5,988 research outputs found

    Compositional Verification for Timed Systems Based on Automatic Invariant Generation

    Full text link
    We propose a method for compositional verification to address the state space explosion problem inherent to model-checking timed systems with a large number of components. The main challenge is to obtain pertinent global timing constraints from the timings in the components alone. To this end, we make use of auxiliary clocks to automatically generate new invariants which capture the constraints induced by the synchronisations between components. The method has been implemented in the RTD-Finder tool and successfully experimented on several benchmarks

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    Context-aware counter abstraction

    Get PDF
    The trend towards multi-core computing has made concurrent software an important target of computer-aided verification. Unfortunately, Model Checkers for such software suffer tremendously from combinatorial state space explosion. We show how to apply counter abstraction to real-world concurrent programs to factor out redundancy due to thread replication. The traditional global state representation as a vector of local states is replaced by a vector of thread counters, one per local state. In practice, straightforward implementations of this idea are unfavorably sensitive to the number of local states. We present a novel symbolic exploration algorithm that avoids this problem by carefully scheduling which counters to track at any moment during the search. We have carried out experiments on Boolean programs, an abstraction promoted by the success of the Slam project. The experiments give evidence of the applicability of our method to realistic programs, and of the often huge savings obtained in comparison to plain symbolic state space exploration, and to exploration optimized by partial-order methods. To our knowledge, our tool marks the first implementation of counter abstraction to programs with non-trivial local state spaces, resulting in a Model Checker for concurrent Boolean programs that promises true scalabilit

    Partial Order Reduction for Security Protocols

    Get PDF
    Security protocols are concurrent processes that communicate using cryptography with the aim of achieving various security properties. Recent work on their formal verification has brought procedures and tools for deciding trace equivalence properties (e.g., anonymity, unlinkability, vote secrecy) for a bounded number of sessions. However, these procedures are based on a naive symbolic exploration of all traces of the considered processes which, unsurprisingly, greatly limits the scalability and practical impact of the verification tools. In this paper, we overcome this difficulty by developing partial order reduction techniques for the verification of security protocols. We provide reduced transition systems that optimally eliminate redundant traces, and which are adequate for model-checking trace equivalence properties of protocols by means of symbolic execution. We have implemented our reductions in the tool Apte, and demonstrated that it achieves the expected speedup on various protocols

    Predicate Abstraction with Indexed Predicates

    Full text link
    Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems using a combination of a decision procedure for a subset of first-order logic and symbolic methods originally developed for finite-state model checking. We consider models containing first-order state variables, where the system state includes mutable functions and predicates. Such a model can describe systems containing arbitrarily large memories, buffers, and arrays of identical processes. We describe a form of predicate abstraction that constructs a formula over a set of universally quantified variables to describe invariant properties of the first-order state variables. We provide a formal justification of the soundness of our approach and describe how it has been used to verify several hardware and software designs, including a directory-based cache coherence protocol.Comment: 27 pages, 4 figures, 1 table, short version appeared in International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI'04), LNCS 2937, pages = 267--28

    Model reduction of biochemical reactions networks by tropical analysis methods

    Full text link
    We discuss a method of approximate model reduction for networks of biochemical reactions. This method can be applied to networks with polynomial or rational reaction rates and whose parameters are given by their orders of magnitude. In order to obtain reduced models we solve the problem of tropical equilibration that is a system of equations in max-plus algebra. In the case of networks with nonlinear fast cycles we have to solve the problem of tropical equilibration at least twice, once for the initial system and a second time for an extended system obtained by adding to the initial system the differential equations satisfied by the conservation laws of the fast subsystem. The two steps can be reiterated until the fast subsystem has no conservation laws different from the ones of the full model. Our method can be used for formal model reduction in computational systems biology

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Automatic techniques for detecting and exploiting symmetry in model checking

    Get PDF
    The application of model checking is limited due to the state-space explosion problem ā€“ as the number of components represented by a model increase, the worst case size of the associated state-space grows exponentially. Current techniques can handle limited kinds of symmetry, e.g. full symmetry between identical components in a concurrent system. They avoid the problem of automatic symmetry detection by requiring the user to specify the presence of symmetry in a model (explicitly, or by annotating the associated specification using additional language keywords), or by restricting the input language of a model checker so that only symmetric systems can be specified. Additionally, computing unique representatives for each symmetric equivalence class is easy for these limited kinds of symmetry. We present a theoretical framework for symmetry reduction which can be applied to explicit state model checking. The framework includes techniques for automatic symmetry detection using computational group theory, which can be applied with no additional user input. These techniques detect structural symmetries induced by the topology of a concurrent system, so our framework includes exact and approximate techniques to efficiently exploit arbitrary symmetry groups which may arise in this way. These techniques are also based on computational group theoretic methods. We prove that our framework is logically sound, and demonstrate its general applicability to explicit state model checking. By providing a new symmetry reduction package for the SPIN model checker, we show that our framework can be feasibly implemented as part of a system which is widely used in both industry and academia. Through a study of SPIN users, we assess the usability of our automatic symmetry detection techniques in practice

    STAMINA: Stochastic Approximate Model-Checker for Infinite-State Analysis

    Get PDF
    Reliable operation of every day use computing system, from simple coffee machines to complex flight controller system in an aircraft, is necessary to save time, money, and in some cases lives. System testing can check for the presence of unwanted execution but cannot guarantee the absence of such. Probabilistic model checking techniques have demonstrated significant potential in verifying performance and reliability of various systems whose execution are defined with likelihood. However, its inability to scale limits its applicability in practice. This thesis presents a new model checker, STAMINA, with efficient and scalable model truncation for probabilistic verification. STAMINA uses a novel model reduction technique generating a finite state representations of large systems that are amenable to existing probabilistic model checking techniques. The proposed method is evaluated on several benchmark examples. Comparisons with another state-of-art tool demonstrates both accuracy and efficiency of the presented method
    • ā€¦
    corecore