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ABSTRACT 

We live in a dynamic world, where changes are a part of everyday „s life. When 

there is a shift in data, the classification or prediction models need to be adaptive to the 

changes. In data mining the phenomenon of change in data distribution over time is 

known as concept drift. In this research, we propose an adaptive supervised learning 

with delayed labeling methodology. As a part of this methodology, we introduce an 

adaptive training set formation algorithm called SFDL, which is based on selective 

training set formation. Our proposed solution considered as the first systematic training 

set formation approach that take into account delayed labeling problem. It can be used 

with any base classifier without the need to change the implementation or setting of this 

classifier. 

We test our algorithm implementation using synthetic and real dataset from 

various domains which might have different drift types (sudden, gradual, incremental 

recurrences) with different speed of change. The experimental results confirm 

improvement in classification accuracy as compared to ordinary classifier for all drift 

types. Our approach is able to increase the classifications accuracy with 20% in average 

and 56% in the best cases of our experimentations and it has not been worse than the 

ordinary classifiers in any case. Finally a comparison study with other four related 

methods to deal with changing in user interest over time and handle recurrence drift is 

performed. Results indicate the effectiveness of the proposed method over other 

methods in terms of classification accuracy. 

 

Keywords: Concept Drift, Adaptive Learning, Training Set Formation, Delayed 

Labeling, Machine Learning. 
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: عنوان البحث

 تعميم الآلة عمى التغيرات الغير متوقعة عن طريق إعادة تشكيل مجموعة التدريب

 :ممخص
ومع . لقد شغمت محاكاة عقل الإنسان في تعممو واستنتاجو حيزاً كبيراً من اىتمام الباحثين منذ زمن بعيد

تقدم العموم وتطور أجيزة الحاسوب تم إنشاء العديد من الأبحاث والخوارزميات والأنظمة الناجحة في مجالات 
فقامت المؤسسات بالاستفادة من البيانات .  وغيرىاةمتعددة كالطب والأرصاد الجوية وأمن المعمومات ومعالجة المغ

كمجموعات تدريب لخوارزميات تعميم الآلة وذلك لاستخراج مجموعة  ( الصحيحةتنبؤاتياسابقاً إلى  مصنفة)المخزنة 
. المعارف منيا وبناء أنظمة لمتنبؤ بالمستقبل وبالتالي اتخاذ قرارات صحيحة

يطبق عمى قميل قد تعمل ىذه الطرق التقميدية بشكل ممتاز ما لم تطرأ تغيرات تخل بصلاحية النظام وىذا 
وعند حدوث تغيرات في بيئة النظام، يصبح النظام غير دقيق . فالتغير جزء لا يتجزأ من حياتنا اليومية. الأنظمة من

لقد صنفت ىذه المشكمة كواحدة من أكبر عشر مشكلات تواجو الباحثين . أو غير مجدي لمعمل في البيئة الحالية
. في مجال تعميم الآلة وتنقيب البيانات

 لممساعدة في إعادة تشكيل بيانات التدريب  ونظامفي ىذا البحث سنقوم بعرض نموذج حل وخوارزمية
. (الغير مصنفة إلى تنبؤاتيا بسبب تأخر التصنيف)والاستفادة منيا تمقائياً بما يتناسب مع البيانات الحديثة الحالية 
بدون الحاجة لتعديميا الأصل أو  (لمتصنيف أو التنبؤ)الخوارزمية المقترحة تعمل مع جميع خوارزميات تعميم الآلة 

الأخذ بالحسبان كما وتعتبر ىذه الخوارزمية ىي أول طريقة منتظمة ومنيجية لحل المشكمة مع . الإضافة عمييا
.  تأخر التنبؤات الصحيحةمشكمة

ات  التغير، كما وتم الاختبار عمى جميع أنوعمجالاتال متعددة عمى ست أنظمة النظام المقترحتم اختبار 
تفوق النظام في جميع التجارب اختبار النموذج المقترح اظير .  وأخيراً المتكررةمتراكمةة والمتدرجة منيا والمفاجئال

 نسبة دقة النظام التي انخفضت بسبب عامل زيادةقدرة النظام عمى عمى الطريقة التقميدية، كما وأظيرت التجارب 
لى ما يقارب% 20 بمعدل الزمن في أحسن حالة، ولم يكن النظام في أي حال من %  56 الـ في كل التجارب وا 

 .الأحوال أسوء من الطرق التقميدية في التصنيف

في النياية تم عقد دراسة مقارنة بين الطريقة المقترحة وأربع طرق أخرى في إمكانية التعرف عمى تغير 
وتصنيفيا بشكل صحيح وبالتالي بناء  (طب، رياضة، الصحة)اىتمام المستخدم في المجموعات الإخبارية المختمفة 

وقد أظيرت المقارنة تفوق الطريقة المقترحة عمى . نظام لاقتراح الأخبار يتأقمم مع اىتمام المستخدم عبر الزمن
 .الطرق الأخرى

التنبؤ بالتغيرات، خوارزميات التأقمم، مشكمة تأخر التصنيف، تشكيل مجموعات التدريب، تعميم : الكممات المفتاحية
 .الآلة
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NOTATION 

 

 

F functional mapping 

D training set 

n number of instances in a dataset 

ɳ is the number of classes in a dataset 

q dimensionality or feature space 

D(j) a subset of D that include instances belong to class j 

{ D(j)} is the number of instances corresponding to class j 

xi the i
th

 instance 

𝑥𝑧
 𝑖  is the i

th
 feature of the instance 𝑥𝑧  

yi the label of xi 

𝑐𝑖  class label (the i
th

 class) 

𝜐𝑖  is the center of class 𝑐𝑖  

{𝑐𝑖} is the number of instances belong to class 𝑐𝑖  

k size of the neighborhood (number of the nearest neighbors) 

d(𝑥𝑧  , 𝑥𝑖) is the Euclidean distance between 𝑥𝑧  and 𝑥𝑖  

D
H
 historical labeled data 

υj
 H  is a center of class j in historical data D

H
 

D
B
 new batch (unlabeled data) 

m is the number of classes in D
B
 (m≤ɳ ) 
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CHAPTER 1 

INTRODUCTION 

 
The world is full of data. The evolution of information science and technology 

has so explosively increased the amount of data that there is too much data for humans 

to analyze themselves. Therefore, humans have invented machine learning. Machine 

learning (ML) is a branch of artificial intelligence (AI) that concern with the design and 

development of algorithms that allow computers to evolve behaviors based on empirical 

data, such as from sensor data or databases. As computing field, ML has become 

steadily more successful in applications over the past 20 years. Learning approaches 

such as data clustering, neural network classifiers and nonlinear regression have found 

surprisingly wide application in the practice of engineering, business, and science [24]. 

A research field closely related to machine learning is that of knowledge 

discovery and data mining. With the advent of high-throughput experimental 

technologies and of high speed internet connections, generation and transmission of 

large volumes of data has been automated in the period [1998-2007]. As a result, 

science, industry, and even individuals have to face the challenge of analyzing and 

dealing with large datasets which are too big for manual analysis. While these large 

“mountains”ofdataareeasilyproduced nowadays, it remains difficult to automatically 

“mine”forvaluableinformationwithinthem [43].“DataMining”,oftenalsoreferredto

as “Knowledge Discovery in Databases” (KDD) [4], is a young sub-discipline of 

computer science aiming at the automatic interpretation of large datasets. 

Yang and Wu [40] identify ten challenging problems in data mining research by 

consulting some of the most active researchers in the field. One of the important and hot 

problem listed as tenth problem of the challenging problem in data mining research is 

dealing with non-static data. We live in a dynamic world, where changes are a part of 

everyday life. When there is a shift in data, the classification or prediction models need 

to be adaptive to the changes. In data mining the phenomenon of change in data 

distribution over time is known as concept drift [36]. To show the importance of this 

problem, assume a data mining application for spam filtering that is developed using 

dataset generated in current year. As this filteradaptedtocontendwithtoday‟stypesof



2 
 

spam emails, the spammers alter and confuse filters by disguising their emails to look 

more like legitimate email. So new spam will be generated and in this case current 

application will go toward approximation to classify these strange patterns and this will 

lead to less accurate, poor performance and incorrect knowledge. This dynamic nature 

of spam email raises a requirement for update in any filter that is to be successful over 

time in identifying spam [6]. 

The main difficulty in mining non-stationary data like spam, intrusion, stock 

marketing, weather and customer preferences is to cope with the changing of data 

concept. The fundamental processes generating most real-time data may change over 

years, months and even seconds, at times drastically. Effective learning in environments 

with hidden contexts and concept drift requires a learning algorithm that can detect 

context changes without being explicitly informed about them, can quickly recover 

from a context change and adjust its hypotheses to a new context, and can make use of 

previous experience in situations where old contexts and corresponding concepts 

reappear [27]. 

In this thesis we consider the problem of concept drift in supervised learning 

where the true classification for each instance (label) is delayed. In particular, we are 

interested in the training set formation strategy which is able to reform the training sets 

after considering each concept drift , this will lead to achieving adaptivity to concept 

drift. 

In the rest of this chapter, we give an introductory background to the main topic 

of this thesis, namely concept drift problem and detectability of concept drift when 

labeled is delayed. We present the existing general concept drift learning strategy and 

concentrate on training set formation strategy. Later, we define and narrow down our 

research problem, formulate the general objectives, summarize the main contributions 

of the thesis and present its significance. We then state the general used strategy to 

accomplish the research. Finally, we present the structure of the thesis.  

1.1 Learning under Concept Drift 

Supervised learning is the task of inferring a function F from supervised training 

data. The training data consist of a set of training examples. In supervised learning, each 

example is a pair of objects input vectors x and output labels y. The task is to predict the 
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output labels y′, having inputvectorsof a testing data x′. By default it is assumed in 

supervised learning that the training and the testing data (or operational data) come from 

the same distribution. If distributions change over time, what will happen to prediction 

accuracy if the same F is still applicable. This problem, known as concept drift [13, 45]. 

First present of concept drift causes was by Kelly et al. [13]. They claim that 

change in outcome distribution (concept drift) may occur in three ways: Firstly, and 

most simply, the prior probability for the class, p(y) may change over time. Secondly, 

the distributions of the classes may change; that is, the p(xly), may alter over time. 

Thirdly, the posterior distributions of class memberships, the p(y|x) may alter. Where x 

is an instance in q-dimensional feature space and y ϵ { c1, …. , cm }, the set of class 

labels. 

To simplify the meaning, concept drift is an unforseen substitution of one data 

source S1 (with an underlying probability distributionПS1 ), with another source S2 

(with distribution ПS2). As concept drift is assumed to be unpredictable, periodic 

seasonality is usually not considered as a concept drift problem. As an exception, if 

seasonality is not known with certainty, it might be regarded as a concept drift problem. 

The core assumption, when dealing with the concept drift problem, is uncertainty about 

the future we assume that the source of the target instance is not known with certainty. 

It can be assumed, estimated, or predicted, but there is no certainty [45]. 

Figure  1.1 shows four main types of changes that may occur in a single variable 

along time assuming one dimensional data. We depict only the data from one class. By 

change types we mean the patterns the data sources take over time. The types of concept 

drift are defined based on those patterns.  
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Figure 1.1: Illustration of the four structural types of concept drift [2]. 

The simplest pattern of a change is a sudden drift illustrated in Figure 1.1 (a). 

Sudden drift shows abrupt changes that instantly and irreversibly change the variables 

class assignment. Real life examples of such changes include change of person interest, 

customer preferences, e-commerce environment and stock prices. The next two plots 

Figure 1.1 (b) and (c) illustrate changes that happen slowly over time thus the drift is 

noticed only when looking at a longer time period. Incremental drift occurs when 

variables slowly change their values over time, we can see it as a sequence of small 

sudden drifts. Gradual drift occurs when the change involves the class distribution of 

variables. Some researchers do not distinguish these two types of drift and use the terms 

gradual and incremental as synonyms. A typical example of incremental drift is price 

growth due to inflation, whilst gradual changes are exemplified by slowly changing 

definitions of spam or user-interesting news feeds [2]. 

The forth type of drift illustrated in Figure 1.1 (d) is referred as reoccurring 

concepts. It happens when several data generating sources are expected to switch over 

time at irregular time intervals. Thus previously active concepts reappear after some 

time. This drift is not certainly periodic, it is not clear when the source might reappear, 
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that is the main difference from seasonality concept used in statics. This type of change 

is regarded by some researchers as local drift [35]. An example of reoccurring drift is 

changing in food sales. 

1.2 Existing Strategies for Concept Drift Learning 

In order to overcome the concept drift issue, there are three strategies [5]: (1) 

every certain period -which depends on the particular application- a new system is 

developed using all the available data. This strategy is time, finance, and computation 

cost. In addition, when a certain data-mining algorithm considers all past training 

examples with new one, the induced patterns may not be valid and relevant to the new 

data. (2) build the system from early beginning to be adaptable with changes by adding 

new inputs may be better at explaining the causes of the concept drift, this strategy can 

be applied using many current methods CART, ID3, C4.5, IFN and multilayer 

perception(e.g.forsalespredictionapplicationaddinginformation“features”aboutthe

season can reduce concept drift). This strategy is not suitable for many applications that 

the changes in environment are unpredictable. (3) discard an old model and train a new 

one using the new data. This strategy computationally more efficient than “learning

from scratch” and  provide further insights into the changes of the respective 

environment. But there are several problems associated with this. 

 We can‟t predict the exact time of change thus it is not known with 

certainty, when to discard and retrain. 

 The changes might not be sudden but gradual, the contexts might reoccur, 

thus the exact point of change is not identifiable. 

 The new data after the change is scarce. Thus the data after the change 

might not be enough to train the new learner accurately.  

To deal with these problemsŽliobaitėandPechenizkiy[44] identify four main 

adaptivity areas that can be incorporated into all parts of the learning process; the first is 

base learners [3] (e.g. add/delete decision tree nodes dynamically). The second is 

parameterization of the learners can be adaptively manipulated [23] (e.g. dynamically 

change the neural networks weights). The third approach is adaptive training set 

formation [17, 18, 20, 45] (e.g. Training set selection, training set weighting and 

training set manipulation) which is the scope and focus of our thesis explained in the 
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next section. The fourth adaptivity area is classifier ensemble [10, 37, 41] where 

classification outputs of several models are combined or selected to get the final output. 

The combination or selection rules are often referred as fusion rules. 

1.3 Training Set formation Strategy 

In the previous section we present how adaptivity for concept drift problem could 

be achieved. In this section we will focus our attention on training set formation strategy 

that is the subject of the thesis work. 

Training set formation can be decomposed into: 

1. training set selection: used to select the most relevant examples to current 

concept. The relevancy here related to how representative or important older 

examples are for predicting new instances of the possibly changed concept. For 

example, instead of taking all the training history, a number of the instances that is 

strongly related to the current distribution are considered. Training set selection can 

applied in two ways [36, 45]: 

a. Sequential instance selection (training windows strategies): training 

window strategies select the nearest neighbors in time to form a training set. 

Training window strategies are preferred when sudden drift expected. See 

Figure 1.2 (a) for visualization.  

 

b. Selective sampling (instance selection): In this case closest instances in the 

feature space to the target instance are selected to form a training set. 

Selective sampling in space is particularly beneficial when reoccurring or 

gradual concepts are expected. See Figure 1.2 (b) for visualization. 

 

2. training set weighting: in this case instances can be weighted according to their 

age, and their competence with regard to the current concept. Klinkenberg [18] 

shows in his experiments that instance weighting techniques handle concept drift 

worse than analogous instance selection techniques, which is probably due to 

overfitting the data. 
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3. training set manipulation: a concept drift may lead to a different relevance 

pattern of the features describing the observations. Features or even combinations of 

attribute values that were relevant in the past may no longer be enough 

discriminatory. Training set manipulation include feature reselection (use dynamic 

feature space by time), adding new labels that appear with time and delete labels 

that disappear with time. 

At the end of this section we can say that training set formation methods have an 

advantages over other adaptivity methods since they do not require complicated 

parameterization and they can be used for online learning plugging in different types of 

base classifiers. 

 

Figure 1.2: Training set selection (a) based only on similarity in time (training window), 

(b) based only on similarity in the feature space (selective sampling) [47]. 
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1.4 Concept Drift under Delayed Labeling  

Learning concept drift includes two tasks: change detection and learner adaptivity 

respectively [20]. Learner adaptivity might be achieved using one of the four 

approaches discussed in the previous section. According to change detection task, drift 

learner can be either trigger based or evolving [44]. Trigger based means that there is a 

signal which indicates a need for model change. The trigger directly influences how the 

new model should be constructed. Most often change detectors are employed as 

triggers. The evolving methods on the contrary do not maintain an explicit link between 

the data progress and model construction and usually do not detect changes. They aim 

to build the most accurate classifier by maintaining the ensemble weights. They usually 

keep a set of alternative models, and the models for a particular time point are selected 

based on their performance estimation. 

Change detection is not just a task to decide whether or not the distribution 

change, but also it must analyze and give exact reasons about the change. This is 

important to choose the suitable adaptivity strategy. Most of the work to date on both 

drift detection and drift handling assumes that the true class of all instances in the data 

stream will be known shortly after classification [6, 21, 37]. Under such assumption the 

incoming new data can be regularly used to update the model. Some works like 

Lindstrom et al. [20] use active learning technique which is used to build classifiers 

from large collections of unlabeled examples with the assistance of a human expert. The 

human expert is asked to label only those examples that are deemed to be most 

informative to the training process. In this way the accuracy of the model examined 

periodically and real error could be computed.  

In real sequential classification tasks, it is not realistic to require labeling every 

time step, since in many domains collecting labeled training objects may be costly (e.g. 

require sensors and hardware systems), time-consuming (e.g. require manual human 

inputs), dangerous or destructive, while it is relatively easy to obtain unlabelled objects 

[21]. Examples of tasks where delayed labeling exist are sales prediction, bankruptcy 

prediction, outcome of patient treatment, intrusion or fraud detection and spam 

categorization tasks. So, a main question arise,  how could we benefit from the 

unlabelled data until the labels become available and how could we extract changes 

from new data and update our classifier to be consistent with incoming changes? 
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Most of the research is devoted to solve change detection with delayed labeling 

problem inspired by statistics. Researcher use methods like posterior probabilities 

estimation [46], statistical distance function [14], univariate statistical tests and decision 

tree [8] or nearest neighbor based statistics [30] to detect changes between labeled set 

and new arriving unlabeled set. 

1.5 Research Problem Statement 

We formulate the following problem statement: 

How to build, develop and implement adaptive supervised learning model with delayed 

labeling that is able to handle concept drift using training set formation strategy in order 

to improve the classification and prediction accuracy that dropped by time? 

1.6 Research Objectives 

 
1.6.1 Main Objective 

The main objective of this research is to build, develop and implement an 

efficient adaptive training set formation approach to learn and deal with concept drift 

problem in supervised learning when labels of new arrived data is delyaed. We shall try 

to increase the classification accuracy of ordinary classifier (old classifer) that is 

dropped over time due to change. 

1.6.2 Specific Objectives 

 

 Build an effective model to classify new arriving data correctly in the absence of 

its true class labels and reform the old data according to changes detected in new 

data. 

 Implement the proposed model.  

 Apply our proposed model on various domains with different drift types and 

evaluate the results. 

 Compare our proposed method with other existing methods. 
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1.7 Research Scope and Limitation 

This research proposes a concept drift learner where adaptivity to changes in 

data over time is achieved by selective training set formation. The work is applied with 

some limitations and assumption such as: 

1) To select most representative training set, we will integrate the time similarity 

(sequential selection) and feature space similarity (selective sampling). 

2) Our work is limited for supervised learning with single class label. 

3)  We assume that we receive a set of instances (batch learning) where we can 

decide if the system change or not and we do not consider real time 

classification.  

 

1.8 Significance of the Thesis 
 

1) Add a significant contribution to scientific research in solving concept drift 

research problem. 

2) Helping concerned people working in various domains that have concept drift 

to obtain a better prediction for classification. 

 

1.9 Research Methodology 

In our research, we devote our study on automatic classification based on timely 

fashioned unlabeled instances. In our process we shall use adaptive supervised learning 

technique with delayed labeling. This is done to change and update the training set by 

what is called formation methods. We follow a research methodology that consists of 

the following: 

1) Literature survey: this include reviewing the recent literature closely related 

to the thesis problem statement and the research question. After analyzing the 

existing methods, identifying the drawbacks or the lack of existing approaches, 

we formulate the strategies and solutions how to overcome the drawbacks. 

2) Develop the algorithm: to solve the research problem we build a new 

algorithm to solve concept drift problem using training set selection strategy 

with respect to a particular focus area. Chapter 3 depict our proposed 

algorithm. 
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3) Implement the algorithm: using Java programming language we will 

implement our algorithm. 

4) Design experimental scenarios and apply it to various domains: to verify 

the developed algorithm we try various suitable real problems and artificial 

drift with corresponding datasets that are commonly used in concept drift 

research.  

5) Evaluate the obtained results: in this stage we will analyze the obtained 

results and justify our model feasibility by comparing it with other approaches. 

1.10 Outline of the Thesis  

The thesis is organized as follows. Chapter 2 present some related works.  

Chapter 3 includes the methodology and model architecture. In Chapter 4, we present 

and analyze our experimental results. Chapter 5 will draw the conclusion and 

summarize the research achievement and future directions.  
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CHAPTER 2 

RELATED WORKS 

 
This chapter intends to give an overview to approaches related to the main topics 

of this thesis. The problem of concept drift has draw much attention recent years. The 

researches in this field differ from one another according to how the author look to the 

problem. This creates a new topics, ideas and challenges. On the other hand the problem 

receives new aspects and names which makes it difficult to follow. For example some 

researchers have treated the drift problem as noise or outlier analysis which creates 

some of mispresentation and misunderstanding for the real problem. 

To simplify our literature review presentation we use the taxonomy proposed by 

Žliobaitė [48]. This taxonomy clearly visualize the main contribution on adaptive 

supervised learning techniques. The taxonomy is graphically presented in Figure 2.1. 

From the taxonomy, we can divide the contribution on adaptive supervised learning into 

two parts: works that concentrate on building a concept drift detection based algorithms 

and others which are interested in finding ways to keep the base learner updated with 

every change happen.  

  

 

 

Figure 2.1: A taxonomy of adaptive supervised learning techniques [48]. 



13 
 

Change detection can be based on monitoring the raw data [14, 36], the 

parameters of the learners [33] or the outputs (error) of the learners [17, 20]. Dries and 

Dries and Ruckert [7] developed change detection methods in each of the three 

categories. Unfortunately the majority of existing change detection algorithms typically 

requires a large number of labeled data in order to achieve performances at satisfactory 

levels; and these algorithms generally assume the availability of such labeled data [39]. 

AninterestinganalyticalstudyconductedbyŽliobaitė [46] to formulate and address the 

problem of concept drift under delayed labeling.  She studied the types of changes and 

showed what types of concept drift are detectable from changes in the data distribution 

and what types would require labels or additional external features for detection 

detected. In chapter 1 we said that most of researches devoted to solve change detection 

when labels are delayed are inspired by statistics or depend on active learning where 

data is manually labeled by experts on demand. Another research try to reduce the 

amount of manual labeling required by using classification confidence criteria done by 

by Lanquillon [19]. 

A work in [29] try to make changes easy to be visualized and tracked using 

visualization technique. The technique uses parallel histograms to aid in understanding 

concept drift in multidimensional problem spaces and illustrates the relationship 

between changes in distributions of multiple antecedent feature values and the outcome 

distribution. 

After change have been detected the designer of the learner must choose the 

mechanisms which will make the learner adaptive. The pure adaptive learning methods 

take into account every new instance that arrives. Probably the first systems capable of 

handling concept drift were STAGGER [31] and FLORA [38].  

STAGGER [31] is an incremental learning system that dynamically tracks 

changes of concepts. STAGGER uses a connectionist representation scheme employing 

nodes to represent attributes and Bayesian-weighted connections to associate attribute 

nodes to a concept node. STAGGER learns and tracks changing concepts by adding 

newattributenodesoradjustingtheconnectionweightsfortheconcept‟sconnections. 

FLORA [38] is a large series of pure drift learning algorithms proposed by 

Widmer and Kubat. It flexibly react to concept drift and can take advantage of situations 

where a context repeats (reoccurring concepts) itself. The idea behind their algorithms is 
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that the learner trusts only the latest examples, these examples are referred to as the 

window. Examples are added to the window as they arrive, and the oldest examples are 

deleted from it. Both of these actions (addition and deletion) trigger modifications to the 

current concept hypothesis to keep it consistent with the examples in the window. In the 

simplest case FLORA1 (the first version of FLORA), the window will be of fixed size, 

and the oldest example will be dropped whenever a new one comes in. Note that 

FLORA algorithms considered as training set selection strategy that depend on Time 

Window (TW) method which classifies incoming instances based on the knowledge of 

the latest N examples. 

The FLORA family pass through many stages of development; the first 

development is FLORA2, which maintains a dynamically adjustable window during the 

learning process. The heuristic for adjusting the size of the window is known as WAH 

(Window Adjustment Heuristic). WAH shrinks the window and forgets old instances 

when a concept drift seems to occur (a drop in accuracy) and keeps the window size 

fixed as long as the concept seems to be stable. Otherwise, the window keeps growing 

until the concept seems to be stable. FLORA3 version stores concepts in stable 

situations and reuses them whenever a similar context re-appears. In environments with 

small number of contexts, the process of relearning speeds up due to storage of past 

concepts. FLORA4 is designed to be exceptionally robust with respect to noise in the 

training data [38]. 

Although FLORA family applied successfully in many domains and provides 

high accuracy, it suffers from two problems lie in the WAH. First problem is WAH 

dependents on many parameters that require many tuning cycles to reach adequate 

performance. Widmer and Kubat [25] claim that using the idea to predict parameter 

depending on stored experience and behavior can solve this problem. Also optimization 

algorithms can play a good role in this problem. The second problem is that windows 

adjustment depends mainly in examples age factor leading to significant loss of useful 

knowledge lies in old data [37]. Instead of discarding data using the criteria based solely 

on their arrival time, decisions must be made based on their relation to current concept. 

However it is difficult to decide what are the examples that represent outdated concepts 

(window adjustment), and hence their effects should be excluded from the model. 

Adaptive window adjustment heuristic draw much of researchers attention [15, 16, 38]. 

A commonly used approach is to „forget‟ examples at a constant rateor use instance
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weighting strategy which is also called Weighted Examples (WE) method [18, 36]. A 

comparative review of forgetting mechanisms for partial memory learning can be found 

in [22]. Instance weighting strategies use the ability of some learning algorithms such as 

Support Vector Machines (SVMs) to process weighted instances [18]. An alternative 

solution to forgetting mechanism and instance weighting is using distance function 

which select relevant instances to current concept based on space and time similarity. 

This solution is used by Žliobaitė[47] to build adaptive training set selection when the 

drift is gradual. 

Effective adaptive approach must maintain the relationship between new and old 

knowledge. This is what most ensemble learning suffer from like what is proposed in 

[41]. Ensample learning is a learning paradigm where a collection of a finite number of 

different models is trained for the same task. Ensemble learning can maintain a set of 

concept descriptions, predictions of which are combined using voting or weighted 

voting, or the most relevant description is selected. In incremental based ensemble 

learning for each new examples (that represent new concept), a new model is trained on 

the new concept, then this model added to the ensemble to work. In some applications 

that deal with recurring drift, they define previously a fixed set of classifiers each 

corresponds to one concept and incrementally updates its knowledge by time. This 

method called Simple Incremental Classifiers (SIC) [11, 36]. Some ensemble learning 

wait for many examples to be generated to update its existing classifiers (in the case of 

SIC) or add new one, and the others uses instance-based learning (IBL) algorithms (e.g. 

IB3) [1], that generates and add models using only specific instances. Sometimes the 

instance based learning fail to distinguish between true concept changes and noise. 

Systems that are designed primarily to respond quickly to concept change (e.g., instance 

based learning) may overreact to noise; on the other hand systems that are designed 

primarily to be highly robust against noise may not adapt to real changes. Concept 

drifting learner should combine robustness to noise and sensitivity to concept change. 

In the context of ensemble learning, Nishida and Yamauchi [27] propose a 

system that include multiple online and offline classifiers. Online classifier are used for 

learning changing concepts, which continue to learn examples in order to adapt to 

gradual changes, and offline classifiers, which are not updated to handle recurring 

concepts. The class prediction is determined by selecting one classifier, which adapts 

well to the current concept, from all online and offline classifiers. The system can detect 
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the concept change by monitoring the classification errors. When change is detected the 

system adds a new online classifier to respond quickly to this change. The system also 

clusters classifiers in order to understand the relationship between knowledge and 

explore hidden contexts of past concepts to predict the next concept, therefore it will 

respond quickly to sudden changes. Although all this advantages, the system didn't 

provide accepted efficiency in terms of computation and memory cost. It misses the 

procedure that removes redundant classifiers (i.e., additional memory) without 

decreasing the ability to handle recurring concepts. Also it fails in building a good 

relationship between the knowledge in each classifier, and the system can't determine 

the reason of the concept drift precisely. Katakis et al [11] try to deal with these 

problems. They propose a conceptual clustering and prediction framework (CCP) for 

classifying data streams by exploiting incremental clustering in order to dynamically 

build and update an ensemble of incremental classifiers. Figure 2.2 illustrate the main 

components of the CCP framework.  

CCP framework consist of three components: 

1. Mapping Function: that maps batches of examples into a new conceptual feature 

space is proposed. this procedure tries to ensure that the more similar two 

batches will be conceptually, the closer in distance their corresponding 

conceptual vectors will be. 

2. The Clustering Algorithm: it work in order to group different concepts and 

identify recurring contexts. 

3. Incremental Classifiers: ensemble is produced by building or updating (if 

previously exist) an classifier for every concept discovered.  

The authors carried out some experiments on spam filtering and news 

recommendation datasets. The datasets include recurring drift where the user interest 

change and recur over time. Their experiments evaluation shows the ability of CCP 

framework to manage and switch between concepts much faster from the drift. Also 

they provide good classification accuracy in comparison to simple incremental method. 



17 
 

 

Most of the proposed drift handling methodologies restrict the reason of change 

to change in time where in many data mining application like intrusion detection and 

spam filtering, the change is not related to time only but also in feature space. 

Integration between time and feature space improve generalization performance and 

drift handling as compared to using only time or only space criterion. One of the 

proposed methods that consider feature reselection is the one by Tian et. al [34]. 

Authors present data stream based traffic classification method (DSTC) framework and 

a data stream mining algorithm, called VFDT (Very Fast Decision Tree) that can 

achieve online dynamic classification for all kinds of traffic, e.g. encrypted traffic and 

peer-to-peer traffic, without interpreting packet content. The methodology goes in three 

steps: traffic model building, online traffic classification and change detection. When a 

change has been detected, traffic model will be triggered to update model accordingly. 

This traffic model is responsible for new data preparation, feature reselection and model 

rebuild. But this model can't work if the size of data is very large. 

From the previous work analysis and discussion, we can conclude that the 

optimal concept drift learner should be able to: 

 Respond to sudden, gradual changes and recurring concepts. 

 Detect concept drift quickly and recognize the source of drift. Also it should 

differentiate between noise and concept drift. 

 

Figure 2.2: Conceptual Clustering and Prediction framework (CCP) [11]  
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 High ability to deal with new data and learn fast from a large amount of data 

especially high-speed data streams. 

 Dynamically create new modules that provide consistent results with existing 

models results (in case of ensemble learning). 

 Memories information and experience, therefore it can predict concept drift 

early, with high self-optimization and self-healing. 

 Adapt only when there is strong evidence that concept drift has occurred, and 

so reduce the amount of manual labeling required. 

 Keep the learning algorithm as effective, efficient, and with as little 

parameterization as possible. 

It is to be noted that most of the used methods for concept drift are using 

supervised learning as initial training method for the system [42]. This method is found 

to be an essential procedure for preparing the proposed systems to deal with concept 

drift. 
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CHAPTER 3 

METHODOLOGY AND PROPOSED MODEL  

 
In this chapter, we present a proposed model for adaptive training set formation 

that is able to handle drift when label is delayed. We organize this chapter into three 

sections. Section 3.1 contains the basic fundamentals used in our work. In Section 3.2, 

we present a general view of our proposed algorithm Training Set Formation for 

Delayed Labeling Algorithm (SFDL) before we provide the details of each of its steps 

in Section 3.3. 

 

 

3.1 Fundamentals  

Before going into the details of the proposed approach, we shall present some 

important fundamentals and basic terminology that we used in our research. 

3.1.1 Distance Function (Euclidean distance) 

The distance function is used to determine similarity. For numeric attributes 

distance similarity is usually based on standard Euclidean distance. The Euclidean 

distance between two points xz and xl where each point is a q-dimensional real feature 

vector is computed as follows [51]:  

𝑑 𝑥𝑧 , 𝑥𝑙 =     𝑥𝑧
(𝑖) −  𝑥𝑙

(𝑖) 2

𝑞

𝑖=1

……………………… (3.1) 

here 𝑥𝑧
(𝑖) is the i

th
 feature of the instance 𝑥𝑧  and q is the dimensionality. 

3.1.2 k - Nearest Neighbor Algorithm 

The k-Nearest Neighbors (k-NN) algorithm is the most basic instance-based 

method [21, 28]. k-NN is also a lazy learning method where it does not decide how to 

generalize beyond the training examples until each new input is encountered. The 

algorithm classifies objects based on closest training examples in the feature space. It is 

considered as the simplest of all algorithms for predicting the class of a test example. 

The training phase consists of simply storing every training example with its label. To 
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make a classification for a new example, first compute its distance to every training 

example. For numeric attributes, the distance is usually defined in terms of the standard 

Euclidean distance. For Boolean and discrete attributes, the distance is usually defined 

in terms of the number of attributes that two instances do not have in common. k-NN 

then keep the k closest training examples in distance, where k ≥1isafixed integer. The 

new example is classified by a majority vote of its neighbors. Figure 3.1 show the 

pseudo code of k-NN algorithm. 

k-NN is robust to noisy training examples and quite effective when it is provided 

a sufficiently large set of training examples, but storing all of the training examples 

significantly increases the computational cost to find k nearest neighbors. However this 

is not a big problem in the existence of current memory chips and physical devices 

development. Also many memory indexing methods introduced in order to decrease 

searching and sorting time [28]. 

 

# Pseudo-code for the basic k-NN classifier 

1 Input:  Training set D = {( x1 , y1), . . . , (xn, yn)} 

             x′newinstancetobeclassified 

Output: predicted class label y′forx′ 

ALGORITHM 

FOR each labeled instance (xi, yi ) calculate d(xi , x′) from equation (3.1) 

Order d(xi , x′) from lowest to highest, (i = 1, . . . , n) 

Select the k nearest instances to x′: 𝐷𝒙′ 

Output y′ that is the most frequent class in 𝐷𝒙′ 

 

2 

3 

4 

5 

6 

7 

8 

Figure 3.1: k-NN algorithm [28] 

In addition to the class label outputted by k-NN classifier, we modified the 

Figure 3.1 so it can output two additional class labels, y′′and y′′′ for the same example. 

The basic idea of the algorithm does not change, but we add two more computations, 

one for y′′ and the other y′′′. The purpose of doing this computing is to decide later what 

class label should be assigned to the given drift example.  The details of this process and 

how the values of y′′and y′′′ are used will be explained in the next section. Computation 

of y′′and y′′′ are illustrated in Figure 3.2. 
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Computing y′′: 

After ordering the examples according to its distance from x′(line6), we select 

the nearest k instances from each available class j, we represent the set of selected 

instances for class j by𝐷(𝑗 ). Where j=1,…., ɳ and ɳ is the number of available classes. 

Then y′′ is assigned to class which the summation of its distances (𝑆𝑢𝑚𝑚𝑗 ) from x′ is 

the minimum. 

 

 

# Pseudo-code for the modified k-NN classifier 

1 Input:  Training set D = {( x1 , y1), . . . , (xn, yn)} 

             x′newinstancetobeclassified 

Output: predicted three different class labels y′, y′′, y′′′forx′ 

ALGORITHM 

FOR each labeled instance (xi, yi ) calculate d(xi , x′)fromequation(3.1) 

Order d(xi , x′)fromlowesttohighest,(i=1,...,n). 

Select k nearest instances to x′ that belong to class j, (j=1,…., ɳ ):𝐷(𝑗 ), ɳ is the 

number of classes. 

Select the k nearest instances to x′:𝐷𝒙′ 

Output y′thatisthemostfrequentclassin𝐷𝒙′ 

 

FOR each class j 

𝑆𝑢𝑚𝑚𝑗  = d 𝒙𝒛 , 𝒙′ ,
{𝐷(𝑗)}
𝑧=1  (where { 𝐷(𝑗 )} is the number of instances corresponding to class j) 

END FOR 

y′′= class with minimum 𝑆𝑢𝑚𝑚𝑗  

 

FOR each class label j 

Get all instances from 𝐷𝒙′ that belong to class j : 𝐷𝒙′
(𝑗 ) 

IF {𝐷𝒙′
(𝑗 )}≠0({Dx ′

(j)} is the number of instances corresponding to class j from the whole set 

Dx ′) 

𝑆𝑗  =  d(𝒙𝒛 , 𝒙′) 
{𝐷𝒙′

(𝑗)}
𝑧=1 / {𝐷𝒙′

(𝑗 )}  

END IF 

END FOR 

 y′′′= class with minimum 𝑠𝑗  
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Figure 3.2: Modified k-NN algorithm 
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Computing y′′′: 

After selecting the k nearest instances (line 9) we sum distances of instances that 

belong to different class labels and then dividing it by the number of nearest neighbor 

instances belong to that class label from the total k. 

 

3.1.3 Closest Class  

We develop this computation as a heuristic to help us to get the nearest class to 

current available classes. Many other methods calculate the distance between centers 

directly to get how much one class is far from the others. These methods may not work 

well when the distribution of the instance points belong to one class label is scattered 

and non-intensive. This heuristic guides the algorithm to decide how to change the class 

label when there is a drift especially when the drift is gradual. 

 

# Pseudo-code for computing the closest class to each available class 

1 Input:  Training set D  

Output: closest class label to each available class 𝑦𝑐𝑙𝑜𝑠𝑒𝑠𝑡  

ALGORITHM 

Separate instances that belong to each class label in different set: (𝐷(1),..., 𝐷(ɳ)),  

ɳ is the number of classes 

FOR j=1 to ɳ -1  

      FOR i=j+1 to ɳ 

FOR z=1 to  {𝐷(𝑗 )} (where { 𝐷(𝑗 )} is the number of instances corresponding to class j) 

pick one instance from 𝐷(𝑗 ) : xz 

pick random instance from 𝐷(𝑖): xr 

S +=Euclidean distance d(xz , xr) (equation 3.1) 

END FOR 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑗 ,𝑖 =
𝑺

min({𝐷(𝑗)} ,{𝐷(𝑖)}  )
  

END FOR 

   END FOR 

FOR each class c , (c=1,….,ɳ) 

𝑦𝑐
𝑐𝑙𝑜𝑠𝑒𝑠𝑡  = 𝑚𝑖𝑛 [ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑗 ,𝑖],  (find minimum 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑗 ,𝑖  ) where (c=j or 

c=i) 
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Figure 3.3: Algorithm for computing the closest class to each available class  
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Figure 3.3 illustrate the Pseudo code for computing the closest class for each 

existing class. After applying this algorithm all classes will have a closest class. 

The input for this algorithm is training data and the output is closest class label 

for each class available in the training set. It is to be mentioned that if class X is the 

closest class to class O it is not necessary that class O is the closest class to X. To 

compute the closest class for a particular class𝑐𝑖 , (i= 1,...., ɳ), first the algorithm 

compute the average between every two classes. The average is computed as follows: 

1. The algorithm will separate instances according to their class label. 

2. For each two different classes i and j: 

a. For each instance belong to first class i. another random instance will 

picked from the second class j.  

b. Euclidean distance between the two instances will computed and added 

to summation S. 

3. Summation S will be divided on the number of instances of class with minimum 

number of instances (either i or j). 

4. Now we have a single average for each pair of classes. The number of averages 

is equal to Binomial Coefficient  ɳ
2
  with no repetition and order doesn't matter. 

This means we have ɳ classes, and we want to choose two (pair) of them each 

time. 

5. The closest class for some class c will be the class which have minimum average 

with class c. 

 

 

3.2 Proposed Approach – General View 

Before going into details about our proposed approach, it is important to present 

a general view for this proposed approach to provide a general idea about methodology 

flow and major steps. Figure 3.4 provides a global view for concept drift learning 

scenario that we build. In our work, adaptivity to changes (drift) in data over time is 

achieved using training set formation strategy.  

To make the flow clear and complete, we illustrate the followed scenario for the 

arrival of two consequent batches below and in Figure 3.4 (a) and (b).   
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Step I: Like most of the proposed methods for concept drift learning, we use 

supervised learning as initial training method for the system. As usual, in order 

to solve a given problem of supervised learning (in our case classification) two 

processes must be performed, training and testing. The goal here is to learn a 

model from the data that can be used to predict the classes of new (future, or 

test) cases/instances accurately. After training and testing a classifier, Lt is 

produced.  Classifier Lt is considered as the best and accurate classifier at time t.  

 

Step II: When the system receives new instances ( a batch with drifts), the new 

instances will be classified using Lt classifier. This will continue until instances 

of window
1
 size w arrived. This set is considered as a complete batch [xt+1 to 

xt+N]. Window size value is fixed for single system depending on the system 

designer knowledge of context. 

 

Step III: Apply our proposed algorithm named Adaptive Training Set Formation 

for Delayed Labeling Algorithm (SFDL) to old historical data (training data 

used to build Lt classifier) and new incoming batch. The work of this algorithm 

is summarized as follows: 

 Select the most relevant instances to current concept (Instance 

Selection). 

 Reclassifying the new arrived batch using the selected instances. 

 Reform the old set according to the changes detected. 

 

Step IV: The output of the previous step is a new formed training set that carry 

out the changes occurred during the period [t+1 to t+N]. This set will be used to 

retrain the model and produce Lt+N classifier as illustrated at Figure 3.4 (b). 

 

Step V: When receiving another new batch, the process will be repeated from 

step II and so on. 

 

                                                           
1
 Window is a set of instances taken from a fixed time interval. 
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Figure 3.4: Global view for concept drift learning scenario using the proposed approach. 

(a) 

(b) 
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3.3 The Proposed Approach – Detailed Description  

From the previous section it is notable that our proposed SFDL Algorithm 

typically can be used plugging in various base classifiers. No matter what is the type of 

learner. Our solution concentrate on training set formation strategy. That is to 

continually update the training data and form it according to changes in the new data. 

Before explaining our algorithm we should present this equation that explains how 

parameteralpha(α)iscomputed.αis a threshold value for each class label that would 

be used for selecting certain instances close to the given instance example. How α is 

going to be used is explained in the next section. For the i
th

 class 𝑐𝑖  with center 𝜐𝑖 , alpha 

(α)iscomputedbythefollowingequation: 

∝𝑖  =
𝑚𝑎𝑥 𝑧=1

{𝑐𝑖}
   𝑑 𝜐𝑖 , 𝑥𝑧  −  𝑚𝑖𝑛 𝑧=1

{𝑐𝑖}
 [ 𝑑 𝜐𝑖 , 𝑥𝑧  ]

2
  ………… (3.2) 

Where: 

{𝑐𝑖} is the number of instances belong to 𝑐𝑖 .   i=1,……,m;misthenumberofclasses 

𝑚𝑎𝑥 𝑧=1
{𝑐𝑖} [ 𝑑(𝜐𝑖 , 𝑥𝑧)] is the maximum distance between 𝜐𝑖  and any instance belong to 𝑐𝑖 . 

𝑚𝑖𝑛 𝑧=1
{𝑐𝑖}  [ 𝑑 𝜐𝑖 , 𝑥𝑧  ] is the minimum distance between 𝜐𝑖and any instance belong to 𝑐𝑖 . 

Note: class center computed as follows: 

𝜐𝑖 =  
 𝑥𝑧

{𝑐𝑖}
𝑧=1

{𝑐𝑖}
……………… . . (3.3) 

To simplify the algorithm presentation, we divide it to three algorithms 

according to its role in the whole training set formation algorithm: 

 Instance selection (Figure 3.6) 

 Reclassifying the new incoming batch (Figure 3.7) 

 Training set formation (Figure 3.8) 

SFDL Algorithm is illustrated at Figure 3.5. 
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Figure 3.5: SFDL algorithm 
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3.3.1 Instance Selection Algorithm 

The pseudo code of the algorithm is presented at Figure 3.6. The algorithm used 

to select the most relevant examples to current concept. The relevancy here is related to 

how importance older examples are for predicting new instances in term of time 

similarity and feature space similarity. The algorithm takes five inputs:  

 Historical data D
H
 which is used to build the existing classifier Lt . 

 

 New batch D
B
 which is arrived during the period [t to t+N] and labeled using 

classifier Lt . 

 

# Adaptive Training Set Formation for Delayed Labeling Algorithm (SFDL) – 

Instance Selection  

1 Input:  

List of historical data D
H
 =( x1, . . . , xt) with labels ( y1, . . . , yt). 

New unlabeled batch D
B
 = (xt+1, . . . , xt+N) is labeled using classifier Lt: ( yt+1, . . 

. , yt+N). 

Computed ∝ for each class in D
B
 (equation 3.2): ( ∝1…… ∝m), m is the 

number of classes in new batch D
B
. 

Computed centers for each class in D
B
 (equation 3.3): ( 𝜐1

𝐵…… 𝜐𝑚
𝐵 ). 

Integer window 𝑤𝑟𝑒𝑠𝑒𝑛𝑡 . 

Output:  

Selected training set D
KNN

 that is very close to current concept and set of far 

instances D
FAR

 

ALGORITHM 

FOR i= 1 to m 

FOR j=1 to t+N 

IF d(𝜐𝑖
𝐵 , 𝑥𝑗 ) ≤ ∝i 

Add 𝑥𝑗  to D
KNN

 

ELSE 

Add 𝑥𝑗  to D
FAR

 

END IF 

END FOR 

END FOR 

 

IF  𝑤𝑟𝑒𝑠𝑒𝑛𝑡  > 0   

select most recent 𝑤𝑟𝑒𝑐𝑒𝑛𝑡  instances and add them to D
KNN 

END IF 

2 

3 

4 

5 

6 

7 

8 
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Figure 3.6: Instance selection algorithm 
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 Computed centers 𝜐 and alpha ∝ for each class in the new batch using equations 

3.2 and 3.3. It is not necessary that the new batch instances are classified to all 

possible classes, so the number of classes at new batch could be less than the 

possible classes (m ≤ɳ).  

 

 Integer 𝑤𝑟𝑒𝑠𝑒𝑛𝑡 . This parameter represents how many respective recent instances 

will be selected before time t. In some application where the drift is sudden, the 

time factor is not important, therefore selecting instances according to its age is 

ineffective. So the designer of the application can set 𝑤𝑟𝑒𝑠𝑒𝑛𝑡 to zero. 

The algorithm output is a set of relevant instances to current concept called 

D
KNN

. To select instances according to distance similarity, for each class available in the 

new batch, the algorithm will go through all instances (old and new one) from x1 to xt+N 

ignoring its class label and select instances in which the Euclidean distance between the 

center of this class and the instance is less than its computed ∝.  

Relevant instances in term of time are selected according to wrecent  value. The 

value selection depends on the domain at hand, as well as on the expectations of a 

designer regarding the drift type. 

 

 

3.3.2 Reclassifying the New Incoming Batch 

Depending on the selected set D
KNN

, the algorithm will reclassify the new 

instances, which were initially classified using the available classifier. We reclassify 

them because we assume that the current classifier maybe become outdated and useless 

for classifying new instances. 

The algorithm illustrated at Figure 3.7. The main inputs for this algorithm are 

D
H
, D

B
, D

KNN
 and k value that is the size of neighborhood (number of nearest neighbor). 

The work of the algorithm is summarized in the following points: 

 Applying modified k-NN (Figure 3.2) with k as a size of neighborhood and 

D
KNN

 as training set to classify each instance in new batch. Modified  k-NN 

algorithm will return three different classes as explained in section 3.1.2. the 

original k-NN label y′andtwoadditionallabelsy′′andy′′′. 
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 The next step is to update the position of the existing class centers. To do that 

we compute new center υϰ using this formula: 

𝜐𝜘 =
𝜐𝜘

 𝐵 + 𝜐𝜘
 𝐻 +  𝜐𝜘

 𝐾𝑁𝑁 + ( 𝑚𝑎𝑥 𝑧=1
{𝑐𝜘 }  𝑑 𝜐𝜘

 𝐵 , 𝑥𝑧  −  𝑚𝑖𝑛 𝑧=1
{𝑐𝜘 }  𝑑 𝜐𝜘

 𝐵 , 𝑥𝑧  )

4
… (3.4) 

Where: 

υϰ
 B , υϰ

 H , υϰ
 KNN : are the centers of class ϰ in D

B
, D

H
 and D

KNN
 datasets respectively, 

ϰ =1…..ɳ , where ɳ is the number of available classes.   

Note: in some cases D
B
 and D

KNN
 do not include all possible classes available in D

H
, in 

this case the associated centers (υϰ
 B  or υϰ

 KNN ) for missing classes will not be known, so 

it will set to zero.  

Combining “centers of the new objects” with the previous centers help in 

moving centers smoothly and gradually forget old concept and switch to new one. It is 

notable that centers of classes which are not changed (not included at new batch) will 

not be affected by this formula because the new centers will be set to zero. 

 After updating the classes position, the algorithm will compute the Euclidean 

distance between new centers and every instance in new arriving batch D
B
. The 

class with closest center to the instance will be set as fourth label ycenter  (in 

additiontoy′′′,y′′andy′). 

 

 Another class label yclosest  will be computed using Figure 3.3. Unlike ycenter  

which represent the closest class to a specific instance, yclosest  represent the 

closest class distribution to other class distribution as a whole. 

 

 Now each instance in D
B
 has five different class labels (𝑦𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ,  y′′′, y′′, 

y′). The five labels are used to decide if some instance will stay with its current 

class or it must be assigned to other possible closest class. Reclassification of 

any instance in D
B
 depends on a heuristic certainty rule. If certainty rule is 

satisfied, the instance will be reclassified to most frequent class label of all five 

classifications. Otherwise, it will be reclassified to 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 . 
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# Adaptive Training Set Formation for Delayed Labeling Algorithm (SFDL) – 

Reclassifying New Batch Instances 

1 Input:  

List of historical data instances D
H

 =( x1, . . . , xt) with labels ( y1, . . . , yt) 

New batch D
B
 = (xt+1, . . . , xt+N) labeled using classifier Lt ( yt+1, . . . , yt+N) 

Selected instances  D
KNN

 and far instances  D
FAR

 (Figure 3.6) 

Nearest neighbor value : k 

Output:  

New batch  D
B 

with new class labels  

 

ALGORITHM 

 

Apply modified k-NN (Figure 3.2) to reclassify each instance in D
B
 using D

KNN
 

as training set. (three labels y′′′, y′′,y′Returned) 

 

Recompute classes center using Equation 3.4. 

𝜘 =1….. ɳ ,  ɳ is the number of possible available classes. 

 

For each instance in D
B,

 get the closest center (using Euclidean distance) from all 

new computed centers in line 14 and assign it to 𝑦𝑐𝑒𝑛𝑡𝑒𝑟  

 

For each class in D
B,

 compute closest class (Figure 3.3) ( 𝑦𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ) 

 

(Now there is Five different class label (𝑦𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑦𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ,  y′′′,y′′,y′)foreach

instance in D
B
) where  𝑦𝑐𝑒𝑛𝑡𝑒𝑟 The class with closest center to the instance.  

 

FOR each instance in D
B
: 

IF (Certainty Rule return true) 

reclassify this instance to most frequent class label  

ELSE 

classify the instance to 𝑦𝑐𝑒𝑛𝑡𝑒𝑟  

END IF 

END FOR 
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Figure 3.7:  Reclassifying New Batch Instances algorithm 
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Certainty Rule dictates the following: 

1. The instance is not included at D
FAR

. 

 

2. There is no uncertainty in classification (between the five labels) of the 

instance to a specific class. This means that majority in the classification 

must be clear. For example if two of five classes have been classified to label 

X and two for class O and one for class Z (2:2:1) in this case we said that 

there is no certainty, because the voting is very close. The same example if 

three of five classes have been classified to label X and two for class O (3: 

2). Cases like (3:1:1) and (4:1) reflects a good majority . 

By certainty rule we want to determine those instances that are not classified well by the 

existing classifier, far away from the current classes and have fuzzy membership.  

We choose 𝑦𝑐𝑒𝑛𝑡𝑒𝑟  to be a label for those instances that do not satisfy certainty rule.  

 

 

3.3.3 Training Set Formation Algorithm 

This algorithm (Figure 3.8) work to reform the old set according to the changes 

made on reclassification step because the old data needs to be adapted to fit to the new 

data. The algorithm is very simple. The main functions of this algorithm are:  

 Recomputing the centers and  ∝ for each class in D
B 

(after reclassifying its 

instances) using equations 3.2 and 3.3. 

 Reform the old set. For each instance in D
H  

if its distance from any class center 

𝜐𝑖
𝐵 is less than  ∝𝑖  of the same class, then this instance will be reclassified to its 

close class according to distance from the center. 

The output from SFDL Algorithm is a new training set consists of reclassified new 

batch (output of algorithm at Figure 3.7) and reformed old set (output of algorithm at 

Figure 3.8). 

Because the used dataset for training and testing new instances will increase 

gradually after each set formation, a certain criteria could be used to eliminate certain 

number of instances to have always a dataset that does not exceed a predefined size. 
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This can be performed proportional to the number of instances related to each class 

label in the dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

# Adaptive Training Set Formation for Delayed Labeling Algorithm (SFDL) – 

Training Formation 

1 Input:  

List of historical data instances D
H =( x1, . . . , xt) with labels ( y1, . . . , yt) 

New batch  D
B
 with its new labels (after applying Figure 3.7) 

Output:  

Re-formed old training set of D
H 

 

 

ALGORITHM 

 

Recompute ∝ for each class in D
B
 (equation 3.2): ( ∝1…… ∝m), m is the 

number of classes in new batch D
B
. 

Recompute centers for each class in D
B
 (equation 3.3): ( 𝜐1

𝐵…… 𝜐𝑚
𝐵 ). 

 

FOR j=1 to t 

FOR i= 1 to m 

IF d(𝑥𝑗  , 𝜐𝑖
𝐵) ≤ ∝𝑖  

𝑦𝑗 = the class with closest center to 𝑥𝑗  . 

END IF 

END FOR 

END FOR 
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Figure 3.8 Training set formation algorithm 
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CHAPTER 4 

Experimental Results and Evaluation 

 
This chapter discusses the experiments carried out to evaluate our proposed 

model. The chapter includes three sections: Section 4.1 presents all the datasets used in 

our experimentation and gives insight into the main characteristics of each data set. 

Section 4.2 briefly describes the experimental environment and states the programming 

language and tools used to develop the proposed system. Finally, in Sections 4.3 we 

present and discuss experimental results. 

 

 

4.1 Datasets  

For the purposes of research related to concept drift learning there is no standard 

concept drift benchmark dataset. Instead there are popularly datasets that were used by 

most of the existing researches. Unfortunately most of the real word datasets are not 

suitable for evaluating drift learning because there is a little concept drift in them. So 

researchers turn to introduce artificial drift in real datasets or create synthetic 

(fabricated) datasets with artificial drift.  

In our experiments we use six data sets with concept drift, all of which are 

publicly available. The datasets are chosen from various domains that might have 

different drift types with different speed of change. They include no missing or noise. 

Table 4.1 illustrates the characteristics of each set. A short description of each data set is 

given below. 

 

 

Table 4.1: Characteristics of the used datasets 

Name Size Dimensionality Classes Type of data Source 

STAGGER 120 9 2 Artificial  [26] 

SEA 800 3 2 Artificial  [32] 

Elec 2973 6 2 Real  [9] 

Chess 533 6 3 Real [49] 

Credit 1000 23 2 Real  [52] 

Usenet 
Usenet1 1500 

99 2 Real [50] 
Usenet2 1500 
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STAGGER Dataset: 

Each data point is described by 3 features, each with three possible categories: 

size ϵ {small, medium, large}, color ϵ {red, green, blue} and shape ϵ {square, circular, 

triangular}. The numerical representation of each data point consists of 9 bits, 3 for each 

feature. For example, a large, red, square object is encoded as the vector [0, 0, 1, 1, 0, 0, 

1, 0, 0]
T
. Three classification tasks were to be learned in a course of 120 points. From 

point 1 to point 40, the classes to be distinguished (with class label = 1) are [size = 

small AND color = red] versus all other values (with class label = 2); from 41 to 80, 

[color = green OR shape = circular] versus all other values; and from 81 to 120, [size = 

small OR size = large] versus all other values. The drift complexity in STAGGER 

dataset lies not only at changing in posterior probabilities but also the change in class 

balance [26]. 

 

SEA Dataset: 

Each data point is described by three features, x =[x1, x2, x3]
T
, where values of  x 

are uniformly randomly generated from [0, 10]
3
. Only the first two features are relevant. 

An instance belongs to class 1 if x1 + x2 ≤θandbelongstoclass2otherwise,whereθ

isathresholdvalue,differentforeachconcept.Therearefourconceptsθ=7,8,8.5,9.

We generate 200 instances for each concept (100 instances for each class label). We 

insure there is no label noise was added so the two classes are perfectly separated [32]. 

 

Electricity Market Dataset (Elec): 

Electricity data characterizes electricity demand in Australia, the task is to predict 

electricity market price. We use the time period with no missing values comprised of 

2973 instances collected along a period of 3 months from May 11 to July 11, 1997 from 

the Australian New South Wales Electricity Market. Class Label has two values„up‟ or 

„down‟indicating the change of the price. In our experimentation each month represents 

one concept [9].  

 

Chess Dataset: 

Constructed using the data obtained from chess.com portal. The data consists of 

game records of one player over a period from 2007 December to 2010 March. A player 
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has a rating, which changes depending on his/her results achieved (the higher is the 

rating, the stronger is the player). A payer is developing skills over time, besides 

engages into different types of competitions (personal, tournament or champtionship). 

The rating and the type of game determine how the system selects an opponent. This is 

where the concept drift is expected. The task is to predict if the player will win or lose 

based on the setting. There is natural problem of delayed labeling, the winner is known 

only after the game is finished. In turn based chess one game might last even for several 

months [49]. 

 

German Credit Approval Dataset (German2):  

Classifies customers as having good or bad credit risks. Following [45], a gradual 

concept change was introduced artificially as a hidden context. We sort the data using 

oneofthefeatures(feature„age‟waschosen)andtheneliminatethisfeaturefromthe

dataset. Delayed labeling is relevant for this task, since the true label (whether a person 

fails to repay the credit) is known after some time. However, the decision makers need 

to know indications of changes right away [52]. 

 

Usenet Dataset:  

This dataset include two sets usenet1 and usenet2. The sets based on the 20 

newsgroups collection. They simulate a stream of messages from different newsgroups 

that are sequentially presented to a user, who then labels them as interesting or junk, 

according to his/her personal interests. The difference between two sets lies on the 

change in one user interest in the various newsgroups over time. This dataset was used 

to build news recommender systems, document categorization and spam filtering 

applications [12]. Figure 4.1 shows the news interest change among the batches (we 

have five batches each contains 300 instances and depicted as the first row in Figure 

4.1)   and illustrate which newsgroups articles are considered interesting (+) or 

uninteresting (-) in each time period [50]. 
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4.2 Experiments Setup  

This section describes the setting of experiments for evaluating our proposed 

approach. Its primary purpose is to empirically validate the advantages and to notice the 

shortcomings of our proposed model. Our approach is expected to enhance the 

classification accuracy which might drop down over time if we use an ordinary classier 

(a classifier that does not consider concept drift in its approach) because of concept 

drift. The following describes experimental environment and tools, and experiment 

procedures. 

4.2.1 Experimental Environment and Tools 

The experiments took place on a machine equipped with an Intel Pentium Core 2 

Duo T8300 @ 2.40 GHz processor and 2.00 GB of RAM. To implement our algorithm 

we used Java programming language. To carry out our thesis (including the 

experimentation), special tools and programs were used: 

 Microsoft Excel: we use excel to partition, organize and store datasets in tables, 

do some simple preprocessing and analyze the results. 

 

 Narasimhamurthy and Kuncheva Framework [26]: this framework work to 

simulate changing environments.We use this framework to generate STAGGER 

dataset. 

 Matlab: we use Matlab to use the implementation of Narasimhamurthy and 

Kuncheva Framework [26] and generate STAGGER dataset. 

 

 
Figure 4.1: Dataset Usenet1 and Usenet2 [11] 
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 NetBeans 7.0 with integrated JDK (Java Development Kit) 1.6 java 

environment: NetBeans program helps us to develop, build, compile, validate 

and execute our algorithm.  

 

 RapidMiner: to preprocess the data and train and test the classifiers. 

 

 Microsoft Word: the program used to write and document the results and 

experimentations. 

 

4.2.2 Experiment Procedure  

The goal of experiments is to observe the system performance as target concepts 

change from time to time. To achieve the goal we follow this experiment procedure: 

1. We start by dividing the dataset into smaller sub sets we called each one as a 

“batch”.Webenefitfrompreviousresearchesinthewaytheypartitionthedataset

andinsurethatevery“batch”representachange [11, 45]. 

 

2. We use one batch as a training set for the initial learner. Datasets where instances 

are ordered according to time, we use oldest batch to be the initial training set. 

Otherwise we pick a random batch as initial training set, because the drift type in 

such sets is mostly sudden. Table 4.2 shows dataset partitioning details. The table 

illustrate type of drift represented, dataset partitioning way, number of instances 

included in the initial dataset with class balance distribution in percentage, number 

of batches, number of instances in each batch, class balance for each batch (in 

percentage) and if dataset is time ordered (Y) or not (N). 

 

3. As we do in traditional procedure, we build the initial learner using the initial 

training set. We use 10-cross validation with stratified sampling in order to 

estimate the performance of a learning classifier and ensure we get the best model 

in current time according to its classification accuracy. The accuracy of the model 

is calculated using the following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑛
 × 100 ………… (4.1) 
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4. Next, we pass the first batch, classifying it using current learner (ordinary 

classifier), apply SFDL training set formation algorithm and retrain the model 

using formed data. As we mention before SFDL algorithm needs two parameters: 

(1) number of neighborhood k (space similarity) and (2) number of the most recent 

instances wrecent (time similarity).  The choice of these two parameters value (time 

and space combination) directly depends on the observed change types and the 

future expectations as well as designer knowledge of domain. Parameter setting is 

fixed for one application run. 

 

5. We measure the accuracy at two points after passing the batch: (1) after its been 

classified by Algorithm at Figure 3.7. (2) after training set formation and 

retraining the model. 

 

Table 4.2: Dataset partitioning details 

Name Drift Type # instances 

initial training 

set (class 

balance %) 

#Batch Batch Description  
(Batch, # instances, Class 

Balance %) 

Time 

Order 

Stagger Sudden 40 (57: 45) 2 
Batch1, 40, (10: 90) 

Batch2, 40, (65: 35) N 

SEA Sudden 200 (50:50) 3 

Each batch include 200 

instances with (50:50) class 

balance  

N 

Elec Gradual 1006 (64: 36) 2 
Batch1, 1440, (49:51)  

Batch2, 527  , (62:38) 
Y 

Chess Incremental 233(42:54: 4) 3 

Batch1, 100, (35: 56: 9) 

Batch2, 100, (33: 62: 5) 

Batch3, 100, (32: 60: 8) 

Y 

Credit Gradual 400 (63: 37) 6 

Batch 1, 100, (70:30) 

Batch 2, 100, (76:24) 

Batch 3, 100, (79: 21) 

Batch 4, 100, (71:29) 

Batch 5, 100, (79: 21) 

Batch 6, 100, (71:29) 

Y 

Usenet 
Reoccurring 

[Figure 4.1] 
300 (50:50) 4 

U
se

n
et

1
 Batch 1, 300, (33:67) 

Batch 2, 300, (67:33) 

Batch 3, 300, (33:67) 

Batch 4, 300, (67:33) 
Y 

U
se

n
et

2
 

Each batch include 

300 instances with 

(67:33) class balance 
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6.  Then we pass the next batch, classify it using the most recent trained classifier after 

set formation and so on. The procedure explained previously in chapter 3. After 

each batch classification after set formation, we compare our results with ordinary 

classifier. 

 

4.3 Experimental Results and Discussion 

This section summarizes and discusses the results of numerous experiments that 

have been conducted.  

4.3.1 Sudden Drift Experiments (STAGGER and SEA datasets) 

Table 4.3 illustrates experimental results for both STAGGER and SEA datasets. 

STAGGER dataset partitioned into three parts each represent different concept: the first 

concept [size = small AND color = red] used to build the initial learner, the second 

concept [color = green OR shape = circular] as batch1 and third concept [size = small 

OR size = large] as batch2. For SEA dataset we use the first concept where θ= 7 as to 

build the initial learner and concepts where θ= 8, 8.5, 9 as batch1, batch2 and batch3 

respectively.  

 

Table 4.3: Results of STAGGER and SEA datasets. 

        Accuracy after the batch reclassification (Figure 3.7) is underlined. 

        Accuracy after training set formation and model retraining is in bold. 

S
T

A
G

G
E

R
 

Naïve Bayes 

Acc = 100% 

k=2 

wrecent = 0 

 

batch1 batch2   

Ordinary  57.50% 53.66%   

Arrival of batch1 
65.00% 

90.00% 

 

46.34%   

Arrival of batch2 - 
43.90% 

65.85% 
  

S
E

A
 Decision Tree 

Acc = 100% 

k=10 

wrecent = 0 

  batch1 batch2 batch3 

Ordinary  59.00% 50.00% 50.00% 

Arrival of batch1 
50.00% 

86.00% 
53.00% - 

Arrival of batch2 - 
50.00% 

89.50% 
73.50% 

Arrival of batch3 - - 
86.00% 

89.00% 
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For STAGGER dataset the best model for classifying the first concept Naïve 

Bayes with training accuracy = 100%. We use the same model to predict batch1 and 

batch2. The accuracy of classification was 57.50% and 53.66% for batch1 and batch2 

respectively. This results confirm the existence of drift where the current Naïve Bayes 

model could not classify the other concepts correctly. 

 

 

Figure 4.2: Accuracy over time for SFDL algorithm and ordinary classifier 

(a) STAGGER dataset   (b) SEA dataset 

Two accuracy observations recorded after passing batch1. First underlined 

observation with value = 65% represents the accuracy after reclassifying the batch using 

Algorithm at Figure 3.7. The second bold observation with value = 90% represent the 

accuracy after training set formation and model retraining. The SFDL algorithm applied 

with k = 2 and wrecent = 0. The size of batches is very small (40 instances) for this reason 

we chose a small number of neighborhood k. Also in sudden drift previous concept is 

not much trusted to classify the current batch. Choosing most recent historical examples 

to be selected at training set selection algorithm (wrecent > zero) is meaningless because 

we are dealing with sudden drift where source of drift is not related to time ordering. 

Although the problem of unbalancing with batch1 (10: 90) our algorithm enhance the 

accuracy by 32.5% (from 57.50% to 90.00%). 

 After the arrivalofbatch2weclassifyit‟sinstancesusingthemostrecentNaïve

Bayes model (after retraining). Note that the accuracy decreased to 46.34%. This 

happened because retraining make the model adapted according to data in batch1 which 

is different from batch2. Also the problem of class imbalance at batch1 makes the 

updated model biased toward dominate label “2”. This problem also affected the

reclassificationstepwheremostselectedinstancesbelongtoclass”2”, thus the accuracy 

(a) (b) 



42 
 

decreased more to 43.90%. With perfect parameters setting (of k and wrecent) and role of 

certainty rule, the accuracy increased to 65.85% after applying SFDL algorithm. 

For SEA dataset the most accurate classifier for classifying the first concept was 

Decision Tree with accuracy = 100%. The same model was used to classify the three 

incoming concepts. The accuracy of classification was 59.00%, 50.00%, 50.00% for 

batch1, batch2 and batch3 respectively. The classification accuracy of incoming 

concepts decreased compare to initial concept classification accuracy. Table 4.3 

presents the accuracy after batch reclassification and model retraining after passing the 

three batches. SFDL algorithm applied with k = 10 and wrecent= 0 because we are 

dealing with sudden and medium-sized dataset. After model retraining, SFDL algorithm 

increases the accuracy of classification with at least 27%. Unlike the first two batches, 

reclassification accuracy of batch3 is higher than classification accuracy by initial 

model. This happened because of the concept sequencing, where θgradedfrom7to9.

Thus the classifier gains more knowledge after passing the two previous batches. 

Figure 4.2 presents the curves of accuracy over time using SFDL algorithm and 

ordinary classifier for STAGGER and SEA datasets. It is notable that SFDL algorithm 

achieves better performance than the ordinary classifiers. 

4.3.2 Gradual Drift Experiments (Electricity and Credit datasets) 

Table 4.4 illustrates experimental results for both Electricity and Credit datasets. 

Apart from the other two datasets mentioned in the previous section, we partition 

electricity dataset into three different parts with different size where each represent 

different concept: the first part used to build the initial learner [May, 11 – May, 31], the 

second concept [June, 1 – June, 30] as batch1 and third concept [July, 1 – July, 11] as 

batch2. This exception in partitioning to different batch size comes due to the nature of 

dataset and concepts distribution (based on months).  

For credit approval dataset, after sorting the instances from minimum to maximum 

according to age feature we chose instances [0 - 400] as training set to initial learner and 

divide the remaining 600 instances [400 - 900 ] into six consequent batches each with 

100 instances.  

Electricity and credit datasets are real world datasets with gradual drift. For both 

datasets we use Multilayer Perceptron Neural Network (MLP-NN) as training model. 
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Because we are dealing with time-related gradual drift, we take time similarity into 

consideration (wrecent > 0). For example, to predict electricity price or credit card 

approval, the most recent examples are more reliable to be used to classify new 

incoming instances than old historical data. The values of wrecent and k were chosen 

according to size of dataset and incoming batches.  

From the results in Table 4.4, it is notable that average error in classifying 

incoming batches by ordinary classifier in gradual drift experiments is mostly less than 

it in gradual drift experiments. The reason is the two datasets (most real word datasets) 

include little concept drift.  

Figure 4.3 presents the curves of accuracy over time using SFDL algorithm and 

ordinary classifier for Electricity and credit approval datasets. The figure shows that our 

algorithm achieves higher classification accuracy in comparison to ordinary classifier 

for both datasets. 

 

Table 4.4: Results of Electricity and Credit datasets. 

Accuracy after the batch reclassification (Figure 3.7) is underlined. 

        Accuracy after training set formation and model retraining is in bold. 

E
le

c 

MLP-NN 

Acc=89.56% 

k=60 

wrecent = 200 

  batch1 batch2         

Ordinary  69.44% 69.26%         

Arrival 

of batch1 

72.50% 

87.43% 
66.66%         

Arrival 

of batch2 
- 

67.17% 

69.27% 
        

C
re

d
it

 MLP-NN 

Acc =100% 

k=13 

wrecent =100 

  batch1 batch2 batch3 batch4 batch5 batch6 

Ordinary 74.00% 70.00% 65.00% 55.00% 72.00% 21.00% 

Arrival 

of batch1 

64.00% 

83.00% 
72.00% - - - - 

Arrival 

of batch2 
- 

64.00% 

76.00% 
69.00% - - - 

Arrival 

of batch3 
- - 

69.00% 

79.00% 
61.00% - - 

Arrival 

of batch4 
- - - 

66.00% 

76.00% 
72.00% - 

Arrival 

of batch5 
- - - - 

73.00% 

79.00% 
73.00% 

Arrival 

of batch6 
- - - - - 

75.00% 

77.00% 
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Figure 4.3: Accuracy over time for SFDL algorithm and ordinary classifier 

(a) Electricity dataset   (b) Credit approval dataset 

 

4.3.3 Incremental Drift Experiments ( Chess dataset) 

Incremental drift is a sequence of small sudden drifts. For this reason it‟s very

difficult to predict and learn. The main difference between it and sudden drift is that 

incremental drift is related to time where sudden drift is not. Chess dataset is 

incremental real dataset. We partitioned chess dataset into four parts each represent 

different concept: the first concept includes playing records in a period [2007/12/07 to 

2008/12/12] used to build the initial learner, the second concept in a period [2008/12/13 

to 2009/03/24] used as first batch (batch1), third concept [2009/03/25 to 2009/06/30] as 

batch2 and fourth concept [2009/07/01 to 2010/03/09] as batch3. The results of chess 

experiments are presented in Table 4.5. The best model for predicting first concept was 

Rule-Based Classifier with accuracy = 92.06%. We choose a very small neighborhood k 

and wrecent value because it is suitable to the nature of data and change speed. From the 

table it is clear that our approach have better predictive performance than the classical 

ordinary classifier. 

By the arrival of first and second batch, RFDL enhance the accuracy by at least 

17% but it is not more than 3% for the last batch. We think the reason is the extensive 

sudden drifts during this period. Also in this period the user turns to play personal 

competitions (70% of total instances in batch3).  This may add another hidden cause of 

drift related to player-opponent relationship. 

(a) (b) 
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Figure 4.4 presents the curves of accuracy for SFDL algorithm and ordinary 

classifier. SFDL shows superior accuracy over ordinary classifier. 

 

4.3.4 Usenet Datasets Experiments 

Changes in user interests over time are the main cause of concept drift in usenet dataset. 

It is obvious from Figure 4.1 that usenet datasets represent recurrence drift type. In fact 

this dataset is more much more complicated in reality due to unpredictable user 

interests. 

We benefit from [11] to partition the data as illustrated in Figure 4.1.  we use the 

first user interest (medicine articles) to build initial learner and other parts of interest to 

represent incoming batches. It is to be mentioned that batches with same interests are 

not identical. 

Table 4.5:  Results of Chess dataset. 

Accuracy after the batch reclassification (Figure 3.7) is underlined. 

        Accuracy after training set formation and model retraining is in bold. 

C
h

es
s 

Rule-based 

Classifier 

Acc =  92.06% 

k=13 

wrecent = 20 

  batch1 batch2 batch3 

Ordinary 51.00% 59.00% 64.00% 

Arrival of batch1 
75.00% 

74.00% 
74.00% - 

Arrival of batch2 - 
69.00% 

76.00% 
67.00% 

Arrival of batch3 - - 
67.00% 

67.00% 

 

Figure 4.4:  Accuracy over time for SFDL algorithm and ordinary 

classifier for chess dataset 
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Table 4.4 illustrates experimental results for usenet datasets. The best model for 

predicting first concept for both usenet datasets was MLP-NN with accuracy = 95.83% 

and 93.33% for usenet1 and usenet2 respectively. We benefit from Katakis et al. [11] 

experiments on Time Window methods to choose best wrecent value and other extensive 

experiments done to choose k neighborhood value. 

 

It is obvious that initial model for both usenet datasets can predict batches with 

medicine articles accurately than other batches.  

The results show the ability of SFDL algorithm to switch between concepts (as user 

interests change) and how gradual forgetting by center combination (equation 3.4) 

improve classification accuracy. Figure 4.5 also shows the advantages of SFDL 

algorithm over ordinary classifier. 

Table 4.6:  Results of Usenet datasets. 

Accuracy after the batch reclassification (Figure 3.7) is underlined. 

        Accuracy after training set formation and model retraining is in bold. 

U
se

n
et

1
 

MLP-NN 

Acc = 95.83% 

k=30 

wrecent = 100 

  batch1 batch2 batch3 batch4 

Ordinary 24.33% 82.33% 20.67% 88.33% 

Arrival of batch1 
52.66% 

59.00% 
54.00% - - 

Arrival of batch2 - 
69.33% 

88.33% 
60.00% - 

Arrival of batch3 - - 
54.33% 

71.33% 
55.33% 

Arrival of batch4 - - - 
66.33% 

90.00% 

U
se

n
et

2
 

MLP-NN 

Acc = 93.33% 

k= 30 

wrecent = 100 

  batch1 batch2 batch3 batch4 

Ordinary 60.67% 57.00% 60.67% 80.00% 

Arrival of batch1 
49.00% 

81.00% 
44.67% - - 

Arrival of batch2 - 
42.00% 

70.67% 
72.00% - 

Arrival of batch3 - - 
64.00% 

77.00% 
75.00% 

Arrival of batch4 - - - 
72.00% 

84.00% 
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Finally, Table 4.7 presents a comparative study between RFDL algorithm and 

four other stream classification methods for usenet datasets. These methods are 

considering concept drift in their approaches. A description for each of the four methods 

is provided at Chapter 2.  

It is notable that in general using all the four methods plus the SFDL algorithm, 

the average classification accuracies for usenet2 dataset are higher than of that of 

usenet1. This is because usenet1 includes more complicated drift where the same batch 

includes another drift which means that the user switch between two different interests. 

It is clear that SFDL approach outperforms all other methods and the approach with 

Time Window (N=100) is the worst.  

 

 

 

 

 

 

 

 

 

 

Figure 4.5:  Accuracy over time for SFDL algorithm and ordinary classifier 

(a) Usenet1 dataset   (b) Usenet2 dataset 

Table 4.7: Average accuracy of the four methods in the 

Usenet datasets 

Method Usenet1 Usenet2 

SFDL Algorithm 81.00% 81.20% 

Simple Incremental [11] 59.00% 73.00% 

TimeWindow (N=100) [38] 56.00% 60.00% 

TimeWindow (N=150) [38] 59.00% 62.00% 

TimeWindow (N=300) [38] 58.00% 70.00% 

Weighted Examples [18] 67.00% 75.00% 

CCP (batch size = 50) [11] 81.00% 80.00% 

(a) (b) 
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CHAPTER 5 

Conclusion and Future Work 

 
5.1 Conclusion  

In this thesis, we addressed a problem of supervised learning over time when the 

data is changing (concept drift) and label of new instances is delayed. We introduce an 

adaptive training set formation algorithm called SFDL, which is based on selective 

training set formation.  

SFDL algorithm includes three sub algorithms: instance selection algorithm that is 

used to select the most relevant examples to current concept in terms of time similarity 

and space similarity, reclassification algorithm to reclassify the new instances, which 

were initially classified using the available classifier and the third algorithm is training 

set formation algorithm which work to reform the old set according to the changes made 

on reclassification step. 

We tested our approach using synthetic and real datasets. The datasets are chosen 

from various domains which might have different drift types (sudden, gradual, 

incremental reoccurrences) with different speed of change. Experimental evaluation 

confirms improvement in classification accuracy as compared to ordinary classifier for 

all drift types. Our approach is able to increase the classifications accuracy with 20% in 

average and 56% in the best cases of our experimentations and it has not been worse 

than the ordinary classifiers in any case 

Finally, we conducted a comparative study between our proposed method and 

another four methods to identify recurrence drift and predict changes in user interest in 

news group over time. The results show the superiority of our solution over other 

methods in handling recurrence drift and fast respond to change. 

Our proposed solution is considered as the first systematic training set formation 

approach that take into account delayed labeling problem.  
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5.2 Future Work 

Future research will be directed in the following direction: 

 For input setting parameters like number of neighborhood k and number of most 

recent instances wrecent, these parameters have been determined by application 

designer. It is better to automatically determine these parameters to preserve 

self-adaption. 

 

 In our algorithm the training set will be increased gradually after each formation. 

A special sampling strategy could be developed to preserve new knowledge and 

remove insignificant instances. 

 

 Extending our algorithm so it can add or remove classes. This is important 

where in some domains, there are classes that disappear by time and must be 

removed or vice versa.  

 

 Develop a dynamic feature space formation. This is very useful when dealing 

with textual data, structured and unstructured documents, web content analysis 

changes might affect only a part of the feature space, related to the changed 

vocabulary. 

 

 Build a strategy to form artificial instances from existing historical data. We 

expect such strategies could increase flexibility in adaptation to drifts in cases of 

small sample size. 

 

 Exploring some ideas to enhance the proposed strategy to improve the results 

accuracy.  A very high classification accuracy can be provided if we build a 

customized version to deal with each drift individually.  

Finally, concept drift problems are heterogeneous from the application 

perspective. We believe that the future research on adaptivity to concept drift has 

prospects and demand to come closer to specializing in application groups. 
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