5,705 research outputs found

    Sensor feature selection and combination for stress identification using combinatorial fusion

    Get PDF
    The identification of stressfulness under certain driving condition is an important issue for safety, security and health. Sensors and systems have been placed or implemented as wearable devices for drivers. Features are extracted from the data collected and combined to predict symptoms. The challenge is to select the feature set most relevant for stress. In this paper, we propose a feature selection method based on the performance and the diversity between two features. The feature sets selected are then combined using a combinatorial fusion. We also compare our results with other combination methods such as naive Bayes, support vector machine, C4.5, linear discriminant function (LDF), and k-nearest neighbour (kNN). Our experimental results demonstrate that combinatorial fusion is an efficient approach for feature selection and feature combination. It can also improve the stress recognition rate.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000322766600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701RoboticsSCI(E)EI1ARTICLEnull1

    Development of novel orthogonal genetic circuits, based on extracytoplasmic function (ECF) σ factors

    Get PDF
    The synthetic biology field aims to apply the engineering 'design-build-test-learn' cycle for the implementation of synthetic genetic circuits modifying the behavior of biological systems. In order to reach this goal, synthetic biology projects use a set of fully characterized biological parts that subsequently are assembled into complex synthetic circuits following a rational, model-driven design. However, even though the bottom-up design approach represents an optimal starting point to assay the behavior of the synthetic circuits under defined conditions, the rational design of such circuits is often restricted by the limited number of available DNA building blocks. These usually consist only of a handful of transcriptional regulators that additionally are often borrowed from natural biological systems. This, in turn, can lead to cross-reactions between the synthetic circuit and the host cell and eventually to loss of the original circuit function. Thus, one of the challenges in synthetic biology is to design synthetic circuits that perform the designated functions with minor cross-reactions (orthogonality). To overcome the restrictions of the widely used transcriptional regulators, this project aims to apply extracytoplasmic function (ECF) σ factors in the design novel orthogonal synthetic circuits. ECFs are the smallest and simplest alternative σ factors that recognize highly specific promoters. ECFs represent one of the most important mechanisms of signal transduction in bacteria, indeed, their activity is often controlled by anti-σ factors. Even though it was shown that the overexpression of heterologous anti-σ factors can generate an adverse effect on cell growth, they represent an attractive solution to control ECF activity. Finally, to date, we know thousands of ECF σ factors, widespread among different bacterial phyla, that are identifiable together with the cognate promoters and anti-σ factors, using bioinformatic approaches. All the above-mentioned features make ECF σ factors optimal candidates as core orthogonal regulators for the design of novel synthetic circuits. In this project, in order to establish ECF σ factors as standard building blocks in the synthetic biology field, we first established a high throughput experimental setup. This relies on microplate reader experiments performed using a highly sensitive luminescent reporter system. Luminescent reporters have a superior signal-to-noise ratio when compared to fluorescent reporters since they do not suffer from the high auto-fluorescence background of the bacterial cell. However, they also have a drawback represented by the constant light emission that can generate undesired cross-talk between neighboring wells on a microplate. To overcome this limitation, we developed a computational algorithm that corrects for luminescence bleed-through and estimates the “true” luminescence activity for each well of a microplate. We show that the correcting algorithm preserves low-level signals close to the background and that it is universally applicable to different experimental conditions. In order to simplify the assembly of large ECF-based synthetic circuits, we designed an ECF toolbox in E. coli. The toolbox allows for the combinatorial assembly of circuits into expression vectors, using a library of reusable genetic parts. Moreover, it also offers the possibility of integrating the newly generated synthetic circuits into four different phage attachment (att) sites present in the genome of E. coli. This allows for a flawless transition between plasmid-encoded and chromosomally integrated genetic circuits, expanding the possible genetic configurations of a given synthetic construct. Moreover, our results demonstrate that the four att sites are orthogonal in terms of the gene expression levels of the synthetic circuits. With the purpose of rationally design ECF-based synthetic circuits and taking advantage of the ECF toolbox, we characterized the dynamic behavior of a set of 15 ECF σ factors, their cognate promoters, and relative anti-σs. Overall, we found that ECFs are non-toxic and functional and that they display different binding affinities for the cognate target promoters. Moreover, our results show that it is possible to optimize the output dynamic range of the ECF-based switches by changing the copy number of the ECFs and target promoters, thus, tuning the input/output signal ratio. Next, by combining up to three ECF-switches, we generated a set of “genetic-timer circuits”, the first synthetic circuits harboring more than one ECF. ECF-based timer circuits sequentially activate a series of target genes with increasing time delays, moreover, the behavior of the circuits can be predicted by a set of mathematical models. In order to improve the dynamic response of the ECF-based constructs, we introduced anti-σ factors in our synthetic circuits. By doing so we first confirmed that anti-σ factors can exert an adverse effect on the growth of E. coli, thus we explored possible solutions. Our results demonstrate that anti-σ factors toxicity can be partially alleviated by generating truncated, soluble variants of the anti-σ factors and, eventually, completely abolished via chromosomal integration of the anti-σ factor-based circuits. Finally, after demonstrating that anti-σ factors can be used to generate a tunable time delay among ECF expression and target promoter activation, we designed ECF/AS-suicide circuits. Such circuits allow for the time-delayed cell-death of E. coli and will serve as a prototype for the further development of ECF/AS-based lysis circuits

    Fusion of heart rate variability and salivary cortisol for stress response identification based on adverse childhood experience

    Get PDF
    Adverse childhood experiences have been suggested to cause changes in physiological processes and can determine the magnitude of the stress response which might have a significant impact on health later in life. To detect the stress response, biomarkers that represent both the Autonomic Nervous System (ANS) and Hypothalamic-Pituitary-Adrenal (HPA) axis are proposed. Among the available biomarkers, Heart Rate Variability (HRV) has been proven as a powerful biomarker that represents ANS. Meanwhile, salivary cortisol has been suggested as a biomarker that reflects the HPA axis. Even though many studies used multiple biomarkers to measure the stress response, the results for each biomarker were analyzed separately. Therefore, the objective of this study is to propose a fusion of ANS and HPA axis biomarkers in order to classify the stress response based on adverse childhood experience. Electrocardiograph, blood pressure (BP), pulse rate (PR), and salivary cortisol (SCort) measures were collected from 23 healthy participants; 11 participants had adverse childhood experience while the remaining 12 acted as the no adversity control group. HRV was then computed from the ECG and the HRV features were extracted. Next, the selected HRV features were combined with the other biomarkers using Euclidean distance (ed) and serial fusion, and the performance of the fused features was compared using Support Vector Machine. From the result, HRV-SCort using Euclidean distance achieved the most satisfactory performance with 80.0% accuracy, 83.3% sensitivity, and 78.3% specificity. Furthermore, the performance of the stress response classification of the fused biomarker, HRV-SCort, outperformed that of the single biomarkers: HRV (61% Accuracy), Cort (59.4% Accuracy), BP (78.3% accuracy), and PR (53.3% accuracy). From this study, it was proven that the fused biomarkers that represent both ANS and HPA (HRV-SCort) able to demonstrate a better classification performance in discriminating the stress response. Furthermore, a new approach for classification of stress response using Euclidean distance and SVM named as ed-SVM was proven to be an effective method for the HRV-SCort in classifying the stress response from PASAT. The robustness of this method is crucial in contributing to the effectiveness of the stress response measures and could further be used as an indicator for future health

    Fusion of Spectral Reflectance and Derivative Information for Robust Hyperspectral Land Cover Classification

    Get PDF
    Developments in sensor technology have made high resolution hyperspectral remote sensing data available to the remote sensing analyst for ground cover classification and target recognition tasks. Further, with limited ground-truth data in many real-life operating scenarios, such hyperspectral classification systems often employ dimensionality reduction algorithms. In this thesis, the efficacy of spectral derivative features for hyperspectral analysis is studied. These studies are conducted within the context of both single and multiple classifier systems. Finally, a modification of existing classification techniques is proposed and tested on spectral reflectance and derivative features that adapts the classification systems to the characteristics of the dataset under consideration. Experimental results are reported with handheld, airborne and spaceborne hyperspectral data. Efficacy of the proposed approaches (using spectral derivatives and single or multiple classifiers) as quantified by the overall classification accuracy (expressed in percentage), is significantly greater than that of these systems when exploiting only reflectance information

    Synthetic epigenetics in yeast

    Full text link
    Epigenetics is the study of heritable biological variation not related to changes in DNA sequence. Epigenetic processes are responsible for establishing and maintaining transcriptional programs that define cell identity. Defects to epigenetic processes have been linked to a host of disorders, including mental retardation, aging, cancer and neurodegenerative diseases. The ability to control and engineer epigenetic systems would be valuable both for the basic study of these critical cellular processes as well as for synthetic biology. Indeed, while synthetic biology has made progress using bottom-up approaches to engineer transcriptional and signaling circuitry, epigenetic systems have remained largely underutilized. The predictive engineering of epigenetic systems could enable new functions to be implemented in synthetic organisms, including programmed phenotypic diversity, memory, reversibility, inheritance, and hysteresis. This thesis broadly focuses on the development of foundational tools and intellectual frameworks for applying synthetic biology to epigenetic regulation in the model eukaryote, Saccharomyces cerevisiae. Epigenetic regulation is mediated by diverse molecular mechanisms: e.g. self-sustaining feedback loops, protein structural templating, modifications to chromatin, and RNA silencing. Here we develop synthetic tools and circuits for controlling epigenetic states through (1) modifications to chromatin and (2) self-templating protein conformations. On the former, the synthetic tools we develop make it possible to study and direct how chromatin regulators operate to produce distinct gene expression programs. On the latter, we focus our studies on yeast prions, which are self-templating protein conformations that act as elements of inheritance, developing synthetic tools for detecting and controlling prion states in yeast cells. This thesis explores the application of synthetic biology to these epigenetic systems through four aims: Aim 1. Development of inducible expression systems for precise temporal expression of epigenetic regulators Aim 2. Construction of a library of chromatin regulators to study and program chromatin-based epigenetic regulation. Aim 3. Development of a genetic tool for quantifying protein aggregation and prion states in high-throughput Aim 4. Dynamics and control of prion switching Our tools and studies enable a deeper functional understanding of epigenetic regulation in cells, and the repurposing of these systems for synthetic biology toward addressing industrial and medical applications.2019-10-08T00:00:00

    Ancient and historical systems

    Get PDF

    Phospholipase PLA2G7, associated with aggressive prostate cancer, promotes prostate cancer cell migration and invasion and is inhibited by statins

    Get PDF
    Prostate cancer is the second leading cause of cancer mortality in men in developed countries. Due to the heterogeneous nature of the disease, design of novel personalized treatments is required to achieve efficient therapeutic responses. We have recently identified phospholipase 2 group VII (PLA2G7) as a potential drug target especially in ERG oncogene positive prostate cancers. Here, the expression profile of PLA2G7 was studied in 1137 prostate cancer and 409 adjacent non-malignant prostate tissues using immunohistochemistry to validate its biomarker potential and putative association with disease progression. In order to reveal the molecular alterations induced by PLA2G7 impairment, lipidomic and gene expression profiling was performed in response to PLA2G7 silencing in cultured prostate cancer cells. Moreover, the antineoplastic effect of statins combined with PLA2G7 impairment was studied in prostate cancer cells to evaluate the potential of repositioning of in vivo compatible drugs developed for other indications towards anti-cancer purposes. The results indicated that PLA2G7 is a cancer-selective biomarker in 50% of prostate cancers and associates with aggressive disease. The alterations induced by PLA2G7 silencing highlighted the potential of PLA2G7 inhibition as an anti-proliferative, pro-apoptotic and anti-migratorial therapeutic approach in prostate cancer. Moreover, the anti-proliferative effect of PLA2G7 silencing was potentiated by lipid-lowering statins in prostate cancer cells. Taken together, our results support the potential of PLA2G7 as a biomarker and a drug target in prostate cancer and present a rationale for combining PLA2G7 inhibition with the use of statins in prostate cancer management
    corecore