamente usados como base a la hora de combinar clasificadores en Ensembles. Esta tesis está dedicada a la mejora del rendimiento de algoritmos para Machine Learning/Iteligencia Artificial en BDS que evolucionan con el tiempo (es decir, BDS cuya distribución estadística cambia con el tiempo). En particular, nuestro objetivo es mejorar el Hoeffding Tree y sus combinaciones en Ensembles, con el objetivo de reducir el consumo de recursos y la latencia en el tiempo de respuesta, logrando un mejor rendimiento al procesar BDS que evolucionan en el tiempo. Primero, se presenta un estudio sobre el uso de redes neuronales (NN) con parámetros aleatorios como un método alternativo para procesar BDS con el objetivo de mejorar la velocidad de entrenamiento de Nns. También se destacan problemas importantes derivados del uso de NN para BDS. Como consecuencia, esta tesis tomo la dirección de mejorar los métodos de vanguardia en BDS: Hoeffding Trees y sus combinaciones en Ensembles. Segundo, se propone el Echo State Hoeffding Tree (ESHT), como una extensión del HT para modelar las dependencias temporales típicamente presentes en BDS. La nueva arquitectura propuesta se evalúa tanto en problemas de regresión como de clasificación. Tercero, se propone una extensión para el Adaptive Random Forest (ARF), publicado recientemente y considerado como el clasificador mas potente implementado en MOA (un framework muy popular para procesar BDS). Proponemos el Elastic Swap Random Forest para reducir el número de clasificadores en el ensemble a un tercio en promedio, al tiempo se mantiene un accuracy similar a la de un ARF estándar con 100 árboles. Finalmente, la última contribución de esta tesis es una arquitectura de Ensembles multi hilo para procesar BDS. Nuestro diseño es altamente adaptable a una variedad de plataformas de hardware, que van desde servidores hasta pequeños dispositivos en el Edge Computing (pej, Internet de las Cosas). El diseño propuesto logra mejoras de rendimiento de 85x (Intel i7), 143x (análisis de Intel Xeon desde la memoria), 10x (Jetson TX1, ARM) y 23x (X-Gene2, ARM) en comparación con MOA (un solo proceso) en un Intel i7. Además, la propuesta logra una eficiencia paralela del 75 \% cuando se usan 24 núcleos en el Intel Xeon.Postprint (published version
    corecore